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Abstract

Conventional design and optimization of Photonic Crystal Surface Emitting Lasers
(PCSEL) usually requires expert knowledge in semiconductor physics and opti-
mization algorithms, which is also known as the inverse design problem. However,
with the trend towards automation and depersonalization in the entire integrated
circuits (IC) industry, the conventional method, with the drawback of being rela-
tively labor-intensive and sub-optimal, warrants further refinement. This technical
dilemma remained until the emergence of Large Language Models (LLMs), such
as OpenAI’s ChatGPT and Google’s Bard. This paper explores the possibility of
applying LLMs to machine learning-based design and optimization of PCSELs.
Specifically, we utilize GPT-3.5 and GPT-4. By simply having conversations, GPT
assisted us with writing Finite Difference Time Domain (FDTD) simulation code
and deep reinforcement learning code to acquire the optimized PCSEL solution,
spanning from the proposition of ideas to the realization of algorithms. Given
that GPT will perform better when given detailed and specific questions, we break
down the PCSEL design problem into a series of sub-problems and converse with
GPT by posing open-ended heuristic questions rather than definitive commands.
This paper propose new human–AI co-design strategies to show that LLMs can
guide the nanophotonic design and optimization process both conceptually and
technically. We achieve a significant milestone towards an automated end-to-end
nanophotonic design and production pipeline.

1 Introduction

Trends of design automation and depersonalization (i.e., human out of the loop) in the integrated
circuit (IC), nanotechnology, and semiconductor industries [1–3] are emerging rapidly. Aided by
artificial intelligence (AI), machine automation is beginning to replace conventional IC design and
fabrication processes involving humans that had existed for over half a century. The nanophotonics
industry [4–6], however, has not experienced comparable level of automation and depersonalization
due to its unique fabrication precision requirements [7, 8] and relatively complex theoretical models
[9, 10]. As an important example of nanophotonics, the design of photonic-crystal-surface-emitting-
lasers (PCSEL) [11–23], such as the one shown in Figure 1, demands rigorous physical modelling
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and calculations with Finite Difference Time Domain (FDTD) or Finite Element Analysis (FEA)
simulation tools. However, the inverse design and optimization [24–26] of PCSEL typically suffers
from three aspects: the one-to-many mapping and non-convexity nature, a high demand for expert
knowledge in semiconductor physics and theoretical modelling/simulation (and thus human involve-
ment), and a lack of ready-to-use machine learning algorithms/packages. The above challenges
prohibit an ene-to-end automated design pipeline for PCSELs and other nanophotonic devices alike.

Luckily, recent advancements in machine learning [27–29] and optimization algorithms [30–32] have
propelled the progress of automated nanophotonics design. Early in the 90s, heuristic, evolutionary
[33], and gradient-based [34] optimization algorithms began to emerge prolifically. Key algorithms
include Newton’s method [32], particle swarm [35], genetic algorithm [36], Bayesian optimization
[37], and simulated annealing [38] etc. These algorithms provide a new way of thinking when facing
these non-convex optimization problems and lay a solid foundation for continued research. But
the challenge remains with heavy human involvement. To solve this, at around 2012, researchers
proposed deep-learning (DL) [27, 39] frameworks that take advantage of an abundance of training
data and neural network’s inference ability. In particular, DL consists of supervised, unsupervised, and
reinforcement learning (RL) [40]. These DL models greatly boosted the efficiency of nanophotonic
inverse design, pushing the possibility of automated and depersonalized design into a new stage [26,
41–44]. Circa 2023, a new DL framework based on RL (e.g., deep Q-learning (DQN) [28]), called
Learning to Design Optical-Resonators (L2DO) [45], provides the solution for autonomous inverse
design of photonic crystal nanocavities without human intervention. With two orders of magnitude
higher sample efficiency compared to supervised learning, L2DO has preliminarily realized photonics
design automation on an algorithmic level. However, since both the simulation code and DL code in
L2DO were still created by the human designer, we were still a distance away from depersonalized
photonic design.

