N

N
N

HAL

open science

How Gubser flow ends in a holographic conformal theory

Avik Banerjee, Toshali Mitra, Ayan Mukhopadhyay, Alexander Soloviev

» To cite this version:

Avik Banerjee, Toshali Mitra, Ayan Mukhopadhyay, Alexander Soloviev. How Gubser flow ends in a
holographic conformal theory. Eur.Phys.J.C, 2024, 84 (5), pp.550. 10.1140/epjc/s10052-024-12915-2 .

hal-04175756

HAL Id: hal-04175756
https://hal.science/hal-04175756v1

Submitted on 10 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-04175756v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Eur. Phys. J. C (2024) 84:550
https://doi.org/10.1140/epjc/s10052-024-12915-2

THE EUROPEAN ()]
PHYSICAL JOURNAL C e

updates

Regular Article - Theoretical Physics

How Gubser flow ends in a holographic conformal theory

Avik Banerjee'?, Toshali Mitra®*-, Ayan Mukhopadhyay®’, Alexander Soloviev®~

! Department of Physics, Crete Center for Theoretical Physics, University of Crete, Heraklion, Greece
2 Laboratoire de Physique de I’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris,

France

3 Asia Pacific Center for Theoretical Physics, Postech, Pohang 37673, Korea

4 The Institute of Mathematical Sciences, Chennai 600113, India

5 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

6 Instituto de Fisica, Pontificia Universidad Catélica de Valparaiso, Avenida Universidad 330, Valparaiso, Chile
7 Center for Strings, Gravitation and Cosmology, Indian Institute of Technology Madras, Chennai 600036, India
8 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, 1000 Ljubljana, Slovenia

Received: 25 January 2024 / Accepted: 14 May 2024 / Published online: 31 May 2024

© The Author(s) 2024

Abstract Gubser flow is an axis-symmetric and boost-
invariant evolution in a relativistic quantum field theory
which is best studied by mapping R>! to dS3 x R when
the field theory has conformal symmetry. We show that at
late de-Sitter time, which corresponds to large proper time
and central region of the future wedge within R>!, the holo-
graphic conformal field theory plasma can reach a state in
which ¢ = Pr = — Py, with ¢, Pr and P, being the energy
density, transverse and longitudinal pressures, respectively.
We further determine the full sub-leading behaviour of the
energy—momentum tensor at late time. Restricting to flows in
which the energy density decays at large transverse distance
from the central axis in R>!, we show that this decay should
be faster than any power law. Furthermore, in this case the
energy density also vanishes in R>! faster than any power
as we go back to early proper time. Hydrodynamic behavior
can appear in intermediate time.

1 Introduction

Gubser flow [1,2] is a time-dependent evolution of a rela-
tivistic many-body system which is boost invariant and has
a rotational symmetry about an axis. The original context of
study of the Gubser flow is the evolution of QCD matter pro-
duced in central heavy ion collisions, in which case the axis
of rotational symmetry is the beam axis.

Gubser flow in conformal field theory can be studied
by mapping Minkowski space (R*>!) to a product of three
dimensional de-Sitter space and the real line (d S3 x R), which

4 e-mail: alexander.soloviev@fmf.uni-1j.si (corresponding author)

makes the symmetries manifest [2]. The most remarkable
feature of Gubser flow is that at late de-Sitter time, p, the
evolution cannot be described by relativistic hydrodynamics
[2-10]. This large p regime is large proper time and the cen-
tral region of the flow in the future wedge of the collision in
Minkowski space.

Our study of the holographic Gubser flow sets a primary
example in which one can exactly determine how a system
can evolve out of hydrodynamic regime due to expansion
of some directions of space in a quantum field theory, and
is relevant to understanding evolution of quantum matter in
Kasner geometries [11] describing spacetime singularities,
etc.

In kinetic theories without particle production in the Gub-
ser flow, it has been shown [3—10] that the large p behavior
is free-streaming where inter-particle interactions disappear.
However, such an ultra dilute regime is better studied in quan-
tum field theory. Here, we show that in a holographic confor-
mal theory, the deconfined plasma can reach a phase in which
the energy density ¢, the transverse pressure Py and the lon-
gitudinal pressure P satisfy P;, = —Pr, and ¢ = Pr in the
large p limit independently of the details of the state of the
system at an early time. Remarkably, this phase is similar to
the color glass condensate regime described by perturbative
physics of saturated gluons [12—14].

We also establish a systematic late-time expansion which
gives all sub-leading corrections to the colour glass conden-
sate like behavior at late time. As in the fluid-gravity cor-
respondence [15], this late time behavior is deduced from
demanding that the future horizon is regular at each order in
the expansion. However, this late-time expansion is not a gra-
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dient expansion which breaks down at late time. It captures
all systematic corrections in powers of exp(—p/L), where p
is the de-Sitter time and L is the radius of the S? factor at
o = 0. The dimensionful parameter analogous to L in R*! is
g~ ! which is a scale set by the initial conditions, and which
gives a systematic expansion in negative powers of gt (with
7 being the proper time) in R

In physically realizable Gubser flows in R>!, the energy
density should decay at large transverse distance from the
central axis at any proper time. We show that in such flows
the asymptotic late de-Sitter time behavior obtained from
bulk regularity implies that the decay of the energy density
at large transverse distance from the central axisin R>! faster
than any power. Furthermore, we also show that in the limit
of early de-Sitter time p — 0 and early proper time 7 — O,
the energy density should vanish faster than any power of
exp(p/L) and t, respectively. The systematic late de-Sitter
time expansion itself carries the full information of the state
(represented by the initial conditions of the gravitational solu-
tion at a finite de-Sitter time) when the symmetries of the
Gubser flow are fully preserved.

We postpone discussions about the relevance of our results
to heavy-ion collisions in the concluding section.

The plan of this paper is as follows. In Sect. 2, we discuss
the map from the future wedge of the collision in Minkowski
space to dS3 x R, and review the breakdown of the gradient
(hydrodynamic) expansion at late time. In Sect.3, we dis-
cuss the basic setup of how the Gubser flow can be studied
via dual gravitational dynamics in strongly coupled large N
holographic conformal theories. In Sect.4, we demonstrate
how the late de-Sitter time behavior of the Gubser flow can
be determined systematically and present a general perturba-
tive solution in a perturbative expansion. In Sect. 5, we show
that by assuming that the energy profile decays in transverse
directions to the axis in Minkowski space, we can also deter-
mine the early de-Sitter time behavior and how the late de-
Sitter time expansion itself determines the energy density in
the full future wedge of the collision in Minkowski space. We
show that the energy density should decay at large transverse
directions to the axis in Minkowski space faster than any
power, and also vanish faster than any power as we approach
the proper time t = 0 which is the moment of the collision.
In Sect. 6, we discuss different implications of our results and
present an outlook.

2 Preliminaries

For a conformal system on R>!, the full symmetry of the
Gubser flow is SO(3); ® SO(1,1) ® Z;. These symme-
tries can be made manifest by performing diffeomorphism
and Weyl rescaling of R31 to dS3 x R [2]. The SO(1, 1)
boost symmetry acts additively and Z,, the reflection sym-
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metry about the collision plane, acts reflexively on the R
factor, which is physically the rapidity. Furthermore, dS3 is
a contracting and then expanding S? on which SO(3) has
a natural action. The variable g parametrizes inequivalent
ways of embedding SO (3) ® SO(1, 1) in the full conformal
group SO (4, 2). Also, g~ has the dimension of length and
is essentially the size of the colliding systems.

