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OBSERVABILITY OF A STRING-BEAMS NETWORK WITH MANY

BEAMS

Anna Chiara Lai1, Paola Loreti2 and Michel Mehrenberger3,*

Abstract. We prove the direct and inverse observability inequality for a network connecting one
string with infinitely many beams, at a common point, in the case where the lengths of the beams
are all equal. The observation is at the exterior node of the string and at the exterior nodes of all
the beams except one. The proof is based on a careful analysis of the asymptotic behavior of the
underlying eigenvalues and eigenfunctions, and on the use of a Ingham type theorem with weakened
gap condition [C. Baiocchi, V. Komornik and P. Loreti, Acta Math. Hung. 97 (2002) 55–95.]. On the
one hand, the proof of the crucial gap condition already observed in the case where there is only one
beam [K. Ammari, M. Jellouli and M. Mehrenberger, Networks Heterogeneous Media 4 (2009) 2009.]
is new and based on elementary monotonicity arguments. On the other hand, we are able to handle
both the complication arising with the appearance of eigenvalues with unbounded multiplicity, due to
the many beams case, and the terms coming from the weakened gap condition, arising when at least 2
beams are present.

Mathematics Subject Classification. 93B07, 74K10, 42A16, 35M10, 35A25.
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1. Introduction

The present paper aims to investigate evolutive control models for networks of vibrating structures, with
particular attention to bio-inspired models and to possible applications to network engineering. The control
of complex networks is a deeply investigated question in network science and engineering [15]. In particular,
the paper [12] studies systems with an arbitrarily large number strings and systems with a possibly infinite
number of beams, with a common endpoint. For both classes of systems, exact observability conditions were
established. On the other hand, [1] deals with the observability of a heterogeneous structure composed by a
beam and a string. This paper presents an extension of the above two papers to composite structures composed
by a string and infinitely many beams. In particular we investigate the simultaneous observability of the system,
namely the existence of a one-to-one correspondence between the initial data and some observed data during
the evolution of the system. The study of infinite systems is motivated by the search of uniform constants
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2 A. C. LAI ET AL.

associated to the observability conditions. Uniformity in the constants indeed allows to cope with perturbations
of the topology of the network, for instance by adding or removing a beam. The extension from “one string-one
beam” system to a “one string-many beams” system comes with some technical difficulties. This is related to
the appearance of eigenvalues with unbounded multiplicity, and of new terms in the observable associated to
the weakened gap condition. Future perspectives include the generalization of the present approach to different
boundary conditions and networks. We remark that in [12] an application of a Minkowski theorem on Diophan-
tine approximations seems to prevent the observability of infinite strings: however the discussion of string-beam
structures with many strings remains an open problem.

The paper is organized as follows. In Section 2 we introduce the main results of the paper. They are:
Theorem 2.1, dealing with the well posedness of the system under exam; Theorem 2.2, providing new norm
estimates for the initial energy of a “one string-one beam” system; and Theorem 2.3, stating some sufficient
exact observability conditions for a “one string-(infinitely) many beams” system. In Section 3 we perform a
spectral analysis of the system, we characterize the eigenvalues and related eigenspaces, and we express the
solutions in terms of Fourier series, so to prove Theorem 2.1. Section 4 is devoted to the proofs of Theorem 2.2
and Theorem 2.3. More precisely, in Section 4.1 we establish a generalized gap condition on the eigenvalues;
Section 4.2 contains the proof of Theorem 2.2 and some estimates of Ingham type with weakened gap conditions
and Section 4.3 is devoted to the proof of Theorem 2.3. Finally, in Section 5 we present some numerical
simulations.

In the remaining part of the present introduction, we present the system under exam.
We use the following notation N∗ := N\{0} and Z∗ := Z\{0}. Now, let J ∈ N∗∪{∞}, ` > 0 and α1, . . . , αJ >

0, such that A :=
∑J
j=1 αj < ∞. We consider the following system (see [13], e.g. pages 80–81, for the model)

coupling one string with J beams of same length ` :



(∂2
t u0 − ∂2

xu0)(t, x) = 0, x ∈ (0, 1),

(∂2
t uj + ∂4

xuj)(t, x) = 0, x ∈ (0, `), t > 0,

u0(t, 0) = 0, uj(t, 0) = 0, ∂2
xuj(t, 0) = 0, ∂2

xuj(t, `) = 0, t > 0,

u0(t, 1) = uj(t, `), ∂xu0(t, 1) =

J∑
k=1

αk∂
3
xuk(t, `), t > 0,

u0(0, x) = u0
0(x), ∂tu0(0, x) = u1

0(x), x ∈ (0, 1),

uj(0, x) = u0
j (x), ∂tuj(0, x) = u1

j (x), x ∈ (0, `),

(1.1)

for j = 1, . . . , J . A stabilization problem corresponding to such system has been studied in [1] for J = 1, in [3]
for arbitrary finite J and in [5] in a more general framework. In particular, for J = 1, an observability inequality
is obtained thanks to Ingham’s theorem, using a gap condition of the underlying eigenvalues. For arbitrary J ,
however, the gap does no longer hold and an Ingham type approach is more challenging, as also pointed in [4],
where another generalization of the case J = 1 has been performed. Some numerical illustrations have been
performed in [3] to suggest that such observability inequality still holds, but the proof remains to be done. The
origin of this work dates back to [2], where the model was introduced, but the study was incomplete. We are
here able to give a complete theoretical study and also to analyse the asymptotic behavior, where the number
of beams becomes large, which was not considered in [2]. In this present case, the analysis is simplified, as the
lengths of the beams are all equal, and we let the case of infinitely many beams with arbitrary length as open
problem. To the best of our knowledge, the case of infinitely many beams was first considered in [12], in the
different context of simultaneous observability; there, a very different behavior was observed between strings
and beams.
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2. Main results

We first consider an assumption on the length ` of the beam(s). So we define

L := {` ∈ R∗+, pπ 6=
k2π2

`2
, k ∈ Z, p ∈ N∗}.

