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Abstract: The widespread use of peptide receptor radionuclide therapy (PRRT) represents a ma-
jor therapeutic breakthrough in nuclear medicine, particularly since the introduction of 177Lu-
radiolabeled somatostatin analogs. These radiopharmaceuticals have especially improved progression-
free survival and quality of life in patients with inoperable metastatic gastroenteropancreatic neuroen-
docrine tumors expressing somatostatin receptors. In the case of aggressive or resistant disease, the
use of somatostatin derivatives radiolabeled with an alpha-emitter could provide a promising alterna-
tive. Among the currently available alpha-emitting radioelements, actinium-225 has emerged as the
most suitable candidate, especially regarding its physical and radiochemical properties. Nevertheless,
preclinical and clinical studies on these radiopharmaceuticals are still few and heterogeneous, despite
the growing momentum for their future use on a larger scale. In this context, this report provides a
comprehensive and extensive overview of the development of 225Ac-labeled somatostatin analogs;
particular emphasis is placed on the challenges associated with the production of 225Ac, its physical
and radiochemical properties, as well as the place of 225Ac–DOTATOC and 225Ac–DOTATATE in the
management of patients with advanced metastatic neuroendocrine tumors.

Keywords: actinium-225; radionuclide production; radiolabeling; targeted radionuclide therapy;
targeted alpha-therapy; radiobiology; neuroendocrine tumors; 225Ac–DOTATATE; radiopharmaceuticals

1. Introduction
1.1. About Neuroendocrine Tumors

Neuroendocrine tumors (NETs) form a heterogeneous group of malignancies with a
wide variety of histology and nomenclature. The term “neuroendocrine” is used to describe
cells that are widely spread throughout the body, with both neurological and endocrine
characteristics [1]. Neurological properties are based on the presence of dense granules
similar to those found in serotonergic neurons that store monoamines [2]; endocrine
properties refer to the synthesis and secretion of such mediators [3]. Thus, this broad
definition includes neoplasms occurring in nerve structures (e.g., ganglia and paraganglia),
in straight endocrine organs (e.g., pituitary gland, thyroid, parathyroid or adrenal) and in
the diffuse neuroendocrine system of various organs.

NETs account for approximately 0.5% of all newly diagnosed malignancies [4], with
increasing incidence over the years [5]. As an example, the age-adjusted NET incidence in
the UK increased 3.7-fold between 1995 and 2018, from 2.35 to 8.61 per 100,000 [6]. A similar
significant increase over time has been reported in other geographical areas [7–9]. However,
epidemiology data on NETs are difficult both to collect and to interpret because of the
heterogeneity of their classification, the different methods of patient identification, and the
lack of large population databases in most countries. Furthermore, the distribution of NETs
according to the primary site slightly varies in the different geographical areas studied,
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which could reflect ethnic or genetic specificities [10,11]. Overall, the most common primary
sites are the gastrointestinal tract (about two in three patients) and the lung (about one
in four patients). Between one and two out of ten patients are metastatic at the time of
diagnosis [8,12].

1.2. Somatostatin Receptors and Octreotide Analogs

Although NETs are heterogeneous diseases in their pathophysiology and clinical
expression, they usually share the characteristic of overexpressing somatostatin receptors
(SSTRs) [13]. Five SSTR subtypes are described (SSTR1 to SSTR5), SSTR2 being the most
frequently encountered in differentiated NETs [14]. However, several subtypes can be
expressed concomitantly on tumor cells in various combinations and proportions [15,16].
NETs overexpressing SSTRs most often have a gastrointestinal, pancreatic, bronchial,
pulmonary, or even thymic or breast origin. SSTRs belong to the G-protein-coupled receptor
family and are localized at the cell membrane. Their natural peptide ligand, somatostatin,
is found in humans under two different forms: one of 14 amino acids (SS-14) and one
of 28 amino acids (SS-28) (Figure 1) [17,18]. Natural somatostatin has been shown to be
unsuitable for in vivo use due to its short plasma half-life (about 3 min) [19]. Analogues of
this hormone, more resistant to enzymatic degradation, have therefore been developed by
making various modifications to the natural molecule [20,21]. The introduction of D-series
amino acids to improve in vivo stability, the retention of the minimum chain length to
maintain biological activity, the use of the hexapeptide motif Cys-Phe-D-Trp-Lys-Thr-Cys
and the elongation of the N- and C-terminal ends allowed the characterization, in 1982, of
the most stable active somatostatin analog known as octreotide (Figure 1) [22].
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Figure 1. Schematic structure of the two natural isoforms of somatostatin (SS-14 and SS-28) and
octreotide. The amino acid residues Cys (purple) form an intramolecular disulfide bridge; the amino
acid residues Trp and Lys (orange) included in a β-turn are necessary for biological activity; the
nearby amino acid residues Phe and Thr (yellow) are in favor of good biological activity but accept
slight modulation.

In order to introduce an anchoring site for radiometals, the N-terminal end of oc-
treotide was first functionalized with an acyclic chelator of the diethylenetriamine penta-
acetic acid (DTPA) family, able to coordinate ions such as indium in the +3 oxidation state.
Thus, since the mid-1990s, the radiopharmaceutical drug [111In]In–DTPA–octreotide has
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been used for scintigraphy imaging of somatostatin receptors [23]. This drug is mainly used
in gastroenteropancreatic neuroendocrine tumors and carcinoid tumors [24,25], but also
in pituitary secretory tumors, paragangliomas, medullary thyroid carcinomas, pheochro-
mocytomas, meningiomas and Merkel cell tumors [26]. [111In]In–DTPA–octreotide binds
with moderate affinity to SSTR2; replacement of the Phe3 of octreotide by a Tyr3 (TOC)
leads to improved affinity for SSTR2. In addition, the C-terminal introduction of a Thr8

(TATE) in place of the Thr(ol)8 of TOC provides a further improvement in affinity for SSTR2
(Figure 2) [27]. Moreover, since DTPA is a poor chelating agent for other radiometals
with a +3 oxidation state such as gallium-68, yttrium-90 or lutetium-177, a 1,4,7,10-tetra-
azacyclododecane–1,4,7,10-tetra-acetic acid (DOTA) moiety was considered to replace
DTPA (Figure 2). This chelator allows the formation of thermodynamically and kinetically
stable complexes with a series of radiometals including 111In, 68Ga, 90Y and 177Lu. For
example, the somatostatin-derived conjugates DOTATOC (edotreotide) and DOTATATE
(oxodotreotide) are both currently used as 68Ga-radioconjugates for PET imaging and
radiolabeled with 177Lu for therapy.
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1.3. SSTR Targeting for Peptide Receptor Radionuclide Therapy