Development of large language models (LLMs) [46–50] delivers the final building block of deper-
sonalized nanophotonics designs. LLMs are recent advances in deep learning to work on human
languages and natural language processing. Behind the scene, it is a large-scale pre-trained attention-
based transformer model that predicts and generates human-like text output. LLMs are trained
on massive amounts of text data collected from the internet, which includes books, articles, web-
sites, google searches, and various other sources. LLMs have been rapidly evolving in the last
few years. Word2Vec [51], developed by Google’s Tomas Mikolov in 2013, is a milestone in the
development of LLM. It generates high-quality word embeddings (representing words as vectors
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Figure 1: PCSEL structure schematic, with the epitaxial layers and growth direction shown. Based on
bandedge mode in defect-free photonic crystals (PhC), large area lasing cavity is formed within the
PhC layer. Lasing arises from the evanescent coupled MQW gain medium with the PhC resonance
cavity. Such lasers can be built directly on both silicon on insulator (SOI) substrate as well as bulk
silicon substrate for a host of vital engineering applications.
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in a high-dimensional space) to capture semantic meaning and relationships. Following this model
were The Global Vectors for Word Representation (GloVe) [52] model, developed by Stanford
researchers in 2014, and Seq2Seq [53] models, which was also introduced by Google. These two
models perform better at scalability than the former and could be trained in parallelized way, thus
more efficient. Along with these two models, the concept of attention mechanism was proposed,
introducing weight coefficients to words in different positions. In 2018, BERT [54] were brought to
us by Google. However, LLMs did not take center stage of the world until these last few months, with
the introduction of GPT-3 [55], followed by GPT-3.5 and eventually GPT-4. GPT-4 is undoubtedly
a pioneering breakthrough which is bound to bring a revolutionary change in many scientific and
engineering realms.

A limited handful of researchers have found the potential for using LLMs in hardware design and
implementation at an early time. In 2020, researchers utilized an improved GPT-2 model called
"DAVE" for Verilog code snippets generation and output evaluation [56], which is a crucial component
in IC design pipeline. A more recent model named "Chip-chat" [57] came out in 2023, which is
an LLM-driven method for IC Verilog code generation and is one of the first wholly-AI-written
Hardware Description Language (HDL) for chip tape-out. Meanwhile, LLMs have also contributed
significantly to the design and control of robots. Researchers have shown the guidance value of LLM
in a robotic gripper design process [58], both conceptually and technically. By means of simply
conversing with GPT, they successfully designed a robotic gripper capable of reaping the tomato
plant. Last but not least, a method based on LLMs called "SayCan" [59], proposed by a team from
Google, has recently enabled leveraging and grounding the rich knowledge in large language models
to complete embodied tasks by robot.

In this work, we propose a new human–AI co-design strategy for PCSELs and show the practical
implications of LLMs for nanophotonic design methodology in general. Specifically, we explored
and verified the potential of applying LLMs to machine learning-based design and optimization
of PCSELs, during which we seek to maintain as less human involvement as possible. By simply
having conversations spanning from the proposition of initial ideas to the implementation of final
algorithms, GPT-4 assisted us with writing FDTD simulation code and deep RL (e.g. DQN) code
to acquire the optimized PCSEL solution. The optimized PCSEL meets the following figure of
merit: single-mode, high-power, large-area, and small-divergence angle. The whole design pipeline is
illustrated in Figure 2. Given that GPT will perform better when given detailed and specific questions,
we break down the PCSEL design problem into a series of sub-problem modules and converse with
GPT by strictly posing open-ended heuristic questions rather than definitive commands. This paper
shows that LLMs, such as ChatGPT, can guide the nanophotonic design and optimization processes,
on both the conceptual and technical level. All in all, we achieve a significant milestone towards an
automated end-to-end nanophotonic design and optimization pipeline.
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Figure 2: LLMs for depersonalized PCSEL design and optimization pipeline. Human involvement is
minimized to the largest extent possible. The human facilitator prompts the LLM to generate FDTD
code for simulating the PCSEL structure and AI (e.g., RL) code for subsequent optimizations of the
PCSEL model. The FDTD code is written with the MIT meep [60] package. The AI optimization
process with RL is built upon an earlier work’s L2DO framework [45]. The final optimized PCSEL
design is then converted to CAD layout and be prepared for tape-out and fab.
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2 Methods

2.1 Objective overview

Photonic Crystal Surface Emitting Lasers (PCSELs) [11, 16, 17] belong to a class of laser that
combines the benefits of photonic crystals (PhC) [61] and Vertical Cavity Surface Emitting Lasers
(VCSELs) [62]. PhCs are artificial structures that have a periodic refractive index modulation in
one, two, or three dimensions. This periodicity creates a bandgap that inhibits the propagation of
light in certain frequency ranges. VCSELs are lasers that emit light perpendicular to the surface of
the semiconductor structure, which allows for efficient coupling to optical fibers and other optical
components. PCSELs combine these two technologies to create lasers that have several advantages
over traditional lasers and therefore has the best of both worlds.

