
HAL Id: hal-04175312
https://hal.science/hal-04175312v2

Preprint submitted on 15 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

From English to PCSEL: LLM helps design and optimize
photonic crystal surface emitting lasers

Renjie Li, Ceyao Zhang, Sixuan Mao, Hai Huang, Mou Zhong, Yiou Cui,
Xiyuan Zhou, Feng Yin, Sergios Theodoridis, Zhaoyu Zhang

To cite this version:
Renjie Li, Ceyao Zhang, Sixuan Mao, Hai Huang, Mou Zhong, et al.. From English to PCSEL: LLM
helps design and optimize photonic crystal surface emitting lasers. 2023. �hal-04175312v2�

https://hal.science/hal-04175312v2
https://hal.archives-ouvertes.fr

From English to PCSEL: LLM helps design and
optimize photonic crystal surface emitting lasers

Renjie Li 1, 3, † Ceyao Zhang 2, 4, † Sixuan Mao 1, 2, † Hai Huang 1

Mou Zhong 1 Xiyuan Zhou 1 Feng Yin ∗, 2 Sergios Theodoridis 5

Zhaoyu Zhang ∗, 1

zhangzy@cuhk.edu.cn

1 Shenzhen Key Laboratory of Semiconductor Lasers, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.
2 School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China. 3 Shenzhen Research Institute of Big Data, Shenzhen, China.

4 Future Network of Intelligence Institute, Shenzhen, China. 5 Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Greece.
† indicates equal contribution, * indicates corresponding authors

Abstract

Conventional design and optimization of Photonic Crystal Surface Emitting Lasers
(PCSEL) usually requires expert knowledge in semiconductor physics and opti-
mization algorithms, which is also known as the inverse design problem. However,
with the trend towards automation and depersonalization in the entire integrated
circuits (IC) industry, the conventional method, with the drawback of being rela-
tively labor-intensive and sub-optimal, warrants further refinement. This technical
dilemma remained until the emergence of Large Language Models (LLMs), such
as OpenAI’s ChatGPT and Google’s Bard. This paper explores the possibility of
applying LLMs to machine learning-based design and optimization of PCSELs.
Specifically, we utilize GPT-3.5 and GPT-4. By simply having conversations, GPT
assisted us with writing Finite Difference Time Domain (FDTD) simulation code
and deep reinforcement learning code to acquire the optimized PCSEL solution,
spanning from the proposition of ideas to the realization of algorithms. Given
that GPT will perform better when given detailed and specific questions, we break
down the PCSEL design problem into a series of sub-problems and converse with
GPT by posing open-ended heuristic questions rather than definitive commands.
This paper propose new human–AI co-design strategies to show that LLMs can
guide the nanophotonic design and optimization process both conceptually and
technically. We achieve a significant milestone towards an automated end-to-end
nanophotonic design and production pipeline.

1 Introduction

Trends of design automation and depersonalization (i.e., human out of the loop) in the integrated
circuit (IC), nanotechnology, and semiconductor industries [1–3] are emerging rapidly. Aided by
artificial intelligence (AI), machine automation is beginning to replace conventional IC design and
fabrication processes involving humans that had existed for over half a century. The nanophotonics
industry [4–6], however, has not experienced comparable level of automation and depersonalization
due to its unique fabrication precision requirements [7, 8] and relatively complex theoretical models
[9, 10]. As an important example of nanophotonics, the design of photonic-crystal-surface-emitting-
lasers (PCSEL) [11–23], such as the one shown in Figure 1, demands rigorous physical modelling

Preprint. Under review.

and calculations with Finite Difference Time Domain (FDTD) or Finite Element Analysis (FEA)
simulation tools. However, the inverse design and optimization [24–26] of PCSEL typically suffers
from three aspects: the one-to-many mapping and non-convexity nature, a high demand for expert
knowledge in semiconductor physics and theoretical modelling/simulation (and thus human involve-
ment), and a lack of ready-to-use machine learning algorithms/packages. The above challenges
prohibit an ene-to-end automated design pipeline for PCSELs and other nanophotonic devices alike.

Luckily, recent advancements in machine learning [27–29] and optimization algorithms [30–32] have
propelled the progress of automated nanophotonics design. Early in the 90s, heuristic, evolutionary
[33], and gradient-based [34] optimization algorithms began to emerge prolifically. Key algorithms
include Newton’s method [32], particle swarm [35], genetic algorithm [36], Bayesian optimization
[37], and simulated annealing [38] etc. These algorithms provide a new way of thinking when facing
these non-convex optimization problems and lay a solid foundation for continued research. But
the challenge remains with heavy human involvement. To solve this, at around 2012, researchers
proposed deep-learning (DL) [27, 39] frameworks that take advantage of an abundance of training
data and neural network’s inference ability. In particular, DL consists of supervised, unsupervised, and
reinforcement learning (RL) [40]. These DL models greatly boosted the efficiency of nanophotonic
inverse design, pushing the possibility of automated and depersonalized design into a new stage [26,
41–44]. Circa 2023, a new DL framework based on RL (e.g., deep Q-learning (DQN) [28]), called
Learning to Design Optical-Resonators (L2DO) [45], provides the solution for autonomous inverse
design of photonic crystal nanocavities without human intervention. With two orders of magnitude
higher sample efficiency compared to supervised learning, L2DO has preliminarily realized photonics
design automation on an algorithmic level. However, since both the simulation code and DL code in
L2DO were still created by the human designer, we were still a distance away from depersonalized
photonic design.

Development of large language models (LLMs) [46–50] delivers the final building block of deper-
sonalized nanophotonics designs. LLMs are recent advances in deep learning to work on human
languages and natural language processing. Behind the scene, it is a large-scale pre-trained attention-
based transformer model that predicts and generates human-like text output. LLMs are trained
on massive amounts of text data collected from the internet, which includes books, articles, web-
sites, google searches, and various other sources. LLMs have been rapidly evolving in the last
few years. Word2Vec [51], developed by Google’s Tomas Mikolov in 2013, is a milestone in the
development of LLM. It generates high-quality word embeddings (representing words as vectors

n-electrode

n-substrate

n-cladding layer

active layer (MQW)

blocking layer

Photonic crystal layer

p-cladding layer

p-electrode (hidden)

laser emission

Square lattice
PhC pattern

Figure 1: PCSEL structure schematic, with the epitaxial layers and growth direction shown. Based on
bandedge mode in defect-free photonic crystals (PhC), large area lasing cavity is formed within the
PhC layer. Lasing arises from the evanescent coupled MQW gain medium with the PhC resonance
cavity. Such lasers can be built directly on both silicon on insulator (SOI) substrate as well as bulk
silicon substrate for a host of vital engineering applications.