Radionuclide therapy consists of the administration of a vector molecule labeled with
a particle-emitting radioelement (either β or α) for therapeutic purposes. This approach is
called radiopeptidotherapy or peptide receptor radionuclide therapy (PRRT) in the case
of NETs, as the vector molecules used so far have been somatostatin analogs functional-
ized by a chelating agent [28]. This treatment method is recommended for metastatic or
inoperable diseases with a positive expression of SSTR2. In NET radiopeptidotherapy,
a first generation of molecules containing the Auger-emitter 111In was developed and
evaluated [29–32], followed by a second generation of PRRT agents radiolabeled with the
beta-emitter 90Y [33–36]. Subsequently, in the early 2000s, 177Lu–[DOTA0,Tyr3]octreotate
emerged as an advantageous alternative, emitting both β- and γ-radiation [37]. The β-
particles of 177Lu are characterized by a maximum energy Emax of 0.5 MeV and a mean
energy of 133.3 keV (lower than the 90Y Emax of 2.28 MeV and Emean of 932.9 keV, re-
spectively, improving the irradiation of small tumors) [38] and an average path in the
tissues of 2 mm (also lower than the 90Y tissue penetration of 11 mm). This radioelement
is characterized by a physical half-life of 6.7 days. Thus, a number of non-randomized,
uncontrolled clinical trials were undertaken, especially with [177Lu]Lu–DOTATATE. An
early cohort study reported efficacy results for [177Lu]Lu–DOTATATE in 310 patients with
various types of gastroenteropancreatic (GEP) NETs: the overall tumor response rate was
46% and the overall survival (OS) from the start of treatment was 46 months [39]. In 443 pa-
tients with GEP, lung or other NETs, Brabander et al. reported a slightly longer median OS
(63 months) and a comparable median progression-free survival (PFS) (29 months) [40]. In
another prospective phase 2 study involving 52 patients with pancreatic (p) NETs, half of
the enrollment received 27.8 GBq of [177Lu]Lu–DOTATATE and half received 18.5 GBq [41].
The high-dose cohort showed a complete response in 12%, a partial response in 27%, and
stable disease in 46% of the patients, compared with 4%, 15%, and 58% of the patients,
respectively, in the low-dose group. Another retrospective analysis of 68 patients with
pancreatic NETs showed comparable results [42]. [177Lu]Lu–DOTATATE also demonstrated
efficacy in small bowel NETs with an overall disease control rate of 91.8% [43]. A study
of 265 patients also showed symptomatic improvement following PRRT, observed in 53%
to 70% of patients [44]. Numerous other reports have confirmed the clinical benefits of
177Lu-PRRT targeting SSTRs, either in pNETs [45–47], gastroenteric NETs [48,49] or GEP
NETs [50], sometimes associated with other types of diseases (e.g., unknown primary
tumor) [51–55]. Notably, particular attention has been paid to the benefit of [177Lu]Lu–
DOTATATE in the management of lung NETs [56,57]. In two pilot studies in pediatric
patients, treatment with [177Lu]Lu–DOTATATE even resulted in therapeutic responses in
children with refractory neuroblastoma [58,59]. The NETTER-1 study was the first multi-
center, randomized, controlled phase 3 trial comparing [177Lu]Lu–DOTATATE to octreotide.
The study included 229 patients with unresectable metastatic intestinal NETs expressing
SSTRs. Patients were randomized to receive either PRRT with octreotide (7.4 GBq of
[177Lu]Lu–DOTATATE every 8 weeks for four administrations, with 30 mg octreotide every
4 weeks) or octreotide alone (60 mg every 4 weeks). The estimated PFS rate at 20 months
was 65.2% in the PRRT group and 10.8% in the control group; the response rate was 18%
in the PRRT group versus 3% in the control group [60]. The safety profile of [177Lu]Lu–
DOTATATE was generally good, as the rates of grade 3 or 4 adverse events were similar in
the two groups; however, grade 3 or 4 neutropenia, thrombocytopenia, and lymphopenia
were reported in 1%, 2%, and 9% of patients, respectively, in the [177Lu]Lu–DOTATATE
group versus no patients in the control group. Furthermore, in addition to improving
PFS, [177Lu]Lu–DOTATATE showed a significant benefit to quality of life in patients with
progressive midgut NETs [61], although the final OS did not significantly differ between the
two groups [62]. Following the results of the NETTER-1 study, EMA and FDA approved
[177Lu]Lu–oxodotreotide for the treatment of GEP NETs expressing SSTRs [63,64]. To date,
in addition to several phase 1 and 2 clinical trials, the main prospective randomized phase
3 clinical trial currently ongoing in high-grade 2 and 3 NETs is COMPOSE [65]. This study
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investigates the early use of [177Lu]Lu–DOTATOC as a first- or second-line treatment in
patients with well-differentiated G2 or G3 GEP NETs versus the standard of care (either
everolimus, CAPTEM or FOLFOX). Lastly, the final results of some studies that no longer
include patients are currently pending, as is the case for COMPETE (NCT 03049189) [66,67]
assessing efficacy and safety of [177Lu]Lu–DOTATOC compared to everolimus in patients
with GEP NETs; OCLURANDOM (NCT02230176) [68], a phase 2 trial investigating the
antitumor efficacy of [177Lu]Lu–DOTATATE compared to sunitinib in pancreatic NET;
and more recently, the NETTER-2 trial (NCT03972488) studying the efficacy and safety of
[177Lu]Lu–DOTATATE in patients with grade 2 and grade 3 advanced GEP NETs compared
to high-dose long-acting octreotide.

1.4. PRRT Using Somatostatin Analogs Radiolabeled with Alpha-Emitters

Although β-PRRT remains an approved treatment for unresectable metastatic NETs,
some tumors show resistance to β-emissions despite somatostatin receptor expression [69].
Furthermore, not all treated patients achieve partial or complete response following SSTR-
targeting 177Lu-PRRT, and relapse is often observed in the years post-treatment [70]. Thus,
among the strategies considered in an effort to overcome these drawbacks, octreotide
derivatives radiolabeled with alpha-emitting radionuclides have received particular atten-
tion [71]. Within this group of radioisotopes, radium-223 (alkaline earth metal, group 2) has
been extensively studied both in vitro and in vivo, and has paved the way for the use of
alpha-emitting radioelements in patients [72]. To date, radium-223 is used in its dichloride
form for the treatment of symptomatic bone metastases in patients with castration-resistant
prostate cancer, without known visceral metastatic disease. However, due to its particular
chemistry, 223Ra is not suitable for DOTA-peptide radiolabeling. Thus, a special interest has
emerged for several α-emitting lanthanides (e.g., 149Tb) and actinides (e.g., 227Th and 225Ac),
as well as some radioelements from their decay chain (e.g., 213Bi) to achieve a convenient
complex formation with DOTA [73]. An initial preclinical evaluation of 213Bi–DOTATOC
showed its potential value in NETs resistant to 177Lu-PRRT [74–77], these properties being
promptly confirmed in the clinic [78]. Nevertheless, targeted alpha-therapy (TAT) involving
actinium-225 has gained even greater popularity over the last decade, particularly with
applications in prostate cancer [79] and neuroendocrine tumors [80].

This review emphasizes TAT with 225Ac-containing somatostatin analogs, providing
an in-depth summary of 225Ac physical, radiobiological and chemical properties, while
highlight 225Ac production methods. The preclinical development and clinical use of 225Ac-
labeled peptides targeting SSTRs are discussed in detail, outlining both the advantages and
current limitations of this emerging NET treatment option.

2. Actinium-225: Decay Characteristics, Radiobiological and Dosimetry Considerations
2.1. Physical Properties of Actinium-225

Actinium-225 is a relatively long-lived pure alpha-emitter, with a half-life of 9.9 days
that is well-suited for radionuclide therapy applications and for centralized industrial pro-
duction, distant from the (pre)clinical user sites. It is formed from the 229Th decay product
225Ra and decays via a cascade of six short-lived daughter radionuclides to the nearly sta-
ble bismuth-209 (Figure 3) [81]. These intermediates include francium-221 (t1/2 = 4.8 min,
6.3 MeV α-particle and 218 keV γ-emission), astatine-217 (t1/2 = 33 ms, 7.1 MeV α-particle),
bismuth-213 (t1/2 = 45.6 min, 5.9 MeV α-particle, 1.4 MeV β-particle and 440 keV γ-
emission), polonium-213 (t1/2 = 4.3 µs, 8.5 MeV α-particle), thallium-209 (t1/2 = 2.2 min,
3.9 MeV β-particle) and lead-209 (t1/2 = 3.2 h, 0.6 MeV β-particle) before reaching 209Bi.
Overall, the predominant decay pathway of 225Ac produces four alpha-particles with ener-
gies ranging from 5.8 to 8.5 MeV and associated tissue ranges of 47 to 85 µm. In addition,
the cascade includes two main beta-disintegrations of 1.4 and 0.6 MeV maximum energy.
Therefore, 225Ac is considered as an in vivo radionuclide generator or a “nanogenerator”
with regard to its decay chain.
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Interestingly, two daughter radionuclides of 225Ac (221Fr and 213Bi) also emit a gamma-
photon (218 keV, 11.4% and 440 keV, 25.9%, respectively) which facilitates their tracking
after administration (Figure 4). Thus, these gamma-photons can be useful for imaging and
dosimetry studies. However, in the early preparation steps of such radiopharmaceuticals,
radiolabeling reaction monitoring based on these photons’ detection is quite complex as
the secular equilibrium (>6 h) has to be reached before calculating the radiochemical yield.
These specific points are further discussed below.

2.2. Radiobiological Properties of Actinium-225
225Ac appears as a particularly cytotoxic radionuclide, regarding its long half-life and

the multiple alpha-particles generated in its decay chain.
Alpha-particles have a shorter range in tissues (<0.1 mm) than beta-particles (around

2 mm for 177Lu), which allows the selective killing of targeted cancer cells and theoretically
reduces the risk of toxicity to surrounding healthy tissues. In radiation therapy, tumor cell
death is directly related to the absorbed doses (i.e., energy deposit, expressed in Grays,
with 1 Gy = 1 J/kg) inducing DNA damage that may be direct or indirect (water ionization
or excitation generating reactive oxygen species) after interaction with the ionizing particle
or radiation. Damage to cell membranes and other cell components, such as mitochondria,
may also result in cell death. For the same absorbed dose, the different types of radioactive
particles do not have the same biological effects. Alpha-particle emitters have a higher
linear energy transfer (LET), which represents the energy deposit by length (or volume),
with values around 50–230 keV·µm−1 in water [83]. Compared to beta-particle emitters and
for the same physical absorbed dose, alpha-particles generate a higher density of ionization
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and excitation along their track. This causes various types of damage that are more difficult
to repair, especially DNA double-strand breaks, explaining the higher relative biological
effectiveness (RBE) of alpha-particles (Figure 5).
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Figure 4. Anterior (a) and posterior (b) post-therapy whole-body SPECT/CT scans showing intense
accumulation in pararectal lesion (horizontal arrows) and liver metastases (vertical arrows) in a
patient with a grade 2 NET, 24 h after treatment with 5.5 MBq [225Ac]Ac–DOTATATE, acquired for
30 min using 256 × 1024 matrix and high-energy general-purpose collimators (218 keV and 440 keV
photon energies with 20% window width), showing increased uptake in pararectal lesions, lymph
nodes, and liver metastases [82].
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These differences between α- and β-PRRT targeting somatostatin receptors were
specifically studied by Graf et al. by quantifying the DNA double-strand breaks caused
in vitro in AR42J cells by either 177Lu- or 225Ac-labeled DOTATOC [84]. The median
effective dose (ED50) was calculated as 14 kBq/mL after 48 h for [225Ac]Ac–DOTATOC
and 10 MBq/mL (i.e., 714-fold higher) for its 177Lu analogue, which is consistent with the
differing radiation properties of the two radioisotopes. Interestingly, the amount of double-
strand breaks for equitoxic doses of both radioconjugates were comparable. However, a
greater tail moment in the comet assay and a higher fraction of polyploid cells suggested
more severe cell alterations for high [225Ac]Ac–DOTATOC activities. A trend towards late
DNA damage with α-PRRT was also highlighted. Additional in vivo experiments with
equitoxic doses of the two radiopeptides showed a strong tumor growth delay of 20 days
after 40 kBq 225Ac and 15 days after 30 MBq 177Lu. In relation to these slightly better results
obtained with [225Ac]Ac–DOTATOC, the authors hypothesized that biological mechanisms
such as different DNA repair processes and apoptosis pathways could potentially increase
the therapeutic efficacy of α-PRRT. Therefore, alpha-particles may be an interesting option
for tumors resistant to β-radiation and conventional therapies [85].