The basic design of a PCSEL consists of a PhC layer, an active layer, and several other cladding layers
and substrates along with p-n junctions and electrodes at the ends (Figure 1). The PhC layer typically
functions as a resonance cavity. The active layer, usually composed of III-V materials (InP/InGaP,
GaAs/InGaAs/AlGaAs, GaN/InGaN etc.) which can create a population inversion of charge carriers
when the threshold is reached, is placed in the middle of a PCSEL and serves to produce the laser
emission. Population inversion means that there are more electrons in higher energy levels than in
lower energy levels, which allows for stimulated emission of photons when an electrical current is
applied [11, 63]. So when an electrical pumping current is injected into the active layer material, it
emits laser light that is ideally confined and amplified within the resonance cavity. Additionally, the
active layer could contain quantum dots or quantum wells that increase the recombination rate of
spontaneous emission and thus substantially enhance the lasing effect. So the bottom line is that the
PhC layer is used to control the amplitude and direction of the emitted light, but the active layer is
what actually generates the light. Therefore, proper design of the PhC layer and the active layer plays
a central role in the overall quality of a PCSEL.

Table 1: Target metrics/figure of merit of the PCSEL device to be designed and optimized. An ideal
PCSEL has the following characteristics: single-mode, high power, large emission area, and small
divergence angle.

Metric/Figure of merit Target values
Lasing area >= 3.6e-13 m2

Operating wavelength = 980 nm
Output power/injecting power >= 30%

Divergence angle <= 1 degree

In this article, we investigate the potential of an LLM-based depersonalized PCSEL design and
optimization pipeline (Figure 2). The target metrics or figure of merit of the PCSEL to be designed and
optimized are listed in Table 1. We set the target values according to target application specifications
with full consideration of the physical limits of PCSEL lasing. For example, the wavelength of
980 nm is important for applications in telecommunications and satellites, a high output power is
important for applications like autonomous driving, machining, and medicine, and a small divergence
angle is important for achieving high beam quality and long-distance light propagation. In this initial
demonstration, actual tape-out will not be implemented.

2.2 Human-AI co-design philosophy

In the near future, LLMs are bound to revolutionize the design flow in many fields, for its ability to
internalize an extensive dataset in different types and generate proper responses using the acquired
knowledge. Such potential has been discovered by researchers in the fields of medicine, robotics,
literature, topology etc. In this article, we propose a new paradigm for applying LLMs in PCSEL
design and optimization, called the "human-AI co-design" methodology (Figure 2 & 3). As illustrated
in Figure 3, we divide the design process into three steps: 1) conceptualization, 2) code generation
and debugging, and 3) simulation and optimization. Due to the limitation of the status quo of LLMs,
the AI agent usually cannot give out the perfect solution all at once. Therefore, the human needs to
act as a liaison to help guide/facilitate the design work while simultaneously bearing in mind that
excessive human involvement could compromise the integrity of the AI agent’s decisions. So for
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What is the most sought-after laser 
nowadays?

PCSEL, VCSEL, DFB...

What constitutes a “good” PCSEL?

High power, large area, high beam quality, 
small divergence angle...

What is important to consider when 
designing  PCSELs?

Photonic crystal layer, active layer, MQW, 
doping, semiconductor material, 
fabrication capabilities, charge carrier flow, 
band structure...

What are some good optimization 
algorithms to use in hardware design?

Bayesian optimization, reinforcement 
learning, evolutionary algorithm, 
Newton’s menthod...

LLM prompt: generate FDTD code for PCSEL 
or generate RL code for optimization

Error?

Run code locally or 
on HPC 

Code is bug-free and 
ready to run

Done

Feed error message 
to LLM and ask it to 
debug. Or ask “are 

you sure xxx is 
correct? Please 
rethink it and 

regenerate your 
response.”

N                            Y                             

Rerun 
with

edited
code

Agent: DNN

Environment: 
FDTD simulator 

reward
Rt+1

action
At

state
St+1

Deep Q-learning

(Optimization loop run on HPC)

Figure 3: Human-AI co-design paradigm for applying LLMs to PCSEL design and optimization. A
pictorial overview of the discussions and interactions between the human facilitator and the LLM,
with the questions prompted by the human and the answers/solutions provided by the LLM (GPT).
The process is divided into three steps: left column: conceptualization, middle column: code
generation and debugging, and right column: simulation and optimization. Optimization via DQN is
run on high-performance computing (HPC) clusters for improved computational speed and output.

example if a large portion of the design task is dominated/controlled by humans, it does not reflect
the human-AI co-design philosophy and thus should be avoided as much as possible. Overall, the
design flow should follow the following rules and restrictions:

1. The whole design process should start with the human providing an open-ended question to GPT
rather than giving definitive commands. This is the beginning of an important conceptualization
process, where the human stimulates the LLM to brainstorm and generate creative ideas. For example,
you can start a conversation by "What is the most sought-after laser nowadays?" or "What are some
good optimization algorithms to use in hardware design?" Subsequent conversations will continue
by gradually guiding GPT to arrive at a specific solution for this conceptual question. Sample Q&A
rounds are demonstrated in the left column of Figure 3. Once we get to the code generations and
debugging stage, questions can become more specific and technical, such as "can you help me design
a high-power and large-area PCSEL model using FDTD algorithm written in Python?" or "can you
help me improve an existing deep-Q learning code implemented with experience replay that’s written
with PyTorch?"

3. Humans should respect the self-correcting mechanism of GPT rather than directly pointing out the
problems/errors it has. In the conversations, there might be times when the answers given by LLMs
are self-contradictory or simply wrong. This is attributable to GPT’s insufficient understanding of
the problem it’s solving, which usually happens at the early stage of a conversation. To properly
respect the self-correcting mechanism of GPT, one should report the error by saying "you have just
mentioned XXX, and I hope you could think twice about this and regenerate your answer" or "are you
sure XXX is the correct answer? Please elaborate" rather than "lines XXX and XXX of the code you
generated are wrong" or "fix the XXX function/method in the code for me". In the code generating
part, these kinds of mistakes will be especially common. In our experience, it usually takes several
conversational iterations before the code finally becomes bug-free and ready to run. When debugging
the code, it is not advised to point out the precise location of errors for GPT; the proper way is to
copy the error message from the terminal and let AI do the modification itself. A demonstration of
this interactive debugging process is shown in the middle column of Figure 3.
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# Define the 3D PCSEL geometry with different layers

geometry = [mp.Block(mp.Vector3(mp.inf, mp.inf, t_substrate),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate/2),

material=mp.Medium(epsilon=n_substrate**2)),

mp.Block(mp.Vector3(mp.inf, mp.inf, t_n_cladding),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate + t_n_cladding/2),

material=mp.Medium(epsilon=n_n_cladding**2)),

mp.Block(mp.Vector3(mp.inf, mp.inf, t_active),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate + t_n_cladding +

t_active/2),

material=mp.Medium(epsilon=n_active**2)),

mp.Block(mp.Vector3(mp.inf, mp.inf, t_photonic_crystal),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate + t_n_cladding + t_active

+ t_photonic_crystal/2),

material=mp.Medium(epsilon=n_photonic_crystal**2))] + holes + [

mp.Block(mp.Vector3(mp.inf, mp.inf, t_p_cladding),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate + t_n_cladding + t_active

+ t_photonic_crystal + t_p_cladding/2),

material=mp.Medium(epsilon=n_p_cladding**2))]

# Create the air holes in the PhC layer

for i in range(n_holes):

for j in range(n_holes):

# Create a cylindrical hole at this position

hole = mp.Cylinder(radius=hole_radius, height=t_photonic_crystal,

center=mp.Vector3(i*lattice_constant - cell_size.x/2,

j*lattice_constant - cell_size.y/2, 0),

material=mp.Medium(epsilon=1))

geometry.append(hole)

# Initialize the simulation

sim = mp.Simulation(cell_size=cell_size,

boundary_layers=pml_layers,

geometry=geometry,

sources=sources,

resolution=10)

# Define a box around the source for flux computation

flux_box = mp.FluxRegion(center=mp.Vector3(), size=mp.Vector3(10, 10, z_total))

# Add the DFT flux object to the simulation

flux = sim.add_flux(frequency, 0, 1, flux_box)

# Run the simulation

sim.run(until=200)

# near field Poynting vector in z direction

(x, y, z, w) = sim.get_array_metadata(dft_cell=resonance_z)

Pz = []

i = 0

for _ in flux.freq:

(Ex, Ey, Hx, Hy) = [sim.get_dft_array(flux, c, i) for c in [mp.Ex, mp.Ey, mp.Hx, mp.Hy]]

flux_density = np.real(np.conj(Ex) * Hy - np.conj(Ey) * Hx) # array

flx = np.sum(w * flux_density) # scalar

Pz.append(flx)

i += 1

# Compute the total emitted power

emitted_power = mp.get_fluxes(flux)

