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Abstract

Conventional design and optimization of Photonic Crystal Surface Emitting Lasers
(PCSEL) usually requires expert knowledge in semiconductor physics and opti-
mization algorithms, which is also known as the inverse design problem. However,
with the trend towards automation and depersonalization of the entire integrated
circuits (IC) industry, the conventional method, with the drawback of being rela-
tively labor-intensive and sub-optimal, warrants further refinement. This technical
dilemma remained until the emergence of Large Language Models (LLMs), such
as OpenATI’s ChatGPT and Google’s Bard. This paper explores the possibility of
applying LLMs to machine learning-based design and optimization of PCSELs.
Specifically, we utilize GPT-3.5 and GPT-4. By simply having conversations, GPT
assisted us with writing Finite Difference Time Domain (FDTD) simulation code
and deep reinforcement learning code to acquire the optimized PCSEL solution,
spanning from the proposition of ideas to the realization of algorithms. Given that
GPT will perform better when given detailed and specific questions, we break down
the PCSEL design problem into a series of sub-problems and converse with GPT
by posing open-ended heuristic questions rather than definitive commands. This
paper shows that LLMs, such as ChatGPT, can guide the nanophotonic design and
optimization processes, on both the conceptual and technical level, and we propose
new human—AlI co-design strategies and show their practical implications. We
achieve a significant milestone for the first step towards an automated end-to-end
nanophotonic design and production pipeline.

1 Introduction

Trends of design automation and depersonalization (i.e., human out of the loop) in the integrated
circuit (IC), nanotechnology, and semiconductor industries [ 1} |2] are emerging rapidly. Aided by
artificial intelligence (Al), machine automation is beginning to replace conventional design and
fabrication processes involving humans that had existed for over half a century. The nanophotonics
industry [3} 4], however, has not yet been sufficiently depersonalized due to its unique fabrication
precision requirements [5} 6] and relatively complex theoretical models [7} |8]. As an important
example of nanophotonics, the design of photonic-crystal-surface-emitting-lasers (PCSEL) [8H23]],
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such as the one shown in Figure 1, demand rigorous physical modelling and calculations with Finite
Difference Time Domain (FDTD) or Finite Element Analysis (FEA) simulation tools. However,
the inverse design and optimization [24} [25]] of PCSEL suffers from three aspects: the one-to-many
mapping nature and non-convexity of this inverse problem, a high demand for expert knowledge in
semiconductor physics and theoretical modelling/simulation (and thus human involvement), and a
lack of ready-to-use machine learning algorithms. The above challenges make it difficult to achieve
an ene-to-end depersonalized design pipeline for PCSELSs.

Luckily, recent advancements in machine learning [26] and optimization algorithms have pro-
pelled the progress of depersonalized nanophotonics design. Early in the 90s, heuristic, evolutionary
(28], and gradient-based [29]] optimization algorithms began to emerge prolifically. Key algorithms
include Newton’s method [30]], particle swarm [31]], genetic algorithm [32], Bayesian optimization
[33]l, Monte Carlo method [34]], and simulated annealing [35] etc. These algorithms provide a new
way of thinking when facing these non-convex optimization problems, which act as a solid foundation
for continued research. But the problem remains for heavy human involvement due to sophisticated
trial-and-error iterations. To solve this, at around 2012, researchers proposed deep-learning (DL)
frameworks in order to construct a mapping relationship between input parameters and output
targets. In particular, DL consists of supervised, unsupervised, and reinforcement learning (RL)
[37]. These DL models greatly bolstered the efficiency of nanophotonic inverse design, pushing the
possibility of automated and depersonalized design into a new stage [25] 38H40]]. Circa 2023, a new
DL framework based on RL (e.g., deep Q-learning (DQN) [41]]), called Learning to Design Optical-
Resonators (L2DO) [42], provides the solution for autonomous inverse design of photonic crystal
nanocavities without human intervention. With two orders of magnitude higher sample efficiency
compared to supervised learning, L2DO has preliminarily realized photonics design automation on an
algorithmic level. However, since both the simulation code and DL code in L2DO were still created
by the human designer, we were still a distance away from depersonalized photonic design.