2.3. Dosimetry for Targeted Alpha-Therapy with 225Ac

The purpose of dosimetry in radionuclide therapy is to understand or predict the likely
biological effects, such as toxicity and efficacy, of a radiopharmaceutical drug on a patient.
Evaluating the absorbed dose in relevant organs and tumors requires essential parameters
including the spatial and temporal biodistribution of the administered radiopharmaceutical
(in order to estimate the total number of radionuclide disintegrations in different tissues and
tumors, determined by multi-time-point photon imaging) and information about both the
physical properties of the radionuclide and the patient anatomy. In the case of alpha-emitter-
labeled radiopharmaceuticals, accurate quantitative imaging is particularly challenging due
to the low yield of imageable photons emitted, the very low activity administered, the short
path length and heterogeneous distribution in tissue, and the multiple daughter radionu-
clide redistributions. However, biodistribution and dosimetry research involving 225Ac has
emerged in the last few years using different approaches. These include the direct detection
of gamma-emissions by gamma-cameras [86,87], dosimetry based on a surrogate nuclide
such as 177Lu that can be imaged (particularly for [225Ac]Ac–PSMA-617 treatment [88,89]),
pharmacokinetic modeling [90], and small-scale and microdosimetry [91,92]. Addition-
ally, preclinical dosimetry studies and animal models are essential in the development of
dosimetry research with alpha-particle emitters, specifically for 225Ac [93].

3. Radiochemical and Preclinical Development of [225Ac]Ac–DOTATATE
3.1. Production of Actinium-225

Two isotopes of actinium, 227Ac and 228Ac, exist in nature within the natural decay
chain of uranium-235 and thorium-232, respectively [94]. However, neither of these two
isotopes is used in the clinic, with 228Ac representing a minimal part of natural actinium
and 227Ac having a very long half-life (t1/2 = 21.77 y). Therefore, 225Ac is the only one of the
more than 30 known actinium isotopes to be used in preclinical and clinical studies to date.

The main method for generating 225Ac for clinical use is through radiochemical ex-
traction following the decay of 229Th (t1/2 = 7397 y), which originates from reactor-bred
233U [95,96]. The main sources of 229Th in the world for 225Ac used in preclinical and
clinical studies are Oak Ridge National Laboratory (ORNL, Oak Ridge, TN, USA) [95],
the Institute of Physics and Power Engineering (IPPE, Obninsk, Russia) [97], and the Di-
rectorate for Nuclear Safety and Security of the Joint Research Center of the European
commission (JRC, Halstenbek, Germany), formerly the Institute for Transuranium Elements
(ITE, Karlsruhe, Germany) [98]. More recently, the Canadian Nuclear Laboratories set up a
225Ac production chain that could supply up to 3.7 GBq of this radioisotope annually [99].
In this latter process, anion-exchange chromatography is used to retain bulk 229Th and
recover 225Ra and 225Ac with 8 M nitric acid. Then, dual TEVA/DGA-N cartridges are used
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to retain breakthrough 229Th (TEVA resin) and 225Ac (DGA-N cartridge), removing 223Ra.
After rinsing the DGA-N cartridge with 8 M HCl, 225Ac is finally eluted in a minimum
volume of 0.05 M HCl, yielding actinium in its AcCl3 chemical form. The purification of
225Ac represents a crucial step: various alternative separation protocols have therefore
been described, based on solid-phase extraction [100–103], anion or cation exchange [104],
or liquid-phase extraction [105,106], some adapted to high quantities of thorium [107].
Overall, despite the continuous qualification of new production sites in order to reach
a sufficient supply of 225Ac for both preclinical and clinical use [108,109], effective and
economic alternative production methods appear to be essential in view of the recent
growing interest in 225Ac-based TAT [110].

Consequently, accelerator-based production techniques to obtain 225Ac have been
developed. The most promising approach to obtain 225Ac at a large scale may be the
cyclotron proton irradiation of a 226Ra target, involving the 226Ra(p,2n)225Ac transfor-
mation [111,112]. With a high cross-section peak (710 mb) at 16.8 MeV, this convenient
method can be performed on low-energy cyclotrons. Moreover, it is not known to form
either 227Ac (t1/2 = 21.8 y) or a significant amount of 225Ra (t1/2 = 14.9 d, obtained via the
226Ra(p,2n)225Ra reaction) byproducts. Short-half-life 226Ac (t1/2 = 29.4 h, obtained via the
226Ra(p,n)226Ac reaction) and 224Ac (t1/2 = 2.8 h, obtained via the 226Ra(p,3n)224Ac reaction)
coproducts are formed, but their ratio with 225Ac decreases over time due to the differences
in half-lives. Thus, the targets are processed 2–3 days after irradiation, dissolved in 0.01 M
HCl and loaded on a Ln-spec column. Radium is washed through the column with 0.1 M
HCl and 225Ac is eluted with 2 M HCl for a second purification on a Sr-spec column.
Especially considering the high cross-section of this 226Ra target-based method [111,113],
it could provide a valuable alternative for the large-scale and cost-effective production
of 225Ac.

A second approach to obtain 225Ac via a cyclotron is the irradiation of a natural
232Th target with medium- to high-energy protons (>70 MeV), allowing the production
of 225Ac through different pathways [104–106,114–116]. This reaction is characterized by
a much lower cross-section than the 226Ra(p,2n)225Ac reaction and by the formation of
several radioactive impurities such as the long-lived 227Ac (0.1 to 0.2%). Nevertheless, the
low radioactivity and sufficient availability of 232Th allow easier target fabrication and
processing [117–119].

Overall, it is likely that in order to meet the growing demand, the actinium used in
preclinical and clinical applications will come from different production routes, which
requires a harmonization of the quality criteria expected for this radioisotope.

3.2. Chemistry of Actinium
3.2.1. Actinium in Aqueous Solution

Actinium is the chemical element with atomic number 89 and the first element of
the actinide group, to which it gives its name. Nevertheless, actinium has rather similar
chemical properties to lanthanum and other lanthanides. Actinium exists essentially in
the +3 oxidation state in aqueous solution; additionally, Ac3+ is the largest +3 cation in
the periodic table. It is also the most basic +3 ion due to its low charge density, directly
related to its large size. Although the +3 state is the most stable in aqueous solution,
the +2 oxidation state may also be encountered [120]. This second species is assumed
because a reduction half-wave potential in a 225Ac3+ aqueous solution can be observed.
The progressive negative shift of this potential in the presence of increasing 18-crown-6
concentrations has been attributed to the formation of a complex between crown ether and
divalent actinium [121]. However, without the effect of 18-crown-6 on the reduction of
225Ac3+, the existence of stable 225Ac2+ ions in aqueous solution remains unlikely regarding
the low extraction yields of actinium using sodium amalgam in aqueous sodium acetate,
an extraction technique usually efficient for lanthanides at a stable +2 oxidation state [122].
Moreover, the reduction of Ac3+ to Ac2+ in aerobic aqueous conditions appears to be
impossible according to theoretical studies that predicted markedly negative standard
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reduction potentials for these species (−4.9 V and −3.3 V/NHE, respectively) [123,124].
Due to the low charge density of this ion, Ac3+ hydrolysis is observed at slightly higher
pH values than other Group 3 cations, such as La3+ or Y3+ [125–127]. The first hydrolysis
constant (pK1h) of Ac3+ cations has been measured as 9.4 ± 0.1 (Table 1) [128]. This implies
that pH values below this threshold are not in favor of water molecule coordination with
Ac3+ followed by the release of a proton to form AcOH2+. Interestingly, this property may
allow the consideration of a wide range of pH values for radiolabeling reactions with 225Ac,
since for pH values lower than 9, inert hydrolyzed Ac ion formation is unlikely. Hence, in
view of these properties, the coordination chemistry of the six-coordinate Ac3+ has been
particularly studied to extend the applications of this radioelement in radiopharmacy and
nuclear medicine.

Table 1. Chemical and structural properties of the actinium nucleus and the Ac3+ ion.

