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Abstract: Background: Body composition could help to better define the prognosis of cancers treated
with anti-angiogenics. The aim of this study is to evaluate the prognostic value of 3D and 2D
anthropometric parameters in patients given anti-angiogenic treatments. Methods: 526 patients with
different types of cancers were retrospectively included. The software Anthropometer3DNet was
used to measure automatically fat body mass (FBM3D), muscle body mass (MBM3D), visceral fat
mass (VFM3D) and subcutaneous fat mass (SFM3D) in 3D computed tomography. For comparison,
equivalent two-dimensional measurements at the L3 level were also measured. The area under the
curve (AUC) of the receiver operator characteristics (ROC) was used to determine the parameters’
predictive power and optimal cut-offs. A univariate analysis was performed using Kaplan–Meier
on the overall survival (OS). Results: In ROC analysis, all 3D parameters appeared statistically
significant: VFM3D (AUC = 0.554, p = 0.02, cutoff = 0.72 kg/m2), SFM3D (AUC = 0.544, p = 0.047,
cutoff = 3.05 kg/m2), FBM3D (AUC = 0.550, p = 0.03, cutoff = 4.32 kg/m2) and MBM3D (AUC = 0.565,
p = 0.007, cutoff = 5.47 kg/m2), but only one 2D parameter (visceral fat area VFA2D AUC = 0.548,
p = 0.034). In log-rank tests, low VFM3D (p = 0.014), low SFM3D (p < 0.0001), low FBM3D (p = 0.00019)
and low VFA2D (p = 0.0063) were found as a significant risk factor. Conclusion: automatic and 3D
body composition on pre-therapeutic CT is feasible and can improve prognostication in patients
treated with anti-angiogenic drugs. Moreover, the 3D measurements appear to be more effective than
their 2D counterparts.

Keywords: body composition; deep learning; angiogenesis inhibitor; computed tomography; muscle;
adipose tissue; molecular targeted therapy

1. Introduction

Targeted therapy is a type of cancer treatment that targets proteins that control how
cancer grows, divides, and spreads. This type of treatment has significantly improved
outcomes across a wide range of solid tumors and, among them, antiangiogenic treatments,
which block angiogenesis, are widely used [1,2].

Until now, there have been no global validated predictive factors that could accurately
determine whether a patient would benefit from treatment with targeted antitumor agents,
even if many groups have identified prognostic factors for some cancers and treatments. For
metastatic kidney cancer, for example, clinical criteria (such as KPS <80% or a disease-free
interval below 1 year) or biological criteria (such as elevated blood calcium, elevated LDH
or anemia) can be combined to determine risk groups [3–6].
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Among the recent biomarkers that aim to determine the prognosis of cancer patients,
body composition parameters are promising. A global parameter for body composition is
the body mass index (BMI) calculated from height and weight according to the following
formula: BMI = weight/height2 (in kg/m2). It allows for evaluating the weight status,
where a BMI ≥ 25 is considered overweight. Therefore, in a large population of metastatic
melanoma treated with targeted therapy, immunotherapy, or chemotherapy, obesity was
associated with improved survival and this association was mainly seen in male patients
treated with targeted or immune therapies [7]. BMI is also a prognostic factor in metastatic
colorectal cancers treated by targeted or non-targeted therapy, with better survival in case of
higher BMI [8]. Comparable results were observed for renal cell carcinoma (RCC) patients
treated with cabozantinib: A BMI ≥ 25 kg/m2 was correlated with longer survival [9].
Moreover, in metastatic RCC after one prior VEGFR-TKI therapy, everolimus is an effec-
tive treatment with the greatest benefit seen in patients with an age ≥ 65 years or with
BMI >25 kg/m2 [10].

Although BMI is an interesting parameter to describe the weight status of patients,
it does not describe body composition, such as fat and muscle compartments. Until
now, these different compartments have often been estimated by a 2D method using a
CT scan at the L3 abdominal level. These compartments can provide more information
than the simple BMI: for instance, low BMI and sarcopenia are associated with dose-
limiting toxicity of sorafenib in patients with renal cell carcinoma [11]. However, the
2D measurements seemed less accurate than their 3D multi-slice counterparts [12]. For
example, it has been shown that during weight loss, changes in visceral and subcutaneous
adipose tissue are poorly evaluated on 2D imaging [13], while 3D imaging gives good
results for intra-abdominal fat [14]. Therefore, multi-slice segmentation is preferable [15],
but needs automatic processing to avoid a time-consuming manual segmentation [13].