2

in a high-dimensional space) to capture semantic meaning and relationships. Following this model
were The Global Vectors for Word Representation (GloVe) [52] model, developed by Stanford
researchers in 2014, and Seq2Seq [53] models, which was also introduced by Google. These two
models perform better at scalability than the former and could be trained in parallelized way, thus
more efficient. Along with these two models, the concept of attention mechanism was proposed,
introducing weight coefficients to words in different positions. In 2018, BERT [54] were brought to
us by Google. However, LLMs did not take center stage of the world until these last few months, with
the introduction of GPT-3 [55], followed by GPT-3.5 and eventually GPT-4. GPT-4 is undoubtedly
a pioneering breakthrough which is bound to bring a revolutionary change in many scientific and
engineering realms.

A limited handful of researchers have found the potential for using LLMs in hardware design and
implementation at an early time. In 2020, researchers utilized an improved GPT-2 model called
"DAVE" for Verilog code snippets generation and output evaluation [56], which is a crucial component
in IC design pipeline. A more recent model named "Chip-chat" [57] came out in 2023, which is
an LLM-driven method for IC Verilog code generation and is one of the first wholly-AI-written
Hardware Description Language (HDL) for chip tape-out. Meanwhile, LLMs have also contributed
significantly to the design and control of robots. Researchers have shown the guidance value of LLM
in a robotic gripper design process [58], both conceptually and technically. By means of simply
conversing with GPT, they successfully designed a robotic gripper capable of reaping the tomato
plant. Last but not least, a method based on LLMs called "SayCan" [59], proposed by a team from
Google, has recently enabled leveraging and grounding the rich knowledge in large language models
to complete embodied tasks by robot.

In this work, we propose a new human–AI co-design strategy for PCSELs and show the practical
implications of LLMs for nanophotonic design methodology in general. Specifically, we explored
and verified the potential of applying LLMs to machine learning-based design and optimization
of PCSELs, during which we seek to maintain as less human involvement as possible. By simply
having conversations spanning from the proposition of initial ideas to the implementation of final
algorithms, GPT-4 assisted us with writing FDTD simulation code and deep RL (e.g. DQN) code
to acquire the optimized PCSEL solution. The optimized PCSEL meets the following figure of
merit: single-mode, high-power, large-area, and small-divergence angle. The whole design pipeline is
illustrated in Figure 2. Given that GPT will perform better when given detailed and specific questions,
we break down the PCSEL design problem into a series of sub-problem modules and converse with
GPT by strictly posing open-ended heuristic questions rather than definitive commands. This paper
shows that LLMs, such as ChatGPT, can guide the nanophotonic design and optimization processes,
on both the conceptual and technical level. All in all, we achieve a significant milestone towards an
automated end-to-end nanophotonic design and optimization pipeline.

LLM
Simulation model

AI Algorithm

Tape out
& layout Photonic device

Optimize

Generate
code

Generate
code

Figure 2: LLMs for depersonalized PCSEL design and optimization pipeline. Human involvement is
minimized to the largest extent possible. The human facilitator prompts the LLM to generate FDTD
code for simulating the PCSEL structure and AI (e.g., RL) code for subsequent optimizations of the
PCSEL model. The FDTD code is written with the MIT meep [60] package. The AI optimization
process with RL is built upon an earlier work’s L2DO framework [45]. The final optimized PCSEL
design is then converted to CAD layout and be prepared for tape-out and fab.

3

2 Methods

2.1 Objective overview

Photonic Crystal Surface Emitting Lasers (PCSELs) [11, 16, 17] belong to a class of laser that
combines the benefits of photonic crystals (PhC) [61] and Vertical Cavity Surface Emitting Lasers
(VCSELs) [62]. PhCs are artificial structures that have a periodic refractive index modulation in
one, two, or three dimensions. This periodicity creates a bandgap that inhibits the propagation of
light in certain frequency ranges. VCSELs are lasers that emit light perpendicular to the surface of
the semiconductor structure, which allows for efficient coupling to optical fibers and other optical
components. PCSELs combine these two technologies to create lasers that have several advantages
over traditional lasers and therefore has the best of both worlds.

The basic design of a PCSEL consists of a PhC layer, an active layer, and several other cladding layers
and substrates along with p-n junctions and electrodes at the ends (Figure 1). The PhC layer typically
functions as a resonance cavity. The active layer, usually composed of III-V materials (InP/InGaP,
GaAs/InGaAs/AlGaAs, GaN/InGaN etc.) which can create a population inversion of charge carriers
when the threshold is reached, is placed in the middle of a PCSEL and serves to produce the laser
emission. Population inversion means that there are more electrons in higher energy levels than in
lower energy levels, which allows for stimulated emission of photons when an electrical current is
applied [11, 63]. So when an electrical pumping current is injected into the active layer material, it
emits laser light that is ideally confined and amplified within the resonance cavity. Additionally, the
active layer could contain quantum dots or quantum wells that increase the recombination rate of
spontaneous emission and thus substantially enhance the lasing effect. So the bottom line is that the
PhC layer is used to control the amplitude and direction of the emitted light, but the active layer is
what actually generates the light. Therefore, proper design of the PhC layer and the active layer plays
a central role in the overall quality of a PCSEL.

Table 1: Target metrics/figure of merit of the PCSEL device to be designed and optimized. An ideal
PCSEL has the following characteristics: single-mode, high power, large emission area, and small
divergence angle.

Metric/Figure of merit Target values
Lasing area >= 3.6e-13 m2

Operating wavelength = 980 nm
Output power/injecting power >= 30%

Divergence angle <= 1 degree

In this article, we investigate the potential of an LLM-based depersonalized PCSEL design and
optimization pipeline (Figure 2). The target metrics or figure of merit of the PCSEL to be designed and
optimized are listed in Table 1. We set the target values according to target application specifications
with full consideration of the physical limits of PCSEL lasing. For example, the wavelength of
980 nm is important for applications in telecommunications and satellites, a high output power is
important for applications like autonomous driving, machining, and medicine, and a small divergence
angle is important for achieving high beam quality and long-distance light propagation. In this initial
demonstration, actual tape-out will not be implemented.