Property

Atomic configuration 5f0 6d1 7s2

Oxidation states (in acid non-complexing aqueous solution) 3
Metallic radius (Ac0) 1.88 Å

Six-coordinate ionic radius (Ac3+) 1.065 Å
pK1h 9.4

Absolute chemical hardness (η) 14.4 Ev
Electrostatic contribution in complexes formation (EA) 2.84

Covalent contribution in complexes formation (CA) 0.28
Ionicity (IA = EA/CA) 10.14

Hydration number 10.9 ± 0.5
Ac–O(H2O) bond length 2.59 to 2.63 Å

Actinium, as well as other elements with an atomic number higher than lead (Z > 82),
has no stable isotope, which makes chemical reactivity studies on this atom more challeng-
ing. Nevertheless, despite its slightly smaller ionic radius (1.03 Å vs. 1.065 Å) [129,130],
the lanthanum cation La3+ has emerged as a convenient stable surrogate due to the compa-
rable chemical properties between the Ac3+ ion and Ln3+ lanthanide ion [131,132]. Simi-
larly, 132La, 133La and 134Ce have recently been suggested as PET-imaging surrogates for
actinium-containing radiopharmaceuticals [133–136].

3.2.2. Coordination Chemistry of Actinium

The usefulness of actinium-225 as a radionuclide for therapeutic purposes has been
limited for a long time by the unavailability of chelating agents that are both capable of being
compatible with this bulky radionuclide and of controlling the fate of the resulting daughter
emitters, particularly with regard to their alpha-recoil, which is related to the conservation
of momentum laws that occurs upon release of an alpha-particle [137]. Nevertheless, the
coordination chemistry of such a clinically relevant alpha-emitter has recently gained more
and more interest [138].

Considering its low polarizability and despite its large ionic radius, the Ac3+ ion is
considered a hard Lewis acid [139], showing a medium absolute chemical hardness value of
14.4 eV [140]. As such, it will complex more easily with hard ligands, such as anionic oxygen
donors. The complexation reaction will preferentially occur under charge control and the
acid–base bond will be essentially ionic. Indeed, Ac3+ displays an electrostatic interaction
constant (EA) value of 2.84 and a covalent interaction constant (CA) value of 0.28 [138]. This
predominance of charge interactions can be predicted from the character of the frontier
molecular orbitals, which are centered on the nuclei of the donor and acceptor atoms; when
these atoms are close together in space, the overlaps of the orbitals are negligible while the
charge interactions are strong. This is mainly attributed to the density of the charge, which
is very significant in ions of hard consistency. Besides, the large ionic radius of the Ac3+

ion tends to induce the formation of kinetically unstable complexes. Thus, a wide variety
of chelating agents have been studied for their coordination properties with actinium in
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order to identify complexes with both fast kinetic properties and high thermodynamic and
in vivo stability.

The high ionic radius of the Ac3+ cation suggests that the most suitable chelators
would be polydentate agents, with a high denticity between 8 and 12. Initial works
investigated the suitability of linear polyaminocarboxylate chelators, such as CHX-A′′-
DTPA, for the chelation of the 225Ac3+ cation [141,142]. These efforts were motivated by the
advantageous radiolabeling kinetic properties of these ligands; however, the complexes
obtained did not show sufficient in vivo stability. Subsequently, large macrocyclic chelators
were considered and the 18-membered polyaminocarboxylic acid core HEHA was rapidly
identified as particularly suitable for actinium complexation [142,143]. Nevertheless, once
conjugated to vector molecules, HEHA formed insufficiently stable complexes with 225Ac,
probably due to transchelation and radiolysis processes [144,145]. Other macrocyclic
chelators were subsequently studied to address these drawbacks, but were still associated
with either the instability of the complex (PEPA [141,142], DOTMP [146–148]) or low
radiolabeling yields (TETA, TETPA, DOTPA [146], macropid [138,149]). Interestingly,
the crown chelator, inspired by HEHA, displayed good 225Ac-chelating properties, both
in its free form and when conjugated to a peptide [150,151]. Related diaza-18-crown-6
moieties H2macropa [152–154] and macrodipa [155–157], bearing picolinate arms, also
formed stable complexes with large lanthanide ions such as 225Ac. In addition to a rapid
complexation reaction at room temperature, 225Ac–macropa and macrodipa complexes
remained stable both in vitro and in vivo. The interest in picolinic acid units as actinium
chelators was also evidenced by acyclic derivatives such as octapa [158], H4noneunpa [159],
H4picoopa [160] or H3TPAN [161], which have mostly been studied in vitro for their
radiochemical properties up to now. Figure 6 summarizes the chemical structures of the
ligands discussed herein.
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Despite the large variety of chelators designed and studied to easily form stable
complexes with actinium, the 12-membered macrocycle DOTA remains one of the reference
chelating agents for this radioelement, especially for radiopharmaceuticals with clinical
applications. More precisely, four-arm DOTA derivatives seem to be the most suitable
for complexation with 225Ac [162]. Moreover, this chelator is already widely used in
humans within theranostic radiopharmaceuticals such as DOTATOC and DOTATATE,
which are already known to the regulatory authorities. Besides, the very versatile character
of DOTA allows its stable coordination with various hard +3 radioactive ions such as Ga3+,
In3+, Sc3+, Y3+, Lu3+ or even Tb3+ [163,164]. 64Cu-labeled DOTA bioconjugates are also
currently used in the clinic, but have displayed slight transchelation effects and thus a
lower in vivo stability over time [165]. With 225Ac, radiolabeling conditions to form a
DOTA complex are generally conventional, requiring a buffer solution such as ammonium
acetate to increase the pH from 5 to 7. Interestingly, ascorbic acid is very commonly
added to the reaction medium or during formulation, in order to decrease the radiolysis
effects caused by the 225Ac decay chain [162,166–171]. Radiolabeling reactions involving
small molecules or peptides can be heated from 50 ◦C to 95 ◦C [158,172–174]. Harsher
conditions have also been described, including microwave irradiation [172,175]. For heat-
sensitive molecules, a two-step approach was reported involving the radiolabeling of the
bifunctional chelating agent before bioconjugation [146]. However, this approach displayed
a low radiochemical yield due to the degradation of the anchoring isothiocyanate moiety of
the bifunctional agent. Optimized protocols based on the Michael addition reaction [176] or
on click chemistry approaches [177,178] have been subsequently developed; nevertheless,
one-step radiolabeling protocols with milder conditions are generally preferred and most
frequently used [162,179]. Finally, most radiolabeling protocols are completed with a
quenching step using a DTPA solution to capture the remaining 225Ac and free daughter
radionuclides [172,180–182]. An overview of 225Ac radiolabeling conditions reported in
the literature is provided in the Supplementary Materials. Noteworthily, the lack of details
in the procedures of these radiolabeling reactions is significant, with some important
information sometimes missing. The same applies to the stability studies of the 225Ac-
labeled radioconjugates, although it has been shown that this property should be assessed
for each individual radioconjugate [183].

Quality control (QC) is a key step in the production process of radiopharmaceuti-
cals, and reliable methods, especially for radio-HPLC analysis, are still lacking for 225Ac-
radiolabeled molecules [184]. The radiochemical purity of 225Ac-radiolabeled products
is most often only determined by thin-layer chromatography (TLC), using either iTLC
or silica-coated plates as the stationary phase and 0.05–0.5 M citrate buffer (pH 4–5) as
the mobile phase. Under these conditions, free 225Ac3+ migrates with the solvent front
(Rf = 1) while the 225Ac–ligand complex usually remains at the baseline (Rf = 0). Particular
attention should be paid to the time frame in which the QCs are performed. Indeed, 225Ac
can be quantified through the γ-emission of its daughter nuclides 221Fr and 213Bi, using
190–247 and 399–488 keV energy windows, respectively [185]. For this, radiochemical
equilibrium with gamma-emitting daughter radionuclides must be reached (i.e., after
>6.5 h) [186–188], as the ratio of 225Ac to 221Fr and 213Bi constantly changes before this
point. However, to avoid delaying this QC and postponing the release of 225Ac-containing
radiopharmaceutical preparations, analysis after 2 h has been validated as an accurate time
point to assess the purity of the radiopharmaceutical [189]. Similarly, gamma-counting
measurement protocols with no requirement of secular equilibrium between 225Ac and its
daughter radionuclides have been developed [190]. Overall, special consideration should
be given to the redaction of experimental protocols provided in scientific publications, as
the values given for radiochemical purity or radiochemical yield are affected by the timing
of the QCs.

For TAT agents used in clinical practice, the radiolabeling step can be performed by an
industrial radiopharmaceutical laboratory due to the long half-life of 225Ac. Nevertheless,
these radiopharmaceuticals are, to date, essentially prepared in-house by pioneer centers.
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In this context, the automated GMP-compliant production of 225Ac–DOTA radiopharma-
ceuticals is possible using cassette-based synthesis systems [191], which have widely spread
with the rise of 68Ga radiochemistry [192]. This option would address radiation protection,
regulatory and aseptic requirements, but would imply a costly and difficult implementa-
tion, with the need for expertise of the radiopharmacy team involved in the process. Such a
particular approach has been exemplified with [225Ac]Ac–DOTATATE [193].