# Define where to perform the Harminv analysis

harminv_regions = [mp.Harminv(mp.Ez, mp.Vector3(0,0,0), frequency, 0.1*frequency)] # 10%

bandwidth

# Reset the fields and use the same geometry and sources for the Harminv analysis

sim.reset_meep()

sim.change_sources(sources)

sim.run(mp.after_sources(*harminv_regions),

until_after_sources=200)

for mode in sim.harminv_data: #calculate Q-factor

print(f"Frequency: {mode.freq} Q factor: {mode.Q}")

V = sim.modal_volume_in_box(box=vol) #calculate the modal volume

Figure 4: Code generated by ChatGPT-4 for FDTD simulation of PCSEL using the meep package.
Left: geometry setup section, right: simulation setup and calculations section. Code shown here is
the final version that runs successfully after several rounds of debugging.

2.2.1 Conceptualization with the LLM

The conceptualization step is for the AI to have a general understanding of the underlying problem,
so that the AI can choose proper methods and algorithms for more detailed prompts down the road.
We kick off the conversation by raising a heuristic question "what constitutes a "good" PCSEL laser?"
and "let us design a PCSEL together, how do you think we should start?", and the LLM provides
us with a general design pipeline by saying "here is a general procedure to get started with" where
the design problem is broken down into sub-modules such as "understanding the basics of PCSEL",
"material selection", "designing photonic crystal structure" etc. Then we take a further step by asking:
"I have understood the basics of PCSEL, now what are some important factors to consider when
designing PCSELs?" The LLM then tells us what to look out for when designing PCSELs. Some
sample chats are shown in the left column of Figure 3. We then prompted another heuristic question
about choosing optimization algorithms. GPT-4 eventually made up its mind by answering: "In this
case, reinforcement learning and Bayesian optimization might be the most suitable for your problem"
after we’ve clarified our optimization objectives and constraints. When we think GPT-4 has for the
most part understood what we are trying to do, we ask it: "Could you generate an appropriate code
skeleton according to the above conversation? Please note that the FDTD should be implemented
with meep and RL should be with PyTorch." As a result, GPT-4 gives us a code skeleton for FDTD
simulation using meep [60] and DQN using PyTorch, respectively. The problem has now evolved to
a matter of expanding these code skeletons to full-blown scripts, meaning that our work is moving to
the next stage for code generation.

2.2.2 Code generation and improvement

Based on section 2.2.1, we have divided the coding problem into two modules (FDTD and DQN)
and obtained the initial code skeletons of both modules. In this section we will complete, debug and
improve our existing code skeletons, which is an essential step of the whole PCSEL design process.

For generating a FDTD simulation code from a skeleton script, we need to provide the LLM with
more specific and concrete physical parameters of the PCSEL. We require that our PCSEL has
five layers, called "n-substrate layer", "n-cladding layer", "active layer", "photonic crystal layer",
"p-cladding layer" respectively, as well as 50× 50 air holes in the PhC layer. It is worth mentioning
that the value of parameters, such as the refractive index and the thickness of each layer, could be
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The error "RuntimeError: meep: invalid boundary absorbers for this 
grid_volume" happens, help me fix it.

I apologize for the error you are encountering. This error can be due to an 
inconsistency between the size of the Perfectly Matched Layer (PML) and the 
simulation region.
In your case, the simulation region extends infinitely along the x and y 
directions due to the use of mp.inf in defining the geometry. But your PML 
layers are defined only along the z direction.
You can solve this issue by limiting the extent of your simulation region to a 
finite size along all directions and adjust the PML definition accordingly:

# Define the PML layers
pml_layers = [mp.PML(pml_thickness, direction=mp.X),

mp.PML(pml_thickness, direction=mp.Y),
mp.PML(pml_thickness, direction=mp.Z)]

The error "RuntimeError: meep: Could not determine normal direction for 
given grid_volume" happens after I modified our PML layer declaration as 
you say. Please help me fix it.

I apologize for the confusion. This error may also be caused by a mismatch 
between the cell size and the simulation geometry. 
The error could arise if any of the holes (or any other object in the geometry) 
extends beyond the cell boundaries defined by cell_size.
In this case, you can try adding a margin to your cell size to ensure that the 
cell includes all elements of the geometry:

margin = 1.0 #For example, add a margin of 1.0 in each direction
cell_size = mp.Vector3(50*lattice_spacing + 2*margin, 

50*lattice_spacing + 2*margin, z_total + 2*margin)

I am sorry but your suggestions do not help me eliminate the error 
"RuntimeError: meep: Could not determine normal direction for given 
grid_volume”.