Development of large language models (LLMs) [43H47] is the final building block of depersonalized
nanophotonics designs. LLMs are recent advances in deep learning to work on human languages
and natural language processing. Behind the scene, it is a large-scale pre-trained attention-based
transformer model that predicts and generates human-like text output. LLMs are trained on massive
amounts of text data collected from the internet, which includes books, articles, websites, google
searches, and various other sources. LLMs have been rapidly evolving in the last few years. Word2Vec
(48], developed by Google’s Tomas Mikolov in 2013, is a milestone in the development of LLM. It
generates high-quality word embeddings (representing words as vectors in a high-dimensional space)
to capture semantic meaning and relationships. Following this model were The Global Vectors for
Word Representation (GloVe) [49] model, developed by Stanford researchers in 2014, and Seq2Seq
models, which was also introduced by Google. These two models perform better at scalability
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than the former and could be trained in parallelized way, thus more efficient. Along with these two
models, the concept of attention mechanism was proposed, introducing weight coefficients to words
in different positions. In 2018, BERT [51]] were brought to us by Google. However, LLMs did
not take center stage of the world until these last few months, with the introduction of GPT-3 [52]],
followed by GPT-3.5 and eventually GPT-4. GPT-4 is undoubtedly a pioneering breakthrough which
is bound to bring a revolutionary change in many scientific and engineering realms.

A limited handful of researchers have found the potential for using LLMs in hardware design and
implementation at an early time. In 2020, researchers utilized an improved GPT-2 model called
"DAVE" for Verilog code snippets generation and output evaluation [53]], which is a crucial component
in IC design pipeline. A more recent model named "Chip-chat" [2] came out in 2023, which is
an LLM-driven method for IC Verilog code generation and is one of the first wholly-Al-written
Hardware Description Language (HDL) for chip tape-out. Meanwhile, LLMs have also contributed
significantly to the design and control of robots. Researchers have shown the guidance value of LLM
in a robotic gripper design process [54]], both conceptually and technically. By means of simply
conversing with GPT, they successfully designed a robotic gripper capable of reaping the tomato
plant. Last but not least, a method based on LLMs called "SayCan" [55]], proposed by a team from
Google, has recently enabled leveraging and grounding the rich knowledge in large language models
to complete embodied tasks by robot.

In this work, we propose a new human—AlI co-design strategy for PCSELs and show the practical
implications of LLMs for nanophotonic design methodology in general. Specifically, we explored
and verified the potential of applying LLMs to machine learning-based design and optimization of
PCSELSs, during which we seek to maintain as less human involvement as possible. In other words,
the human is merely a facilitator rather than the person in charge. By simply having conversations
spanning from the proposition of initial ideas to the implementation of final algorithms, GPT-4 assisted
us with writing FDTD simulation code and deep RL (e.g. DQN) code to acquire the optimized
PCSEL solution. The resulting PCSEL is single-mode, high-power, large-area, and small-divergence
angle. The whole design pipeline is illustrated in Figure 2. Given that GPT will perform better
when given detailed and specific questions, we break down the PCSEL design problem into a series
of sub-problem modules and converse with GPT by strictly posing open-ended heuristic questions
rather than definitive commands. This paper shows that LLMs, such as ChatGPT, can guide the
nanophotonic design and optimization processes, on both the conceptual and technical level. All in all,
we achieve a significant milestone for the first step towards an automated end-to-end nanophotonic
design and optimization pipeline.
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Figure 2: LLMs for depersonalized PCSEL design and optimization pipeline. Human involvement is
minimized to the largest extent possible. The human facilitator prompts the LLM to generate FDTD
code for simulating the PCSEL structure and Al (e.g., RL) code for subsequent optimizations of the
PCSEL model. The FDTD code is written with the MIT meep [56] package. The Al optimization
process with RL is built upon an earlier work’s L2DO framework [42]]. The final optimized PCSEL
design is then converted to CAD layout and be prepared for tape-out and fab.



2 Methods

2.1 Objective overview

Photonic Crystal Surface Emitting Lasers (PCSELSs) [9} |16, 17] are a type of laser that combines
the benefits of photonic crystals (PhC) [[7]] and Vertical Cavity Surface Emitting Lasers (VCSELs)
[57]]. PhCs are artificial structures that have a periodic refractive index modulation in one, two, or
three dimensions. This periodicity creates a bandgap that inhibits the propagation of light in certain
frequency ranges. VCSELSs are lasers that emit light perpendicular to the surface of the semiconductor
structure, which allows for efficient coupling to optical fibers and other optical components. PCSELs
combine these two technologies to create lasers that have several advantages over traditional lasers
and therefore has the best of both worlds.

