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Persistent Monitoring of Multiple Moving Targets
Using High Order Control Barrier Functions

Lorenzo Balandi, Nicola De Carli, Paolo Robuffo Giordano

Abstract—This paper considers the problem of persistently
monitoring a set of moving targets using a team of aerial vehicles.
Each agent in the network is assumed equipped with a camera
with limited range and Field of View (FoV) providing bearing
measurements and it implements an Information Consensus Filter
(ICF) to estimate the state of the target(s). The ICF can be proven
to be uniformly globally exponentially stable under a Persistency
of Excitation (PE) condition. We then propose a distributed control
scheme that allows maintaining a prescribed minimum PE level
so as to ensure filter convergence. At the same time, the agents in
the group are also allowed to perform additional tasks of interest
while maintaining a collective observability of the target(s). In
order to enforce satisfaction of the observability constraint, we
leverage two main tools: (i) the weighted Observability Gramian
with a forgetting factor as a measure of the cumulative acquired
information, and (ii) the use of High Order Control Barrier
Functions (HOCBF) as a mean to maintain a minimum level of
observability for the targets. Simulation results are reported to
prove the effectiveness of this approach.

Index Terms—Multi-Robot Systems, Localization, Perception-
Action Coupling

I. INTRODUCTION

TARGET tracking is a classical topic in the multi-robot
community in which a group of (possibly mobile) sensors

needs to cooperatively track the position of a moving target.
Each sensor can obtain a measurement of the target and fuse it
with the measurements from the other sensors in order to obtain
a better estimate [1]–[3]. Mobile sensors can also optimize their
position/motion so as to maximize the information collected
about the target state [4], [5], thus improving the localization
accuracy. This field is often denoted as active sensing: the
optimization of the sensor motion/placement usually relies on
a suitable information metric, which is typically a function of
the eigenvalues of an information matrix, e.g., the well-known
Fisher Information Matrix [6], the Observability Gramian
(OG) [7], or, alternatively, the covariance matrix [4], [5].

In this work, differently from many previous works on this
subject (e.g., [4], [5]), we consider a situation in which the
target localization is not the only task for the robot group. This
motivates to only enforce maintenance of a minimum level of
persistency of excitation for localizing the moving target(s)
so that the group can exploit its redundancy for realizing
additional tasks of interest. Our main contribution is therefore
a new formulation of the active sensing problem which, in our
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opinion, is more appropriate w.r.t. the typical active sensing
approaches, especially when the active sensing task needs
to be combined with other tasks of interest. Indeed, most
previous works on this subject define the active sensing task
as an optimization problem aimed at maximizing the collected
information. We instead only require maintenance of a minimum
level of information so as to ensure a proper convergence of
the filter used for estimating the target state.

In this work, we leverage Control Barrier Functions (CBFs)
to devise a distributed algorithm for tackling the active sensing
problem. CBFs are by now an established and powerful
tool for ensuring constraint satisfaction (e.g., enforcing the
state to remain inside a prescribed set) while optimizing
performance in nonlinear control problems [8]. CBFs have
been employed for multi-agent systems, e.g., for collision
avoidance [9], connectivity maintenance [10], and temporal
logic tasks [11]. When the constraint is imposed on a function
of the state whose first derivative does not explicitly depend
on the inputs (as in our case), imposing invariance of the
prescribed set becomes more involved. Some solutions have
been proposed [12], [13], among which, in particular, High
Order Control Barrier Functions (HOCBFs) [13], upon which
the following developments are also based.

The setting considered in this work consists of a group of
drone UAVs that need to localize (multiple) moving target(s)
from camera measurements with range and FoV limits, while
also possibly accomplishing other tasks. The ICF [2] is used as
estimation algorithm for estimating the target states. We also
adapt the ideas in [14], which studied single robot localization
from bearing measurements w.r.t. beacons with known position.
In this work we show that, under mild assumptions and a
suitable PE condition, the ICF stability proof in [3] for a linear
system is also valid in our case (which involves instead a
nonlinear measurement equation). Our main contribution is
then the design of a distributed control for the multi-UAV
system based on HOCBFs able to guarantee a minimum level
of PE (which is necessary for the ICF convergence) while also
allowing the execution of other tasks of interest. The rest of
the paper is structured as follows: in Section II, the considered
system dynamics, multi-robot interaction and sensor model
are introduced. The employed ICF is presented in Section III.
In Section IV, we introduce the two main tools used, i.e. the
HOCBFs and the OG, which are then combined in Section
V in order to maintain the system observability. The results
presented in Section VI validate the approach, and conclusions
are drawn in Section VII.
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II. MODELING