We state the well posedness of the system. To this end, recall the definition A :=
∑J
j=1 αj and consider the

function f given by

f(z) := f`,A(z) = 2 cot(z2) +Az(cot(z`)− coth(z`)).

We prove in Lemma 3.2 that the positive zeros of f form a strictly increasing sequence that we denote by
(zn)n∈N∗ . Also we use the notation u = (u0, u1, . . . , uJ) and we consider the space

V =

u ∈ H1(0, 1)×
J∏
j=1

H2(0, `), u0(0) = 0, uj(0) = 0, u0(1) = uj(`), j = 1, . . . , J


and the Hilbert space

H :=

(u, v) ∈ V ×

L2(0, 1)×
J∏
j=1

L2(0, `)

 , ‖(u, v)‖2H <∞

 ,

with the norm

‖(u, v)‖2H :=

∫ 1

0

|v0|2dx+

J∑
j=1

αj

∫ `

0

|vj |2dx+

∫ 1

0

|∂xu0|2dx+

J∑
j=1

αj

∫ `

0

|∂2
xuj |2dx.

Our first result is a series representation for the solution to (1.1).

Theorem 2.1. Let ` ∈ L and J ∈ N∗∪{∞}. Assume that (an)n∈Z∗ , (bk,q)k∈Z∗,q=1,...,J−1 ∈ C are sequences with

a finite number non zero elements, and let (eq)q=1,...,J−1 be a basis of C := {(C1, . . . , CJ) ∈ CJ ,
∑J
j=1 αjCj = 0}.

Let u : (t, x) 7→ (u0(t, x), . . . , uJ(t, x)) be defined by

u0(t, x) :=

∞∑
n∈Z∗

ane
n
|n| iz

2
nt sin(z2

nx)

uj(t, x) :=

∞∑
n∈Z∗

ane
n
|n| iz

2
nt

sin(z2
n)

2

(
sinh(znx)

sinh(zn`)
+

sin(znx)

sin(zn`)

)
+

∞∑
k∈Z∗

(
J−1∑
q=1

bk,qe
q
j

)
e
k
|k| i

π2k2

`2
t sin

(
kπ

`
x

)
,

j = 1, . . . , J.

Then, for (u0, u1) = (u(0, ·), ∂tu(0, ·)), the function u is the unique solution of system (1.1) belonging to
C([0,∞), H).

We focus now on observability results. We also use the notation a � b, meaning that there exists constants
c1, c2 > 0 such that c1a ≤ b ≤ c2b.
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Let us first consider the case where J = 1. Note that such case was already studied in [1], but, there, the
observation was at the junction point with a more restrictive assumption on the length `. We define the initial
energy of the system (1.1) as

E0,J := ||(u0, u1)||2H =

∫ 1

0

|u1
0(x)|2dx+

J∑
j=1

αj

∫ `

0

|u1
j (x)|2dx+

∫ 1

0

|∂xu0
0(x)|2dx+

J∑
j=1

αj

∫ `

0

|∂2
xu

0
j (x)|2dx.

We get the following result, when observing on the exterior node of the string:

Theorem 2.2. Let ` ∈ L and J = 1. Let (an)n∈Z∗ ∈ C be a sequence with a finite number non zero elements
and assume that the initial data of (1.1) are

u0(x) :=

( ∞∑
n∈Z∗

an sin(z2
nx),

∞∑
n∈Z∗

an
sin(z2

n)

2

(
sinh(znx)

sinh(zn`)
+

sin(znx)

sin(zn`)

))

and

u1(x) :=

( ∞∑
n∈Z∗

an
n

|n|
iz2
n sin(z2

nx),

∞∑
n∈Z∗

an
n

|n|
iz2
n

sin(z2
n)

2

(
sinh(znx)

sinh(zn`)
+

sin(znx)

sin(zn`)

))
.

Then, the corresponding solution u of (1.1) satisfies for T > 2,

E0,J �
∫ T

0

|∂xu0(t, 0)|2dt,

where the related constants are independent of the initial data.

Observing again on the exterior node of the string, but also on the exterior nodes of the beams, except one,
we get our main result:

Theorem 2.3. Let ` ∈ L, 2 ≤ J ≤ ∞ and assume that αj � βj , j = 2, . . . , J , together with α1 � 1,

A =
∑J
j=1 αj � 1, with constants independent of J . Let Z be the set of pairs (u0(x), u1(x)) where up =

(up0(x), . . . , upJ(x)), p = 0, 1 and

u0
0(x) =

∞∑
n∈Z∗

an sin(z2
nx),

u0
j (x) =

∞∑
n∈Z∗

an
sin(z2

n)

2

(
sinh(znx)

sinh(zn`)
+

sin(znx)

sin(zn`)

)
+

∞∑
k∈Z∗

(
J−1∑
q=1

bk,qe
q
j

)
sin

(
kπ

`
x

)
, j = 1, . . . , J,

u1
0(x) = an

n

|n|
iz2
n sin(z2

nx),

u1
j (x) =

∞∑
n∈Z∗

an
n

|n|
iz2
n

sin(z2
n)