In your case, you've defined the size of the FluxRegion to be the size of the 
photonic crystal layer. This definition is creating ambiguity, because it 
doesn't clearly specify in which direction the flux should be computed (x, y, 
or z). Meep expects one of the dimensions of the FluxRegion to be zero, to 
clarify the direction of the flux calculation.
So, if you want to compute the power flowing through the photonic crystal 
layer in the z direction, you should set the z-dimension of the FluxRegion to 
zero:

flux_box = mp.FluxRegion(center=mp.Vector3(), 
size=mp.Vector3(n_holes*lattice_constant, 
n_holes*lattice_constant, 0))

Figure 5: Debugging iterations of the FDTD code by conversing with GPT-4. All bugs/errors in the
code demonstrated in Figure 4 were cleared out within 5 iterations.

randomly initialized due to the DQN optimization process we are going to implement subsequently.
In the conversations, we assigned those values in-line with the PCSEL model (seen in Figure 1) we
have built in the past. In addition, we also provided requirements for boundary conditions, meshing
resolution, and refractive indices etc. After we provided the concrete physical parameters, GPT-4
expanded our code by completing the PCSEL structure and simulation settings, as shown in Figure 4.
Additionally, the flux and farfield monitors are added according to our requirement for calculating the
emitting power, modal volume, and divergence angle; the Harminv monitor is added for calculating
the Q-factor. Some of these monitors and their calculations are shown in Figure 4.

Now that the FDTD simulation code has been written, the next step is doing some debugging and
fine-tuning until the code finally runs successfully. As the middle column of Figure 3 and Figure 5
shows, we iteratively test run the code on our local computer and transfer the error messages to GPT
for debugging, repeating this process until the code becomes bug-free. In our experience, most bugs
can be eliminated within 5 iterations.

Next, we generated the DQN code for RL-based optimization of PCSELs. As a core component of
the DQN algorithm, we first need an environment to provide the feedback interface. We adopted
openAI gym [64] as the wrapper class for our environment, which is the FDTD simulator that we
have generated and fine-tuned. When letting GPT generate the code for the environment, we told
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# declare transition and experience replay

Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward'))

class ReplayMemory(object):

"""declare the replay buffer"""

def __init__(self, capacity):

self.memory = deque([], maxlen=capacity)

def push(self, *args):

"""Save a transition"""

self.memory.append(Transition(*args))

def sample(self, batch_size):

return random.sample(self.memory, batch_size)

def __len__(self):

return len(self.memory)

# set up the neural network

# create a class for the DQN's policy MLP

class Net(nn.Module):

def __init__(self, num_actions):

super(Net, self).__init__()

self.fc1 = nn.Linear(numState, 80) # just FC, no CNN

self.fc2 = nn.Linear(80, 120)

self.fc3 = nn.Linear(120, 80)

self.fc4 = nn.Linear(80, num_actions)

def forward(self, x):

x = x.to(device)

# print(x.shape)

x = x.view(-1, numState)

x = F.relu(self.fc1(x))

x = F.relu(self.fc2(x))

x = F.relu(self.fc3(x))

x = self.fc4(x)

return x

def select_action(state):

"""selects an action accordingly to an epsilon greedy policy"""

global steps_done

sample = random.random() # generate random number

eps_threshold = EPS_END + (EPS_START - EPS_END) * math.exp(-1. * steps_done / EPS_DECAY) #

expotentially decaying eps

steps_done += 1

if sample > eps_threshold:

with torch.no_grad():

print(policy_net(state))

print(policy_net(state).max(1)[1])

return policy_net(state).max(1)[1].view(1, 1) # Pick action with the largest

expected reward (argmax)

else:

return torch.tensor([[random.randrange(n_actions)]], device=device,

dtype=torch.long) # pick random action

# define the optimization (RL) process, which computes V, Q and the loss

def optimize_model():

if len(memory) < BATCH_SIZE:

Return

print('optimizing...')

transitions = memory.sample(BATCH_SIZE) # sample transitions from the replay buffer

batch = Transition(*zip(*transitions)) # transpose the batch

# compute a mask of non-final states and concatenate the batch elements

non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)),

device=device,dtype=torch.bool)

non_final_next_states = torch.cat([s for s in batch.next_state if s is not None])

# state, action, and reward from replay buffer

state_batch = torch.cat(batch.state)

action_batch = torch.cat(batch.action)

reward_batch = torch.cat(batch.reward)

# compute Q(s, a)

state_action_values = policy_net(state_batch).gather(1, action_batch)