We consider a group of N drones that needs to localize
M possibly moving target robots. The drones are assumed
localized among themselves in a common frame, while the
targets need to be localized by the drones using relative
measurements from onboard sensors. For example, the targets
could be a set of ground robots unable to autonomously localize
themselves because of limited sensing, cluttered environment,
and so forth. Each drone can only communicate with its
neighbors according to a fixed, undirected and connected
communication graph G = (V, E), where V is the set of nodes
and E ⊆ V ×V is the edge set. The set of neighbors of the i-th
robot is denoted as usual with Ni ≜ {j ∈ V : (i, j) ∈ E}. Since
the communication is bidirectional (i, j) ∈ E ⇐⇒ (j, i) ∈ E .
The i-th drone is modeled as a single integrator with position
pi ∈ R3 and velocity input ui ∈ R3 such that

ṗi = ui i = 1, . . . , N. (1)

In the following, we will also refer to the aggregate drones
positions as p = [pT1 . . . pTN ]

T and analogously for the
inputs u = [uT1 . . . uTN ]

T . The r-th target position and
velocity are indicated respectively as pτr and vτr , and their
motion model need not to be known by the drones.

Each drone is assumed equipped with a down-looking
onboard camera that can acquire a relative bearing measurement

βir =
pir
dir

∈ S2, (2)

with respect to the target(s) in visibility, where pir = pτr − pi
and dir = ∥pτr − pi∥. The bearing is obtained by projecting
the noisy image plane point p̄ir = [x̄ir ȳir 1]

T onto the
unit sphere. A bearing measurement βir with respect to the
r-th target is considered available if the r-th target is within a
certain range w.r.t. the i-th drone, i.e. Dm < dir < DM , and
inside the FoV of the i-th drone, i.e. −x̄M ≤ x̄ir ≤ x̄M and
−ȳM ≤ ȳir ≤ ȳM , where x̄M and ȳM the FoV limits (see
Fig. 1).

Figure 1: The bearing βir is the unit vector from the drone to
the target. In the figure a camera with limited FoV is pointing
in the negative z direction, represented by the unit vector e3.

III. INFORMATION CONSENSUS FILTER

We base our estimation strategy for the target state on the
ICF originally presented in [2], for which only collective
observability of the target(s) is required [3] (i.e., each robot is
not required to individually measure the target). We will show
that by linearizing the output equation by output injection it

is possible to obtain a globally uniformly exponentially stable
observer under suitable PE conditions.

Since we do not assume knowledge of the target motion
model, a simple constant velocity model is used for estimation
purposes:

xτr (k + 1) = Adx
τ
r (k) + γ(k) (3)

where xτr = [pτr T vτr
T ]
T and Ad =

[
I ∆T I
0 I

]
, with ∆T

being the discretization step, while γ(k) ∈ N (0,Q) is gaussian
process noise with a positive definite covariance matrix Q. The
observer is not directly built on the expression (2) as output
function but, instead, as done also in other works [14], we
consider an output equation linearized via output injection:

zir(k) = Πβir (k)p
τ
r (k). (4)

Note that Πβir := I3 − βirβ
T
ir is an orthogonal projector, i.e.

ΠβirΠβir = Πβir and Πβir = ΠT
βir

(these properties will be
used later). Also, although (4) is nonlinear, it only depends
on a measured (nonlinear) function of the state (the bearing
βir). As in [14], the confidence gain Bir associated to each
measurement is simply taken as Bir = bI, with b > 0 being a
tunable gain. This is possible because, from the perspective of
the filter stability, this matrix is simply required to be positive
semi-definite.

For the sake of space, we do not report here the full
ICF algorithm but only mention the main steps, for more
information the reader is referred to [2]. The algorithm is
implemented as follows: 1) a new measurement is obtained;
2) the local information matrix V0

ir and the information
vector v0

ir are obtained from the prior information matrix
W−

ir and the local measurement information; 3) Kc rounds
of average consensus on the information matrix and the
information vector are performed; 4) the updated state estimate
x̂τ+ir = (VKc

ir )†vKcir , with † indicating the Moore-Penrose
pseudo-inverse, and information matrix W+

ir = NVKc
ir are

obtained and, finally; 5) the usual prediction step is performed.
The use of the linear time-varying expression (4) in the ICF

requires some care. First, thanks to the orthogonal projector
properties, one has

Πβir (k) (p
τ
r (k)− pi(k)) = 0

=⇒ zir(k) = Πβir (k)p
τ
r (k) = Πβir (k)pi(k).