2

(
sinh(znx)

sinh(zn`)
+

sin(znx)

sin(zn`)

)
+

∞∑
k∈Z∗

(
J−1∑
q=1

bk,qe
q
j

)
k

|k|
i
π2k2

`2
sin

(
kπ

`
x

)
, j = 1, . . . , J,

for some sequences (an)n∈Z∗ , (bk,q)k∈Z∗,q=1,...,J−1 ∈ C with a finite number of non zero elements.
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We then have

∫ T

0

|∂xu0(t, 0)|2dt+

J∑
j=2

βj

∫ T

0

|∂3
xuj(t, 0)|2dt �

∑
n∈Z∗

|zn|4|an|2
(

1 + (A− α1)

∣∣∣∣zn sin(z2
n)

sin(zn`)

∣∣∣∣2
)

+
∑
k∈Z∗

(
kπ

`

)6 J∑
j=1

αj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

,

and the underlying constants do not depend on the initial data nor on J .

3. Spectral analysis

The spectral analysis of such system has already been performed in [1, 3], for J = 1 or finite J . We suppose
here that 1 ≤ J ≤ ∞. We use the notation w = (w0, w1, . . . , wJ).

The system then rewrites U ′ = AU, U(0) = U0, with U = (u, ∂tu) and U0 = (u0, u1), where the operator
A : D(A) ⊂ H → H is defined by

A (u, v) =
(
v, ∂2

xu0,−∂4
xu1, . . . ,−∂4

xuJ
)
, (u, v) ∈ D(A)

with

D(A) =

(u, v) ∈ H ∩

H2(0, 1)×
J∏
j=1

H4(0, `)

×
L2(0, 1)×

J∏
j=1

L2(0, `)

 ,

A (u, v) ∈ H, (u, v) satisfies (3.1),(3.2)

}
,

the additional boundary conditions being given by

∂2
xuj(0) = 0, ∂2

xuj(`) = 0, ∂xu0(1) =

J∑
j=1

αj∂
3
xuj(`), (3.1)

and the additional assumption given by

J∑
j=1

αj‖uj‖2H4(0,`) <∞. (3.2)

We first have a skew symmetric property for A , writing 〈·, ·〉H the scalar products corresponding to the norm
of H.

Proposition 3.1. We have

(i) If U ∈ H and 〈U,U〉H = 0, then U = 0.
(ii) 〈AU, Ũ〉H = −〈U,AŨ〉H , for all U, Ũ ∈ D(A).

(iii) If Φ is an eigenvector of A with corresponding eigenvalue λ (i.e., Φ ∈ D(A), Φ 6= 0 and AΦ = λΦ), then
λ ∈ iR∗.
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Proof. (i) If U ∈ H and 〈U,U〉H = 0, we get u0 ∈ H1(0, 1) and ∂xu0 = 0. Then u0(x) = u0(0) = 0. From the
continuity condition we get uj(`) = u0(0) = 0. Moreover uj(0) = 0 and ∂2

xuj = 0, with uj ∈ H2(0, `), we
also get uj = 0 and thus U = 0.

(ii) We write U = (u, v), Ũ = (ũ, ṽ). We preliminarily remark that U, Ũ ∈ D(A) implies that ũ satisfies (3.1)
and that v ∈ V , so that

[v0(x)∂xũ0(x)]x=1
x=0 +

J∑
j=1

αj [∂xvj(x)∂2
xũj(x)]x=`

x=0 −
J∑
j=1

αj [vj(x)∂3
xũj(x)]x=`

x=0 = 0.

Therefore by integrating by parts we have the identity

∫ 1

0

∂xv0(x)∂xũ0(x)dx+
J∑
j=1

αj

∫ `

0

∂2
xvj(x)∂2

xũj(x)dx = −
∫ 1

0

v0(x)∂2
xũ0(x)dx+

J∑
j=1

αj

∫ `

0

vj(x)∂4
xũj(x)dx,

and, consequently,

〈A(u, v), (ũ, ṽ)〉H =

∫ 1

0

∂2
xu0(x)ṽ0(x)dx−

J∑
j=1

αj

∫ `

0

∂4
xuj(x)ṽj(x)dx

−
∫ 1

0

v0(x)∂2
xũ0(x)dx+

J∑
j=1

αj

∫ `

0

vj(x)∂4
xũj(x)dx.

On the other hand, we have

〈(u, v),A(ũ, ṽ)〉H =

∫ 1

0

v0(x)∂2
xũ0(x)dx−

J∑
j=1

αj

∫ `

0

vj(x)∂4
xũj(x)dx

+

∫ 1

0

∂xu0(x)∂xṽ0(x)dx+

N∑
j=1

αj

∫ `

0

∂2
xuj(x)∂2

xṽj(x)dx,

and using that u also satisfies (3.1) whereas ṽ ∈ V we get

∫ 1

0

∂xu0(x)∂xṽ0(x)dx+

J∑
j=1

αj

∫ `

0

∂2
xuj(x)∂2

xṽj(x)dx = −
∫ 1

0

∂2
xu0(x)ṽ0(x)dx+

J∑
j=1

αj

∫ `

0

∂4
xuj(x)ṽj(x)dx,

and this leads to 〈A(u, v), (ũ, ṽ)〉H = −〈(u, v),A(ũ, ṽ)〉H .
(iii) As consequence of the previous steps, we get that if Φ 6= 0 is eigenvector then 〈Φ,Φ〉H 6= 0 and the

corresponding eigenvalue λ satisfies

λ〈Φ,Φ〉H = 〈AΦ,Φ〉H = −〈Φ,AΦ〉H = −λ〈Φ,Φ〉H .