The basic design of a PCSEL consists of a PhC layer, an active layer, and several other cladding layers
and substrates along with p-n junctions and electrodes at the ends (Figure 1). The PhC layer typically
functions as a resonance cavity. The active layer, usually composed of III-V materials (InP/InGaP,
GaAs/InGaAs/AlGaAs, GaN/InGaN etc.) which can create a population inversion of charge carriers
when the threshold is reached, is placed in the middle of a PCSEL and serves to produce the light
that is emitted from the laser. Population inversion means that there are more electrons in higher
energy levels than in lower energy levels, which allows for stimulated emission of photons when
an electrical current is applied [9, 58]. So when an electrical pumping current is injected into the
active layer material, it emits laser light that is ideally confined and amplified within the resonant
cavity. Additionally, the active layer could contain quantum dots or quantum wells that increase the
recombination rate of spontaneous emission and thus substantially enhance the lasing effect. So the
bottom line is that the PhC layer is used to control the amplitude and direction of the emitted light,
but the active layer is what actually generates the light. Therefore, proper design of the PhC layer and
the active layer plays a central role in the overall quality of a PCSEL.

Table 1: Target metrics/figure of merit of the PCSEL device to be designed and optimized. An ideal
PCSEL has the following characteristics: single-mode, high power, large emission area, and small
divergence angle.

Metric/Figure of merit Target values
Lasing area >=3.6e-13 m?
Operating wavelength =980 nm
Output power/injecting power >=30%
Divergence angle <=1 degree

In this article, we investigate the potential of an LLM-based depersonalized PCSEL design and
optimization pipeline (Figure 2). The target metrics or figure of merit of the PCSEL to be designed
and optimized are listed in Table 1. We set the target values according to our own experiments and
surveying the literature for what is ideal for high-quality PCSEL lasing. For example, the wavelength
of 980 nm is important for applications in telecommunications and satellites, a high output power is
important for applications like autonomous driving, machining, and medicine, and a small divergence
angle is important for achieving high beam quality and long-distance light propagation.

2.2 Human-Al co-design philosophy

In the near future, LLMs are bound to fundamentally change the design flow in many fields, for its
ability to internalize an extensive dataset in different types and generate proper responses using the
acquired knowledge. Such potential has been discovered by researchers in the fields of medicine,
robotics, literature, topology etc. In this article, we propose a new paradigm for applying LLMs
in PCSEL design and optimization, called the "human-AlI co-design" methodology (Figure 2 & 3).
As illustrated in Figure 3, we divide the design process into three steps: conceptualization, code
generating and debugging, and simulation and optimization. Due to the limitation of the status quo of
LLMs, the Al agent usually cannot give out the perfect solution all at once. Therefore, the human
needs to act as a liaison to help administer/facilitate the design work while simultaneously bearing in
mind that excessive human involvement could compromise the integrity of the Al agent’s decisions.
So for example if a large proportion of the design task is dominated/controlled by humans, it does not
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Figure 3: Human-AlI co-design paradigm for applying LLMs to PCSEL design and optimization. A
pictorial overview of the discussions and interactions between the human facilitator and the LLM, with
the questions prompted by the human and the answers/solutions provided by the LLM (GPT). The
process is divided into three steps: left column: conceptualization, middle column: code generation
and debugging, and right column: simulation and optimization. Optimization via DQN is run on
high-performance computing (HPC) clusters for improved computational speed and output.

reflect the human-AlI co-design philosophy and thus should be avoided as much as possible. Overall,
the design flow should follow these rules and restrictions:

1. The whole design process should start with the human providing an open-ended question to GPT
rather than giving definitive commands. This is the beginning of an important conceptualization
process, where the human stimulates the LLM to brainstorm and generate creative ideas. For example,
you can start a conversation by "What is the most sought-after laser nowadays?" or "What are some
good optimization algorithms to use in hardware design?" Subsequent conversations will continue
by gradually guiding GPT to arrive at a specific solution for this conceptual question. Sample Q&A
rounds are demonstrated in the left column of Figure 3. Once we get to the code generations and
debugging stage, questions can become more specific and technical, such as "can you help me design
a high-power and large-area PCSEL model using FDTD algorithm written in Python?" or "can you
help me improve an existing deep-Q learning code implemented with experience replay that’s written
with PyTorch?"