2.2 Human-AI co-design philosophy

In the near future, LLMs are bound to revolutionize the design flow in many fields, for its ability to
internalize an extensive dataset in different types and generate proper responses using the acquired
knowledge. Such potential has been discovered by researchers in the fields of medicine, robotics,
literature, topology etc. In this article, we propose a new paradigm for applying LLMs in PCSEL
design and optimization, called the "human-AI co-design" methodology (Figure 2 & 3). As illustrated
in Figure 3, we divide the design process into three steps: 1) conceptualization, 2) code generation
and debugging, and 3) simulation and optimization. Due to the limitation of the status quo of LLMs,
the AI agent usually cannot give out the perfect solution all at once. Therefore, the human needs to
act as a liaison to help guide/facilitate the design work while simultaneously bearing in mind that
excessive human involvement could compromise the integrity of the AI agent’s decisions. So for

4

What is the most sought-after laser
nowadays?

PCSEL, VCSEL, DFB...

What constitutes a “good” PCSEL?

High power, large area, high beam quality,
small divergence angle...

What is important to consider when
designing PCSELs?

Photonic crystal layer, active layer, MQW,
doping, semiconductor material,
fabrication capabilities, charge carrier flow,
band structure...

What are some good optimization
algorithms to use in hardware design?

Bayesian optimization, reinforcement
learning, evolutionary algorithm,
Newton’s menthod...

LLM prompt: generate FDTD code for PCSEL
or generate RL code for optimization

Error?

Run code locally or
on HPC

Code is bug-free and
ready to run

Done

Feed error message
to LLM and ask it to
debug. Or ask “are

you sure xxx is
correct? Please
rethink it and

regenerate your
response.”

N Y

Rerun
with

edited
code

Agent: DNN

Environment:
FDTD simulator

reward
Rt+1

action
At

state
St+1

Deep Q-learning

(Optimization loop run on HPC)

Figure 3: Human-AI co-design paradigm for applying LLMs to PCSEL design and optimization. A
pictorial overview of the discussions and interactions between the human facilitator and the LLM,
with the questions prompted by the human and the answers/solutions provided by the LLM (GPT).
The process is divided into three steps: left column: conceptualization, middle column: code
generation and debugging, and right column: simulation and optimization. Optimization via DQN is
run on high-performance computing (HPC) clusters for improved computational speed and output.

example if a large portion of the design task is dominated/controlled by humans, it does not reflect
the human-AI co-design philosophy and thus should be avoided as much as possible. Overall, the
design flow should follow the following rules and restrictions:

1. The whole design process should start with the human providing an open-ended question to GPT
rather than giving definitive commands. This is the beginning of an important conceptualization
process, where the human stimulates the LLM to brainstorm and generate creative ideas. For example,
you can start a conversation by "What is the most sought-after laser nowadays?" or "What are some
good optimization algorithms to use in hardware design?" Subsequent conversations will continue
by gradually guiding GPT to arrive at a specific solution for this conceptual question. Sample Q&A
rounds are demonstrated in the left column of Figure 3. Once we get to the code generations and
debugging stage, questions can become more specific and technical, such as "can you help me design
a high-power and large-area PCSEL model using FDTD algorithm written in Python?" or "can you
help me improve an existing deep-Q learning code implemented with experience replay that’s written
with PyTorch?"

3. Humans should respect the self-correcting mechanism of GPT rather than directly pointing out the
problems/errors it has. In the conversations, there might be times when the answers given by LLMs
are self-contradictory or simply wrong. This is attributable to GPT’s insufficient understanding of
the problem it’s solving, which usually happens at the early stage of a conversation. To properly
respect the self-correcting mechanism of GPT, one should report the error by saying "you have just
mentioned XXX, and I hope you could think twice about this and regenerate your answer" or "are you
sure XXX is the correct answer? Please elaborate" rather than "lines XXX and XXX of the code you
generated are wrong" or "fix the XXX function/method in the code for me". In the code generating
part, these kinds of mistakes will be especially common. In our experience, it usually takes several
conversational iterations before the code finally becomes bug-free and ready to run. When debugging
the code, it is not advised to point out the precise location of errors for GPT; the proper way is to
copy the error message from the terminal and let AI do the modification itself. A demonstration of
this interactive debugging process is shown in the middle column of Figure 3.

5

Define the 3D PCSEL geometry with different layers

geometry = [mp.Block(mp.Vector3(mp.inf, mp.inf, t_substrate),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate/2),

material=mp.Medium(epsilon=n_substrate**2)),

mp.Block(mp.Vector3(mp.inf, mp.inf, t_n_cladding),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate + t_n_cladding/2),

material=mp.Medium(epsilon=n_n_cladding**2)),

mp.Block(mp.Vector3(mp.inf, mp.inf, t_active),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate + t_n_cladding +

t_active/2),

material=mp.Medium(epsilon=n_active**2)),

mp.Block(mp.Vector3(mp.inf, mp.inf, t_photonic_crystal),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate + t_n_cladding + t_active

+ t_photonic_crystal/2),

material=mp.Medium(epsilon=n_photonic_crystal**2))] + holes + [

mp.Block(mp.Vector3(mp.inf, mp.inf, t_p_cladding),

center=mp.Vector3(0, 0, -z_total/2 + t_substrate + t_n_cladding + t_active

+ t_photonic_crystal + t_p_cladding/2),

material=mp.Medium(epsilon=n_p_cladding**2))]

Create the air holes in the PhC layer

for i in range(n_holes):

for j in range(n_holes):

Create a cylindrical hole at this position

hole = mp.Cylinder(radius=hole_radius, height=t_photonic_crystal,

center=mp.Vector3(i*lattice_constant - cell_size.x/2,

j*lattice_constant - cell_size.y/2, 0),

material=mp.Medium(epsilon=1))

geometry.append(hole)

Initialize the simulation

sim = mp.Simulation(cell_size=cell_size,

boundary_layers=pml_layers,

geometry=geometry,

sources=sources,

resolution=10)

Define a box around the source for flux computation

flux_box = mp.FluxRegion(center=mp.Vector3(), size=mp.Vector3(10, 10, z_total))

Add the DFT flux object to the simulation

flux = sim.add_flux(frequency, 0, 1, flux_box)

Run the simulation

sim.run(until=200)

near field Poynting vector in z direction

(x, y, z, w) = sim.get_array_metadata(dft_cell=resonance_z)

Pz = []

i = 0

for _ in flux.freq:

(Ex, Ey, Hx, Hy) = [sim.get_dft_array(flux, c, i) for c in [mp.Ex, mp.Ey, mp.Hx, mp.Hy]]

flux_density = np.real(np.conj(Ex) * Hy - np.conj(Ey) * Hx) # array

flx = np.sum(w * flux_density) # scalar

Pz.append(flx)

i += 1

Compute the total emitted power

emitted_power = mp.get_fluxes(flux)

Define where to perform the Harminv analysis

harminv_regions = [mp.Harminv(mp.Ez, mp.Vector3(0,0,0), frequency, 0.1*frequency)] # 10%

bandwidth

Reset the fields and use the same geometry and sources for the Harminv analysis

sim.reset_meep()

sim.change_sources(sources)

sim.run(mp.after_sources(*harminv_regions),

until_after_sources=200)

for mode in sim.harminv_data: #calculate Q-factor

print(f"Frequency: {mode.freq} Q factor: {mode.Q}")

V = sim.modal_volume_in_box(box=vol) #calculate the modal volume

Figure 4: Code generated by ChatGPT-4 for FDTD simulation of PCSEL using the meep package.
Left: geometry setup section, right: simulation setup and calculations section. Code shown here is
the final version that runs successfully after several rounds of debugging.

2.2.1 Conceptualization with the LLM

The conceptualization step is for the AI to have a general understanding of the underlying problem,
so that the AI can choose proper methods and algorithms for more detailed prompts down the road.
We kick off the conversation by raising a heuristic question "what constitutes a "good" PCSEL laser?"
and "let us design a PCSEL together, how do you think we should start?", and the LLM provides
us with a general design pipeline by saying "here is a general procedure to get started with" where
the design problem is broken down into sub-modules such as "understanding the basics of PCSEL",
"material selection", "designing photonic crystal structure" etc. Then we take a further step by asking:
"I have understood the basics of PCSEL, now what are some important factors to consider when
designing PCSELs?" The LLM then tells us what to look out for when designing PCSELs. Some
sample chats are shown in the left column of Figure 3. We then prompted another heuristic question
about choosing optimization algorithms. GPT-4 eventually made up its mind by answering: "In this
case, reinforcement learning and Bayesian optimization might be the most suitable for your problem"
after we’ve clarified our optimization objectives and constraints. When we think GPT-4 has for the
most part understood what we are trying to do, we ask it: "Could you generate an appropriate code
skeleton according to the above conversation? Please note that the FDTD should be implemented
with meep and RL should be with PyTorch." As a result, GPT-4 gives us a code skeleton for FDTD
simulation using meep [60] and DQN using PyTorch, respectively. The problem has now evolved to
a matter of expanding these code skeletons to full-blown scripts, meaning that our work is moving to
the next stage for code generation.

2.2.2 Code generation and improvement

Based on section 2.2.1, we have divided the coding problem into two modules (FDTD and DQN)
and obtained the initial code skeletons of both modules. In this section we will complete, debug and
improve our existing code skeletons, which is an essential step of the whole PCSEL design process.

For generating a FDTD simulation code from a skeleton script, we need to provide the LLM with
more specific and concrete physical parameters of the PCSEL. We require that our PCSEL has
five layers, called "n-substrate layer", "n-cladding layer", "active layer", "photonic crystal layer",
"p-cladding layer" respectively, as well as 50× 50 air holes in the PhC layer. It is worth mentioning
that the value of parameters, such as the refractive index and the thickness of each layer, could be

6

The error "RuntimeError: meep: invalid boundary absorbers for this
grid_volume" happens, help me fix it.

I apologize for the error you are encountering. This error can be due to an
inconsistency between the size of the Perfectly Matched Layer (PML) and the
simulation region.
In your case, the simulation region extends infinitely along the x and y
directions due to the use of mp.inf in defining the geometry. But your PML
layers are defined only along the z direction.
You can solve this issue by limiting the extent of your simulation region to a
finite size along all directions and adjust the PML definition accordingly:

Define the PML layers
pml_layers = [mp.PML(pml_thickness, direction=mp.X),

mp.PML(pml_thickness, direction=mp.Y),
mp.PML(pml_thickness, direction=mp.Z)]

The error "RuntimeError: meep: Could not determine normal direction for
given grid_volume" happens after I modified our PML layer declaration as
you say. Please help me fix it.

I apologize for the confusion. This error may also be caused by a mismatch
between the cell size and the simulation geometry.
The error could arise if any of the holes (or any other object in the geometry)
extends beyond the cell boundaries defined by cell_size.
In this case, you can try adding a margin to your cell size to ensure that the
cell includes all elements of the geometry:

margin = 1.0 #For example, add a margin of 1.0 in each direction
cell_size = mp.Vector3(50*lattice_spacing + 2*margin,

50*lattice_spacing + 2*margin, z_total + 2*margin)

I am sorry but your suggestions do not help me eliminate the error
"RuntimeError: meep: Could not determine normal direction for given
grid_volume”.

In your case, you've defined the size of the FluxRegion to be the size of the
photonic crystal layer. This definition is creating ambiguity, because it
doesn't clearly specify in which direction the flux should be computed (x, y,
or z). Meep expects one of the dimensions of the FluxRegion to be zero, to
clarify the direction of the flux calculation.
So, if you want to compute the power flowing through the photonic crystal
layer in the z direction, you should set the z-dimension of the FluxRegion to
zero:

flux_box = mp.FluxRegion(center=mp.Vector3(),
size=mp.Vector3(n_holes*lattice_constant,
n_holes*lattice_constant, 0))

Figure 5: Debugging iterations of the FDTD code by conversing with GPT-4. All bugs/errors in the
code demonstrated in Figure 4 were cleared out within 5 iterations.

randomly initialized due to the DQN optimization process we are going to implement subsequently.
In the conversations, we assigned those values in-line with the PCSEL model (seen in Figure 1) we
have built in the past. In addition, we also provided requirements for boundary conditions, meshing
resolution, and refractive indices etc. After we provided the concrete physical parameters, GPT-4
expanded our code by completing the PCSEL structure and simulation settings, as shown in Figure 4.
Additionally, the flux and farfield monitors are added according to our requirement for calculating the
emitting power, modal volume, and divergence angle; the Harminv monitor is added for calculating
the Q-factor. Some of these monitors and their calculations are shown in Figure 4.