To analyze body composition, we developed a software, called Anthropometer3DNet,
which allows the automatic and multi-slice measurement of anthropometric parameters
on computed tomography (CT), routinely used for cancer patients. Initially developed
to work on CT of PET/CT with a multi-atlas segmentation method [16], it has been im-
proved by using neural networks and is now able to analyze diagnostic CT with variable
acquisition fields (abdominal–pelvic or thoracic–abdominal–pelvic). This software can
measure fat body mass (FBM3D), muscle body mass (MBM3D), visceral fat mass (VFM3D)
and subcutaneous fat mass (SFM3D) automatically as whole-body parameters.

The main objective of this study is to evaluate the prognostic value of the 3D anthro-
pometric parameters, evaluated automatically on CT scans using Anthropometer3DNET,
and their equivalent 2D body composition parameters.

2. Materials and Methods
2.1. Population

Patients treated with anti-angiogenic treatments from 2003 to 2017 were included
in this retrospective cohort [17]. These patients were treated for metastatic breast cancer,
metastatic melanoma, metastatic colon cancer, metastatic gastro-intestinal stromal tumor
(GIST), metastatic renal cell carcinoma (RCC), primary hepatocellular carcinoma (HCC)
or other cancer. They were enrolled in a clinical trial of antiangiogenic-based therapy or
were otherwise eligible to therapy with an approved antiangiogenic treatment. All patients
provided written informed consent, either specific to this study or in the context of a clinical
trial. The study was approved by the ethics committee of our institution and was declared
to the French Commission Nationale Informatique et Liberté (CNIL MR-004).

2.2. Endpoints and Assessments

The following baseline clinical data were collected: age, sex, type of cancer, line of
treatment, type of treatment. A diagnostic abdomen–pelvis or thorax–abdomen–pelvis
CT scan was taken for all patients before starting targeted therapy. The CT scans were
non-injected or acquired during the portal phase of the injection. The primary endpoint
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was overall survival (OS), defined as the time from the beginning of targeted therapy to
death or last follow-up.

2.3. Anthropometric Parameters

The parameters were extracted by Anthropometer3DNet, an updated version of
Anthropometer3D [16,18,19]. This software, usable for research purposes on the site www.
oncometer3d.com, automatically measures in less than 5 min parameters FBM3D, MBM3D,
VFM3D and SFM3D (in kg) on the CT of injected or non-injected (thoraco–)abdomino–pelvic
CT.

This software performs a deep learning-based segmentation of fat (visceral and subcu-
taneous) and muscle voxels based on a multi-slice 2D U-net Algorithm [20,21]. In parallel,
it determines the slice levels using a Densenet Algorithm [21]. For parts outside the acqui-
sition area, it uses adaptive extrapolation factors [22] for the tissues of interest (kmuscle for
muscles, ksubcutaneous fat for subcutaneous fat and kvisceral fat for visceral fat). These adaptive
extrapolation factors are calculated on CT atlases as the mean ratio of whole-body voxels
of muscle (or subcutaneous or visceral fat) divided by the numbers of voxels of muscle (or
subcutaneous or visceral fat) in the acquired body area.

From the three types of voxels (visceral fat, subcutaneous fat, muscle), MBM3D, FBM3D,
VFM3D and SFM3D are calculated as follows:

MBM3D= Nmuscle × kmuscle × Vvoxel × ρmuscle (1)

SCFM3D= Nsubcutaneous f at × ksubcutaneous f at × Vvoxel × ρ f at (2)

VFM3D= Nvisceral f at × kvisceral f at × Vvoxel × ρ f at (3)

FBM3D = VFM3D + SCFM3D (4)

With Nmuscle, Nvisceral fat and Nsubcutaneous fat being the number of voxels of muscle,
visceral fat and subcutaneous fat, respectively, obtained on the CT, Vvoxel the volume of one
voxel (in ml). The density of the muscle (ρmuscle) was equal to 1.06 g/mL [23] and density of
fat (ρfat) was equal to 0.923 g/mL [24]. All values measured by the software were divided
by the square of the patient’s body height (m2).