(5)

The update step of the original ICF [2], by using (5), can then
be modified for our case as

v0
ir =

1

N
W−

ir(k)x̂
τ−
ir (k) + b

[
Πβir (k)

0

]
zir(k)

=
1

N
W−

ir(k)x̂
τ−
ir (k) + b

[
Πβir (k)

0

]
Πβir (k)pi(k)

=
1

N
W−

ir(k)x̂
τ−
ir (k) + b

[
Πβir (k)

0

]
pi(k)

(6)

where x̂τ−ir (k) is the prior state estimate. Note that the
final expression in (6) only depends on known quantities,
while zir(k) in (4) does not (thus showing the advantage of
formulation (6)). For completeness, we also add the expression
for V0

ir:
V0
ir =

1

N
W−

ir(k) + b

[
Πβir (k) 0

0 0

]
. (7)

The stability of the employed filter can then be shown under
the following assumptions (that will be discussed hereafter):
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Definition 1. A matrix function P(k) ⪰ 0 ∈ Rn×n is called
persistently exciting (PE) if there exists K,µ > 0 such that for
all k1 ≥ 0

1

K

k1+K∑
k=k1

P(k) ⪰ µI (8)

where C ⪰ D means that C−D is positive semi-definite. The
definition of PE in continuous-time is analogous.

Assumption 1. No collision drone-target occurs, so that the
bearing measurements are always well-defined.

Assumption 2. The target state is collectively observ-
able, i.e., the discrete-time Observability Gramian is full-
rank 1

K

∑K
k=0

∑N
i=1

(
Ak
d

)T [
Πβir (k) 0

0 0

]
Ak
d ⪰ µ1I for some

µ1 > 0, which reduces to 1
K

∑K
k=0

∑N
i=1 Πβir (k) ⪰ µ2I for some

µ2 > 0.

Remark 1. Assumption 2 is satisfied if there exists either
a single persistently exciting direction βir or at least two
non-collinear directions βir and βjr [14].

Assumption 3. The information matrix is initialized so that
Wir(0) ⪰ µ3I for some µ3 > 0, i = 1, . . . , N .

Under these assumptions, the proof provided in [3] still
holds, stating that the weighted squared error vector, whose
i-th component is (Lr(k))i = eir(k)

TW−
ir(k)eir(k), with

eir(k) = xτr (k)− x̂τ−ir , converges to zero exponentially fast
for the nominal (i.e. noise free) system. Then since, owing
to Assumptions 2 and 3, the information matrices W−

ir are
bounded from below and from above, it follows that also
the estimation error converges to zero exponentially fast,
and thus the observer is globally uniformly exponentially
stable. We note that, in general, the real velocity of the target
will not be constant but, since the observer dynamics are
Lipschitz continuous w.r.t. the perturbation and the observer
is globally uniformly exponentially stable, the observer is
input-to-state stable with respect to perturbations in the
velocity dynamics, hence bounded accelerations will only cause
bounded estimation errors (as expected and desired).

Remark 2. We point out that, for a generic double integrator
system with unknown acceleration, the state is unobservable
from a single bearing measurement. Hence, for the filter to have
acceptable performance, one of the two following assumptions
needs to be verified: 1) the target has a small acceleration
so that the ultimate bound of the error system is small, or
2) at least two drones are measuring non collinear bearings
w.r.t. the target, so that the position of the target is effectively
measured and the target state is observable.

We finally comment about the three Assumptions 1–3:
Assumption 1 can be trivially met by adding a constraint on
the UAV/target minimum distance (as done in the case study
of this work); Assumption 2 is a Persistency of Excitation
(PE) condition that will be actually enforced at runtime by the
algorithm proposed in the following sections; Assumption 3 is
only an initialization condition.

IV. INFORMATION MEASURES AND HOCBFS

In this section, we review the notions needed to develop
the main contribution of this paper, that is, a distributed
algorithm that guarantees satisfaction of the PE condition
necessary for the filter convergence (i.e., Assumption 2). This
is obtained by considering 1) the minimum eigenvalue of the
Observability Gramian (OG) [7] with a forgetting factor as
information measure (E-criterion) [15], and 2) High Order
Control Barrier Functions (HOCBFs) [13] for ensuring that the
minimum eigenvalue of the OG always remains over a certain
threshold. To make the drones aware about their sensing limits,
the information acquired is weighted by suitable weights that
decrease approaching the sensing limits.