Now that the FDTD simulation code has been written, the next step is doing some debugging and
fine-tuning until the code finally runs successfully. As the middle column of Figure 3 and Figure 5
shows, we iteratively test run the code on our local computer and transfer the error messages to GPT
for debugging, repeating this process until the code becomes bug-free. In our experience, most bugs
can be eliminated within 5 iterations.

Next, we generated the DQN code for RL-based optimization of PCSELs. As a core component of
the DQN algorithm, we first need an environment to provide the feedback interface. We adopted
openAI gym [64] as the wrapper class for our environment, which is the FDTD simulator that we
have generated and fine-tuned. When letting GPT generate the code for the environment, we told

7

declare transition and experience replay

Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward'))

class ReplayMemory(object):

"""declare the replay buffer"""

def __init__(self, capacity):

self.memory = deque([], maxlen=capacity)

def push(self, *args):

"""Save a transition"""

self.memory.append(Transition(*args))

def sample(self, batch_size):

return random.sample(self.memory, batch_size)

def __len__(self):

return len(self.memory)

set up the neural network

create a class for the DQN's policy MLP

class Net(nn.Module):

def __init__(self, num_actions):

super(Net, self).__init__()

self.fc1 = nn.Linear(numState, 80) # just FC, no CNN

self.fc2 = nn.Linear(80, 120)

self.fc3 = nn.Linear(120, 80)

self.fc4 = nn.Linear(80, num_actions)

def forward(self, x):

x = x.to(device)

print(x.shape)

x = x.view(-1, numState)

x = F.relu(self.fc1(x))

x = F.relu(self.fc2(x))

x = F.relu(self.fc3(x))

x = self.fc4(x)

return x

def select_action(state):

"""selects an action accordingly to an epsilon greedy policy"""

global steps_done

sample = random.random() # generate random number

eps_threshold = EPS_END + (EPS_START - EPS_END) * math.exp(-1. * steps_done / EPS_DECAY) #

expotentially decaying eps

steps_done += 1

if sample > eps_threshold:

with torch.no_grad():

print(policy_net(state))

print(policy_net(state).max(1)[1])

return policy_net(state).max(1)[1].view(1, 1) # Pick action with the largest

expected reward (argmax)

else:

return torch.tensor([[random.randrange(n_actions)]], device=device,

dtype=torch.long) # pick random action

define the optimization (RL) process, which computes V, Q and the loss

def optimize_model():

if len(memory) < BATCH_SIZE:

Return

print('optimizing...')

transitions = memory.sample(BATCH_SIZE) # sample transitions from the replay buffer

batch = Transition(*zip(*transitions)) # transpose the batch

compute a mask of non-final states and concatenate the batch elements

non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)),

device=device,dtype=torch.bool)

non_final_next_states = torch.cat([s for s in batch.next_state if s is not None])

state, action, and reward from replay buffer

state_batch = torch.cat(batch.state)

action_batch = torch.cat(batch.action)

reward_batch = torch.cat(batch.reward)

compute Q(s, a)

state_action_values = policy_net(state_batch).gather(1, action_batch)

Compute V(s')

next_state_values = torch.zeros(BATCH_SIZE, device=device) # V is zero for final state

next_state_values[non_final_mask] =

target_net(non_final_next_states).max(1)[0].detach() # V' = max(Q')

compute the expected Q values

expected_state_action_values = (next_state_values * GAMMA) + reward_batch # Q_expected =

r + gamma*V'

cost function

criterion = nn.SmoothL1Loss()

loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1)) # L =

Q.actual - Q.expected

optimize the MLP model

optimizer.zero_grad()

loss.backward()

for param in policy_net.parameters():

clamp grad values to between -1 and 1

param.grad.data.clamp_(-1,1)

optimizer.step()

print(loss.item())

writer.add_scalar('training/losses', loss.item(), steps_done)

Figure 6: Code generated by ChatGPT-4 for optimization of PCSEL using DQN. Left: replay buffer,
policy network, and action selection setup, right: core part of DQN where the value-functions, action-
value functions, and loss are computed. Code shown here is the final version that runs successfully
after several rounds of debugging.

GPT what the state space, action space, and reward function are. Further specifications such as the
step size of actions, the upper and lower bounds of state variables are given to GPT as well. Then,
with the environment code, we could complete and implement our DQN code. A main DQN script is
finished by GPT based on the code skeleton given earlier, considering requirements for the replay
buffer, policy DNN, optimizer, loss function etc. See Figure 6 for the core part of the completed
DQN script. Please note that the DQN script imports the environment class. The next step is to run
the DQN code, letting it interact with our FDTD environment and continuously optimize the PCSEL
device.

Just like the FDTD code, the DQN code is then debugged and fine-tuned by iteratively running the
code and feeding error messages to GPT. An example of this process is demonstrated in Figure 7.

2.2.3 Final optimization step with RL

For the full optimization loop of PCSEL using DQN, refer to Figure 8. The main framework is
built upon the one proposed in an earlier work [45]. The objective here is to optimize the existing
PCSEL structure such that the metrics in Table 1 are met. Therefore at each iteration, computed
optical attributes (lasing area, power ...) that are closer to the target metrics will earn a higher reward.
The state is defined as the design parameters of PCSEL, whereas the action is the changes made to
the state at each iteration. The environment, which is a core component of DQN, is realized with
the FDTD simulation code we generated earlier. A detailed explanation of the working theories of
DQN, the state and action setup, the agent/policy net, and the reward definition are reserved in the
supplementary material. The optimization loop is run on an HPC cluster that has 20 CPU cores and 2
GPUs with CUDA, where each trial takes up to 5 days to run.

8

But the error "NameError: name 'gym' is not defined" happened while
running. Please help me fix it.

The error "NameError: name 'gym' is not defined" is due to the fact that the
gym module is not imported. gym is a Python library for developing and
comparing reinforcement learning algorithms, and it's used in your code to
define the environment in which the agent operates.
You can fix this issue by simply importing gym at the beginning of your script.
Additionally, you are also using spaces from gym, so you need to import that
as well.
Add the following import statements to your code:

Thanks. But the error "AttributeError: 'MeepEnv' object has no attribute
'parameters'" happens. Please help me fix it.