The explicit map from R>! to dS3 x R is via the Milne
coordinates, which are the proper time t = «/t2 — z2, the
rapidity n = arctan(z/t), the radial coordinate x| and the
angular coordinate ¢ of the plane transverse to the z-axis (the
beam axis). In Milne coordinates, the metric on R3! is

ds? = —dt? + o2dn® 4 dx + x3dg¢”. (1)

The dS3 x R coordinates are p, 6, ¢ and n, where

1 — g272 2.2
p = —L arcsinh Rl Y , 2)
2qrt
2gx1
f = arctan (m) . (3)

Crucially, the future wedge, which is the causal future of the
plane of the collision at T = 0, is contained in d S3 x R. The
corresponding metric

12
d§? = —ds?

T

— —dp? + L2 cosh? (%) (d92+ sin? 9d¢2) +L2dn?,
4)

is Weyl equivalent to the flat metric. From our discus-
sion above, it is clear that p is invariant under SO(3),; ®
SO(1,1) ® Zy, and therefore physical quantities like the
energy density should depend only on p explicitly up to the
Weyl rescaling. We will denote physical quantities measured
in dS3 x R with a hat.

The conformal Ward identites for the energy—momentum
tensor are:

VT =0, Th =4, o)
where .27 is the Weyl anomaly. The SO (3),® SO (1, 1) ® Z;

symmetries and these Ward identities imply that T} should
be of the form

TH =" + o/t (6)
where

-
et i« e (2)7 (2)-5(2).
" = Pr(p) = coth (ﬁ) & (%) +38 (%) ©)
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Here, ’ denotes a derivative w.r.t. to the argument. It is easy
to check that 7'y is separately conserved (i.e. V,i" = 0)
and is traceless. The anomalous term o7 ' (which is state-
independent) is explicitly

2
3272

~

. —4
M = diag (1, 1,1, =3) L (10)

for 4 = 4 SU(N) super Yang—Mills-theory (SYM) [16,
17]. We note that &/ = /", = 0.

It is clear from the above that the only input from
the microscopic dynamics that is needed to determine the
energy—momentum tensor is the evolution of the energy
density £(p), because the latter determines the transverse
pressure Pr and the longitudinal pressure Py via (8) and
(9), respectively. Weyl transformation yields the energy—
momentum tensor in Minkowski space:

4

L.
ThH = —1h

Ci, e e = Lt (11)
T

Note that the anomalous term disappears.

In the hydrodynamic regime, the general form of the
energy—momentum tensor given by (7)—(9) implies that the
fluid is static in the dS3 x R frame, i.e. the velocity field
is of the form #” = 1 with other components vanishing.
The hydrodynamic equations determine £(p). For a perfect
conformal fluid, &(p) = £ycosh™8/3(p/L), whereas for a
viscous flow (see Appendix A for an explicit solution), &
goes to a constant at large p indicating the breakdown of
the derivative expansion. However, at p ~ 0, the Knudsen
number is small, and the derivative expansion is equivalent
to
0% 16

—H()803/4 ,0

4
P O(p* 12
3605 0y T owh, (12)

E(p) =& —
with Hy being the dimensionless (and constant) shear viscos-
ity (see Appendix A). This hydrodynamic evolution is only
transitory.

3 Holographic Gubser flow

Any state in the universal sector of a holographic conformal
gauge theory, such as .4 = 4 SYM with SU(N) gauge
group, has a dual description as a solution of pure classical
Einstein’s gravity with a negative cosmological constant in
one higher spacetime dimension in infinite "t Hooft coupling
and large N limits [18-20]. Such a solution should be regular,
i.e. without any naked singularity, and with boundary metric
g,(fv) defined in terms of the bulk metric G, via

)
lim —G,w = gg")), (13)

r—0 l2

coinciding with the physical background metric on which the
gauge theory lives. Above, r is the holographic radial coordi-
nate, which has an interpretation in terms of the energy scale
of the dual theory [21-28], while i and v indices represent
the directions spanning the boundary of spacetime at r = 0.
The bulk cosmological constant is A = —6/1.

Any five-dimensional gravitational solution dual to a Gub-
ser flow of the dual gauge theory in dS3 x R can be written
in the form

, 2 2 r? r
ds? = =5 drdp - l—ﬁ—i—A(L L) dp?

12(L cosh(p/L) + rsinh(p/L))?
r2

x BT 1) (d92 + sin? 0d¢2)

2
+ Leetp-2n(ing
-

) [2dp2. (14)

We have chosen the ingoing Eddington—Finkelstein gauge
in which the regularity of the future horizon can be readily
examined. For the boundary metric to be the metric (4) on
dS; x R, we need

A(r=0,p/L)y=B(r =0,p/L)y=C(r =0,p/L)=0.

15)

The solution dual to the vacuum state corresponds to
A = B = C = 0. This solution is locally AdSs (it can be
explicitly checked that it is the maximally symmetric met-
ric). Although the metric dual to the vacuum of the theory in
d S3 x R has all the Ad S5 isometries, we can readily see from
(14) that the discrete symmetry p — —p of dS3 x R at the
boundary is not preserved due to the sinh(p/L) term in the
pp-component of the metric. As a result, the vacuum state
itself has a monotonically growing entropy as discussed in D.
We note that the map from R>! to dS3 x R is also defined
only for the future wedge T > 0, so it also prefers an arrow
of time. Therefore from the Minkowski point of view, the
monotonically growing entropy in the vacuum of dS3 x R
could capture something similar to the entropy of the Rindler
observer. We have presented some discussions on this issue
in Appendix D.

Generally, as detailed in Appendix B, A, B and C have
radial expansions of the form

A:Za(n)(,o/L)%, B = wa)(P/L)Ln

n=0
o0 rn

C = m(p/L)— 16
gcmp/ ) (16)

Plugging these in Einstein’s equation, we find that the entire
solution is determined just by two inputs: a(1)(o/L), which

@ Springer
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is related to a proper residual diffeomorphism that does not
affect the boundary data, and a(4) (0 /L) which is physical and
should be chosen such that no naked singularity is present.
Physically a@4)(p/L) determines with the energy—
momentum tensor of the dual gauge theory state. The lat-
ter can be obtained systematically via the standard holo-
graphic dictionary (see Appendix B) [16,17,29,30]. Noting
that 13/GN = (2/7'[)N2 [18], we find that the dual energy—
momentum tensor has the same form as that given by (6)-(10)
(including the anomalous term) with the identification

F(2) = (£) = e (2).

Since a Weyl transformation at the boundary can be lifted
to a bulk diffeomorphism [16,29], we can readily obtain the
Minkowski boundary metric (1) and the energy—momentum
tensor (11) via an appropriate bulk diffeomorphism.

)

4 Finding the late time solution in dS3 x R

The problem of finding generic late time behavior amounts
to setting up a suitable late time expansion and determining
the set of conditions which lead to a regular future horizon in
this expansion perturbatively. Furthermore, the solution has
to be normalizable, i.e. satisfy (15). Due to the exponential
expansion of 2, the energy density in dS3 x R should dilute
and we should eventually reach the vacuum. Therefore, in
the dual gravitational solution (14), A, B and C must even-
tually vanish. The latter solution with A = B = C = 0 has
a horizon at r = L where 9, has vanishing norm. (Note this
is not a Killing horizon.) Therefore at large p, the horizon
should be at r = L at leading order in the late time expan-
sion, and just like in the case of fluid-gravity correspondence
[15], we should require that at each order in the perturbative
expansion, the behavior of A, B and C are smooth atr = L
implying regularity of the future horizon.