2. A well-described problem should be considered to have only a unique optimized solution. During
the conversation, GPT might provide several feasible solutions. The existence of a feasible solution
space should be an indicator that our prompt question to GPT has not been phrased well. So the
correct action is to narrow down the solution space by adding constraints or target metrics to the
question so that we could get a unique solution. One can refine their prompt by adding "considering
XXX (your numerical targets or constraints), can you give me an optimized solution among which
you gave previously?".

3. Humans should respect the self-correcting mechanism of GPT rather than directly pointing out the
problems/errors it has. In the conversations, there might be times when the answers given by LLMs
are self-contradictory or simply wrong. This is attributable to GPT’s insufficient understanding of
the problem it’s solving, which usually happens at the early stage of a conversation. To properly
respect the self-correcting mechanism of GPT, one should report the error by saying "you have just
mentioned XXX, and I hope you could think twice about this and regenerate your answer" or "are you
sure XXX is the correct answer? Please elaborate" rather than "lines XXX and XXX of the code you
generated are wrong" or "fix the XXX function/method in the code for me". In the code generating
part, these kinds of mistakes will be especially common. In our experience, it usually takes several
conversational iterations before the code finally becomes bug-free and ready to run. When debugging



# Define the 30 PCSEL geometry with different layers # Initialize the sinulation
geometry = [mp.Block(np.Vector3(mp. inf, mp.inf, t_substrate), sim = mp.Simulation(cell_size=cell_size,
center=np.Vector3 (0, 6, -z_total/2 + t_substrate/2), boundary_layers=pnl_layers,
material=np.Medium(epsilon=n_substrate**2)), geonetry=geonetry,
mp.Block (mp.Vector3(mp. inf, mp.inf, t_n_cladding), sources=sources,
center=np.Vector3 (0, 8, -z_total/2 + t_substrate + t_n_cladding/2), resolution=10)
material=np.Mediun(epsilon=n_n_cladding**2)), # Define a box around the source for flux computation
mp.Block (mp.Vector3(mp. inf, mp.inf, t_active), Flux_box = mp.FluxRegion(center=np.Vector3(), size=np.Vector3(10, 16, z_total))
center=np.Vector3 (0, @, -z_total/2 + t_substrate + t_n_cladding + # Add the DFT flux object to the simulation
t_active/2), Flux = sim.add_flux(frequency, 0, 1, flux_box)
material=np.Mediun(epsilon=n_active**2)), # Run the sinulation
mp.Block (mp.Vector3(mp. inf, mp.inf, t_photonic_crystal), sim. run(until=200)
center=np.Vector3(e, 0, -z_total/2 + t_substrate + t_n_cladding + t_active # near field Poynting vector in z direction
+ t_photonic_crystal/2), (%, y, 2, w) = sim.get_array_metadata(dft_cell=resonance_z)
material=np.Mediun(epsilon=n_photonic_crystal**2))] + holes + [ Pz =[]
mp.Block (mp.Vector3(mp. inf, mp.inf, t_p_cladding), i-e
center=np.Vector3(e, 6, -z_total/2 + t_substrate + t_n_cladding + t_active for _ in flux.freq:
+ t_photonic_crystal + t_p_cladding/2), (Ex, Ey, Hx, Hy) = [sim.get_dft_array(flux, ¢, i) for ¢ in [mp.Ex, mp.Ey, mp.Hx, mp.Hy]]
material=np.Mediun(epsilon=n_p_cladding**2))] Flux_density = np.real(np.conj(Ex) * Hy - np.conj(Ey) * Hx) # array
# Create the air holes in the PhC layer £1x = np.sun(w * flux_density) # scalar
for 1 in range(n_holes): Pz.append (f1x)
for j in range(n_holes): i4=1
# Create a cylindrical hole at this position # Compute the total emitted power
hole = mp.Cylinder(radius=hole_radius, height=t_photonic_crystal, emitted_power = np.get_fluxes(flux)
center=np. Vector3(i*lattice_constant - cell_size.x/2, # Define where to perform the Harminy analysis
J*lattice_constant - cell size.y/2, 0), harminy_regions = [mp.Harminv(mp.Ez, mp.Vector3(s,6,0), frequency, ©.1*frequency)] # 10%
material=np.Medium(epsilon=1)) bandwidth
geometry . append (hole) # Reset the fields and use the same geometry and sources for the Harminv analysis
sim.reset_meep()
sim. change_sources (sources)
sim.run(mp.after_sources(*harminv_regions),
until_after_sources=260)
for mode in sim.harminv_data:  #calculate Q-factor
print(fFrequency: {node.freq} Q factor: {mode.q}")
V = sin.nodal_volume_in_box(box=vol) #calculate the modal volume