The error "AttributeError: 'MeepEnv' object has no attribute 'parameters'"
means that you are trying to access the parameters attribute before it is
defined in the MeepEnv class.
You can modify your code like this:

import gym
from gym import spaces

class MeepEnv(gym.Env):
def __init__(self):

super(MeepEnv, self).__init__()
Define action space
The agent will choose one of 20 possible actions
self.action_space = spaces.Discrete(20)
Define observation space
Assuming the emitted power is the only

observable state
self.observation_space = spaces.Box(low=0,

high=np.inf, shape=(2,), dtype=np.float32)
Initialize parameters
self.parameters = {

"t_substrate": 0.2,
"t_n_cladding": 0.3,
"t_active": 0.5,
……}

…

Figure 7: Debugging iterations of the DQN code by conversing with GPT-4. All bugs/errors in the
code demonstrated in Figure 6 were cleared out within 5 iterations.

3 Results and discussion

Figure 9 showcases the learning curves (scores vs. episodes) of training the DQN algorithm to
optimize our PCSEL according to Figure 8. Three representative trials have been selected to
demonstrate the training convergence results. Figure 9(a) shows the average score of each episode,
whereas (b) shows the max score of each episode. Each episode contains a maximum of 250 time
steps. Each curve, which represents a complete trial, was trained for 5 days until cut off at the end of
the 5th day due to limits on computing resources. Details of the score definition are included in the
supplementary materials.

Using the optimization results illustrated in Figure 9, the optical attributes of the optimized PCSEL
that satisfies the target metrics/figure of merit are reported in Table 2. The corresponding set of design
parameters of the optimized PCSEL is included in the supplementary material. To better illustrate the
advantage of our results, best data from the literature are listed in the rightmost column of Table 2 for
a direct comparison of metrics. The literature data were chosen after an exhaustive literature survey
of PCSELs conducted by the authors.

As the device size and thus the lasing area of the literature data are much larger than ours, we expect
the absolute output power of the literature data to be proportionally higher. Nonetheless, since we
were able to achieve a high output power-to-injecting power ratio of 80%, our device has a high
energy efficiency and electron-to-photon conversion efficiency. This could also mean our device has

9

FDTD
Environment

• thickness of n layers

• Shape of holes

(circular/triangular)

• Lattice constant

• Radius of holes

• Filling factor

• Cross-sectional

width

• Square/triangular

lattice

• Material properties

PCSEL
(Agent)

(Observe state)

Actions = change in state:
• Change thickness
• Change hole shape:

circular or triangular
• Change lattice constant
• Change radius of holes
• Change filling factor
• Change cross-sectional

width
• Change: square or

triangular lattice
• Change: material

properties

D
es

ig
n

pa
ra

m
et

er
s

Reward assessed by
comparing computed

lasing area, wavelength,
power, and divergence
angle to target metrics

in Table 1.

(Action
value
func)

Figure 8: Optimization of PCSEL via DQN, where the objective is to meet those target metrics listed
in Table 1. This is a detailed expanded version of the right column of Figure 3, including the state
and action parameters, the reward definitions, the FDTD environment, and the agent DNN. Q(s,a) is
action-value functions predicted by the agent DNN.

Episode

A
v
er

ag
e

S
co

re

Episode

M
ax

 S
co

re

(a) (b)

Figure 9: Learning curves of training the DQN to optimize PCSEL, plotted as scores vs. episodes. (a)
Average score of each episode; (b) Maximum score of each episode. Each episode contains a horizon
of 250 steps. Vertical axes are plotted in log-scale.

a high power-density (watts/unit area). Still, the smaller divergence angle reported by the literature
data suggests that we still have some work to do for the optimization task, as we were only able to
get the divergence down to a lowest of 0.6 degrees. All in all, except for the lasing area which just
falls short of the target metric, the rest of the optimized attributes have satisfied and even exceeded
the target metrics in Table 1.

Next, when we verified the solved designs in FDTD, we also calculated the resulting Electric field
profiles and spectra, which are visualized in the supplementary’s Figure 5. The corresponding
FDTD-verified Q, V , and λ values are also labelled on the plots. According to the Ey profiles in
Figure 5(c)-(d), we see that a fundamental or second order resonance mode is achieved by both
nanobeam structures, which means that the solved design parameters indeed gave rise to correct
electromagnetic mode profiles. According to the spectra in Figure 5(a)-(b), a single resonance peak
can be located at the target wavelengths (around 980 nm, respectively), indicating the existence of
a single mode and the correctness of the EM modes solved by our algorithm. y-axes of the spectra
typically represent the intensity of the EM field measured or simulated while x-axes correspond to
wavelengths. These results guarantee a high-quality and precise laser for applications in interconnects
on PICs and telecommunications.

10

Table 2: Best optical attributes of the optimized PCSEL structure, which are computed by FDTD
simulations. They have satisfied the target metrics and figure of merit listed in Table 1. Rightmost
column reports best literature data (S. Noda et al. [17]) for a direct metric comparison, which has a
similar operating wavelength of 940 nm. Since injecting or pumping power used by the literature is
unknown, no percentage is reported. c.w. = continuous wave.

Metrics Optimized values Literature data [17]
Lasing area 8.4388e-14 m2 6.4e-7 m2

Operating wavelength 1004.6 nm ≈ 950 nm
Output power/injecting power 81.36% 6.5 W (c.w.)

Divergence angle 0.5758 degrees 0.21 degrees

4 Conclusion

In summary, this work features the first LLM model applied to inverse designing PCSELs. The
inverse problem concerns retrieving a design topology that satisfies certain optical specifications of
the photonic device. The model successfully addressed three major challenges faced by state-of-
the-art deep learning-enabled inverse design methods: 1) the fundamental one-to-many mapping or
the non-convex issue; 2) heavy human involvement for technical input; 3) shortage of ready-to-use
machine learning methods. According to our studies, the model not only met the required maxima
of certain optical responses (e.g., the Q factor) but also optimized some good-to-have features (e.g.,
modal volume and wavelength) that are conducive to a high-quality laser. The solved values were
then verified manually in FDTD and their correctness were confirmed by checking the generated
optical responses. We then offered some advice on what hyperparameters need special attention when
one attempts to tune a deep RL model. All in all, Our inverse designed laser cavities can find broad
applications in modern PICs, interconnects, and telecommunications [65].

Our methodology in this work is inspired by the famous marriage of AI and Electronic Design
Automation (EDA) [1] over the last 5-8 years. For future prospects, this work paves the way for
applying deep RL to the rapid multi-objective inverse design and optimization of nanophotonic
devices without the need for pre-collecting any data or resorting to human-centered trial-and-error
iterations. Through our efforts, we mainly aim to empower the rise of fully automated photonic
design because the current state of Photonic Design Automation (PDA) is still largely lacking. Our
time and efforts in the subsequent stage will be chiefly directed towards developing a software that
brings AI and PDA together into one unity.