A. The Information Measure

The OG is a tool used to study the observability of linear
time-varying systems as well as the local observability of
nonlinear systems. This matrix also found applications in the
field of active sensing, where it is used in order to quantify
the acquired information [7], [16]. The OG representing the
information acquired about the target position until time t,
indicated as Gr(t) ∈ R3×3, can be expressed as:

Gr(t) = Gr(t0) +

∫ t

t0

N∑
i=1

ΠT
βir

Πβir dτ = Gr(t0) +

∫ t

t0

N∑
i=1

Πβir dτ

(9)
where we used the orthogonal projector properties. Notice that
this matrix is the continuous time analogous of the matrix
appearing in Assumption 2. The OG is a positive semi-definite
matrix and it is invertible if and only if the position of the target
is observable along the trajectory. The minimum eigenvalue
λ1r of the OG can then be taken as an observablity metric: it
quantifies how far is the target position from being unobservable
[7].

As the integrand of the OG is a positive semi-definite matrix,
the OG is monotonically increasing in time. Since in this work
we are only concerned about maintaining λ1r above a minimum
threshold, we introduce a forgetting factor in the OG dynamics
that makes the information exponentially decaying in absence
of new measurements. Also, in order to take into account
the sensing limits of the drones, we introduce weights on the
information acquired at time t. The dynamics of the weighted
OG with forgetting factor can then be written as:

Ġr = −ρGr + b

N∑
i=1

wirΠβir (10)

where ρ > 0 is the forgetting factor, wir ∈ [0, 1] is a
differentiable weight function whose expression will be defined
later on, used to encode sensing constraints in the information
dynamics, and, as before, b is the information gain associated
to the measurement. Note that the OG first derivative only
depends on the drone positions and not on their velocities.
Hence, any function of the entries of the OG would have
relative degree 2 w.r.t. the system inputs.
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B. Perception Awareness

As mentioned in the previous section, the drone sensing
limitations are taken into account by weighting the OG. In
(10), wir is a scalar differentiable quantity used by the i-th
drone to weight the information acquired about the r-th target.
The weight wir smoothly varies from 1, inside the sensing limit
region, to 0, outside the sensing limit region. The information
artificially decreases in case the target approaches the maximum
sensing range or angle of the FoV. The weight is defined as
wir = wDirwβir, with

wDir =


e
− (d̂ir−Dthm )2

σ2
Dm , if d̂ir < Dthm

1, if Dthm ≤ d̂ir ≤ DthM

e
− (d̂ir−DthM )2

σ2
DM , if d̂ir > DthM

wβir =

e
− (cir−cos(αthM ))2

σ2
β , if cir < cos

(
αthM

)
1, if cir ≥ cos

(
αthM

)
(11)

where d̂ir =
∥∥p̂τ+ir − pi

∥∥ is the estimated distance from the
i-th robot to the r-th target, Dth

m , D
th
M , α

th
M are parameters that

represent respectively the distance and FoV angle at which the
weight start to decrease, σDM , σDm , σβ are standard deviations,
cir is the cosine of the angle between the bearing and the
camera optical axis.

As shown in Fig. 2, the weights wDir and wβir do not
(purposely) vanish to zero when approaching the sensing
limits. The idea being to allow the drones temporarily losing
a measurement when enough information is available. The
non-zero gradient of the weights can then be exploited by
the drones to possibly move back towards the targets for
reacquiring information. This choice also allows drones which
are not currently acquiring measurements to use the group-
level knowledge about the target position, and their own weight
gradient, to obtain a measurement in the future.

0 10

dir [m]

0.0

0.5

1.0

w
D
ir

wDir

Dth
m

Dth
M

Dm

DM

0 1

cir

0.0

0.5

1.0

w
β
ir

wβir

cos(αth
M

)

cos(αM )

90.0 60.0 0.0
α [deg]

Figure 2: Perception awareness weights for values Dm = 0.5 m,
Dthm = 1 m, DM = 5 m, DthM = 4 m, σ2

DM
= 0.5m2, σ2

Dm
= 0.1m2,

αM = 50 deg, αthM = 40 deg, σ2
β = 0.01 rad2.

C. High Order Control Barrier Functions

We briefly introduce some basic concepts about the HOCBFs,
see [13] for a more detailed discussion. Consider a generic
nonlinear system in control affine form

ẋ = f(x) + g(x)u (12)

with state x ∈ D ⊂ Rn, input u ∈ U ⊂ Rm and f and g
locally Lipschitz.

Definition 2. A continuous function α : (−b, a) → (−∞,∞)
is an extended class K function if it is strictly increasing and
α(0) = 0.