Figure 4: Code generated by ChatGPT-4 for FDTD simulation of PCSEL using the meep package.
Left: geometry setup section, right: simulation setup and calculations section. Code shown here is
the final version that runs successfully after several rounds of debugging.

the code, it is not advised that one points out the precise location of error for GPT; the proper way is
to copy the error message from the terminal and let Al do the modification itself. A demonstration of
this interactive debugging process is shown in the middle column of Figure 3.

2.2.1 Conceptualization with the LLM

The conceptualization step is for Al to have a general understanding of what our problem is about, as
a result of which the Al can choose proper methods and algorithms for more detailed prompts down
the road. We kick off the conversation by raising a heuristic question "what constitutes a "good"
PCSEL laser?" and "let us design a PCSEL together, how do you think we should start?", and the
LLM provides us with a general design pipeline by saying "here is a general procedure to get started
with" where the design problem is broken down into sub-modules such as "understanding the basics
of PCSEL", "material selection", "designing photonic crystal structure" etc. Then we take a further
step by asking: "I have understood the basics of PCSEL, now what are some important factors to
consider when designing PCSELs?" The LLM then tells us what to look out for when designing
PCSELs. Some sample chats are shown in the left column of Figure 3. We then prompted another
heuristic question about choosing optimization algorithms. GPT-4 eventually made up its mind by
the phrase "In this case, reinforcement learning and Bayesian optimization might be the most suitable
for your problem" after we’ve clarified our optimization objectives and constraints. When we think
GPT-4 has for the most part understood what we are trying to do, we ask it: "Could you generate an
appropriate code skeleton according to the above conversation? Please note that the FDTD should
be implemented with meep and RL should be with PyTorch." As a result, GPT-4 gives us a script
skeleton template for FDTD simulation using meep [56] and DQN using PyTorch, respectively. The
problem has now evolved to how to expand each of these two code templates to a full-blown code,
meaning that our work is moving to the next stage for code generation.

2.2.2 Code generation and improvement

Based on section 2.2.1, we have divided the coding problem into two modules (FDTD and DQN) and
obtained the initial code skeletons of both modules. In this section we will complete, expand and
debug our existing code skeletons, which is the core stage of our whole PCSEL design process.



Debugging iterations by GPT-4
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Figure 5: Debugging iterations of the FDTD code by conversing with GPT-4. All bugs in the code in
Figure 4 were cleared out within 5 iterations.

For generating a FDTD simulation code from a skeleton script, we need to provide the LLM with
more specific and concrete physical parameters of the PCSEL. We require that our PCSEL has
five layers, called "n-substrate layer", "n-cladding layer", "active layer", "photonic crystal layer",
"p-cladding layer" respectively, as well as 50 x 50 air holes in the PhC layer. It is worth mentioning
that the value of parameters, such as the refractive index and the thickness of each layer, could be
randomly initialized due to the DQN optimization process we have later on. In the conversations, we
assigned those values in-line with a PCSEL model (seen in Figure 1) we built in the past. In addition,
we also provided requirements for boundary conditions, meshing resolution, and refractive indices
etc. After we provided the concrete physical parameters, GPT-4 expanded our code by completing
the PCSEL structure and simulation settings, as shown in Figure 4. Additionally, the flux and farfield
monitors are added according to our requirement for calculating the emitting power, modal volume,
and divergence angle; the Harminv monitor is added for calculating the Q-factor. Those monitors and
their calculations are shown in Figure 4.