For comparison, the cross-sectional area at the level of the third lumbar vertebra of
muscle body area (MBA2D), visceral fat area (VFA2D), subcutaneous fat area (SFA2D) and
fat body area (FBA2D), combining SFA2D and VFA2D, were automatically segmented by a
2D deep learning algorithm and normalized for stature (cm2/m2).

2.4. Statistical Analysis

Descriptive statistics of the population and results were performed with continuous
variables reported as mean ± standard deviation (SD) and categorical variables as frequen-
cies (percentage). Correlations between each anthropometric parameter were evaluated
using Spearman’s correlation coefficient. The predictive accuracy of survival at 1 year by
anthropometric parameters was assessed by the receiver operator characteristics (ROC)
analysis and measured by the area under the curve (AUC). An optimal cut-off value was
computed by simultaneously maximizing specificity and sensitivity criteria (using Youden’s
index). Two-sided tests were reported at the 5% level of significance. For parameters with
an AUC statistically superior to 0.5, the Kaplan–Meier method was used to estimate the
survival functions, and log-rank test was computed to evaluate the significance. Cox
univariate proportional hazards models were used to test the relationship between study
variables and survival rates for the global population, for men and for women. Finally, a
subgroup analysis according to cancer type was performed.

www.oncometer3d.com
www.oncometer3d.com
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3. Results
3.1. Population

A total of 526 patients were included in this retrospective study, their characteristics,
including tumor types and anti-angiogenic treatments received, are described in Table 1.

Table 1. Characteristics of the patients.

Characteristic Patients (N = 526)

Sex, n (%)
Male 377 (71.7%)
Female 149 (28.3%)

Age *
Median 58
Range [19–83]
Tumor, n (%) Tumor, n (%)
Renal cell carcinoma 204 (38.8%)
Colorectal carcinoma 93 (17.7%)
Hepatocellular carcinoma 72 (13.7%)
Gastrointestinal stromal tumor 56 (10.6%)
Melanoma 42 (8.9%)
Breast cancer 27 (5.1%)
Others 32 (6.1%)

Antiangiogenic treatment, n (%)
Bevacizumab 137
Sunitinib 117
Sorafenib 107
Axitinib 34
Imatinib 32
Other 101

* Data were missing for 2 patients.

3.2. Survival Analysis

A graphical representation of the automatic segmentation, of a patient’s pretreatment
CT scan, is displayed in Figure 1.
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icantly separated the OS of the populations (log-rank test p-value: 0.014, <0.0001, 0.0002, 
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Table 2. Diagnostic performance of clinical and anthropometric parameters measured on the CT for 
OS using a ROC analysis for the prediction of survival at 1 year. Optimal cut-offs were determined 
using Youden’s index. 

Figure 1. Results of the segmentation performed by Anthropometer3DNet of a patient in axial (A),
frontal (B) and sagittal (C) views with, in blue, the subcutaneous tissue, in yellow the visceral adipose
tissue and in red the muscle. For this patient, MBM3D = 20.3 kg, FBM3D = 15.3 kg, SAT3D = 11.9 kg
and VAT3D = 3.4 kg.

The correlation coefficients between the different anthropometric parameters are pre-
sented in Figure 2. Multiple 2D measurements were correlated with their 3D counterparts:
the coefficients of the parameters related to the muscle (MBA2D, MBM3D), visceral fat
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(VFA2D, VFM3D), and to subcutaneous/total fat (FBA2D, FBM3D, SFA2D, SFM3D) were 0.85,
0.96 and 0.86, respectively.
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The ROC curve analysis of the anthropometric parameters for the 1-year survival
and their optimal cut-offs are summarized in Table 2. All 3D anthropometric parame-
ters were statistically significant: VFM3D (AUC = 0.554, p = 0.02, cutoff = 0.72 kg/m2),
SFM3D (AUC = 0.544, p = 0.047, cutoff = 3.05 kg/m2), FBM3D (AUC = 0.550, p = 0.03,
cutoff = 4.32 kg/m2) and MBM3D (AUC = 0.565, p = 0.007, cutoff = 5.47 kg/m2). Whilst
only the VFA2D (AUC = 0.548, p = 0.034, cutoff = 22.20 cm2/m2) was statistically significant
for the 2D parameters.

Table 2. Diagnostic performance of clinical and anthropometric parameters measured on the CT for
OS using a ROC analysis for the prediction of survival at 1 year. Optimal cut-offs were determined
using Youden’s index.