Acknowledgement

This work is supported by National Natural Science Foundation of China under Grant
No.62174144; Shenzhen Fundamental Research Fund under Grant No.JCYJ20210324115605016
and No.JCYJ20210324120204011; Shenzhen Key Laboratory Project under Grant
No.ZDSYS201603311644527; Longgang Key Laboratory Project under Grant No.ZSYS2017003
and No.LGKCZSYS2018000015; Longgang Matching Support Fund No.CXPTPT-2017-YJ-002 and
No.201617486; Shenzhen Research Institute of Big Data; President’s Fund (PF01000154); and the
Optical Communication Core Chip Research Platform. The authors would like to thank the engineers
at the Core Research Facilities (CRF) of SUSTech for their technical support. The authors’d like
to thank staff members at ITSO of CUHKSZ for their persistent support for our high-performance
computing needs. The authors’d like to thank Mr. Hong Tang for his assistance with GPU CUDA
and workstations. The authors’d like to thank Mrs. Xiangying Li for her mental and moral support.

The authors declare no conflict of interests.

Data and Code availability

The data and code are available at: https://github.com/Arcadianlee/LLM-for-Photonics.
Requests for Meep simulation files should be addressed to Z.Z.

11

https://github.com/Arcadianlee/LLM-for-Photonics

Supplementary material

The supplementary material is available in the online version of this manuscript. Correspondence and
requests for materials should be addressed to Z.Z.

Author contributions

Z.Z and R.L. conceived and designed the research project. R.L. and C.Z. designed the models and
wrote the code. R.L. performed data post-processing and analysis. H.H. created PCSEL’s original
simulation files. F.D. prepared supplementary material. H.D. and Z.C. made CAD drawings and
schematics. F.Y. and Z.Z. supervised and mentored the project. R.L and C.Z. wrote the paper. Z.Z.
managed and funded the research.

References
[1] Azalia Mirhoseini et al. “A graph placement methodology for fast chip design”. In: Nature

594.7862 (2021), pp. 207–212.
[2] Wenqiang Zhang et al. “Neuro-inspired computing chips”. In: Nature electronics 3.7 (2020),

pp. 371–382.
[3] Xinyu Chen et al. “Wafer-scale functional circuits based on two dimensional semiconductors

with fabrication optimized by machine learning”. In: Nature Communications 12.1 (2021),
p. 5953.

[4] Vilson R Almeida et al. “All-optical control of light on a silicon chip”. In: Nature 431.7012
(2004), pp. 1081–1084.

[5] Hatice Altug, Dirk Englund, and Jelena Vučković. “Ultrafast photonic crystal nanocavity
laser”. In: Nature physics 2.7 (2006), pp. 484–488.

[6] David Thomson et al. “Roadmap on silicon photonics”. In: Journal of Optics 18.7 (2016),
p. 073003.

[7] Moira Hocevar et al. “Growth and optical properties of axial hybrid III–V/silicon nanowires”.
In: Nature communications 3.1 (2012), p. 1266.

[8] Sunghwan Kim et al. “All-water-based electron-beam lithography using silk as a resist”. In:
Nature nanotechnology 9.4 (2014), pp. 306–310.

[9] Biye Xie et al. “Higher-order band topology”. In: Nature Reviews Physics 3.7 (2021), pp. 520–
532.

[10] Yongquan Zeng et al. “Electrically pumped topological laser with valley edge modes”. In:
Nature 578.7794 (2020), pp. 246–250.

[11] Kazuyoshi Hirose et al. “Watt-class high-power, high-beam-quality photonic-crystal lasers”.
In: Nature photonics 8.5 (2014), pp. 406–411.

[12] William Streifer, D Scifres, and Robert Burnham. “Coupled wave analysis of DFB and DBR
lasers”. In: IEEE Journal of Quantum Electronics 13.4 (1977), pp. 134–141.

[13] Chao Peng et al. “Coupled-wave analysis for photonic-crystal surface-emitting lasers on air
holes with arbitrary sidewalls”. In: Optics Express 19.24 (2011), pp. 24672–24686.

[14] Masaya Nishimoto, Kyohei Maekawa, and Susumu Noda. “Design of photonic-crystal surface-
emitting lasers with circularly-polarized beam”. In: Optics Express 25.6 (2017), pp. 6104–
6111.

[15] T Inoue et al. “Design of photonic-crystal surface-emitting lasers with enhanced in-plane
optical feedback for high-speed operation”. In: Optics Express 28.4 (2020), pp. 5050–5057.

[16] Susumu Noda et al. “Photonic-crystal surface-emitting lasers: Review and introduction of
modulated-photonic crystals”. In: IEEE Journal of Selected Topics in Quantum Electronics
23.6 (2017), pp. 1–7.

[17] Masahiro Yoshida et al. “Double-lattice photonic-crystal resonators enabling high-brightness
semiconductor lasers with symmetric narrow-divergence beams”. In: Nature materials 18.2
(2019), pp. 121–128.

[18] Masaya Nishimoto et al. “Air-hole retained growth by molecular beam epitaxy for fabricating
GaAs-based photonic-crystal lasers”. In: Applied physics express 6.4 (2013), p. 042002.

12

[19] Haochuan Li et al. “Monolithically integrated photonic crystal surface emitters on silicon
with a vortex beam by using bound states in the continuum”. In: Optics Letters 48.7 (2023),
pp. 1702–1705.

[20] Takuya Inoue et al. “Comprehensive analysis of photonic-crystal surface-emitting lasers via
time-dependent three-dimensional coupled-wave theory”. In: Physical Review B 99.3 (2019),
p. 035308.

[21] Yuhki Itoh et al. “Continous-wave lasing operation of 1.3-µm wavelength InP-based photonic
crystal surface-emitting lasers using MOVPE regrowth”. In: Optics Express 28.24 (2020),
pp. 35483–35489.

[22] Kou Gondaira et al. “Control of radiation angle by introducing symmetric end structure to
oblique waveguide in three-dimensional photonic crystal”. In: Optics Express 24.12 (2016),
pp. 13518–13526.

[23] Yoshitaka Kurosaka et al. “Controlling vertical optical confinement in two-dimensional surface-
emitting photonic-crystal lasers by shape of air holes”. In: Optics express 16.22 (2008),
pp. 18485–18494.

[24] Wei Ma et al. “Deep learning for the design of photonic structures”. In: Nature Photonics 15.2
(2021), pp. 77–90.