It is instructive to first discuss the example of a mass-
less scalar field @ which satisfies the Klein—Gordon equa-
tion V2® = 0, where V? is the Laplacian operator in the
five-dimensional metric (14) dual to the vacuum and with
A = B = C = 0. Demanding SO(3), ® SO(1,1) ® Z,
symmetry amounts to requiring that @ depends only on r
and p. It is easy to see that the background five dimensional
metric is a rational function of 0 = exp(p/L). Therefore,
we will expect that at late time @ (r, p) should behave as
~% ~ exp(—ap/L). The consistent ansatz which fits this
late time behavior (at large o) is

o

B(r,p)=0"") $u()o "

n=0

(18)

@ Springer

where v = r/L. However, if the solution is analytic at the
horizon » = L, we should expect the behavior near r = L
(i.e. v = 1) to be given by

o
$n(®) = D (1= )", (19)
m=0
where A, ,, are pure numbers. Substituting (18) and (19) in
the Klein—Gordon equation, we can readily solve all other
An.m in terms of Ao, which can be chosen freely. Finally,
we would require the condition of normalizability, i.e.

$n(v=0)=0. (20)
Solving A, o explicitly in terms of A¢ o, we would get
$o(v = 0) = %0,0 fo(a). (21)

The allowed values of « are simply the roots of fj(«). Solving
for 4,0 to very high orders, we get stable roots, which are
4 + 2k, for k = 0,1, 2, ... From the ansatz (18) and the
allowed values of «, it follows that if ¢ is normalizable
then so is ¢, for n > 1 provided one of the two integration
constants at each order is chosen so that ¢, (0) = 0. Since ¢g
determines the source term in the linear equation for ¢ (and
so on) for which a normalizable particular solution exists, and
the homogeneous normalizable solution also exists since it
coincides with one of the allowed values of o, namely ¢ =
442k for k > 1, it follows that the generic late time behavior
is simply (18) with @ = 4. At each order in the expansion we
thus have one independent integration constant after ensuring
¢, (0) = 0 giving a normalizable solution which is regular at
the future horizon v = 1. Explicitly,

Lo
$o(v) = OOW,
vt B+vY) L 4
$1(v) = 01 3010y 003(1 T etc. (22)

The expectation value (e.v.) of the marginal operator 0]
in the gauge theory dual to the massless scalar field is essen-
tially the r* coefficient in the radial expansion of ®. Ignoring
backreaction of the dual bulk scalar field, the generic behav-
ior of the vacuum expectation value (v.e.v.) of this operator
with Gubser flow symmetries is thus

o
O(p) ~ oY o,
k=0

(23)

where 0y are arbitrary real numbers.

The solutions for ¢, (v) turn out to be rational functions.
Furthermore, with specific choices of integration constants
for the subleading ¢,, we can sum over the entire late time
expansion as well. For instance, when the leading behaviour
is 0% (i.e. 64 # 0), the full summation with a specific set
of choices yields
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o4t (I + 1))202 —3—?
(1+v)3 14+024v02-1)
an exact normalizable solution of the Klein-Gordon equation

with an arbitrary constant coefficient ;. When the leading
behaviour is ¢ ~° (i.e. 64 = 0), we similarly obtain

@(r,p) =1} ; (24)

o 0t (14+v)23+ 1202 —6—8v2 — vt

D(r, p) = I
) S0ty l+02+v2-1)

)

(25)

with an arbitrary constant coefficient Iy, and so on. Thus
for each leading o ~“+2%) behavior withk =0, 1,2, ..., we
obtain an exact normalizable solution with arbitrary constant
coefficients I'44o.

We readily note that both (24) and (25) diverge in the infi-
nite past o = 0 (i.e. for p — —o0) at the horizon v = 1,
and the corresponding é(p) also blows up. However, since
we are setting up initial conditions at an arbitrary but finite
time and looking into the future, this does not bother us, as in
the case of fluid-gravity correspondence where generically
we get singularities on the past horizon of the leading order
static black brane geometry [15,31] even though the future
horizon is regular for appropriate choice of transport coef-
ficients. This singularity in the infinite past can be cured by
appropriate initial conditions. Thus, (23) gives the generic
late-time behavior of O (p) in the vacuum.

We can replicate the same strategy in full non-linear pure
gravity with the following ansatz consistent with the gravi-
tational equations

A p) =) 07" A (v), (26)

n=1m=0

and with similar expansions for B(r, p) and C(r, p) with
coefficients By, (v) and Cy,;,, (v), respectively. Normalizabil-
ity implies that A, (v), B, (v) and Cy,(v) should van-
ish at v = 0. Compared to (18), we get a double summa-
tion here because of the non-linearity in the gravitational
equations. As detailed in Appendix C, both normalizability
and regularity at the late-horizon v = 1 are obtained when
o =0,2,4,6,.... However, we need to ensure that we get
non-vanishing solutions which are not pure gauge. We have
been able to find such physical solutions for

a=4+2k, k=0,1,2,..., (27)

exactly as in the case of the massless scalar field. This implies
that we can simplify the expansion (26) to

Alr,p) =) o Har(w), (28)
k=0

with similar expansions for B(r, p) and C(r, p) with coeffi-
cients b (v) and ¢ (v) respectively. Remarkably, these are of

the same forms as (18) for the massless scalar case. It follows
that the late de-Sitter time behavior of energy density is

313 4 4 = 2k
~41L4%" oo, 29
167Gy~ kgoe"a 29

é(p) = —
with ¢; being arbitrary real numbers as o are in (23). The
normalizable solutions which are regular at the late-time hori-
zon v = 1 and correspond to such late-time behavior (29) are
given by the following explicit functions appearing in (28)
up to O(c~%):

4 4

v v
=Y e bow) = ——2 &,
A+ ™ 20+ )20
2v5

5(1 +v)4 o

ap(v)

co(v) = (30)

12606 @1 (924100 +10) v*
5w+ 1* 10(v + 1)*
2o (—81)2 v — 15) g (—7v2 v — 25) v
5(v+1)0 20(v + 1)0
42 (6v2 S 14) Vg (8u2 +7u+ 35) v
35(v + 1)0 35(v + 1)0

ay(v) =

)

c1(v) = )
(31)
é%US . 2¢é0 (71}2 —4v — 6) 00
14(v + 1)6 5(w+1)°0
68, (13v2 414+ 21) V6

35(v + 1)°0
& (29v4 17003 + 12602 + 700 + 35) v

35(v + 1)0

az(v) = —

+

+

by(v) = BotDE
2o (—91v4 1 6803 — 36402 — 280 — 105) v
35w+ 1)8
& (—821)4 + 8403 — 58802 + 560 — 315) v
70w+ 18
& (—19v4 12003 — 16802 + 280 — 140) v
70(v + 1)8
&3 (—420% - 2500 - 225) 0®
1050(v + 1)8
42 (17v4 — 6303 + 7802 — 84v — 42) v
105(v + 1)8
28, (8v4 — 203 4 6602 — 210 + 28) V3
35w+ 1)8
2%, (81)4 11503 4 9002 + 42v + 84) V3
105(v + 1)8

+

+

+

)

o) =

+

+

+ (32)
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It is obvious from the above expressions that the perturbative
solution is regular at v = 1 for arbitrary values of ¢, é1,
etc. When &y # 0, and (8) and (9) give & = Py = —Py in
the limit 0 — oo, i.e. for p > L. We note that ¢,, can be
of either sign. For the demonstration of monotonic entropy
growth, see Appendix D.