Consequently λ is purely imaginary. Now suppose that 0 is an eigenvalue and let Φ = (u, v) be a cor-
responding eigenvector. We get from A(u, v) = 0 that v = 0 and ∂2

xu0 = 0 and ∂4
xuj = 0, j = 1, . . . , J .

Moreover, as (u, v) ∈ D(A), we get ∂2
xuj(0) = ∂2

xuj(`) = 0 leading to ∂2
xuj = 0, for all j = 1, . . . , J . From

(3.1), we get ∂xu0(1) = 0. As u ∈ V , we also have u0(0) = 0. This leads to u0 = 0. For j = 1, . . . , J , from
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∂2
xuj = 0 and uj(0) = 0 and uj(`) = u0(`) = 0, we get uj = 0, and finally Φ = 0, which contradicts the

fact that Φ is an eigenvector.

In order to characterize the eigenvalues of A we shall need some notation. Recall the function f given by

f(z) := 2 cot(z2) +Az(cot(z`)− coth(z`)).

Define

S = S(`) := {pπ, p ∈ N} ∪
{
k2π2

`2
, k ∈ N∗

}
and rewrite S as a (unique) strictly increasing sequence (sn)n∈N. We prove below that the positive zeros of f
form a strictly increasing sequence that we denote by (zn)n∈N∗ . We finally consider

Λ1 := {±z2
n, n ∈ N∗}; Λ2 := {±k

2π2

`2
, k ∈ N∗}; Λ := Λ1 ∪ Λ2

and we arrange the elements of Λ in a strictly increasing sequence (ωm)m∈Z∗ . We define the upper density
D+(X) of a set X ⊂ R as

D+(X) := lim
r→+∞

n+(X, r)

r
∈ [0,+∞]

where n+(X, r) denotes the largest number of elements of X contained in an interval of length r.

Lemma 3.2. We suppose that ` ∈ L.

(i) f(z) is well defined if and only if z2 6∈ S.
(ii) f is strictly decreasing for

√
sn < z <

√
sn+1, for each n ∈ N.

(iii) The strictly positive zeros of f form a strictly increasing, diverging sequence (zn)n∈N∗ , with sn−1 < z2
n < sn,

for all n ∈ N∗.
(iv) The upper density of Λ1 is 1

π , the upper density of Λ2 is 0 and the upper density of Λ is equal to 1
π .

Proof. (i) It suffices to remark that z2 ∈ S if and only if either sin(z2) = 0 or sin(z`) = 0. In particular z2 6∈ S
if and only if f(z) is well defined and C∞.

(ii) Let g(z) = z(cot(z)− coth(z)) and note that f(z) = 2 cot(z2) +Ag(z`)/`. As cot(·) is a strictly decreasing
function and ` > 0, it suffices to prove that g(z) is decreasing too. We show in particular that g′(z) ≤ 0.
Indeed

g′(z) = cot(z)− z

sin2(z)
− coth(z) +

z

sinh2(z)
=

cos(z) sin(z)− z
sin2(z)

+
− cosh(z) sinh(z) + z

sinh2(z)

=
sin(2z)− 2z

2 sin2(z)
+
− sinh(2z) + 2z

2 sinh2(z)
≤ 0

for all positive z in the domain of g.
(iii) Note that limz→√sn± f(z) = ∓∞ for all n ∈ N. We apply the mean value theorem for the existence and

the strict monotonicity of f for unicity, and use the fact that s0 = 0.
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(iv) On an interval [p1π, (p1 + r1)π], we have at least r1 élements of Λ1 and at most r1 + 1, if r1π < δk :=
(k+1)2π2

`2 − k2π2

`2 . As the size δk tends to infinity, when k goes to infinity, we deduce that D+(Λ1) = 1
π . Also

we have D+(Λ2) = 0 and then D+(Λ) = 1
π .

Now, we want to give a more precise description of the eigenvectors and eigenvalues. For convenience, in the
sequel, we define z−n = −zn, n ∈ N∗. Note that f is an even function, then f(z−n) = f(−zn) = f(zn) = 0,
since by definition zn are the positive zeros of f .

Proposition 3.3. We suppose that ` ∈ L.

(i) The set of eigenvalues of A is iΛ, that is, if λ is an eigenvalue of A then λ = iωm for some m ∈ Z∗.
In particular either λ = ±iz2

n for some n ∈ N∗ or λ = ±ik
2π2

`2 for some k ∈ N∗. If Φ is an eigenvector
corresponding to λ, then Φ = (φ, λφ) for some φ in V satisfying (3.1).

(ii) For λ = ±iz2
n, the eigenvector space is of dimension 1 and if (φ, λφ) is an eigenvector, it writes φ0(x) =

C sin(z2
nx), φj(x) = C

sin(z2n)
2

(
sinh(znx)
sinh(zn`)

+ sin(znx)
sin(zn`)

)
, with j = 1, . . . , J and C 6= 0.

(iii) For λ = ±ik
2π2

`2 , the eigenspace is of dimension J − 1, and if (φ, λφ) is an eigenvector, it writes φ0(x) = 0

and φj(x) = Cj sin(kπ` x), with
∑J
j=1 αjCj = 0, and (C1, . . . , CJ) 6= (0, . . . , 0).