3.2.3. Relevance of DOTA in Actinium Radiopharmaceuticals

The in vivo fate of the 225Ac–DOTA complex alone was initially shown to be safe, with
only low activity amounts in liver and bone of BALB/c mice [142]. Subsequently, DOTA-
bioconjugated constructs (either antibodies or peptides) also showed the sufficient stability
of the complex, both in vitro [162,166,167,173] and in vivo [162,166]. Nevertheless, early
studies raised some concerns about the compatibility of DOTA with actinium [142,146].
Indeed, the large ionic radius of the Ac3+ ion is not in favor of the good thermodynamic sta-
bility of the DOTA complex, which may also be subject to transmetalation with other cations.
In order to minimize adverse in vivo effects associated with the loss of 225Ac and its daugh-
ter radionuclides (especially 213Bi, significantly increasing the kidney-absorbed dose [194])
from DOTA, several approaches have been considered, such as the co-administration of
chelating agents or concomitant diuresis [195,196].

Overall, DOTA does not seem to be the most suitable chelator for 225Ac due to its
coordination chemistry properties. Nonetheless, it remains to date the gold standard
chelating agent for 225Ac radiolabeling in the clinic. Most importantly, the prior use in
humans of the same DOTA-containing vector molecules radiolabeled by 68Ga or 177Lu,
such as PSMA-617 or DOTATATE, from the regulatory authority perspective, encourages
the accommodation of the flaws of DOTA for 225Ac to benefit from a more significant
hindsight regarding the clinical use of the vector molecule. This is particularly the case for
somatostatin analogs such as 225Ac-labeled DOTATATE, which was very swiftly used in a
clinical setting.

3.3. Somatostatin Analogs Radiolabeled with 225Ac: Preclinical Studies

Only a few studies have reported preclinical efficacy results of 225Ac-radiolabeled
somatostatin analogues, due to this group of vector molecules having already been widely
studied with beta-emitters such as 90Y or 177Lu [197].

An initial study in 2008 explored the therapeutic efficacy of [225Ac]Ac–DOTATOC
in nude mice bearing AR42J (rat pancreas neuroendocrine tumor) xenografts [198]. Ra-
diolabeling reaction conditions involved sodium acetate buffer and gentisic acid as an
anti-radiolytic compound (Figure 7); in addition, a rather moderate reaction tempera-
ture (70 ◦C, 60 min) allowed good radiochemical yields, probably facilitated by the large
DOTATOC excess.
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Activities between 10 and 60 kBq were well-tolerated by the mice; however, activities
over 30 kBq induced pathologic changes in the renal cortex, suggesting radiation-induced
acute tubular necrosis in both the distal and proximal tubules. Similar results were obtained
in another study on Sprague Dawley rats that received 111 or 370 kBq [225Ac]Ac–DOTATOC
and developed renal tubular nephrosis or renal glomerulopathy [199]. Only a slight
accumulation in the liver was objectified, probably due to the release of free 225Ac. After
a single administration of the highest non-toxic activity (20 kBq), tumor weights 14 days
after treatment were lower with [225Ac]Ac–DOTATOC than with [177Lu]Lu–DOTATOC
(1 MBq), in accordance with previous studies investigating [213Bi]Bi–DOTATOC [74,75].
This work therefore demonstrated the preclinical value of 225Ac-radiolabeled octreotide
derivatives; nevertheless, some questions remained to be answered, such as their potential
for chronic toxicity.

This point was addressed by Tafreshi et al. through a [225Ac]Ac–DOTATATE toxic-
ity evaluation in BALB/c mice and an efficacy study in SCID mice bearing NCI-H69 or
NCI-H727 (human small-cell and non-small-cell lung cancer, respectively) xenografts [200].
Interestingly, the reaction pH during radiolabeling was controlled with TRIS buffer, em-
ployed only for the 225Ac radiolabeling of other scarce compounds, either DOTA-conjugated
antibodies [201] or peptides [166,173]. L-ascorbic acid was also preferred over gentisic
acid. After a single injection of 55.5, 111 or 185 kBq in healthy mice, a 5-month follow-
up highlighted a weight loss at ~100 days post-injection (p.i.) and a chronic progressive
nephropathy for doses ≥111 kBq. Neither serum assays nor other organs showed patho-
logic changes related to treatment; [225Ac]Ac–DOTATATE thus appeared to have sufficient
in vivo stability and tumor uptake, and its main toxicity was renal, as anticipated by anal-
ogy with its 177Lu analogues [202]. A single injection of ~145 kBq in xenografted mice led
to a significant decrease in tumor volume 25 days p.i. prior to regrowth. This suggests the
potential benefit of multiple injections in disease control. However, SSTR quantification
showed the loss of some expression in regrowth tissues, implying the possible development
of treatment resistance over time. Yet, the encouraging results obtained in these preclinical
models leave room for [225Ac]Ac–DOTATATE as a new treatment for lung neuroendocrine
neoplasms, as was the case with [177Lu]Lu–DOTATATE [203].

More recently, the radioconjugate [225Ac]Ac–macropa–octreotate (macropatate) was
studied both in vitro and in vivo, with regard to the excellent 225Ac-chelating properties of
the complexing agent macropa [204]. In addition to allowing milder complexation reaction
conditions (RT for 1 h vs. 70 ◦C for 1 h), macropatate showed a comparable affinity for
DOTATATE (21 nM vs. 22 nM on U2OS-SSTR2 cells) and, importantly, a slightly better
in vitro serum stability (98% vs. 95% after 10 days). [225Ac]Ac–macropatate evaluation
on a NCI-H69 xenografted mouse model (46.3 kBq, single injection) demonstrated the
potential of this radioconjugate to delay tumor growth and improve survival; however, the
results obtained with the [177Lu]Lu–DOTATATE comparator proved to be better (55-day
survival vs. >100 days for 80% mice). Moreover, after an initial reduction in volume,
tumors treated with [225Ac]Ac–macropatate subsequently relapsed, while tumors treated
with [177Lu]Lu–DOTATATE showed durable remission. Interestingly, liver and kidney
uptakes were higher than [225Ac]Ac–DOTATATE, which was explained by the authors as a
result of the greater lipophilicity of macropatate, slowing renal clearance and increasing
liver uptake. In summary, this study calls for optimization of the macropatate construct to
achieve better in vivo properties, leaving the door open for the preclinical evaluation of
other new bioconjugates with innovative 225Ac-chelating agents.

4. Clinical Use of 225Ac–DOTATATE

To date, [177Lu]Lu–DOTATATE is considered as the standard PRRT treatment for GEP
NETs. In this regard, the phase 3 randomized control trial NETTER-1 specifically demon-
strated that [177Lu]Lu–DOTATATE therapy plus long-acting octreotide was associated with
a significantly longer PFS (28.4 vs. 8.5 months) than high-dose long-acting octreotide in
advanced midgut GEP NET patients, although the OS endpoint of this study did not reach
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statistical significance (48 vs. 36.3 months, p = 0.3) [62,205]. Thus, this therapy offers a
promising option as an early-line treatment for advanced NET [60,62]. Nevertheless, this
type of pathology is known to frequently relapse, which may lead to patient retreatment.
In this context, several studies have investigated the value of a renewed treatment with
β-PRRT; furthermore, TAT protocols using somatostatin analogs, especially 225Ac-based
approaches, were also rapidly proposed as an alternative for patients that did not respond
to β-PRRT.

Although it was used several years earlier, the first literature report of an alpha-
PRRT with [225Ac]Ac–DOTATOC in human dates from October 2018 [206]. Ten patients
with metastatic NETs progressing after 90Y– and/or [177Lu]Lu–DOTATOC therapy were
treated with intra-arterial [225Ac]Ac–DOTATOC (~8 MBq). Overall, the treatment was well-
tolerated and effective, demonstrating its potential as a possible therapeutic alternative in
advanced NETs resistant to β-PRRT.

Then, two major studies involving 225Ac-labeled octreotide analogs were reported
in patients with advanced-stage SSTR-expressing metastatic GEP NETs. These works
primarily focused on the hematologic and renal toxicity of [225Ac]Ac–DOTATOC, and on
the long-term outcomes of this therapeutic, respectively.

4.1. Early Retrospective Study, in Search of the Best Regimen

Kratochwil et al. firstly reported, through a retrospective cohort study, the use of
[225Ac]Ac–DOTATOC as an experimental salvage therapy in patients with aggressive,
late-stage, or β-PRRT-resistant tumors [207]. In addition to gathering preliminary efficacy
data, this work investigated the most appropriate treatment regimen and maximum cu-
mulative dose of [225Ac]Ac–DOTATOC, especially with regard to hematologic and renal
toxicity. Each of the 39 patients of this study (mean age: 58 (17–85) years old) expressed
SSTRs according to [68Ga]Ga–DOTATOC PET/CT imaging (higher than liver background;
Krenning score >2). The histological diagnosis of the 39 tumors is detailed in Table 2. All
patients were ineligible or had already exhausted the approved treatments and received at
least one cycle of [225Ac]Ac–DOTATOC therapy, from July 2011 to March 2015. Predictably,
37 patients (95%) were already pretreated, of which 82% were with β- (27/39) and/or
α-PRRT (5/39) (Table 2).