As detailed further in Appendix C, we have not been able
to rule out that no physical solution exists for the case @ = 2.
We have been able to find only a pure gauge solution at the
leading order in this case. If a physical solution does exist,
then it will give the leading late time behavior for generic
states implying that Py /e — 0 and Pr /e — 1 exactly like
in kinetic theories. Nevertheless, our results above shows
that with fine-tuned initial conditions, we can obtain a novel
behavior at late time which is not realizable in kinetic theories
where the energy density and the pressures should be positive.
(Note even if « = 2 corresponds to physical solutions, we
can get negative ¢ and Py, of equal magnitude, which is also
not realizable in kinetic theories.)

5 Beyond late de-Sitter time: on the behaviour in the
entire future wedge of Minkowski space

To understand the evolution from the Minkowski point of
view, we first recall how the future wedge 7 > 0 of R*! maps
to dS3 x R. For this purpose, it is useful to refer to Fig. 1
where p/L is plotted as a function of gx for fixed values of
gt using (2). We note that for gt < 0.3, the system is in the
early regime where p/L is of large magnitude and negative.
For 0.3 < gt < 3, we obtain —1 < p/L < 1 in the central
region where hydrodynamic behavior may be expected. Also,
for gt > 3, there can be a hydrodynamic regime on any
constant 7 slice, within the annulus gt — 1 < gx; <gt+1
where —1 < p/L < 1. Thelarge gx region is always in the
early regime from the de-Sitter point of view. In the domain
gt > 3and x; < t, we obtain p/L > 1, and here our late
time behavior (29) is valid.

It is useful to first examine the case of the free bulk scalar
field for which we have exact solutions such as (24). In the
latter solution, the dual operator behaves as

c2-3
o2 —1

O@)~o* (33)

in dS3 x R (recall that 0 = exp(p/L)). The correspond-
ing behaviour of O (o) on the future wedge of R3! can be
obtained after the necessary Weyl scaling:

O(t,x1)~1 *0(0(z,x1)).

Utilizing (2), we readily see that at large x| , we obtain that

8

X
f\.a_J_
0 5
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H qr=0.1 — qr=3

[ — qr=04 — qr=5

t—— qr=1 qr =10

1 n n n 1 n n n 1 n n n 1 n n n 1 n n n 1 n n n 1 n n
0 2 4 6 8 10 12

qr]

Fig. 1 p/L plotted as a function of gx | for various fixed values of g .
The gray dashed lines at —1 and 1 mark the boundary of the applicability
of a hydro-like region (shaded blue)

implying that the vacuum expectation value (v.e.v.) diverges
at large distance from the central axis on the entire future
wedge. Furthermore as T — 0, we obtain that

_ (A 4xD)?

0 ~
8

]

implying that the v.e.v. diverges as we approach the initial
time. The lesson is that although (24) is a valid solution for
the theory defined on dS3 x R, it does not render a solution
which can be realized with physical initial conditions for the
theory on the future wedge of Minkowski space. The same
can be said about the exact solution (25) as well.

Clearly, we need to constrain the behaviour in dS3 x R
so that we can map to physically realizable solutions in
Minkowski space. This can be readily achieved by a re-
arrangement of the late-time expansion of 0 given by (23) in
a way such that we can ensure that O decays in Minkowski
space at large x| . Each term in the sum (23), which is of
the form exp(—(4 + 2n)p/L) with n a non-negative integer,
grows with x| in Minkowski space as (xi JT)*2" at any
fixed T > 0. It is easy to see that the following expansion

A > of
0('0) = Z <COSh (p/kL)4+2k

k=0
+ % (34)
(2cosh (p/L) + sinh (p/L))*2

is equivalent to the general large p expansion (23) forp > L,
but with each term that decays along the transverse directions
in Minkowski space at any fixed ¢ > 0. (Note sech(p/L)
decays with large x| as xlz at any fixed ¢ > 0, etc.) In
the second set of terms above, we have used 2 cosh(x) +
sinh(x) instead of sinh(x), since then the denominator does
not vanish at any value of p. Also note that without the second
set of terms we get an additional p — —p (de-Sitter time-



Eur. Phys. J. C (2024) 84:550

Page 7 of 15 550

reversal) symmetry which is not a feature of generic Gubser
flow. Of course, there is nothing unique about the choice of
basis in (34). In fact, instead of 2 cosh(x) 4+ sinh(x), we can
choose 3 cosh(x) + sinh(x), etc.

We readily note that (34) has double the number of coef-
ficients when compared to the late time expansion (23), as
for each oy in (23), we have a pair of and 0,’3 in (34). By
expanding at large p, it is easy to see that

b b
01 = 64 (0? + I 20 ) , etc. (35)

Each oy, is a linear combination of 02‘ and o,lg , and lower order
terms. If we expand at early de-Sitter time p — —oo (i.e.
o — 0), we obtain that

o0
O(p) =o* Y 550%™, (36)
k=0

with
N a b
0g =16 (00 +00> ,

5 = 64 (of +0f —of —30}), et (37)

Each 0f is a linear combination of of and 02, and lower
order terms. Therefore, the doubling of terms in (34) is due
to parametrization of both late-time and early-time behavior.
Furthermore, the form (34) allows for systematic expansions
only when |p| — 00, i.e. at early and late time; and therefore
this form is useful in only these limits. Our argument for con-
sidering the expansion (34) shows that the early time expan-
sion (36) for the v.e.v. at o ~ 0 is automatically imposed by
demanding that the v.e.v. decays at large x; in Minkowski
space and behaves as (23) at late de-Sitter time. In case of
the exact solution (24), we see that the v.e.v. diverges as o
as o — 0, and therefore the v.e.v. also blows up at large x|
in Minkowski space. If the v.e.v. has to decay in Minkowski
space at large x| and behave as (23) at late de-Sitter time,
then it has to vanish as o* or faster when we go back to early
de-Sitter time as evident from (36).

We will soon see that bulk regularity implies that o is
related to 0y, i.e. OZ and 02 are not independent of each other,
and therefore the systematic late-time expansion of the v.e.v.
(23) in absence of sources contains the full information of
initial conditions (given by the radial profile of the bulk scalar
field at any fixed p). However, this inference is possible, only
when in addition to bulk regularity we impose that the v.e.v.
decays at large x| in Minkowski space so that (34) is valid.

We readily see that in Minkowski space (34) implies that
at late proper time v ~ oo (withx = gx, and t = g7):

16(810¢ + of
O(x),7) = q4L4<M

8178
| 647290 + o} + 72908 (—1 + x%) + 30§ (—1 + 3x2))
729110
+ ﬁ’(t_lz)). (38)

and at early proper time T ~ 0 (with x = gx | and r = g7):
01 4L4<16(og+a’5)
X1,7)= —
S T

64(0§ + o} + 08 (—1 +x2) + 0 (=3 + x%)) , 3
* (2 +1)0 rou ))'
(39)

The latter is similar to (36) and we see that we get finite v.e.v.
in the limit T — 0. It also follows that from (34) that we can
understand the large x; behavior of the v.e.v. in Minkowski
space via the general form (with x = gx | and t = g7):

Ox1,1)=¢q

4L4( 16(0% + ob) N 64(0f + of)(—1 +12)
8 10
X X

N 32(5(08 + 08) + 2(=T0f — 90b + 0f + o0)1? +5(08 + 0b)t*)
x12
N 64(—1+12) (508 +0h)+2(=1108 —1705+308 +300) 12 +5 (08 +05)t*)
x14

+ ﬁ(x’l(’))‘ (40)

We note that both the small 7 and large x| behavior of the
v.e.v. in Minkowski space is determined systematically by
(34).