[25] Sean Molesky et al. “Inverse design in nanophotonics”. In: Nature Photonics 12.11 (2018),
pp. 659–670.

[26] Sunae So et al. “Deep learning enabled inverse design in nanophotonics”. In: Nanophotonics
9.5 (2020), pp. 1041–1057.

[27] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
[28] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: nature

518.7540 (2015), pp. 529–533.
[29] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern recognition. Elsevier, 2006.
[30] Zhi-Quan Luo et al. “Semidefinite relaxation of quadratic optimization problems”. In: IEEE

Signal Processing Magazine 27.3 (2010), pp. 20–34.
[31] Elaine T Hale, Wotao Yin, and Yin Zhang. “Fixed-point continuation for L1-minimization:

Methodology and convergence”. In: SIAM Journal on Optimization 19.3 (2008), pp. 1107–
1130.

[32] Andre Milzarek and Michael Ulbrich. “A semismooth Newton method with multidimensional
filter globalization for L1-optimization”. In: SIAM Journal on Optimization 24.1 (2014),
pp. 298–333.

[33] Ravi S Hegde. “Photonics inverse design: pairing deep neural networks with evolutionary
algorithms”. In: IEEE Journal of Selected Topics in Quantum Electronics 26.1 (2019), pp. 1–8.

[34] Jiawei Zhang et al. “A single-loop smoothed gradient descent-ascent algorithm for nonconvex-
concave min-max problems”. In: Advances in neural information processing systems 33 (2020),
pp. 7377–7389.

[35] Zihao Ma and Yu Li. “Parameter extraction and inverse design of semiconductor lasers based
on the deep learning and particle swarm optimization method”. In: Optics Express 28.15
(2020), pp. 21971–21981.

[36] Yangming Ren et al. “Genetic-algorithm-based deep neural networks for highly efficient
photonic device design”. In: Photonics Research 9.6 (2021), B247–B252.

[37] Bobak Shahriari et al. “Taking the human out of the loop: A review of Bayesian optimization”.
In: Proceedings of the IEEE 104.1 (2015), pp. 148–175.

[38] Dimitris Bertsimas and John Tsitsiklis. “Simulated annealing”. In: Statistical science 8.1
(1993), pp. 10–15.

[39] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep
convolutional neural networks”. In: Advances in neural information processing systems 25
(2012).

[40] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[41] Jiaqi Jiang, Mingkun Chen, and Jonathan A Fan. “Deep neural networks for the evaluation and
design of photonic devices”. In: Nature Reviews Materials 6.8 (2021), pp. 679–700.

[42] Renjie Li et al. “Smart and Rapid Design of Nanophotonic Structures by an Adaptive and
Regularized Deep Neural Network”. In: Nanomaterials 12.8 (2022), p. 1372.

13

[43] Takashi Asano and Susumu Noda. “Optimization of photonic crystal nanocavities based on
deep learning”. In: Optics express 26.25 (2018), pp. 32704–32717.

[44] Renjie Li et al. “Deep learning-based modeling of photonic crystal nanocavities”. In: Optical
Materials Express 11.7 (2021), pp. 2122–2133.

[45] Renjie Li et al. “Deep reinforcement learning empowers automated inverse design and opti-
mization of photonic crystals for nanoscale laser cavities”. In: Nanophotonics 12.2 (2023),
pp. 319–334.

[46] Jason Wei et al. “Emergent abilities of large language models”. In: arXiv preprint
arXiv:2206.07682 (2022).

[47] Long Ouyang et al. “Training language models to follow instructions with human feedback”.
In: Advances in Neural Information Processing Systems 35 (2022), pp. 27730–27744.

[48] Mohammad Shoeybi et al. “Megatron-lm: Training multi-billion parameter language models
using model parallelism”. In: arXiv preprint arXiv:1909.08053 (2019).

[49] Takeshi Kojima et al. “Large language models are zero-shot reasoners”. In: Advances in neural
information processing systems 35 (2022), pp. 22199–22213.

[50] Mark Chen et al. “Evaluating large language models trained on code”. In: arXiv preprint
arXiv:2107.03374 (2021).

[51] Tomas Mikolov et al. “Efficient estimation of word representations in vector space”. In: arXiv
preprint arXiv:1301.3781 (2013).

[52] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove: Global vectors for
word representation”. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). 2014, pp. 1532–1543.

[53] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning with neural
networks”. In: Advances in neural information processing systems 27 (2014).

[54] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language under-
standing”. In: arXiv preprint arXiv:1810.04805 (2018).

[55] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural information
processing systems 33 (2020), pp. 1877–1901.

[56] Hammond Pearce, Benjamin Tan, and Ramesh Karri. “Dave: Deriving automatically verilog
from english”. In: Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for
CAD. 2020, pp. 27–32.

[57] Jason Blocklove et al. “Chip-Chat: Challenges and Opportunities in Conversational Hardware
Design”. In: arXiv preprint arXiv:2305.13243 (2023).

[58] Francesco Stella, Cosimo Della Santina, and Josie Hughes. “How can LLMs transform the
robotic design process?” In: Nature Machine Intelligence (2023), pp. 1–4.

[59] Michael Ahn et al. “Do as i can, not as i say: Grounding language in robotic affordances”. In:
arXiv preprint arXiv:2204.01691 (2022).

[60] Ardavan F Oskooi et al. “MEEP: A flexible free-software package for electromagnetic simula-
tions by the FDTD method”. In: Computer Physics Communications 181.3 (2010), pp. 687–
702.

[61] Qimin Quan, Parag B Deotare, and Marko Loncar. “Photonic crystal nanobeam cavity strongly
coupled to the feeding waveguide”. In: Applied Physics Letters 96.20 (2010), p. 203102.

[62] Connie J Chang-Hasnain. “Tunable vcsel”. In: IEEE Journal of Selected Topics in Quantum
Electronics 6.6 (2000), pp. 978–987.

[63] Simon M Sze, Yiming Li, and Kwok K Ng. Physics of semiconductor devices. John wiley &
sons, 2021.

[64] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).
[65] Yue Xu et al. “Scalable learning paradigms for data-driven wireless communication”. In: IEEE

Communications Magazine 58.10 (2020), pp. 81–87.

14

	Introduction
	Methods
	Objective overview
	Human-AI co-design philosophy
	Conceptualization with the LLM
	Code generation and improvement
	Final optimization step with RL

	Results and discussion
	Conclusion