Proof. We have seen in Proposition 3.1-(iii) that λ ∈ iR∗ and we can thus already write λ = ±iz2, with z > 0.
Let Φ = (φ, ψ) be an eigenvector. We know that φ satisfies (3.1) and ψ0 = λφ0, ψj = λφj (these identities
imply ψ = λφ), ∂2

xφ0 = λψ0 on (0, 1), −∂4
xφj = λψj , on (0, `), j = 1, . . . , J. In particular one has that ψ =

(φ0, φ1, . . . , φJ) sastisfies

{
∂2
xφ0 = −z4φ0; φ0(0) = 0

∂4
xφj = z4φj ; φj(0) = 0; ∂2

xφj(0) = 0, j = 1, . . . , J.
(3.3)

Solving the first equation in (3.3), we have that φ0(x) = A1eiz
2x +A2e−iz

2x for some A1, A2 ∈ C. Imposing the
condition φ0(0) = 0 we deduce A1 = −A2 and, consequently,

φ0(x) = C sin(z2x) for some C ∈ C. (3.4)

The second line of (3.3), implies ∂4
xφj = z4φj for j = 1, . . . , J , whose general solution is φj(x) = Bj,1ezx +

Bj,2e−zx + Cj,1eizx + Cj,2e−izx, since z 6= 0. Imposing the boundary conditions φj(0) = 0 and ∂2
xφj(0) = 0

yields respectively

Bj,1 +Bj,2 + Cj,1 + Cj,2 = 0, Bj,1 +Bj,2 − Cj,1 − Cj,2 = 0, for j = 1, . . . , J

from which we deduce Bj,1 +Bj,2 = Cj,1 + Cj,2 = 0. Then

φj(x) = Bj sinh(zx) + Cj sin(zx) for some Bj , Cj ∈ C, ∀j = 1, . . . , J. (3.5)

Using (3.4), (3.5) and the boundary and transmission conditions, we investigate the properties of z. First we
remark that from ∂2

xφj(`) = 0, we get

Bj sinh(z`) = Cj sin(z`) j = 1, . . . , J. (3.6)
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Using φj(`) = φ0(1), we derive from (3.4) and (3.5) that 2Bj sinh(z`) = C sin(z2) and, since z 6= 0, then

Bj = C
sin(z2)

2 sinh(z`)
∀j = 1, . . . , J. (3.7)

We claim that sin(z2) 6= 0. Indeed suppose on the contrary that sin(z2) = 0. Then z2 = 0 mod π, and this
implies Bj = 0, and Cj sin(z`) = 0. We cannot have sin(z`) = 0, since if it is the case, we get z2 = pπ and

z` = kπ, for some k, p ∈ Z∗ leading to pπ = k2π2

`2 , which is not possible, as ` ∈ L. Hence, we have Cj = 0, and
thus φj = 0. But then ∂xφ0(1) = Cz2 cos(z2) = 0, which implies C = 0 and Φ = 0. Since Φ is an eigenvector
this gives the required contradiction.

We finally distinguish the cases C 6= 0 and C = 0.

a) If C 6= 0, then (3.7) and sin(z2) 6= 0 imply Bj 6= 0 for j = 1, . . . , J . Using (3.6) we deduce sin(z`) 6= 0 and

Cj = C sin(z2) sinh(z`)
2 sinh(z`) sin(z`) . Replacing in (3.5) the values of Bj and Cj , and differentiating, we deduce

∂3
xφj(`) = z3C

(
sin(z2)

2 sinh(z`)
cosh(z`)− sin(z2)

2 sin(z`)
cos(z`)

)
∀j = 1, . . . , J

whereas (3.4) implies ∂xφ0(1) = Cz2 cos(z2). Using the transmission condition in (3.1) and the fact that
both C and z are not zero, we deduce

cos(z2) = z

J∑
j=1

αj

(
sin(z2)

2 sinh(z`)
cosh(z`)− sin(z2)

2 sin(z`)
cos(z`)

)
,

and, since sin(z2) 6= 0 then f(z) = 0. Also, (3.4) and (3.5) imply

φ0(x) = C sin(z2
nx), φj(x) = C

sin(z2)

2

(
sinh(znx)

sinh(zn`)
+

sin(znx)

sin(zn`)

)
,

with j = 1, . . . , J and, consequently, the point (ii) of the claim.
b) If C = 0, then respectively by (3.4), (3.7) and (3.6) we have φ0 = 0, Bj = 0 and Cj sin(z`) = 0. If sin(z`) 6= 0,

we get Cj = 0 for all j and thus Φ = 0, which is a contradiction. Then sin(z`) = 0 and this implies z2 ∈ Λ2

and, consequently, λ ∈ iΛ. This concludes the proof of the point (i) of the claim.

Now we want to show the point (iii) of the claim. By (3.5) we obtain φj(x) = Cj sin(zx) and ∂3
xφj(`) =

−Cjz3 cos(z`). Imposing the transmission condition in (3.1) and using the fact that ∂xφ0(1) = 0 (due to

φ0 = 0), z 6= 0 we deduce that
∑J
j=1 αjCj cos(z`) = 0. This, together with sin(z`) = 0 implies (cos(z`) 6=

0 and)
∑J
j=1 αjCj = 0. In view of above arguments, remarking that z = kπ

` for some k ∈ Z∗, replacing

C = 0 in (3.4) and Bj = 0 in (3.5) we get φ0(x) = 0 and φj(x) = Cj sin(kπ` x), with
∑J
j=1 αjCj = 0, and

(C1, . . . , CJ) 6= (0, . . . , 0), and this completes the proof.

Once we have the eigenvalues and eigenvectors, we can readily express the solution of (1.1) as a nonharmonic
Fourier series, proving Theorem 2.1.