In order to obtain the bulk solution of the scalar field which
yields the v.e.v. which behaves as (34) in de-Sitter space, we
proceed with the following ansatz for the massless bulk scalar
field:

o
¢ (V)
D(rop) =y ——
g cosh (o/L)*+?"
¢ )

- 2:(:) (2cosh (p/L) + sinh (p/L))**>"

(41)

With the above ansatz we can solve the massless Klein-
Gordon equation in the background (locally) pure Ad S5 met-
ric in the late time expansion (¢ — oo) in powers of o ~! as
in the previous section, and also in the early time expansion
(o0 — 0) in powers of o. At n-th order in these expansions,
we obtained two coupled second order ordinary differential

@ Springer
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equations for ¢ (v) and q&,bl (v). The general solutions of these
equations has four integration constants. We impose that

— the bulk scalar field is normalizable so that ¢4 (0) =
#"(0) =0, and

— the solution of the bulk scalar field should be regular at
the future horizon v = 1 at late time (o0 — 00).

These give three conditions so that instead of four we have
only one integration constant at each order which we denote
as I,. Remarkably, we find that imposing that the solution
is regular at late time ¢ — oo automatically implies that at
each order the solution is regular at all time and even at very
early time 0 — 0. We recall that this feature is absent for the
exact solution (24) and (25). Explicitly, the above procedure
yields that

4

93 = FO(I—Il)—iv)‘" B0 = —To s
. vt (200 (v 4 728v — 1085) + 72917 (v* + 3))

o) = 728(v + 1)° :
b 3v* (217 (24302 4 728v — 119) + 24317 (v2 + 3))

o1 = - 728(v + 1)6 ’
etc. 42)

The above results can be understood in remarkably simple
terms. At late time, we recover the expansion (18) witho = 4
and coefficients ¢, (v) given by (22) (see more below) from
(41). At early time, we obtain from (41) the expansion

®(r,p) =0* Y ¢ ()™ 43)

n=0
with
#6(v) = 16 (45) + 6@ ).
Bi () = 64 (41 ) + L) — 6 0) = 3¢5 ), ete.
(44)

We can check that at each order ¢>,11’ (v) is related to ¢4 (v) and
lower order terms such that

¢p(v) =0, for n=0,1,2,..., (45)
ie.
lim o7"®(r, p) = lim_exp(—n(p/L)®(r, p)
o—0t p—>—00
=0, for n=0,1,2,.... (46)

We have checked the above to very high orders. Thus, we
can conclude the late time expansion determines the entire
evolution including the initial conditions when we assume
that the v.e.v. decays at large transverse distance from the

@ Springer

central axis in Minkowski space and further impose bulk
regularity which necessitates the ansatz (41). Note that at any
finite value of p (i.e. 0 < 0 < ©0), we obtain a non-trivial
profile of the bulk scalar field.

The v.e.v. can be be readily extracted from the leading v*
term of the Taylor expansion about the boundary at v = 0 of
¢¢ and ¢” in (42), and it takes the form (34) with

08 =TI, 08 =1y
1
¢ = — (2187 — 21701p),
09 728( 1 0)
3(729177 — 2381
0;1, _ _ ( 1 0)’ (47)
728

Using (35), we can extract the coefficients of the general late
time expansion (23) which turn out to be

2060817
61 =192 — 06081

. 12800
81 81

00

(48)

We can similarly extract the coefficients of the general early
time expansion (23) using (37). From (45), it is obvious that
we should get

ne
0, =0,

for n=0,1,2,.... 49)

ie.

lim 0 "0(c) = lim exp(—n(p/L))O(p)
p—>—00

o—0t

=0, for n=0,1,2,.... (50)

This has further remarkable consequences. To see these, we
note from (37) that this feature implies specific relations
between 0’ and 0%, such as

o = —0d, o =0 + 08 +305, etc. (51

Substituting these in the early t and large x expansions
of the v.e.v. in Minkowski space given by (39) and (40),
respectively, we find that

lim t7"0(r,x1) = lim x]O(r,x1) =0, for
=071 X —>00

n=01,2,..., (52)

implying that the v.e.v. vanishes as we go back to 7 = 0
and at large transverse distance from the central axis faster
than any positive power of t and any negative power of x| ,
respectively.

To summarize, we solved for the bulk scalar field imposing
bulk regularity and the requirement that the v.e.v. of the dual
operator should decay at large transverse distance from the
central axis in Minkowski space. We find that these require-
ments imply that the remarkable feature (49) that the v.e.v.
and all its derivatives vanish at early de-Sitter time. This fur-
ther implies that (60) must also hold. Unfortunately, we have
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not been able to find any explicit exact solution to all orders
by choosing integration constants such that (49) is satisfied.
Soitis not possible to say anything about the radial profile of
the bulk scalar field at a finite value of p because the forms
(34) (and (41)) of the v.e.v. (and the bulk scalar field) give
systematic expansions only at large |p|. We will come back
to this issue later.

We can repeat this entire analysis for pure gravity. We
assume the following form for €(p)

A - £k
&(p) = Z (COSh (,O/L)4+2k

k=0

&k
, 53
+ (2cosh (p/L) + sinh (,0/L))4+2k) ©3)

which is similar to (34) so that the energy density decays at
large x| in Minkowski space and it is compatible with the
late de-Sitter time expansion given by (29). This implies that
the functions A, B and C in the bulk metric (14) should take
the forms

ay (v)
AC.p =2, <cosh2’”r4 (p/L)

n=0

N a’ (v) )
(sinh (/L) + 2 cosh (p/L))> )’

_ by (v)
B )= Z(:) (coshz’“r4 (p/L)

N by (v) )
(sinh (p/L) + 2 cosh (p/L)>"T* )’

cn (V)

=2, <cosh2’“r4 (p/L)

n=0
" A ) (54)
(sinh (p/L) 4 2 cosh (p/L))*" )

The above form yields systematic expansions at p — $00.
In these limits, we can solve Einstein’s equations systemat-
ically obtaining coupled second order ordinary differential
equations at each order. Imposing normalizability and regu-
larity at late time, we obtain unique normalizable solutions
with only one integration constant at each order (after fix-
ing the residual gauge as detailed in Appendix C). Exactly,
like in the case of the bulk scalar imposing bulk regularity at
late time automatically implies the same at all time including
p — —oo. Explicitly,

4 4
a . Yov b _ Yov
HW =Gt 9O= TgHn
PO (LAY Y S L
0 160(v + 4" 70 160(v + 1)*’