# Compute V(s')

next_state_values = torch.zeros(BATCH_SIZE, device=device) # V is zero for final state

next_state_values[non_final_mask] =

target_net(non_final_next_states).max(1)[0].detach() # V' = max(Q')

# compute the expected Q values

expected_state_action_values = (next_state_values * GAMMA) + reward_batch # Q_expected =

r + gamma*V'

# cost function

criterion = nn.SmoothL1Loss()

loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1)) # L =

Q.actual - Q.expected

# optimize the MLP model

optimizer.zero_grad()

loss.backward()

for param in policy_net.parameters():

# clamp grad values to between -1 and 1

param.grad.data.clamp_(-1,1)

optimizer.step()

print(loss.item())

writer.add_scalar('training/losses', loss.item(), steps_done)

Figure 6: Code generated by ChatGPT-4 for optimization of PCSEL using DQN. Left: replay buffer,
policy network, and action selection setup, right: core part of DQN where the value-functions, action-
value functions, and loss are computed. Code shown here is the final version that runs successfully
after several rounds of debugging.

GPT what the state space, action space, and reward function are. Further specifications such as the
step size of actions, the upper and lower bounds of state variables are given to GPT as well. Then,
with the environment code, we could complete and implement our DQN code. A main DQN script is
finished by GPT based on the code skeleton given earlier, considering requirements for the replay
buffer, policy DNN, optimizer, loss function etc. See Figure 6 for the core part of the completed
DQN script. Please note that the DQN script imports the environment class. The next step is to run
the DQN code, letting it interact with our FDTD environment and continuously optimize the PCSEL
device.

Just like the FDTD code, the DQN code is then debugged and fine-tuned by iteratively running the
code and feeding error messages to GPT. An example of this process is demonstrated in Figure 7.

2.2.3 Final optimization step with RL

For the full optimization loop of PCSEL using DQN, refer to Figure 8. The main framework is
built upon the one proposed in an earlier work [45]. The objective here is to optimize the existing
PCSEL structure such that the metrics in Table 1 are met. Therefore at each iteration, computed
optical attributes (lasing area, power ...) that are closer to the target metrics will earn a higher reward.
The state is defined as the design parameters of PCSEL, whereas the action is the changes made to
the state at each iteration. The environment, which is a core component of DQN, is realized with
the FDTD simulation code we generated earlier. A detailed explanation of the working theories of
DQN, the state and action setup, the agent/policy net, and the reward definition are reserved in the
supplementary material. The optimization loop is run on an HPC cluster that has 20 CPU cores and 2
GPUs with CUDA, where each trial takes up to 5 days to run.
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But the error "NameError: name 'gym' is not defined" happened while 
running. Please help me fix it.

The error "NameError: name 'gym' is not defined" is due to the fact that the 
gym module is not imported. gym is a Python library for developing and 
comparing reinforcement learning algorithms, and it's used in your code to 
define the environment in which the agent operates.
You can fix this issue by simply importing gym at the beginning of your script. 
Additionally, you are also using spaces from gym, so you need to import that 
as well.
Add the following import statements to your code:

Thanks. But the error "AttributeError: 'MeepEnv' object has no attribute 
'parameters'" happens. Please help me fix it.

The error "AttributeError: 'MeepEnv' object has no attribute 'parameters'" 
means that you are trying to access the parameters attribute before it is 
defined in the MeepEnv class.
You can modify your code like this:

import gym
from gym import spaces

class MeepEnv(gym.Env):
def __init__(self):

super(MeepEnv, self).__init__()
# Define action space
# The agent will choose one of 20 possible actions
self.action_space = spaces.Discrete(20)
# Define observation space
# Assuming the emitted power is the only 

observable state
self.observation_space = spaces.Box(low=0, 

high=np.inf, shape=(2,), dtype=np.float32)
# Initialize parameters
self.parameters = {

"t_substrate": 0.2,
"t_n_cladding": 0.3,
"t_active": 0.5,
……}

…

Figure 7: Debugging iterations of the DQN code by conversing with GPT-4. All bugs/errors in the
code demonstrated in Figure 6 were cleared out within 5 iterations.

3 Results and discussion

Figure 9 showcases the learning curves (scores vs. episodes) of training the DQN algorithm to
optimize our PCSEL according to Figure 8. Three representative trials have been selected to
demonstrate the training convergence results. Figure 9(a) shows the average score of each episode,
whereas (b) shows the max score of each episode. Each episode contains a maximum of 250 time
steps. Each curve, which represents a complete trial, was trained for 5 days until cut off at the end of
the 5th day due to limits on computing resources. Details of the score definition are included in the
supplementary materials.