Table 2. Histological diagnosis of the 39 patients reported by Kratochwil et al. and details of the prior
systemic treatments for the 37 pretreated patients [207].

Number of Patients (%)

Histological diagnosis

GEP NET 22/39 (56.4%)
Lung carcinoid NET 5/39 (12.8%)

Lung NEC 1/39 (2.55%)
Unknown primary NET 4/39 (10.3%)

Medullary thyroid carcinoma 2/39 (5.2%)
Meningioma (WHO II) 1/39 (2.55%)
Merkel-cell carcinoma 1/39 (2.55%)

Paraganglioma 1/39 (2.55%)
Prostate NET 1/39 (2.55%)

Renal NET 1/39 (2.55%)

Previous therapy

β- or α-PRRT 32/39 (82.0%)
SSA 21/39 (53.8%)

Chemotherapy 16/39 (41.0%)
TKI 8/39 (20.5%)
SIRT 4/39 (10.3%)

TACE 1/39 (2.6%)
Immunotherapy 2/39 (5.1%)

Interferon 2/39 (5.1%)
SSA: somatostatin analogue; TKI: tyrosine kinase inhibitor; SIRT: selective internal radiotherapy; TACE: trans-
arterial chemoembolization.
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Among the 32 patients pretreated with β- or α-PRRT, some received several radionu-
clides before 225Ac (Table 3). Hematologic and renal toxicities, as well as treatment efficacy,
were monitored over time (Figure 8). CTCAE criteria were used to qualify hematologic
toxicity, whereas estimates of the glomerular filtration rate (eGFR) were calculated from
plasma creatinine values using the MDRD formula. Regarding the administrations of
[225Ac]Ac–DOTATOC, it is essential to consider that, because of its pioneering use, both the
activities injected and the intervals between administrations were determined consensually
on a case-by-case basis, considering several individual criteria such as the tumor burden,
sites of metastases or general clinical condition of the patient. Thus, this study brought
together patients with a wide variety of treatment plans.

Table 3. Details of PRRT for the 32 patients pretreated.

Radionuclide Number of Patients Mean Cumulative Dose
in GBq (Min–Max)

Median Cumulative
Dose in GBq

90Y 25 9.2 (2–22) 8
177Lu 29 12.7 (1–44) 12
213Bi 5 11 (4–19) 13
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The evaluation of acute hematologic toxicity in all 39 patients highlighted a dose-
dependent effect for thrombocytopenia and leukopenia. For single-dose administration, an
activity below 44 MBq was associated with grade 0 to 2 hematologic toxicity. In contrast,
for a dose above 45 MBq and above 60 MBq, grade 3 and 4 adverse events were recorded,
respectively. Among the 39 patients included in this study, 24 had a second cycle, 6 had
a third cycle, 2 had a fourth cycle and 1 had a fifth cycle, allowing for a myelotoxicity
evaluation after multiple doses. With repeated administrations, additive toxicity was
observed if the subsequent doses were not reduced or for short intervals between cycles.
Indeed, seven of the eight grade 3–4 hematologic adverse events recorded in this study
occurred with succeeding cycles of >25 MBq [225Ac]Ac–DOTATOC, which suggested a
dose-dependent toxicity. Thus, the hematologic toxicity could be reduced by setting a
maximum dose of ~44 MBq for single-dose regimens and by adjusting both the further
doses (from 20 to 25 MBq) and the intervals between cycles (optimum interval of 4 months)
for repeated treatment regimens.
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Renal toxicity was evaluable in 22 patients, with a median follow-up of 57 (18–90) months.
Chronic kidney disease (CKD) was the most relevant and late effect. However, pre-existing
risk factors for CKD were found in 36/39 patients. In addition, most of them (32/39) had
already received β-PRRT that probably induced a lower kidney tolerance. A mean decrease
of 7.6% and 14% in tubular excretion rate values were observed in the first 6 months and
the first 18 months, respectively. The severity of eGFR losses was further studied and
compared with previous data of patients treated with β-PRRT [208–210]. A higher fraction
of 6–10% and 11–15% eGFR loss per year was observed with TAT, versus β-PRRT (Figure 9).
Conversely, [225Ac]Ac–DOTATOC appeared to cause substantially less eGFR loss (<5% per
year) than [177Lu]Lu–DOTATATE. Nevertheless, the susceptibility of these different groups
of patients to the renal toxicities of PRRT was not strictly comparable considering their
respective previous treatments.
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Figure 9. Distributions of patients with respect to the extent of annual GFR loss for β-PRRT and
TAT [207–210].

Overall, this early clinical experience with [225Ac]Ac–DOTATOC suggested that this
strategy could provide a clinical benefit in selected patients not responding to β-PRRT
or with poor tumor prognosis. The toxicity profile of [225Ac]Ac–DOTATOC appeared to
be manageable if adequate intervals between cycles and reasonable doses were planned,
typically ~20 MBq per cycle every 4 months for a cumulative dose up to 60–80 MBq.

4.2. Subsequent Evaluation in Patients Revealing New Clinical Outcomes

After reporting the efficacy and safety of [225Ac]Ac–DOTATATE in nine patients with
paraganglioma [211], Ballal et al. conducted a study presented as prospective, involving
a cohort of 91 well-differentiated inoperable or metastatic SSTR-expressing GEP NET
patients in order to explore the long-term outcomes of [225Ac]Ac–DOTATATE [212]. The
preliminary data have been published since April 2018 [213–218]. In the final report of this
study, patients were categorized into three groups depending on their pretreatment with
177Lu-PRRT: prior 177Lu-PRRT refractory group (33 patients), prior 177Lu-PRRT disease
control group (24 patients) and 177Lu-PRRT naïve group (34 patients). The mean age of
this cohort was 54 (25–75) years old. Pancreatic NETs accounted for 33%, followed by
duodenum and ileum NETs (14.3% and 13%). The majority of patients (81/91) had a grade
1/2 disease according to the WHO classification of GEP NETs (Table 4) and all patients
were metastatic according to [68Ga]Ga–DOTANOC PET/CT (96.7%, 72.5% and 27.5%
patients had liver, lymph node and bone metastases, respectively). Table 4 specifies the
previous treatment received by the overall population; 10 patients were still on long-acting
somatostatin analogs, which were stopped 4 weeks before starting [225Ac]Ac–DOTATATE.
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Table 4. Site of primary tumor, WHO grades and prior treatments received by the patients involved
in the study of Ballal et al. [212].

Primary Tumor Site Number of Patients (%)

Pancreas 30 (33%)
Stomach 7 (7.7%)

Appendix 1 (1%)
Ileum 12 (13%)

Duodenum 13 (14.3%)
Jejunum 2 (2.2%)

Colon 2 (2.2%)
Rectum 8 (8.8%)

Abdominal with unknown primary 16 (17.6%)
WHO Tumor grade (Ki67 index)

Grade 1 (<2%) 33 (36.2%)
Grade 2 (3–20%) 48 (52.7%)
Grade 3 (>20%) 7 (7%)

Prior treatment before 225Ac–DOTATATE
Surgery 21 (23%)

SSA 70 (77%)
Chemotherapy (cytotoxic or TKI) 18 (20%)

[177Lu]Lu–DOTATATE 57 (62.6%)
SSA: somatostatin and somatostatin analogues; TKI: tyrosine kinase inhibitor.

The study regimen of each group consisted of 100 to 120 kBq/kg body weight of
[225Ac]Ac–DOTATATE (i.e., activities approximately two times lower than those reported
by Kratochwil et al.) administered in two-month intervals. Capecitabine was given to all
patients (1 g twice a day from day 0 to day 14 of every [225Ac]Ac–DOTATATE cycle) as a
radiosensitizer [219]. Figure 10 summarizes the design of the study.
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Figure 10. Design of the study reported by Ballal et al. [212]. Clinical status and clinical response
were assessed with Karnofsky performance status and Eastern Cooperative Oncology Group (ECOG)
performance status. AEs: adverse events.

Cumulatively, 453 cycles were administered. The mean cumulative dose of [225Ac]Ac–
DOTATATE was 35.52 (21.64–59.47) MBq and the median time interval between two cycles
was 8 weeks from April 2018 to October 2021. Three patients (3.3%) received 1 cycle of
[225Ac]Ac–DOTATATE, 29 patients (31.9%) received 2 to 3 cycles and 59 patients (64.8%
received 4 to 10 cycles. The median number of cycles per patient was 4. Table 5 details these
data and illustrates the heterogeneity in the duration of TAT management in this cohort.
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Table 5. Number of [225Ac]Ac–DOTATATE cycles assessed by patients.

Number of Cycles with 2 Monthly Intervals
at the Time of Analysis Number of Patients (%)

1 3/91 (3.2%)
2 13/91 (14.3%)
3 16/91 (17.6%)
4 15/91 (16.5%)
5 7/91 (7.7%)
6 11/91 (12.1%)
7 9/91 (9.9%)
8 5/91 (5.5%)
9 8/91 (8.8%)
10 4/91 (4.4%)

After a median follow-up duration of 24 (5–41) months, the median OS was not at-
tained at the time of analysis; thus, a 24-month survival probability of 70.8% was calculated.
Upon univariate analysis, the presence of bone metastases, a cumulative dose of 225Ac–
DOTATATE < 37 MBq and a progression of disease (PD) with 225Ac–DOTATATE were
associated with significantly poorer OS (p < 0.030, p < 0.0003 and p < 0.0001, respectively).
Concerning PFS, its median was not reached in the overall patient population either. Upon
univariate analysis, as for OS, the presence of bone metastases, a cumulative dose of 225Ac–
DOTATATE < 37 MBq and PD with 225Ac–DOTATATE were associated with a significantly
reduced PFS (p < 0.028, p < 0.028 and p < 0.0009, respectively).