Yov° Yo
200(v + D*’ ©200(v + D*’
Yo (2533v% + 3650v + 10) v*

291200(v + 1)*
1 (9v* + 10v + 10) v*
7280(v + 1)*
3y0 (327102 4 6070v + 2430) v*
B 291200(v + 1)*
1 (9v% + 10v + 10) v*
7280+ D
0 (3979v% + 7292v — 35) v*
582400(v + 1)6
Y1 (7v2 —4v + 25) v?
14560(v + 1)°
9y0 (1251v% + 24280 + 805) v*
582400(v + 1)6
Y1 (7v2 —4v + 25) v
14560(v + 1)
Y0 (43520% + 5131v — 2569) v°
1019200(v + 1)°
Y1 (8v2 +Tv + 35) v
25480(v + 1)6
9y (1616v* + 2835v + 847) v°
- 1019200(v + 1)
Y1 (8v2 +Tv + 35) v
© 25480(v + 1)°

cjv) = cg(v) =

af (v) =

3

ab(v) =

HOES

3

bb(v) =

cj(v) =

’

HOE

, etc. (55)

which reproduces the functions in (30), (31) and (32) at late
de-Sitter time. At early time, we obtain exactly like in the
case of the scalar field that

lim 07" A(r,0) = lim o "B(r,o0)
o—0t o—07t

= lim 07"C(r,0) =0, for n=0,1,2,.... (56)
o—0t

From the above, we readily find that

g0 = y0/80, & = —p0/80
(s 40y, o _ 729y0 + 409 57)
'~ 79120 © ' T 29120

The coefficients of the late-time expansion (29) turn out to
be

R 16y .

8 (363y9 — 40y1)
ey = 81 ’ €l = ——5_ .

tC.
3645 e (58)

As in the case of the scalar field we obtain that

lim ¢ "8(c) =0, for n=0,1,2,.... (59)
o—0

@ Springer
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which implies that in Minkowski space

lim t™"¢(r,x1) = lim x7e(r,x)
70t X100

=0, for n=0,1,2,.... (60)

To summarize, the requirements of regularity of the bulk met-
ric (at late time) and that the dual energy density decays at
large x| in Minkowski space imply that the energy density
should satisfy the remarkable feature that it and all its deriva-
tives vanish at early de-Sitter time. The latter feature further
implies that the energy density vanishes in Minkowski space
both in the limits T — 07 and x| — oo faster than any pos-
itive power of 7 and any negative power of x | , respectively.
We can also conclude that when the energy density decays
at large x| on the future wedge of Minkowski space, the late
de-Sitter time expansion itself contains the full information
of the initial conditions set at any finite value of p or t since
the coefficients &, in (53) get related to ¢,, and therefore
there is no independent information needed from early time
to describe the energy density on the entire future wedge.

The feature of the Gubser flow that we can deduce infor-
mation about the initial conditions by constraining that the
energy density (and expectation values of other operators)
should decay at large transverse distance from the central
axis is certainly distinctive as such an extrapolation is not
possible for the Bjorken flow in which there is homogene-
ity in the transverse directions. Essentially, this feature is a
consequence of the symmetries of the Gubser flow which
ties the x| dependence to T dependence as both arise via the
dependence on the de-Sitter time p.

We note that the form (53) is compatible with the hydro-
dynamic expansion (12) at p ~ 0. However, this form of the
energy density and also the form (54) of the functions in the
bulk metric admit systematic expansions only at large |p]|,
and therefore we cannot systematically match at p = 0 or
any finite value of p. The same can also be said about any
resummation of the late-time expansion. For instance, one
can readily note that for the exact solutions of the massless
scalar @ (v, p) given by (24) and (25), the late time expansion
in o ~! converges only for 02> (1—v)/(1+v) for any fixed
v. Thus, matching with hydrodynamic evolution, which can
be valid only around p ~ 0 (i.e. 0 ~ 1), is difficult. Irrespec-
tive of whether hydrodynamic evolution is realized around
p ~ 0, it is difficult to determine the nature of the metric at
a finite value of p because unlike the case of the scalar field,
it is apriori even difficult to estimate where the late and early
time expansions converge.

Therefore, only by solving Einstein’s equations numeri-
cally (say following the method of characteristics developed
in [32]), we would be able to determine which initial con-
ditions set at a finite value of p or T would be realizable
physically, i.e. those in which the energy density does decay
at large x; . We do not expect that for all such initial con-
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ditions the hydrodynamic expansion (12) would actually be
realized at p ~ 0. Numerical simulations are also necessary
to establish convergence properties of the late time and early
time expansions obtained from (53) and contrast it with the
trans-series forms discussed in [5,7,9,10,33].

6 Discussion

We have provided some exact results on how relativis-
tic quantum matter evolves in Gubser flow in holographic
strongly coupled large N conformal gauge theories. The most
generic behaviour is yet to be established and further progress
can be made by employing numerical relativity in this con-
text. Numerical analyses are needed to confirm many of the
extrapolations which we have made for the behavior on the
entire future wedge in Minkowski space from the late de-
Sitter time behavior. However, the late de-Sitter time behav-
ior can be rigorously established just from bulk regularity
alone.

The main implications of our results is that in flows with
such special symmetries, a relativistic quantum system can
evolve out of hydrodynamics into a new regime that is inde-
pendent of the initial conditions. Such evolution can therefore
reveal many fundamental features of the underlying micro-
scopic theory. Particularly, we show that when the symme-
tries of the Gubser flow are preserved, the late de-Sitter time
evolution can lead to a color glass condensate-like phase
which is independent of the initial conditions. Of course,
this phase is very different from the perfect fluid state which
is realized for generic initial conditions which violate the
symmetries of the Gubser flow.

Another implication of our results is that the initial con-
ditions which realize such flows with special symmetries
are further constrained beyond these symmetries. We have
shown that in Gubser flows in holographic strongly coupled
large N conformal gauge theories, the energy density should
vanish faster than any power of the proper time T as we
go back to © = 0, the boundary of the future wedge. It is
very unlikely that such a behavior can be realized by collid-
ing gravitational shock waves (which represent collision of
energy lumps in the dual gauge theory) as studied in [32]. The
bulk radial profiles of these shocks should be supported suf-
ficiently far away from the boundary so that the dual energy
density (given by the fourth radial derivative of the A func-
tion in the bulk metric (14)) and its proper time derivatives
should vanish at the moment of collisions, and this could
as well imply that the radial profiles of these shocks actually
vanish. Therefore, instead of being generated by “asymptotic
states,” the Gubser flow naturally could be smoothly glued to
pure vacuum.! The non-trivial behavior in the future wedge

' Since &(x, ) and all its T-derivatives vanish at T = 0, one can argue
via a Fefferman-Graham type expansion as well that the bulk metric at
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evolving back to the vacuum arises from self-consistent pres-
sure gradients. Of course, we need to numerically confirm the
extrapolation we have made to the entire future wedge from
the late de-Sitter time behavior.

It would be also interesting to investigate bulk solutions
which behave as a Gubser flow in the vicinity of a specific
azimuthal direction but is otherwise homogeneous in trans-
verse directions, so that it corresponds to a Bjorken flow
approximately. Such a solution can be interpreted as a jet
embedded in an expanding medium and also created at early
proper time with non-trivial initial conditions. The existence
of such solutions could indicate that Gubser flow can be
applied to collective flow arising in jets if not the flow of
the full quark gluon plasma. Gubser flow indeed has recently
been successfully applied for understanding two and four par-
ticle correlations in jets with large charge multiplicity arising
in pp-collisions [34,35] (in [34], it has been argued that four
particle cumulants can be related to fluctuations in initial
conditions).

It would be interesting to understand these issues in QCD:

— Isthere a generic nature of the final phase of the evolution
of Gubser flow in de-Sitter time which is independent of
the initial conditions, and if so, then what are the charac-
teristics of this phase?