Now that the FDTD simulation code has been written, the next step is doing some debugging and
fine-tuning until the code finally runs successfully. As the middle column of Figure 3 and Figure 5
shows, we iteratively test run the code on our local computer and transfer the error messages to GPT
for debugging, repeating this process until the code becomes bug-free. In our experience, so long as
the errors are not too severe, most bugs can be eliminated within 5 iterations.

Next, we generated the DQN code for RL-based optimization of PCSELs. As a core component of
the DQN algorithm, we first need an environment to provide the feedback interface. We adopted
openAl gym [59] as the wrapper class for our environment, which is the FDTD simulator that we
have generated and fine-tuned. When letting GPT generate the code for the environment, we told
GPT what the state space, action space, and reward function are. Further specifications such as the
step size of actions, the upper and lower bounds of state variables are given to GPT as well. Then,
with the environment code, we could complete and implement our DQN code. A main DQN script is
finished by GPT based on the code skeleton given earlier, considering requirements for the replay
buffer, policy DNN, optimizer, loss function etc. See Figure 6 for a part of the completed DQN script.



# declare transition and experience replay # define the optimization (RL) process, which computes V, Q and the loss
Transition = namedtuple('Transition’, ('state’, ‘action’, ‘next_state’, 'reward’)) def optimize_model():
class 1ayMemory(object)
“""declare the replay buffer""" if len(memory) < BATCH SIZE:
def _init_(self, capacity): Return
self.memory = deque([], maxlen=capacity) print(‘optimizing...")
def push(self, *args):
""Usave a transition”"" transitions = memory.sanple(BATCH SIZE) # sample transitions from the replay buffer
self.memory .append (Transition(*args)) batch = Transition(*zip(*transitions)) # transpose the batch
def sanple(self, batch_size) # compute a mask of non-final states and concatenate the batch elements
return randon. sample(self.memory, batch_size) non_final_mask = torch.tensor(tuple(nap(lanbda s: s is not None, batch.next_state)),
def _len_(self) device=device, dtype=torch.bool)
return len(self.memory) non_final_next_states = torch.cat([s for s in batch.next_state if s is not Nonel)
# set up the neural network # state, action, and reward from replay buffer
# create a class for the DQN's policy MLP state_batch = torch.cat(batch. state)
class Net(nn.Module): action_batch = torch.cat(batch.action)
def __init_(self, nun_actions): reward_batch = torch.cat (batch. reward)
super(Net, self).__init_() # compute Q(s, a)
self.fc1 inear(nunState, 88) # just FC, no CNN state_action_values = policy_net(state_batch).gather(1, action_batch)
self.fc2 inear(86, 120) # Compute V(s')
self.fc3 = nn.Linear(120, 89) next_state_values = torch.zeros(BATCH_SIZE, device=device) # V is zero for final state
self.fca = nn.Linear(80, num_actions) next_state_values[non_final_mask] =
def forward(self, x): target_net(non_final_next_states).nax(1)[@].detach() V' = max(Q")
X = x.to(device) # compute the expected Q values
# print(x. shape) expected_state_action_values = (next_state_values * GAMMA) + reward_batch # Q_expected =
X = x.view(-1, numstate) r + gamna*V'
x = F.relu(self.fcl(x)) # cost function
x = F.relu(self.fc2(x)) criterion = nn.SmoothL1Loss()
x = F.relu(self.fc3(x)) loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1)) # L =
X = self.fc(x) Q.actual - Q.expected
turn x # optimize the MLP model
def select action(state): optiizer.zero_grad()
“*“selects an action accordingly to an epsilon greedy policy""" loss.backward()
global steps_done for param in policy_net.parameters():
sample = randon() # generate random number # clamp grad values to between -1 and 1
eps_threshold = EPS_END + (EPS_START - EPS_END) * math.exp(-1. * steps_done / EPS_DECAY) # paran. grad. data. clamp_(-1,1)
expotentially decaying eps optinizer.step()
steps_done += 1 print (loss.iten())
if sample > eps_threshold uriter.add_scalar(training/losses’, loss.iten(), steps_done)
with torch.no_grad():
print (policy_net(state))
print (policy_net(state).max(1)[1])
return policy_net(state).max(1)[1].view(1, 1) # Pick action with the largest
expected reward (argmax)
else:
return torch.tensor([[randon.randrange(n_actions)]], device=device,
dtype=torch.long) # pick random action

Figure 6: Code generated by ChatGPT-4 for optimization of PCSEL using DQN. Left: replay buffer,
policy network, and action selection setup, right: core part of DQN where the value-functions, action-
value functions, and loss are computed. Code shown here is the final version that runs successfully
after several rounds of debugging.