Given a ϱ-th order differentiable function h : D ⊂
Rn → R and sufficiently smooth extended class K functions
α1, α2, ..., αϱ, one can define a series of functions

ψ0(x) = h(x), ψk(x) =

(
d

dt
+ αk

)
ψk−1, 1 ≤ k ≤ ϱ (13)

with the corresponding sets Ck−1 = {x : ψk−1(x) ≥ 0}.
Function h(x) is an HOCBF of order ϱ for (12) if there exist
ϱ extended class K functions α1, . . . , αϱ and an open set D
with C := ∩ϱk=1Ck−1 ⊂ D such that

sup
u∈U

[Lfψϱ−1(x) + Lgψϱ−1(x)u +αϱ (ψϱ−1(x))] ≥ 0. (14)

with Lfψϱ−1(x) =
∂ψϱ−1

∂x
f(x) and Lgψϱ−1(x) =

∂ψϱ−1

∂x
g(x) being

the Lie derivatives of ψϱ−1(x) for the system (12). This
definition generalizes to higher relative degrees the classical
CBF definition [8] that only applies to constraints of relative
degree ϱ = 1. Then, as usual, given a Lipschitz continuous
desired input ud, one can define a minimally invasive controller
by solving the following Quadratic Program (QP):

min
u∈U

.
1

2

∥∥∥u− ud
∥∥∥2

2

s.t. Lfψϱ−1(x) + Lgψϱ−1(x)u+ αϱ(ψϱ−1(x)) ≥ 0.
(15)

V. PERSISTENT MONITORING

In this section, we show how to combine the HOCBFs and
the weighted OG with forgetting factor in order to achieve the
persistent target monitoring task. We start by formulating the
general problem in a centralized form and we then discuss
how it can be solved in a distributed way.

A. Centralized Formulation

As previously mentioned, the goal is to enforce validity
of Assumption 2. This can be obtained by ensuring that the
minimum eigenvalue λ1r of the OG remains over a prescribed
threshold. For this purpose, we define the safe set as

Cr0 = {ζ ∈ R3N+(3+9) : hr(ζ) = λ1r(ζ)− ϵψ ≥ 0} (16)

with ϵψ > 0. The state ζ consists of the stack of the drone
positions, of the target position and of the vectorized OG, i.e.,

ζ =
[
pT (pτr )

T vec (Gr)
T
]T

(17)

where vec(·) is the vectorization operator and p aggregates all
the drones positions. The corresponding system dynamics are

ζ̇(t) = f(ζ, t) + g(ζ)u (18)

with

f(ζ, t) =

 03N

vτr (t)

vec
(
−ρGr + b

∑N
i=1 wirΠβir

)
 (19)

where, with an abuse of notation, we only indicated the direct
time dependency, and

g(ζ) =
[
(1N ⊗ I3)

T 0T3×3N 0T9×3N

]T
. (20)
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where ⊗ represents the Kronecker product and 1N ∈ RN
denotes the all-ones vector.

As previously mentioned, a function of the entries of the OG
(such as hr(ζ) in our case) has relative degree ϱ = 2 w.r.t. the
system input u, hence the need to resort the HOCBFs. In our
case,

ψ0r(ζ) = λ1r(ζ)− ϵψ

ψ1r(ζ) =
∂λ1r(ζ)

∂(vec(Gr))
vec(Ġr) + αψ1 (λ1r(ζ)− ϵψ)

(21)

where we used a linear function as extended class K with αψ1 >
0 and ∂λ1r

∂(vec(Gr))
= vT1r ⊗ vT1r, with v1r being the eigenvector

of the OG associated to λ1r.
The centralized QP that needs to be solved is

min
u∈U

1

2

∥∥∥u− ud
∥∥∥2
2

s.t.
N∑
i=1

Lgiψ1r(ζ)ui + Lfψ1r(ζ) + αψ2 ψ1r(ζ) ≥ 0

(22)

where, again, we chose a linear function as extended class K
with αψ2 > 0. Also,

Lgiψ1r(ζ) = bvT1r ⊗ vT1r

(
vec(Πβir )

∂wir

∂pi
+ wir

∂ vec(Πβir )

∂pi

)
(23)

and

Lfψ1r(ζ) =
(
vec(Ġr)

THλr + (αψ1 − ρ)vT1r ⊗ vT1r

)
vec(Ġr)

+ bvT1r ⊗ vT1r

N∑
i=1

(
vec(Πβir )

∂wir

∂pτr
+ wir

∂ vec(Πβir )

∂pτr

)
vτr

= cr(ζ) +
N∑
i=1

dir(ζ)

(24)
where

Hλr :=
∂2λ1r

∂ vec(Gr) vec(Gr)T
= K3

(
Y†

1r ⊗ v1rv
T
1r + v1rv

T
1r ⊗Y†

1r

)
(25)

Y1r := λ1rI−Gr and K3 being the commutation matrix [17].
Also, we split Lfψ1r(ζ) in the separable part

∑N
i=1 dir(ζ) and

the non-separable one cr(ζ) (the reason will be clearer later),
defined as follow:

cr(ζ) :=
(
vec(Ġr)

THλr + (αψ1 − ρ)vT1r ⊗ vT1r

)
vec(Ġr) (26)

and

dir(ζ) := bvT1r ⊗ vT1r

(
vec(Πβir )

∂wir
∂pτr

+ wir
∂ vec(Πβir )

∂pτr

)
vτr

(27)
The QP problem in (22) is centralized. Our goal is to have

each drone solving a local QP using only local quantities,
such that the collective solution of the local QPs results in the
satisfaction of the centralized constraint in (22). In the next
subsection, we show how to solve this problem in a distributed
way.