Objective tumor response (or morphological response) according to RECIST 1.1 criteria
(for primary site, node and viscera) 6–8 weeks after completing every 2–3 cycles of 225Ac–
DOTATATE was evaluated in the three patient groups. Only 2 of the 79 evaluable patients,
both previously pretreated with 177Lu-PRRT, achieved a complete response (CR), whereas
no CR was observed in the naïve 177Lu-PRRT group. There were 38 partial responses
(PRs), 23 stable diseases (SDs) and 16 PDs. Table 6 details the morphological responses
obtained according to the pretreatment with 177Lu-PRRT and the disease status at the time
of recruitment.

Table 6. Treatment details and response in the three groups of patients post cycles of 225Ac–
DOTATATE therapy.

Prior 177Lu-PRRT (n = 57)
177Lu-PRRT Naïve (n = 34)

DP (n = 33) SD/PR (n = 24)

Mean cumulative
activity of 177Lu-PRRT 25.7 ± 12.7 GBq (5.5–49.5) 25.6 ± 10 GBq

(7.4–39) -

Mean cumulative
activity of 225Ac-PRRT 39.6 ± 24.2 MBq (12–100) 48.6 ± 19.4 MBq (8.9–80) 35 ± 20 MBq

(6–77.7)
CR 1 (3.03%) 1 (4.17%) 0
PR 7 (21.21%) 16 (66.66%) 15 (44.12%)
SD 11 (33.33%) 5 (20.83%) 7 (20.59%)
PD 11 (33.33%) 1 (4.17%) 4 (11.76%)

Not assessed 3 (9.10%) 1 (4.17%) 8 (23.53%)
24-month OS probability 55.6% 95.0% 62.6%

Alive 17 (51.5%) 21 (87.5%) 27 (79.4%)
Dead 16 (48.5%) 3 (12.5%) 7 (20.6%)
DSD 10 0 4

NA: not applicable; DSD: disease-specific death.
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For patients still alive at the end of analysis, there was a significant improvement in
clinical performance status from baseline to the end of analysis: the median Karnofsky
performance status increased from 60 to 70 (p < 0.0001) and the median ECOG score changed
from 2 to 1 (p < 0.0001). These improvements were not significant in the overall population.

Regarding the tolerance of [225Ac]Ac–DOTATATE, none of the patients in the entire se-
ries encountered grade 4–5 hematologic or renal toxicities according to CTCAE v5.0 criteria.
Only one patient experienced grade 3 thrombocytopenia, which suggests that [225Ac]Ac–
DOTATATE safety could be comparable to [177Lu]Lu–DOTATATE in the NETTER-1 clinical
trial. In future long-term safety studies, it may be relevant to investigate the late inci-
dence of myelodysplastic syndrome in patients treated with TAT to compare with β-PRRT.
In [225Ac]Ac–DOTATATE-treated patients, grade 1/2 hematologic toxicities were mostly
prevalent at baseline. Grade 1/2/3 adverse events were reported at the end of the assess-
ment (fatigue, loss of appetite, nausea, gastritis, abdominal pain and distension, myalgia
and flushing) but were also prevalent at baseline. Importantly, 10 malignant ascites and
1 grade V pleural effusion were reported. In view of these outcomes, Ballal et al. concluded
a limited and manageable toxicity of [225Ac]Ac–DOTATATE for doses of 100–120 kBq/kg
body weight with a treatment interval of two months. Moreover, this study demonstrated
that the resensitization of a [177Lu]Lu–DOTATATE refractory tumor was possible (CR for
1/33, PR for 7/33 and SD for 11/33 patients). Nevertheless, the design of this study can
be questioned; in particular, Strosberg et al. raised several important points for discus-
sion [220]. Indeed, the authors described this study as prospective, but the sample size was
not predetermined, strict inclusion criteria and interpretation of responses were missing,
and no clear prospective treatment protocol was defined. Furthermore, the eligibility
criteria changed between the short-term analysis of the study [214] and the most recent
report [212]. Another important point is that the co-administration of capecitabine was not
mentioned in the initial report. With regard to these limitations, the authors pointed out
that the study of such a heterogeneous population allowed the inclusion of poor-outcome
patients and thus better represented real world clinical settings.

Overall, the best outcome was reached by patients who achieved disease control
(either PR or SD) with prior 177Lu-PRRT before being retreated with [225Ac]Ac–DOTATATE
(24-month OS probability = 95% vs. 55.6% and 62.6% in the 177Lu-PRRT refractory and
naïve groups, respectively). This result calls for further investigations to better define the
place of 225Ac-TAT in the comprehensive treatment strategy for patients with advanced
metastatic NETs, potentially as a PRRT retreatment option in a salvage setting.

4.3. Relevance and Benefits of Retreatment in Patients Managed with PRRT

Van der Zwan et al. evaluated 177Lu-PRRT salvage therapy in a large retrospective
cohort of patients with progressive bronchial NETs or GEP NETs who had benefitted
from initial PRRT (I-PRRT) with a minimal PFS of 18 months [221]. For the salvage
group, 168 patients received two more cycles of PRRT (R-PRRT group) and 13 patients
received a second retreatment of two more cycles (RR-PRRT group). A non-randomized
control group of 99 patients only received I-PRRT. The overall median follow-up time was
88.6 months from the start of I-PRRT. Table 7 specifies the median cumulative doses over
the salvage and control group after I-PRRT, R-PRRT and RR-PRRT. R-PRRT resulted in
15.5% ORR and 59.5% SD at 3 months. RR-PRRT resulted in an ORR of 38.5% and SD of
53.8%. Radiological tumor responses after I-PRRT and R-PRRT were significantly correlated
(p < 0.01), as well as PFS after I-PRRT and after R-PRRT (p < 0.01). Concerning OS, the
salvage group had a significantly longer OS than the non-randomized control patients
(p < 0.01): 80.8 months vs. 51.4 months. Toxicities were similar in the salvage and control
groups. No grade 3–4 nephrotoxicity occurred, and hematologic toxicity was similar in the
two groups, which is quite consistent with the results gathered from the cohorts of patients
treated with 225Ac salvage PRRT.
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Table 7. Overall results presented in the retrospective study of Van der Zwan et al. [221].

Control Group Salvage Group

I-PRRT
(n = 99)

I-PRRT
(n = 168)

R-PRRT
(n = 168)

RR-PRRT
(n = 13)

Median cumulative
dose (GBq)

29.9 GBq
(18.6–30.7)

29.8 GBq
(21.8–30.6)

14.9 GBq
(3.7–16.2)

15.0 GBq
(14.7–15.3)

Median cumulative
administered dose - - 44.7 GBq

(26.3–46.4)
59.7 GBq

(55.2–60.5)
Response

CR - 1 (0.6%) - -
PR 36 (36.4%) 93 (55.4%) 26 (15.5%) 5 (38.5%)
SD 58 (58.6%) 73 (43.5%) 100 (59.5%) 7 (53.8%)
PD - - 33 (19.6%) 1 (7.7%)

Clinical PD - - 3 (1.8%) -
Not evaluable 5 (5.1%) 1 (0.6%) 1 (0.6%) -
Response at 3

months follow-up
CR - - - -
PR - - 14 (8.3%) 2 (15.4%)
SD - - 111 (66.1%) 9 (69.2%)
PD - - 34 (20.2%) 2 (15.4%)

Clinical PD - - 3 (1.8%) -
Not evaluable - - 1 (0.6%) -

Died before the start
of follow-up - - 5 (3.0%) -

Median PFS 14.6 months
(12.4–16.9)

14.2 months
(9.8–18.5)

OS 51.4 months
(46.7–56.1)

80.8 months
(66.0–95.6)

Similarly, a retrospective study reported by Sabet et al. introduced the feasibility of
retreating GEP NET patients with [177Lu]Lu–DOTATATE in cases of initial response to
this PRRT [222]. Thirty-three patients (14/33 pancreatic NET and 19/33 non-pancreatic
NET) received a median of 2 (1–4) cycles of salvage therapy with a mean administered
activity of 17.7 (8.0–33.2) GBq and a cumulative activity of 44.3 (30.0–83.7) GBq. Retreat-
ment with 177Lu-PRRT resulted in 24.2% objective radiological responses (ORRs) and
42.4% SDs. The median PFS was 13 (9–18) months from the start of the salvage therapy
and 22 (19–25) months after the initial 177Lu-PRRT. Remarkably, these results are slightly
lower than those obtained in the pretreated subgroups of the Ballal et al. study involving
[225Ac]Ac–DOTATATE [212]. It is also interesting to note that patients with a durable PFS
after the initial 177Lu-PRRT tended to have a longer PFS after salvage 177Lu-PRRT (p = 0.04),
possibly because of less aggressive diseases. In this study, hematologic toxicity was consid-
erably higher after the salvage PRRT compared to the data reported in previous studies
after standard treatment with [177Lu]Lu–DOTATATE (cumulative activity < 29.6 GBq) [51].
Indeed, high cumulative activities (30.0–83.7 GBq) led to relevant grade 3–4 hematologic
toxicity in 16.5% of administrations and in 21.2% of patients. However, this hematologic
toxicity was considered acceptable because all patients returned to normal blood cell counts
and no myelodysplastic syndrome was observed. Moreover, no grade 3–4 nephrotoxicity
was noticed.