— What kind of constraints on the initial conditions lead
to such flow with special symmetries like Gubser flow
(beyond the necessary symmetries)?

— Can such initial conditions be realized perhaps with
greater likelihood in jets and other substructures within
the full bulk evolution of the system?

These questions are relevant for the phenomenology of
heavy-ion collisions. Therefore, we plan to study Gubser flow
in holographic non-conformal/confining gauge theories [36—
39] and in semi-holographic [40—44] scenarios and see how
both, the initial conditions and the late de-Sitter regime for
the Gubser flow distinguishes confining behaviour from an
emergent infrared critical point.

The advantage of studying Gubser flow in a holographic
theory is that we can understand the quantum information
theoretic aspects of such a scenario in which a many-body
system can escape hydrodynamization, especially the funda-
mental reason why and how despite lack of hydrodynamiza-
tion the evolution can reach a phase independent of the initial
conditions. Many novel aspects of quantum thermodynamics
[45] can be understood via explicit computations of entan-
glement measures (see for example [46,47]). A preliminary

Footnote 1 continued

7 = 0 should be close to pure AdSs. This could be another alternative
way to prove that the bulk solution can be smoothly glued to pure Ad Ss
outside the future wedge.

discussion on the entropy production captured by the growth
of the area of the horizons, and puzzles regarding its inter-
pretation has been presented in Appendix D.
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Appendix A: Viscous Hydrodynamics

The conformal viscous Gubser flow has been studied in
[2]. The conformal perfect fluid energy—momentum tensor
is 7" = e(T)(4u"u” + g""), where e(T) oc T* is deter-
mined by the equation of state in terms of the temperature 7.
Including the first order viscous correction, we have

=1 —2n(T)o, (A.1)
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where o#V is the shear stress tensor defined as

otV = %A“"Aﬂ“ (Vaupg + Vaug) — %kuﬂ”, (A.2)
and n(T) o T3 is the shear viscosity. It is useful to define
Hy = n(T)&=3/*(T) which is a constant in a conformal
field theory and is determined by microscopic dynamics.
Above, A" = utu 4 g"". The conservation of the energy—
momentum tensor (i.e. the hydrodynamic equations) for the
Gubser flow in dS3 x R frame is simply

8 16
&(p) + 3 tanh()2(p) — - Ho tanh?(5)£(5)** = 0,

(A3)
with p = p/L. The solution of this equation is
~ 53Ch4(ls) 1 . 13,4~ 1/3,=
8(10) - W(4HOL sinh (p)COSh (p)
735 2 /41730 20\4
X2 F1 (8, 35 sinh (p)) +27¢," "cosh (,0)) .
(A.4)

The viscous energy density £ in the limit g — 0 gives the
derivative expansion (12) as mentioned in the main text.
However, in the limit p — oo the energy density has the
following expansion dominated by viscous term at the lead-
ing order:

8(p) = ol SL™* + O(cosh(p) 23 + ... (A.5)
This indicates the breakdown of derivative expansion in the

large p limit.

Appendix B: Holographic renormalization

For compactness, we define p = p/L and also use the vari-
able v with v = r/L as in the main text. We can solve for the
metric functions A(v, p), B(v, p) and C (v, p) in the radial
expansion near the boundary v = 0 as indicated in (16) and
obtain,

1
AW, ) =aq) (B v+ 7 (ay) () — 4afy) (7)) v*

+a(4) (ﬁ) U4+"' s (B6)
B(v, §) = ag(p) cosh*(5) v
1
- Zd(l)(ﬁ) (ac1)(p) + 4 tanh(p)) v?
1
+ a0 @) (a0 () +3tanh () + 3tanh? (7) ) v’
+bwy(p) v+, (B.7)
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1
C(v. ) = 3aa)(p) v = 7a)(5) (8 anh(3) +3aq) () v?

1
+ 20005 ((a0)(5) + 2 tanh())’ + 4 tanh’ (7)) v

+sa@P v+, (B.8)

where a(yy (p) is an arbitrary function. The functions b4y (0)
and s(4) (p) are determined by a4 (p) and a(r) (p) by the
constraints of Einstein’s equations:

1
s (B) = =3500) (P) (afy (5) + 4ranh® () )

- - 9 - -
x (3a(1) (5) + 16tanh (p)) + Zafy (5) tanh? (7).
8
alay (5) = 5 tanh (5) (bey (5) — a5 )

R ~ 2(P
+ E(a(l) (3) + 4aq) (5) tanh (Z)>

~ ~ 5, . 2~
x (a(]) (5) + 8tanh (,o)) + Zafy) () tanh® (5). (BI)

We find that the radial expansions and thus A, B and C are
entirely determined by the two functions a4y (0) anda(yy (0).

However, a1y (p) is a residual gauge freedom and can
be set to zero by the diffeomorphism v — v + f(p) which
preserves the ingoing Eddington—Finkelstein gauge. Further-
more, the latter is a proper diffeomorphism, meaning that
aqy (p) does not affect boundary data. Indeed extracting
the dual energy—-momentum tensor (7)) at the boundary
from the renormalized on-shell gravitational action following
[16,17,29] and using (B.9), we find that a(j) (p) disappears.
Explicitly, we obtain

000
07900
(THy = O % + ¥ (B.10)
v 00 t¢87 v
0007
where
ih=—t(p)= 30 aw) (o)
P T T Gy W)
% = Pr(p) 3" lcoth(N) @ (P) +aw) (p)
= = b a a s
] T (P 167Gy \2 p)ayy (p @ (p
i ="Prp) =1,
R 3
B N .
= Prp) = =1 coth (B)ay () +3aw () ).

(B.11)

and <7} is the Weyl anomaly given by
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IE 4 1
d* = 7<7R“R —2RMRX —5”(7162 R R’“’))
VT 1287Gy N3 Y KBy TV Ko
3

" (1,1,1,-3) L~
= GN rag , 1, 1, N

e (B.12)

where the curvatures refer to those of the background metric
(4) for the dual theory (which is also the boundary metric of
the five-dimensional bulk spacetime). With the identification
13/Gy = 2N?/m, we obtain (10).

Appendix C: Finding values of « for pure gravity

Here we give details of how « has been determined repli-
cating the strategy for the massless scalar field discussed in
the main text. The ansatz (26) is a double expansion in o.
Assuming analytic behavior at the future horizon r = L (i.e.
v = 1), we obtain the near horizon expansion (with numeri-
cal coefficients ap, )

Apm (V) = Zanm,p(l — )P, (C.13)
p=0

and similarly for By, (v) and C,;, (v) in terms of the numer-
ical coefficients by, p and cum, p, respectively. Solving the
gravitational equations in this near-horizon expansion, we
find that A19(v), Bio(v) and Cio(v) are determined by the
three integration constants a0, b10,0 and cjo,0. Explicitly,

Ao =aio (1= @+ D1 =v)+ 01 —v)...)

T bioo <—2a(1 — )+ 01— ) +.. )

+ ¢10,0 <%a(l +a)(1—v)+ 01 —v)?) +.. ) ,
(C.14)

and also similarly for Bjo(v) and Cio(v).