B. Distributed Persistent Target Monitoring

To guarantee satisfaction of the constraint in (22) first note
that, from (24), Lfψ1r(ζ) can be split in a part local to each
robot, dir(ζ), and a part that is not already separated cr(ζ). A

possible strategy to satisfy the previous constraint is, for each
drone, to consider the following constraint in its local QP:

Lgiψ1r(ζ)ui + dir(ζ) ≥ −ki(ζ)
(
cr(ζ) + αψ2 ψ1r(ζ)

)
(28)

where the weights ki(ζ) need to sum up to 1, i.e.
∑
ki = 1.

Then, taking the sum for each robot of the left hand side of
the inequality in (28) yields

N∑
i=1

Lgiψ1r(ζ)ui +

N∑
i=1

dir(ζ)

≥ −
(
N∑
i=1

ki(ζ)

)(
cr(ζ) + αψ2 ψ1r(ζ)

)
= −

(
cr(ζ) + αψ2 ψ1r(ζ)

)
(29)

which satisfies the centralized constraint in (22). The most
trivial choice for the weights is ki(ζ) = 1

N , which divides
equally the constraint among the robots, but other choices are
also possible [11]. In the local constraint in (28), some of
the variables are not directly locally available but they can be
estimated in a decentralized way:

•
∑N
i=1 wirΠβir : this quantity appears in vec(Ġr) (see

(10)) and can be computed in a distributed way by dynamic
average consensus [18] and multiplying the average by
the number of drones;

• Gr : Each drone has its own copy Gir of the information
collected about the target Gr, which is obtained by
integrating (10). The matrices Gir starts from the same
initial conditions and have the same dynamics up to
the consensus error on ∑N

i=1 wirΠβir . In order to have
consistency across the network we add a consensus term
to the OG dynamics:

Ġir = −ρGir +

N∑
i=1

bwirΠβir +
∑
j∈Ni

(Gjr −Gir) . (30)

Then, also the quantities λ1r and v1r are available to all
the drones;

• pτr , vτr : every drone has its own posterior estimate p̂τ+ir
and v̂τ+ir provided by the ICF.

Remark 3. Due to the non-differentiability of the minimum
eigenvalue function, as in previous works we use a smooth
approximation as in [19].

A direct implementation of (28) would imply that, when
Lgiψ1r(ζ) approaches zero, the QP may result infeasible. In
order to solve this issue, we add a slack variable to obtain a
soft constraint.

min
ui∈Ui,δir

1

2

∥∥∥ui − udi

∥∥∥2
2
+

1

2
Kδwirδ

2
ψir

s.t. Lgiψ1r(ζ)ui + dir(ζ) + δψir ≥ −
1

N

(
cr(ζ) + αψ2 ψ1r(ζ)

)
r = 1, . . . ,M

(31)
Notice that the slack variable in the cost function is weighted
by the product of a high gain Kδ and the weight wir. The
reason of this is two-fold: 1) to avoid numerical problems
when Lgiψ1r(ζ) is very small (because of a very small weight
wir); 2) to relax the constraint for drones which are not very
near to the target. This in practice means that if some drones
are already observing the target, the drones with very small
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weight will ignore the constraint and only track the desired
input (representative of any additional task).

For the formation to track multiple targets, we simply take
the intersection of the safe sets corresponding to each target,
i.e. we add a linear inequality constraint for each target and
extend the state ζ with the other targets state. Notice that, with
the proposed formulation, if the collected information becomes
high enough, since the constraint is satisfied at the current
time, the drones could stop following a target r and just track
the desired input. In this situation, the weight of each robot
w.r.t. target r could become very small and it may happen
that no drone would then be able to reach the target again. In
order to avoid this issue, we add another CBF for ensuring
that hwr :=

∑N
i=1 wir − ϵw ≥ 0 for r = 1, ...,M and ϵw > 0.