Proof of Theorem 2.1. Let u = (u0, . . . , uJ) be as in the statement. The claim readily follows by Proposition 3.3,
characterizing the eigenvalues and the eigenspaces of the operator A, and by Proposition 3.1, implying that
u ∈ H.
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Remark 3.4. Note that the solution belongs also to C([0,∞), D(A))∩C1([0,∞), H), since the initial data are
in D(A). By density arguments, the well posedness extends to initial data of the form of the previous theorem,
but with infinite number of coefficients. For J = 1 we can consider such initial data satisfying that E0,J < +∞,
which, as we shall see, gives the explicit condition

∑
n∈Z∗ |zn|4|an|2 <∞.

We can consider a basis eqj , with only a finite number of indices j such that eqj 6= 0 for a given q, giving non

ambiguous convergence of the series
∑J−1
q=1 bk,qe

q
j . The property of the completeness of a basis of eigenvectors is

not considered here; we refer to [3] for example, for the proof of the property that A is a skew adjoint operator
with compact resolvant for finite J , leading to the completeness of a basis of eigenvectors. We note that the
resolvant is no more compact for J =∞, since we have then eigenvalues with geometrical infinite multiplicity.
The completeness of a basis of eigenvectors permits to have well posedness for arbitrary initial data in H (E0,J

is then finite), with solution in C([0,∞), H).

4. Proof of the observability results

In this section we prove Theorem 2.2 and Theorem 2.3. The proof relies on non-harmonic analysis methods
and on Ingham type inequalities. An ad hoc analysis is needed in view of the peculiarity of the system and, in
particular, its transmission conditions.

4.1. A gap condition

We locate more precisely the eigenvalues characterized in Proposition 3.3, see also Figure 1. The following
proposition tells us that there is a gap.

Proposition 4.1. Suppose that ` ∈ L. Then there exists γ′ > 0 such that z2
n+1 − z2

n > γ′, for all n ∈ N∗.

Proof. Recall from Lemma 3.2 that (zn) is strictly increasing, and the definition S = {pπ, p ∈ N} ∪ {k
2π2

`2 , k ∈
N∗} = (sn)n∈N. In particular the strictly increasing sequence (sn)n∈N represents the squares of the singularities
of f . Lemma 3.2 also implies

sn−1 < z2
n < sn < z2

n+1 < sn+1. (4.1)

Let f1(z) = 2 cot(z2) and f2(z) = Az(cot(z`)− coth(z`)). We have f(z) = f1(z) + f2(z) and f(zn) = f(zn+1) =
0. We assume that n is sufficiently large to have Azn ≥ 4. We distinguish the cases in which sn = pπ and
sn = (kπ/`)2.

As first case, we consider the most common situation where sn = pπ. Since (p − 1)π, (p + 1)π ∈ S, then
(p− 1)π ≤ sn−1 and (p+ 1)π ≥ sn+1. This, together (4.1), implies z2

n ∈](p− 1)π, pπ[ and z2
n+1 ∈]pπ, (p+ 1)π[.

We distinguish the following three subcases, also depicted in Figure 2:

(i) f2(zn+1) > 0. This implies that f1(zn+1) < 0, because 0 = f(zn+1) = f1(zn+1) + f2(zn+1). In particular
f1(zn) = 2 cot(z2

n) < 0 and, since z2
n+1 ∈]pπ, (p + 1)π)[, then z2

n+1 ∈](p + 1/2)π, (p + 1)π[. Consequently,
z2
n+1 − z2

n ≥ π/2 so we get a gap.
(ii) f2(zn) < 0. Arguing as above we deduce that f1(zn) > 0 and z2

n ∈](p− 1)π, (p− 1/2)π[. Again, we deduce
z2
n+1 − z2

n ≥ π/2 and we get a gap.
(iii) f2(zn) ≥ 0 and f2(zn+1) ≤ 0. Since f2 is defined in [zn, zn+1] then there are no singularities of f2 (which

are of the form kπ/` with k ∈ N∗) in the interval [zn, zn+1]. In particular there exists a unique kn such

that knπ
` < zn < zn+1 <

(kn+1)π
` .

(iii.1) If |f2(zn)| ≤ 2 then 2 cot(z2
n) = f1(zn) = −f2(zn) ≥ −2. This implies that z2

n ∈](p − 1)π, (p − 1/4)π].
Since z2

n+1 > pπ then we get a gap.
(iii.2) |f2(zn+1)| ≤ 2, then, arguing as above, f1(zn+1) ≤ 2 which implies z2

n+1 ∈ [(p + 1/4)π, (p + 1)π[ and,
together with z2

n < pπ, a gap.
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Figure 1. Function f and the moduli of the eigenvalues. If ±iz2 is an eigenvalue then, it is
either an element of the sequence z2

n (black dots) or z2 is equal to (kπ/`)2 (red dots).
.

Case i) f2 is positive Case iii) f2
changes sign

Case ii) f2 is negative

42 44 46 48 50

-100

-50

50

100

Figure 2. Sketch of some of the cases described in the proof of Proposition 4.1 in the case
J = 3 and ` = 2. The green dots are sn’s, i.e., the squares of singularities of the function f of
the form pπ. The black dots are z2

n for n = 18, 19, 20, 21.

(iii.3) If |f2(zn)| > 2 and |f2(zn+1)| > 2 we have that f2(zn) > 2 and f2(zn+1) < −2. Define

α−k :=
1

`
(k +

1

4
)π − 1

2πAk
; α+

k :=
1

`
(k +

1

4
)π +

1

2πAk
.
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Since kn diverges to +∞ as n→∞, then

lim
n→+∞

f2(α±kn) = lim
k→+∞

f2

(
1

`

(
k +

1

4

)
π ± 1

2πAk

)
= lim
k→∞

A

(
1

`

(
k +

1

4

)
π ± 1

2πAk

)(
cot

(
π

4
± `

2πAk

)
− coth

((
k +

1

4

)
π ± `

2πAk

))
= ∓1.