Normalizable solutions can be matched to the near-
boundary expansion (B.6)—(B.7). However, the solution of
Ajp(v) given by (C.14) when expanded near the boundary
v = 0 reads as

A1o(v) = P(a)(ai0,0 + (1 +a)(2b10,0 — ¢10,0))

+O0W)+... (C.15)
where P («) is polynomial in . Therefore, for normalizabil-
ity, o should be the roots of P(«) and these are o« = 2k,
with k = 0, 1,2, .... This can be found by performing the
expansion (C.14) to high orders and then re-expanding it as
a Taylor series about v = 0 as in the case of the massless
scalar.

For k = 0, A9, Bip and Cy¢ vanish. For the case k = 1
we have been able to find a solution which corresponds to
the boundary expansion (B.6)—-(B.7) with a(y(p) # 0 but
aws(p) = 0. Since a(1)(p) corresponds to a pure residual
(proper) gauge freedom, this solution for the case k = 1
yields just a pure gauge deformation. However, we cannot
rule out this case completely as another physical solution
may exist. For k = 2,3, ..., we are able to find physical
solutions as reported in the main text.

To see how we reach these conclusions, it is useful to use
the residual gauge freedom to set a(1y(p) = 0. In this case,
the near boundary expansions (B.6)—-(B.7) start from v*. For
the comparison with near-horizon expansions for Ajg, Big
and Cjo we should further impose a late-time expansion of
a4(p) of the form

o0 o
ag)(p) = Z Z o2 G m

n=1m=0

(C.16)

that follows from (26) with constant coefficients a4)yum. Set-
ting the coefficients of v and v> to zero in (C.15), we get
two relations between the three integration constants ajg.o,
b10.0 and c1g,0. For k = 0, these simply set ajpp = 0 and
then requiring that the boundary values of Bjg and Cjg to
vanish (so that we get normalizable solutions) we obtain
b10.0 = c10.0 = 0. Then A9, Bip and Cjg have to vanish. For
k > 2, setting the coefficients of v and v? to zero in (C.15)
give two relations to determine b1g,9 and cjp ¢ in terms of
a10.0- Using these values of b1g,9 and c19,0, we find a perfect
agreement with the near boundary expansions (B.6)—(B.7)
corresponding to normalizable solutions where the residual
gauge freedom has been fixed with a(;y = 0. The remain-
ing integration constant ajo o simply determines the leading
term in aw)(p) in (C.16), i.e. aw)10. For the allowed values
of a which are 4 4+ 2n, withn = 0, 1, 2, ... the ansatz (26)
can be simplified to (28), as mentioned before. (Then a9
identified with ¢g up to a numerical constant, etc.) The case
k = 1is somewhat tricky because the series expansion of the
equations near the horizon themselves do not have unique
solutions. One way of solving it leads to a pure gauge solu-
tion. We have not been able to show that physical solutions
do not exist for this case.

Athigher orders in the late de-Sitter time expansion in case
ofad =4+2nandn =0, 1,2, ..., we obtain normalizable
solutions because the lower orders source only normalizable
particular solutions, while the homogeneous solutions are
also normalizable with a new arbitrary integration constant
at each order since o = 6, &, ... are allowed to be the lead-
ing order behavior also (when the lower order coefficients
vanish). This argument is similar to the case of the massless
bulk scalar. We thus establish that (29) gives realizable late
de-Sitter time expansion for the dual energy density.

@ Springer
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Appendix D: Examining the entropy

Let us first examine the entropy S in the de-Sitter frame. The
entropy S of the black hole given by (14) is given by the area
X'y of the apparent or event horizon located at v = vy, (p)

X

S=—
4G N

(D.17)

where G is the Newton constant. Here we will examine
the event horizon. The area can be computed via Xy =
fv:vh v d8 d¢ dn with y being the induced metric on the
spatial sections of the event horizon (generated by a congru-
ence of null geodesics). Explicitly,

) - léec Wn(9):9) sin? § (cosh (5) 4 vx(5) sinh (5))*
v (P)

(D.18)

Here 6 € [0, ], ¢ € [0, 2] and n € [—o0, o0]. Due to the
infinite extent of 7, it is better to define the entropy per unit
rapidity which is

Cy(P).5)

e~ 2 (cosh () + vy(p) sinh (5))*
v (D) '

ds IE
—_— = —
d?] GN

(D.19)

The corresponding entropy density per unit rapidity reads

ﬁ = ;Nﬁ (D.20)
dn  4mL3cosh? (p) dn

The factor of 47 cosh? (p) is the area of the sphere at the
boundary (measured by the background metric (4)). The loca-
tion of the event horizon v, (p) can be determined by the
radial null geodesic equation, i.e.

dvy (p) N 1—v2(p) + A(wn(p), p) _

0 D.21
i¥; > (D.21)

with the condition that v, (p = o0) = 1, since the horizon
coincides with that of the solution dual to the vacuum in the
limit p — oo.

In the state dual to the vacuum, we simply have

ds N
dn  4L3cosh? (5) Gy
l3

- L3Gy

(cosh () + sinh (5))”,
x ‘1-‘(1 + tanh (5))? . (D.22)

This implies that the entropy density per unit rapidity mono-
tonically increases from zero to a constant value with the
de-Sitter time as shown in Fig. 2.

@ Springer
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Fig. 2 Vacuum entropy density per unit rapidity plotted as a function
of p. The figure shows that at late-time d's/dn goes to a constant

At this point, it would seem strange to associate an entropy
to the vacuum state in the Gubser flow both from the de-
Sitter and Minkowski future wedge points of view. In the
latter case, this is the entropy associated with an acceler-
ated observer like the Rindler observer. The appearance of
entropy in the de-Sitter vacuum is more subtle and has been
discussed recently in [48]. Although the bulk metric dual to
the vacuum in de-Sitter space is locally Ad Ss, note that bulk
diffeomorphism can produce a non-trivial entropy as in the
case of the map from pure three-dimensional anti-de-Sitter
space (Ad S3) to the Banados Teitelboim Zanelli (BTZ) black
hole [49] (however the physical interpretation of the entropy
in our case is more similar to that in [50].)

The bulk dual of a Gubser flow admits the late-time expan-
sion (28), and thus the location of the event horizon which
is a solution of (D.21) with the condition v, (p = o0) = 1,
admits the following expansion

o
v(B) =1+ ) vy me” 4P

m=0

(D.23)

at late time. Using the explicit perturbative solution for the
metric given by (30)—(32), we obtain

&0 24eq + 29¢;
=0 g, =20rea D.24
o= o U 2240 ©.24)
and
Gy ds » é ~
30N -2 0\ —4
———=1—-2e"4+3(1-— P +... (D25
13 dn ¢ ( 80) ¢ D.25)
In the case of the vacuum with 0 = & = .. ., the above series

has alternating signs. However, the function is monotonically
increasing (and assuming the value 1 in the limit p — 00)
as evident from the exact expression (D.22) (that is plotted
in Fig. 2). The monotonic growth of the entropy density per
unit rapidity is not affected perturbatively and it reaches the
constant vacuum value at late time. It has been shown in [51]
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that the entanglement entropy can scale as the volume in de-
Sitter space with a numerical factor which has a maximal
value. If ¢y is positive, then the energy density at leading
order is negative, and ds/dn is less than in the vacuum. On
the other hand if ¢y is negative, then the energy density at
leading order is positive, and ds/dn is larger than that in
the vacuum. Here, it is also useful to note that it has been
argued that the entropy of an excited state in de-Sitter space
is expected to be less than that of the vacuum [48]. It will
be useful to understand the case of the holographic Gubser
flow better with a clear algebraic interpretation of ds/dn
computed here.
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