Mean
Median
(+/−SD)

[Min-Max]

Cut-Off Value AUC Sensitivity Specificity Accuracy p-Value

Line of
treatment

2.07
2

(±1.47)
[1–10]

2 0.63 0.61 0.60 0.60 < 0.001

VFM3D

0.85 kg/m2

0.75 kg/m2

(+/−0.62)
[0.04–3.25]

0.72 0.554 0.56 0.54 0.55 0.02

SFM3D

4.18 kg/m2

3.88 kg/m2

(+/−2.27)
[0.13–13.87]

3.05 0.544 0.73 0.41 0.57 0.047

FBM3D

5.03 kg/m2

4.70 kg/m2

(+/−2.70)
[0.17–16.12]

4.32 0.550 0.63 0.48 0.56 0.03
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Table 2. Cont.

Mean
Median
(+/−SD)

[Min-Max]

Cut-Off Value AUC Sensitivity Specificity Accuracy p-Value

MBM3D

5.74 kg/m2

5.65 kg/m2

(+/−1.35)
[2.44–10.83]

5.47 0.565 0.60 0.49 0.58 0.007

VFA2D

36.85 cm2/m2

30.01 cm2/m2

(+/−30.86)
[0.01–161.91]

22.20 0.548 0.64 0.46 0.55 0.034

SFA2D

53.14 cm2/m2

47.16 cm2/m2

(+/−30.86)
[0.77–184.63]

NA 0.533 NA NA NA 0.10

FBA2D

89.99 cm2/m2

86.07 cm2/m2

(+/−53.17)
[2.52–243.48]

NA 0.543 NA NA NA 0.052

FBA2D: fat body area 2D; FBM3D: fat body mass 3D; MBA2D: muscle body area 2D; MBM3D: muscle body mass
3D; SFA2D: subcutaneous fat area 2D; SFM3D: subcutaneous fat mass 3D; VFA2D: visceral fat area 2D; VFM3D:
visceral fat mass 3D.

The Kaplan–Meier estimates of survival according to VFM3D, SFM3D, FBM3D, MBM3D
and VFA2D are shown in Figure 3. Using the optimal cut-offs, most 3D parameters signifi-
cantly separated the OS of the populations (log-rank test p-value: 0.014, <0.0001, 0.0002,
0.0063 for VFM3D, SFM3D, FBM3D and VFA2D, respectively). MBM3D was not significantly
associated with the OS (p = 0.2).
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(cutoff = 0.72 kg/m2), SFM3D (cutoff = 3.05 kg/m2), FBM3D (cutoff = 4.32 kg/m2) MBM3D (cutoff =
5.47 kg/m2) and VFA2D (cutoff = 22.2 kg/m2).
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3.3. Sub Analyses

The analysis of the anthropometric parameters after stratification by gender using
univariate Cox regression models is shown in Table 3. For women, none of the 3D or 2D
anthropometric parameters were statistically significant (Null hypothesis: Hazard ratio = 1,
p > 0.05). However, for men, all the anthropometric parameters except MBA2D were statis-
tically significant. Cox regression models were also used to evaluate the anthropometric
parameters in a univariate study of the population stratified by cancer type Figure 4. VFM2D
and VFM3D were statistically significant for renal cancers, SFM3D, SFA2D and FBM3D for
GIST and MBA2D and MBM3D for HCC (with a paradoxical effect of MBA2D for GIST).

Table 3. Univariate analysis using continuous values for global metrics and anthropometric parame-
ters measured on CT-scan. The hazard ratio was computed using a Cox regression model.

Whole Population
(Men and Women) Men Women

HR p-Value HR p-Value HR p-Value

Sex 0.96 0.70
Age 1.00 0.395 1.00 0.97 1.00 0.58

Line of
treatment 0.88 < 0.0001 1.28 < 0.0001 1.14 0.0067

VFM3D 0.55 0.12 0.73 0.0026 0.87 0.52
SFM3D 0.98 0.46 0.93 0.036 0.94 0.11
FBM3D 0.99 0.31 0.93 0.014 0.95 0.14
MBM3D 0.93 0.05 0.89 0.024 0.85 0.14
VFA2D 1.00 0.33 0.99 0.015 1.00 0.48
SFA2D 1.00 0.47 0.99 0.027 1.00 0.47
FBA2D 1.00 0.33 0.997 0.009 1.00 0.44
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4. Discussion