Then, for a sufficiently large n one has f2(α−kn) < 2 and f2(α+
kn

) > −2. These inequalities together

with the fact that f2 is decreasing, imply, respectively, zn < α−kn and zn+1 > α+
kn

. Then z2
n+1 − z2

n >

(α+
kn

)2 − (α−kn)2 > 2
A` and we get the required gap also in this case.

Now it remains to consider the situation where sn =
(
kπ
`

)2
. If n is big enough, we can assume that

(a) znA ≥ 1;
(b) sn−1 = pπ, sn+1 = (p+ 1)π.

We distinguish the following cases

(i) f2(zn) ≥ −1. Then, by (a), one has f2(zn) ≥ −1 ≥ −Azn and, by the definition of f2, one deduces

cot(zn`)− coth(zn`) ≥ −1. Since coth(z) ≥ 1 for all z > 0, then cot(zn`) ≥ 0. Since sn−1 < z2
n < sn = k2π2

`2

and since sn−1 ≥ (k−1)2π2

`2 , then z2
n ∈ [ (k−1)2π2

`2 , k
2π2

`2 ], which implies zn ∈ [ (k−1)π
` , kπ` ]. This, together with

cot(zn`) ≥ 0 implies zn ∈ [ (k−1)π
` , (k−1/2)π

` ] and, consequently, z2
n+1 − z2

n ≥ k2π2

`2 −
(k−1/2)2π2

`2 ≥ π2

4`2 .
(ii) f2(zn+1) ≤ 1. In this case, by (a), one has f2(zn+1) ≤ 1 ≤ Azn+1 and, by the definition of f2, one deduces

cot(zn`)− coth(zn`) ≤ 1. Since coth(z) ≥ 1 for all z > 0, then cot(zn+1`) ≥ 0. Arguing as above we deduce

that z2
n+1 ≥

(k+1/2)2π2

`2 and, consequently, z2
n+1 − z2

n ≥
(k+1/2)2π2

`2 − k2π2

`2 ≥
π2

4`2 .
(iii) f2(zn) < −1 and f2(zn+1) > 1. Then f1(zn) > 1 and f1(zn+1) < −1, which implies, together with (b),

that z2
n ∈]pπ, (p+ 1

4 )π[ and z2
n+1 ∈](p+ 3

4 )π, (p+ 1)π[, leading to a gap.

4.2. Applying Ingham’s theorem

A direct application of the gap condition established above permits to prove Theorem 2.2 by applying
Ingham’s theorem with weakened gap condition [7, 8]. Note that similar Ingham type theorems were also
published by Avdonin et al. (see [6] and references therein).

Proof of Theorem 2.2. We first remark that, by Theorem 2.1, the solution (u, ∂tu) of (1.1) is of the form

u0(t, x) =

∞∑
n∈Z∗

ane
n
|n| iz

2
nt sin(z2

nx), u1(t, x) =

∞∑
n∈Z∗

ane
n
|n| iz

2
nt

sin(z2
n)

2

(
sinh(znx)

sinh(zn`)
+

sin(znx)

sin(zn`)

)

with the coefficients an (n ∈ Z∗) identically zero but a finite number of them. In particular

∂xu0(t, x) =

∞∑
n∈Z∗

anz
2
ne

n
|n| iz

2
nt cos(z2

nx).
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Then ∫ T

0

|∂xu0(t, 0)|2dt =

∫ T

0

|
∞∑

n∈Z∗
z2
nane

n
|n| iz

2
nt|2dt.

Since the sequence ( n
|n|z

2
n) is discrete by Proposition 4.1 and since the underlying upper density is 1

π , from

Lemma 3.2, then we can apply Ingham’s theorem [10] (see also [9, 11]) and obtain for T > 2,

∫ T

0

|∂xu(t, 0)|2dt �
∞∑

n∈Z∗
|zn|4|an|2.

Now, to establish the equivalence with the initial energy E0,1, we need to express also the latter one in terms
of sums of squares of the Fourier coefficients. We set

φn(x) :=

(
sin(z2

nx),
sin(z2

n)

2

(
sinh(znx)

sinh(zn`)
+

sin(znx)

sin(zn`)

))
.

Using this notation, we have

u(t, x) := (u0(t, x), u1(t, x)) =
∑
n∈Z∗

ane
n
|n| iz

2
ntφn(x).

Note that the eigenvalue λn of A associated to the eigenvector Φn := (φn, λnφn) is of the form n
|n| iz

2
n. By

Proposition 3.1, for m,n ∈ Z∗, one has

m

|m|
iz2
m〈Φm,Φn〉H=〈 m

|m|
iz2
mΦm,Φn〉H=〈AΦm,Φn〉H=− 〈Φm,AΦn〉H=− 〈Φm,

n

|n|
iz2
nΦn〉H=

n

|n|
iz2
n〈Φm,Φn〉H .

Then 〈Φm,Φn〉H = 0 and for all n,m ∈ Z∗ such that n 6= m. This implies that 〈e
m
|m| iz

2
mtΦm, e

n
|n| iz

2
ntΦn〉H = 0

whenever n 6= m and for all t ≥ 0, then

E1(t) =

∫ 1

0

|∂tu(t, x)|2dx+ α1

∫ `

0

|∂tu1(t, x)|2dx+

∫ 1

0

|∂xu(t, x)|2dx+ α1

∫ `

0

|∂2
xu1(t, x)|2dx

= ||x 7→ (~u(t, x), ∂t~u(t, x))||2H =
∑
n∈Z
|an|2||Φn||2H ∀t ≥ 0.