Please note that the DQN script imports the environment class. The next step is to run the DQN code,
letting it interact with our FDTD environment and continuously optimize the PCSEL device.

Just like the FDTD code, the DQN code is then debugged and fine-tuned by iteratively running the
code and feeding error messages to GPT. An example of this process is demonstrated in Figure 7.

2.2.3 Final optimization step with RL

For the full optimization loop of PCSEL using DQN, refer to Figure 8. The main framework is
built upon the one proposed in an earlier work [42]. The objective here is to optimize the existing
PCSEL structure such that the metrics in Table 1 are met. Therefore at each iteration, computed
optical attributes (lasing area, power ...) that are closer to the target metrics will earn a higher reward.
The state is defined as the design parameters of PCSEL, whereas the action is the changes made to
the state at each iteration. The environment, which is a core component of DQN, is realized with
the FDTD simulation code we generated earlier. A detailed explanation of the working theories of
DQN, the state and action setup, the agent/policy net, and the reward definition are reserved in the
supplementary material. The optimization loop is run on an HPC cluster that has 20 CPU cores and 2
GPUs with CUDA, where each trial takes up to 5 days to run.

3 Results and discussion

Figure 9 showcases the learning curves (scores vs. episodes) of training the DQN algorithm to
optimize our PCSEL according to Figure 8. Three representative trials have been selected to
demonstrate the training convergence results. Figure 9(a) shows the average score of each episode,



Debugging iterations by GPT-4

The error "NameError: name 'gym' is not defined" is due to the fact that the
gym module is not imported. gym is a Python library for developing and
comparing reinforcement learning algorithms, and it's used in your code to
define the environment in which the agent operates.
You can fix this issue by simply importing gym at the beginning of your script.
Additionally, you are also using spaces from gym, so you need to import that
as well.
Add the following import statements to your code:

import gym

from gym import spaces

The error "AttributeError: 'MeepEnv' object has no attribute ‘parameters™

means that you are trying to access the parameters attribute before it is =
defined in the MeepEnv class.
You can modify your code ke this:

class MeepEnv(gym.Env):
def _init_(self):
Super (MeepEnv, self)._init_ ()
# Define action space
# The agent will choose one of 20 possible actions
self.action_space = spaces.Discrete(26)
# Define observation space
# Assuming the emitted power is the only
observable state
self.observation_space = spaces.Box(low=0,
igh=np.inf, shape=(2,), dtype=np.float32)
# Initialize parameters
self.parameters = {
"t_substrate”: 0.2,
0.3,

"t active": 6.5,
-}

Figure 7: Debugging iterations of the DQN code by conversing with GPT-4. All bugs in the code in
Figure 6 were cleared out within 5 iterations.
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Figure 8: Optimization of PCSEL via DQN, where the objective is to meet those target metrics listed
in Table 1. This is a detailed expanded version of the right column of Figure 3, including the state
and action parameters, the reward definitions, the FDTD environment, and the agent DNN. Q(s,a) is
action-value functions predicted by the agent DNN.

whereas (b) shows the max score of each episode. Each episode contains a maximum of 250 time
steps. Each curve, which represents a complete trial, was trained for 5 days until cut off at the end of
the 5th day due to limits on computing resources. Details of the score definition are included in the
supplementary materials.

Using the optimization results illustrated in Figure 9, the optical attributes of the optimized PCSEL
that satisfies the target metrics/figure of merit are reported in Table 2. The corresponding set of design
parameters of the optimized PCSEL is included in the supplementary material. To better illustrate the
advantage of our results, best data from the literature are listed in the rightmost column of Table 2 for
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Figure 9: Learning curves of training the DQN to optimize PCSEL, plotted as scores vs. episodes. (a)
Average score of each episode; (b) Maximum score of each episode. Each episode contains a horizon
of 250 steps. Vertical axis are plotted in log-scale.

a direct comparison of metrics. The literature data were chosen after an exhaustive literature survey
of PCSELs conducted by the authors.