Using the optimization results illustrated in Figure 9, the optical attributes of the optimized PCSEL
that satisfies the target metrics/figure of merit are reported in Table 2. The corresponding set of design
parameters of the optimized PCSEL is included in the supplementary material. To better illustrate the
advantage of our results, best data from the literature are listed in the rightmost column of Table 2 for
a direct comparison of metrics. The literature data were chosen after an exhaustive literature survey
of PCSELs conducted by the authors.

As the device size and thus the lasing area of the literature data are much larger than ours, we expect
the absolute output power of the literature data to be proportionally higher. Nonetheless, since we
were able to achieve a high output power-to-injecting power ratio of 80%, our device has a high
energy efficiency and electron-to-photon conversion efficiency. This could also mean our device has
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Figure 9: Learning curves of training the DQN to optimize PCSEL, plotted as scores vs. episodes. (a)
Average score of each episode; (b) Maximum score of each episode. Each episode contains a horizon
of 250 steps. Vertical axes are plotted in log-scale.

a high power-density (watts/unit area). Still, the smaller divergence angle reported by the literature
data suggests that we still have some work to do for the optimization task, as we were only able to
get the divergence down to a lowest of 0.6 degrees. All in all, except for the lasing area which just
falls short of the target metric, the rest of the optimized attributes have satisfied and even exceeded
the target metrics in Table 1.

Next, when we verified the solved designs in FDTD, we also calculated the resulting Electric field
profiles and spectra, which are visualized in the supplementary’s Figure 5. The corresponding
FDTD-verified Q, V , and λ values are also labelled on the plots. According to the Ey profiles in
Figure 5(c)-(d), we see that a fundamental or second order resonance mode is achieved by both
nanobeam structures, which means that the solved design parameters indeed gave rise to correct
electromagnetic mode profiles. According to the spectra in Figure 5(a)-(b), a single resonance peak
can be located at the target wavelengths (around 980 nm, respectively), indicating the existence of
a single mode and the correctness of the EM modes solved by our algorithm. y-axes of the spectra
typically represent the intensity of the EM field measured or simulated while x-axes correspond to
wavelengths. These results guarantee a high-quality and precise laser for applications in interconnects
on PICs and telecommunications.

10



Table 2: Best optical attributes of the optimized PCSEL structure, which are computed by FDTD
simulations. They have satisfied the target metrics and figure of merit listed in Table 1. Rightmost
column reports best literature data (S. Noda et al. [17]) for a direct metric comparison, which has a
similar operating wavelength of 940 nm. Since injecting or pumping power used by the literature is
unknown, no percentage is reported. c.w. = continuous wave.

Metrics Optimized values Literature data [17]
Lasing area 8.4388e-14 m2 6.4e-7 m2

Operating wavelength 1004.6 nm ≈ 950 nm
Output power/injecting power 81.36% 6.5 W (c.w.)

Divergence angle 0.5758 degrees 0.21 degrees

4 Conclusion

In summary, this work features the first LLM model applied to inverse designing PCSELs. The
inverse problem concerns retrieving a design topology that satisfies certain optical specifications of
the photonic device. The model successfully addressed three major challenges faced by state-of-
the-art deep learning-enabled inverse design methods: 1) the fundamental one-to-many mapping or
the non-convex issue; 2) heavy human involvement for technical input; 3) shortage of ready-to-use
machine learning methods. According to our studies, the model not only met the required maxima
of certain optical responses (e.g., the Q factor) but also optimized some good-to-have features (e.g.,
modal volume and wavelength) that are conducive to a high-quality laser. The solved values were
then verified manually in FDTD and their correctness were confirmed by checking the generated
optical responses. We then offered some advice on what hyperparameters need special attention when
one attempts to tune a deep RL model. All in all, Our inverse designed laser cavities can find broad
applications in modern PICs, interconnects, and telecommunications [65].

Our methodology in this work is inspired by the famous marriage of AI and Electronic Design
Automation (EDA) [1] over the last 5-8 years. For future prospects, this work paves the way for
applying deep RL to the rapid multi-objective inverse design and optimization of nanophotonic
devices without the need for pre-collecting any data or resorting to human-centered trial-and-error
iterations. Through our efforts, we mainly aim to empower the rise of fully automated photonic
design because the current state of Photonic Design Automation (PDA) is still largely lacking. Our
time and efforts in the subsequent stage will be chiefly directed towards developing a software that
brings AI and PDA together into one unity.
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