A study of the same kind was conducted by Rudisile et al. on 35 patients objectified a
median PFS after an initial PRRT of 33 months (95% CI 30–36) and a median OS not reached
by 25 months after the start of salvage PRRT [223]. Similarly, Vaughan et al. focused
on the retreatment with either 90Y– or 177Lu–DOTATATE of 47 patients, the majority of
which had previously been treated with 90Y–DOTATATE [224]. The median PFS after
retreatment was 17.5 months (95% CI 11–23.8) with no significant difference depending on
the radiopharmaceutical.
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Yordonova et al. conducted a retrospective study in a cohort of 15 patients, with a
mean age of 58 years old, to assess the safety of repeated 177Lu-PRRT in patients with recur-
rent NETs [225]. Patients had either a pancreatic (7/15), midgut (3/15), gastric (1/15), renal
(1/15) or an unknown primary disease (3/15). Before baseline therapy with 177Lu-PRRT,
patients were pretreated with surgery (6/15), biotherapy (7/15), chemotherapy (2/15)
and/or 90Y-PRRT (1/15). Each patient received a median of 9 (8–13) cycles, which included
the baseline therapy (median 4 (3–7) cycles) and the salvage therapies (overall median
5 (3–9) cycles). The median administered activity was 63.9 (52–96.6) GBq. Noteworthily, a
decrease in PFS was observed with additional salvage treatments. This can be explained
either by an increase in the tumor aggressiveness or by a decrease in the radiation sensitivity
of the tumor. However, a significant prolongation of the mean OS (85.6 months for retreated
patients vs. 69.7 months for patients after only baseline PRRT, p < 0.001) was highlighted.
Concerning tolerance, none of the patients showed grade 3–4 nephrotoxicity; the predom-
inant hematologic toxicity was leukopenia (2/15 patients had grade 3). Generally, more
toxicities occurred during the baseline therapy (grade 3 leukopenia and gastrointestinal
bleeding, 23%) than during salvage therapy (grade 3 leukopenia and abdominal pain, 13%).

These encouraging results based on retrospective studies of salvage PRRT with 177Lu–
somatostatin analogues have led to an ongoing prospective multicenter randomized clinical
trial (ReLUTH clinical trial, NCT04954820). This trial will assess the schemas of retreatment
comparing two vs. four cycles in a population of patients with well-differentiated midgut
neuroendocrine tumors presenting with a new progression after the first course of 177Lu–
DOTATATE. The primary endpoint is defined as the disease control rate at 6 months after
randomization, and safety will be evaluated as one of the secondary endpoints [226].

Overall, it appears that the outcomes from studies involving retreatment with β-PRRT
vary substantially between reports, probably due to different individual and tumor factors.
In order to more clearly define the place of 225Ac-PRRT in such retreatment strategies,
prospective comparative studies comparing β- and α-PRRT retreatment could provide
crucial information on the most appropriate use of these two approaches.

4.4. Case Reports of 225Ac–DOTATATE Clinical Use

Aside from the previously presented cohort studies with 225Ac-labeled somatostatin
analogs, a few case reports also exemplify the good tolerance and effectiveness of 225Ac-
based TAT targeting SSTRs. For instance, a 76-year-old patient with a well-differentiated,
functional pancreatic NET with hepatic metastases achieved PR according to RECIST
1.1 criteria after a single 9.8 MBq administration of [225Ac]Ac–DOTATOC [227]. The
tolerance was good despite pretreatment with 10 cycles of β-PRRT (cumulative dose of
57.8 GBq of 177Lu/90Y). An improvement of clinical symptoms and good tolerance were
also demonstrated in a 70-year-old patient with a metastatic, well-differentiated pancreatic
NET after one cycle of 7 MBq [225Ac]Ac–DOTATATE [87]. No additional toxicity was
observed despite a prior cumulated dose of 48 GBq of [177Lu]Lu–DOTATATE. Interestingly,
several reports have documented the treatment of NETs with α-PRRT with no previous
use of β-PRRT. Budlewski et al. described the case a 66-year-old patient with a metastatic
pancreatic NET in therapeutic failure with cold somatostatin analogs and everolimus [228].
As illustrated in Figure 11, the administration of 16.4 and 14.3 MBq [225Ac]Ac–DOTATATE
at 8-week intervals resulted in good disease control (monitored by PET imaging and serum
chromogranin A dosing) and good tolerance.

In a 72-year-old patient diagnosed with a grade 2 NET, 5.5 MBq of first-line [225Ac]Ac–
DOTATATE was also considered effective, with a particular emphasis placed on the rel-
evance of post-therapy SPECT/CT imaging to track the biodistribution of the tracer and
for dosimetry purposes [82]. Similarly, a 46-year-old woman with a metastatic grade 2
and heavily pretreated NET with numerous lesions in the abdomen, liver and peritoneal
space achieved a spectacular and almost complete response after a single administration of
10 MBq [225Ac]Ac–DOTATATE [229] (Figure 12).
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In a 46-year-old patient with a multi-metastatic rectal NET associated with lytic and
sclerotic bone lesions, first-line TAT was preferred to β-PRRT. A partial morphological and
molecular response was achieved after six cycles of [225Ac]Ac–DOTATATE (100 kBq/kg)
with a complete resolution of symptoms. The patient was clinically stable 6 months after
treatment [230]. Finally, a thyroid dysfunction was reported in a 55-year-old patient with
well-differentiated metastatic NET, one month after the last of four cycles of [225Ac]Ac–
DOTATATE [231]. Thyroid function values returned to normal within 6 months, suggesting
subclinical hypothyroidism. This may be explained by the destruction or inflammation
of the thyroid gland in the acute phase after TAT, followed by fibrosis in the chronic
phase [232].

It is interesting to point out the high heterogeneity of the administered doses in these
individual reports that may vary by twice as much. This illustrates the need to formally
define an optimal treatment regimen and to investigate the most relevant criteria for dose
adjustment.
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Figure 11. [68Ga]Ga–DOTATATE PET/CT in the patient described by Budlewski et al. [227], show-
ing important uptake in hepatic NET metastases after treatment with a long-acting somatostatin
analog plus everolimus (left), and significant decrease in lesion uptake after two cycles of [225Ac]Ac–
DOTATATE associated with good metabolic and structural response (right).
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Figure 12. [68Ga]Ga–DOTATATE PET/CT imaging before α-PRRT (A) showing >50 SSTR-positive
abdominal lesions, and 3 months after a single cycle of 10 MBq [225Ac]Ac–DOTATATE (B) showing
the disappearance of all the abdominal lesions with the exception of a 5 mm lymph node in the
para-aortic region [228].

5. Conclusions and Perspectives

Ahead of other α-emitters, TAT using 225Ac-labeled somatostatin analogs seems to be
a promising therapeutic approach for metastatic or inoperable NETs, especially considering
its preliminary efficacy and safety results. Efforts to achieve the sufficient production
of 225Ac and extensive radiochemistry works aimed at optimizing the chelation of this
radioelement reflect the high expectations for its clinical use, including in other pathologies
such as prostate cancer with 225Ac-labeled PSMA ligands [88,233–237], or even in hema-
tological cancers such as acute myeloid leukemia [238]. However, the role of TAT versus
β-PRRT in terms of OS, PFS and long-term toxicity is still difficult to define without formal
comparative studies. Beforehand, the further investigation into the therapeutic use modali-
ties of 225Ac-radiolabeled somatostatin analogs will be required. Some of these questions
may be answered by the ACTION-1 clinical trial (NCT05477576) [239], which is designed
to determine the safety, pharmacokinetics, and recommended phase 3 dose of [225Ac]Ac–
DOTATATE and its efficacy compared to the investigator-selected standard of care therapy
in patients with inoperable GEP NETs that progressed following 177Lu–somatostatin ana-
logues. Similarly, preliminary data on the efficacy of 225Ac-labeled somatostatin analogs
in other cancers such as paragangliomas [211] or pheochromocytomas [240] will need
to be further consolidated. From a radiopharmaceutical perspective, the importance of
developing a reliable method for measuring the radiochemical purity of 225Ac conjugates
produced in-house appears to be crucial and would certainly be a key requirement to obtain
approval for clinical use from regulatory agencies. In addition, it will be interesting to
develop a standardized dosimetric tool for the accurate estimation of adsorbed doses in
target and non-target organs. For the time being, TATs constitute an emerging therapeutic
alternative for patients with either highly resistant or late-stage disease, particularly in the
context of compassionate access, depending on the country.
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