Table 2: Best optical attributes of the optimized PCSEL structure, which are computed by FDTD
simulations. They have satisfied the target metrics and figure of merit listed in Table 1. Rightmost
column reports best literature data (S. Noda et al. [|17]) for a direct metric comparison, which has a
similar operating wavelength of 940 nm. Since injecting or pumping power used by the literature is
unknown, no percentage is reported. c.w. = continuous wave.

Metrics Optimized values | Literature data [17]
Lasing area 8.6865e-14 m? 6.4e-Tm? |
Operating wavelength 1004.6 nm ~ 950 nm
Output power/injecting power 60.57% 6.5 W (c.w.)
Divergence angle 0.5758 degrees 0.21 degrees

As the device size and thus the lasing area of the literature data are much larger than ours, we expect
the absolute output power of the literature data to be proportionally higher. Nonetheless, since we
were able to achieve a high output power-to-injecting power ratio of 60%, our device has a high
energy efficiency and electron-to-photon conversion efficiency. This could also mean our device has
a high power-density (watts/unit area). Still, the smaller divergence angle reported by the literature
data suggests that we still have some work to do for the optimization task, as we were only able to
get the divergence down to a lowest of 0.6 degrees. All in all, except for the lasing area which just
falls short of the target metric, the rest of the optimized attributes have satisfied and even exceeded
the target metrics in Table 1.

Next, when we verified the solved designs in FDTD, we also calculated the resulting Electric field
profiles and spectra, which are visualized in the supplementary’s Figure 5. The corresponding
FDTD-verified (), V, and X values are also labelled on the plots. According to the E, profiles in
Figure 5(c)-(d), we see that a fundamental or second order resonance mode is achieved by both
nanobeam structures, which means that the solved design parameters indeed gave rise to correct
electromagnetic mode profiles. According to the spectra in Figure 5(a)-(b), a single resonance peak
can be located at the target wavelengths (around 980 nm, respectively), indicating the existence of
a single mode and the correctness of the EM modes solved by our algorithm. y-axes of the spectra
typically represent the intensity of the EM field measured or simulated while x-axes correspond to
wavelengths. These results guarantee a high-quality and precise laser for applications in interconnects
on PICs and telecommunications. In future endeavors, experimentalists in our group will fabricate
the retrieved designs demonstrated here into actual laser devices, such as the one shown in Figure
1(a)-(b), capable of performing real-world tasks.
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4 Conclusion

In summary, this work features the first LLM model applied to inverse designing PCSELs. The
inverse problem concerns retrieving a design topology that satisfies certain optical specifications of the
photonic device. The model successfully addressed three major challenges faced by state-of-the-art
deep learning-enabled inverse design methods: 1) a serious shortage of available training data; 2) the
fundamental one-to-many mapping or the non-uniqueness issue; 3) the need for a pre-trained MLP
network. According to our studies, the model not only met the required maxima of certain optical
responses (e.g., the Q factor) but also optimized some good-to-have features (e.g., modal volume and
wavelength) that are conducive to a high-quality laser. The solved values were then verified manually
in FDTD and their correctness were confirmed by checking the generated optical responses. We then
offered some advice on what hyperparameters need special attention when one attempts to tune a
deep RL model. All in all, Our inverse designed laser cavities can find broad applications in modern
PICs, interconnects, and telecommunications.

Our methodology in this work is inspired by the famous marriage of Al and Electronic Design
Automation (EDA) [1]] over the last 5-8 years. For future prospects, this work paves the way for
applying deep RL to the rapid multi-objective inverse design and optimization of nanophotonic
devices without the need for pre-collecting any data or resorting to human-centered trial-and-error
iterations. Through our efforts, we mainly aim to empower the rise of fully automated photonic
design because the current state of Photonic Design Automation (PDA) is still largely lacking. Our
time and efforts in the subsequent stage will be chiefly directed towards developing a software that
brings Al and PDA together into one unity.
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