In this study, we investigated the contribution of body composition in determining the
prognosis in a large population (526 patients) of multiple cancer types treated with targeted
therapy. We compared three-dimensional and two-dimensional automatic measurements
and found a better overall value for the three-dimensional parameters, especially on the
ROC curves where all the 3D parameters (SFM3D, VFM3D, FBM3D and MBM3D) were
statistically significant in the whole population. For the subgroup analyses, a significant
prognostic value was found in males. Whereas for cancer type, VFM3D was statistically
significant for renal cancers, SFM3D and FBM3D for GIST and MBM3D for HCC.

The use of three-dimensional rather than two-dimensional segmentation to determine
body composition is novel [16,25] and provides more accurate measurements than the
two-dimensional segmentation computed at the L3 abdominal level [16,26]. This difference
may explain why the 3D parameters were significant while the 2D parameters were not.
Moreover, a paradoxical result was obtained: For GIST cancers, the 2D parameter of the
muscle area (MBA2D) suggests that a large muscle area is related to a worse prognosis,
while the 3D parameter (MBM3D) suggests the opposite. Compared to the 2D measure-
ments and other 3D software [25], one of the strengths of the 3D analysis performed by
Anthropometer3DNet is that it uses factors for extrapolation of the data outside the field
of acquisition. It can obtain a total mass rather than an area or an index in the results,
and this global mass measurement could potentially be useful for therapeutic adaptation.
Moreover, thanks to the automatic segmentation performed and the wide windowing of
the Hounsfield units, it is exploitable on injected and non-injected scanners. For research,
the Anthropometer3DNet software is available on the Oncometer3D.com platform via an
online service.

In this study, there were some differences in the results between the different popula-
tions in the sub-analyses. For example, VFM2D and VFM3D were statistically significant for
renal cancers, SFM3D, SFA2D and FBM3D for GIST and MBA2D and MBM3D for HCC, while
the other cancer types had no significant parameter. This difference could be explained by
the lack of statistical power due to the reduced number of patients in the subpopulations
but also by the preponderant prognostic role of neoplasia for some types of cancer. Morever,
the difference in body composition [27] might also be the reason some parameters were
significant for men and not for women.

In the subgroup analysis by cancer type, some results are similar to what has been
shown in the literature. Firstly, visceral fat was a prognostic factor for kidney cancer [28].
Secondly, S. Antoun and al. showed that low BMI (<25 kg/m2) with diminished muscle area
was a significant predictor of toxicity in metastatic RC patients treated with sorafenib [11],
muscle loss being specifically exacerbated by this treatment [29]. Moreover, we found that
muscle was a prognostic factor for HCC which has already been documented [30]. The
subcutaneous and total fat (which are highly correlated) are prognostic factor for GIST
which has not yet, to our knowledge, been documented in the literature, possibly due to
the relative rarity of this disease.

This study has some limitations. Its retrospective nature may have led to a lack of
data. Thus, the weight of the patients, a variable parameter according to time, was not
systematically available in a period corresponding to the realization of the CT examination
which did not allow us to compare the body composition parameters with BMI. Further-
more, although the population is large (corresponding to cancers treated with one type of
targeted therapy), it is nevertheless heterogeneous, which explains the relatively moderate,
albeit statistically significant, overall prognostic values and the differences observed in the
subgroup analyses, by gender and by type of cancer. Thus, rather than being used in the
general population, body composition may be best used for specific types of cancers and
patients.
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Finally, the use of body composition to determine prognosis, using fat compartments,
as shown in this study, could be useful to choose therapeutic modalities or adapt dosages
to the morphotype. The physiopathological principles remain to be determined further in
pre-clinical and/or prospective studies. Moreover, if body composition corresponds to a
description of the tumor host, its association with parameters describing the tumor could
be of interest to better specify the prognosis. This could, for example, be associated with a
radiomic analysis using artificial intelligence models, as performed by Schutte et al. on the
same database, combining ultrasound images, CT images and clinical data [31].

5. Conclusions

Automatic and three-dimensional body composition on pre-therapeutic CT scans is
feasible and can improve prognostication in patients treated with antiangiogenic drugs.
Three-dimensional measurements are more effective than two-dimensional measurements.
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