The additional CBF constraint can be added to the local QP
as in the previous case:

min
ui∈Ui,

δψir
,δwir

.
1

2

∥∥∥ui − udi

∥∥∥2
2
+
Kδ

2

M∑
r=1

wirδ
2
ψir

+
Kδ

2

M∑
r=1

wirδ
2
wir

s.t. Lgiψ1r(ζ)ui + dir(ζ) + δψir ≥ −
1

N

(
cr(ζ) + αψ2 ψ1r(ζ)

)
∂wir

∂pi
ui +

∂wir

∂pτr
vτr + δwir ≥ −

αw1
N

(
N∑
i=1

wir − ϵw

)
r = 1, . . . ,M

(32)
where 1

N

∑N
i=1 wir is obtained through average consensus.

Remark 4. Depending on the design of the weights, this
constraint does not necessarily imply that one of the drones is
forced to continuously observe the target. Rather, it ensures that
the drones remain close enough to the target so that they can
exploit the gradient information in the weights for approaching
and measuring again the target whenever necessary.

VI. SIMULATION RESULTS

In this section we validate the proposed approach via a series
of simulations. We consider N drones localizing M target
ground robots, which are unable to localize themselves. We
show three representative scenarios: 1) a single target moving
with non-constant velocity, 2) the same target motion but with
the drones having a secondary task of formation control, 3)
a multi-target scenario, with targets moving at non-constant
velocity. For each case, we perform 20 simulations, with the
initial drone positions sampled from a uniform distribution near
the origin. Knowledge of the fact that the targets are moving
on the xy plane is never used by the algorithm (which indeed
would also work for a generic 3D motion). Each drone runs an
ICF for each target and solves the QP (32). For each case, we
report the plots of average results for the CBFs ψ0r, ψ1r, hwr
and of the norm of the position estimation error ∥ep(t)∥2 across
all drones and all simulations. We also plot the minimum and
maximum values at each time instant showing a shadowed area
between the two. Note that if the CBFs remain non-negative
then the corresponding constraints are satisfied. A red dashed
line is highlighting the minimum threshold at zero. We check
that at t = 0 each target is visible by at least 2 drones. The
drones run a collision avoidance algorithm using CBFs as
in [9], but as the topology of the communication graph is fixed,

it is not implemented in a distributed way. The minimum inter-
agent distance is set to 1.0 m, and the velocities of the drones
are limited to ∥ui∥ ∈ [−3, 3] m/s. The weights parameters
used for all the simulations are reported in the caption of
Fig. 2. Other parameters common to all the simulations are
the following: forgetting factor ρ = 0.7, threshold ϵψ = 0.1,
threshold ϵw = 1, slack variable weight Kδ = 105, number of
consensus iterations per step Kc = 1, information gain b = 2.
For all targets, we initialize the estimated position p̂τ−ir to a
random guess and the velocity v̂τ−ir to zero, W−

ir to I3 and Gr

to ϵψI3. The system covariance Q is diag(0.01 · 13,13). The
measurements acquired by the drones are affected by Gaussian
noise acting on the image plane with zero mean and covariance
R = 5 · 10−5I2. The reader can find attached to the paper a
video with representative simulations.

A. Case 1: Single target, no additional tasks

In this case, we consider N = 6 and M = 1. The drones
do not have an additional task besides the target estimation
one (namely udi = 0 ∀i ∈ {1, . . . , 6}). The trajectory of the
target, starting from the origin, is the eight-shape (Figs. 3
and 4e) defined by pτ1(t) = [A sin(ωt), A sin(ωt) cos(ωt), 0]T ,
with ω = 0.12 rad/s, A = 10 m. Notice that the velocity is
far from being constant: hence, two non-colinear bearings are
necessary as per Remarks 1 and 2. In each of the 20 realizations,
the drones initial positions are generated by uniformly sampling
a box of sizes 8× 8× 1 m centered at [0, 0, 2]T m.

The results are reported in Fig. 4. Figures 4a, 4b and 4c
depict the mean CBFs. In these plots, three peaks are clearly
visible: the first is due to initial conditions, since the target
starts at the origin where it can be sensed by the majority of
the drones with high weights wi1 (see Fig.4c, which shows the
sum of the weights with offset given by ϵw), and hence the
information rapidly grows. The second and third peaks refer,
respectively, to the target going back from the origin after half
a period, where it is visible again by the drones which did not
follow it, and the target completing a period of its motion and
passing again through the origin. In between the peaks, the
constraints are active and few drones follow the target. The
actual number of moving drones depends also on ϵw, which
can be tuned depending on the application. For example, in this
case it can be used to impose that at least two drones follow
the target by choosing ϵw > 1. The trajectories of drones
and target at the final instant of one of the 20 simulations
are depicted in Fig. 4e. As one can see, the CBFs have non-
negative values, although some slight violations may happen
because of estimation noise and the use of slack variables.
Fig. 4d depicts the average of the norm of the position error
with maximum and minimum values for each time instant.
In correspondence of the peaks in the CBFs plots, one can
observe a slight decrease of the error, because the target is
being observed by more drones.

B. Case 2: single target, formation control task

In this case, we consider the same scenario as before, but
adding as secondary task a bearing-only formation control [20],
which does not constrain scale and barycenter of the formation
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and which is used to provide the desired inputs udi . The results
are reported in Fig. 5, while Fig. 3 depicts the trajectories
of a simulation of case 2 at the final instant. From Figs. 5a,
5b and 5c, we can draw the same considerations as in the
previous case, with the CBFs having in general higher values.
This is because the drones observing the target tend to steer
the formation closer to the target. This is confirmed also by
Fig. 5d, where we can see that the estimation error remains
lower than the previous case. When the target moves away
from the origin, 2 or 3 drones follow it and the rest of the
group implements the input given by the formation control
task. In Fig. 5e, we also show the average of the norm of the
bearing errors related to the formation task, with maximum
and minimum values for each time t. The bearing error initially
rapidly decreases, and it then remains limited, although not
zero on average. The reason being that the formation control
provides a desired input which is then filtered by the CBFs.
This is also due to the suboptimality of the distributed CBFs
here implemented w.r.t. the centralized QP.
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Figure 3: Trajectories at the final instant of simulation examples
of case 2 (left) and case 3 (right). The blue ’X’ represent drones
which are not sensing any target, the blue thin lines represent
the FoVs.

C. Case 3: multi-target, no additional tasks
In this case, we consider N = 10 and M = 3 with

udi = 0 ∀i ∈ {1, . . . , 10}. The target initial positions
are pτ1(0) = [1, 0, 0]Tm, pτ2(0) = [−0.5, 0.866, 0]Tm and
pτ3(0) = [−0.5,−0.866, 0]Tm, and they move with sinusoidal
motion in the +x, +y, and −x directions respectively (see
Fig.3). Hence, again, they do not satisfy the constant velocity
condition. The results are reported in Fig. 6, where in each
subfigure the top plot refers to target 1, the middle plot to target
2 and the bottom plot to target 3. Initially, the targets are seen
by the majority of the drones, hence the minimum eigenvalue
of the OG rapidly increases and the weights related to the
targets are high, as it can be seen from Figures 6a, 6b and
6c. After these initial peaks, the CBFs decrease approaching
zero without crossing it (slight exceptions are possible again
due to estimation noise and the use of slack variables). This
phase corresponds to the situation in which the drones have
to “split” and move from their original positions to follow
different targets. Also, in this case the minimum number of
drones required to estimate the state of a target respecting the
constraints is 2. The final time of a simulation is depicted in
Fig. 3.

D. Discussion

From the reported results, it emerged that the multi-target
tracking cases still present some limitations. Specifically, when
the drones need to split to track different targets and the
drones are centered w.r.t. the targets when the constraints
become active, some undesirable oscillations may occur in
the drone motion. This issue arises because each drone lacks
knowledge of the inputs applied by the other drones: indeed, a
centralized implementation of the proposed strategy would not
encounter the same problem. Better performance in this sense
(and also in terms of the optimality of the secondary task) could
be achieved by using distributed optimization techniques for
finding the optimal solution of the centralized QP with coupled
time-varying linear inequality constraints. The formulation of
distributed CBFs presented in [21] seems a promising direction
which we will investigate in future works.

Another limitation of the approach is the influence of
estimation errors on the fulfillment of the constraints. While
some robustness of the control law to noise in the model can
be shown, studying its robustness w.r.t. estimation errors is
much more complex and a common open challenge in active
sensing.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a distributed persistent monitoring
scheme for estimating the state of one or multiple moving tar-
get(s) from bearing measurements by employing an Information
Consensus Filter. The filter is uniformly globally exponentially
stable if a Persistency of Excitation condition is met. The
main contribution of this work is to guarantee that such a
PE condition is met also in presence of sensing constraints
while potentially achieving other tasks of interest. This is
achieved by relying on two main tools, namely the decentralized
High Order Control Barrier Functions, used to enforce the
invariance of the safe set, and the weighted Observability
Gramian with forgetting factor, which is used to quantify the
persistency of excitation. The approach has been validated via
numerical simulations. In addition to the discussion provided
in Sect. VI-D, in the future we plan to consider more complex
secondary tasks, as well as a time-varying graph topology with
a connectivity maintenance constraint.
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