Now, by a direct computation ||Φn||2H = z4
ncn where

cn : =

∫ 1

0

sin2(z2
nx) + cos2(z2

nx)dx+
sin2(z2

n)

4

∫ `

0

(
sinh(znx)

sinh(zn`)
+

sin(znx)

sin(zn`)

)2

+

(
sinh(znx)

sinh(zn`)
− sin(znx)

sin(zn`)

)2

dx.

= 1 +
sin2(z2

n)

2

∫ `

0

∣∣∣∣ sinh(znx)

sinh(zn`)

∣∣∣∣2 +

∣∣∣∣ sin(znx)

sin(zn`)

∣∣∣∣2 dx

In particular

1 ≤ cn ≤ 1 +
`

2

(
1 +

∣∣∣∣ sin(z2
n)

sin(zn`)

∣∣∣∣2
)
.
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Since cn = c−n, we can assume without loss of generality that n ∈ N∗ and remark that, by definition, f(zn) = 0,
that is 2 cot(z2

n) = α1zn(coth(zn`)− cot(zn`)). This leads to

2 cos(z2
n)

α1zn
= coth(zn`) sin(z2

n)− cos(zn`)
sin(z2

n)

sin(zn`)
,

which implies

∣∣∣∣ sin(z2
n)

sin(zn`)

∣∣∣∣ ≤ 2

∣∣∣∣ cos(z2
n)

cos(zn`)α1zn

∣∣∣∣+

∣∣∣∣coth(zn`) sin(z2
n)

cos(zn`)

∣∣∣∣ ≤ C

| cos(zn`)|

where C := 2/(α1z1) + coth(z1`) > 1. Then

∣∣∣∣ sin(z2
n)

sin(zn`)

∣∣∣∣ ≤ min

{
1

| sin(zn`)|
,

C

| cos(zn`)|

}
≤ C√

2
,

leading to cn � 1. We finally have

∫ T

0

|∂xu(t, 0)|2dt �
∞∑

n∈Z∗
|zn|4|an|2 �

∞∑
n∈Z∗

|zn|4|an|2cn = E1(0) = E0,1.

In the case J ≥ 2, we have no more a gap condition. We recall that we have a sequence ωm, m ∈ Z, which

is a strictly increasing sequence formed by the sets Λ1 = {±z2
n, n = 1, . . . } and Λ2 = {±k

2π2

`2 , k = 1, . . . }. We
remark that a weakened gap condition on (ωm) is satisfied: there exists γ ∈ (0,min{γ′, π/4}), where γ′ is like
in Proposition 4.1, such that ωm+2 − ωm > 2γ for all m ∈ Z.

We define M1 := {m ∈ Z, ωm+1 − ωm > γ} and M2 = Z \ M1. For γ small enough, if m ∈ M2, then
ωm ∈ Λ1 and ωm+1 ∈ Λ2 (or ωm ∈ Λ2 and ωm+1 ∈ Λ1), since both Λ1 and Λ2 have a gap. We define also
Γj := {m ∈ Z, ωm ∈ Λj}, for j = 1, 2.

Now, using these notations and Proposition 2.1, we can rewrite the observables in terms of the ωm. In
particular, by a direct computation,

∂3
xuj(t, 0) =

∑
m∈Z∗

cm,je
iωmt j = 1, . . . , J, t ≥ 0

where

cm,j :=


z3
n

sin(z2
n)

2

(
1

sinh(zn`)
− 1

sin(zn`)

)
an if ωm = n

|n|z
2
n for some n ∈ Z∗

(
kπ

`

)3(∑J−1

q=1
bk,qe

q
j

)
, if ωm = k

|k|
k2π2

`2 for some k ∈ Z∗
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Now we are in position to directly apply Ingham’s theorem with weakened gap condition [8]

∫ T

0

|∂3
xuj(t, 0)|2dt =

∫ T

0

|
∑
m∈Z∗

cm,je
iωmt|2dt

�
∑

m∈M1

|cm,j |2 +
∑

m∈M2

|cm,j + cm+1,j |2 + |ωm+1 − ωm|2
(
|cm,j |2 + |cm+1,j |2

)
.

(4.2)

4.3. Proof of Theorem 3

We will need the following estimation of the coefficients.

Proposition 4.2. Let m ∈ Z∗, ωm ∈ Λ1 and n ∈ Z∗ be such that ωm = n
|n|z

2
n. Then

|cm,j |2 � |zn|6
sin2(z2

n)

sin2(zn`)
|an|2

Moreover if in addition m ∈M2 then |cm,j |2 � |zn|4|an|2.

Proof. We first remark that, as
∣∣∣ sin(zn`)

sinh(zn`)

∣∣∣→ 0 as n→∞, then
∣∣∣ sin(zn`)

sinh(zn`)
− 1
∣∣∣ � 1. Then

∣∣∣∣ 1

sinh(zn`)
− 1

sin(zn`)

∣∣∣∣ =

∣∣∣∣ 1

sin(zn`)

∣∣∣∣ ∣∣∣∣ sin(zn`)

sinh(zn`)
− 1

∣∣∣∣ � ∣∣∣∣ 1

sin(zn`)

∣∣∣∣ .
This, together with the definition of cm,j which implies |cm,j |2 = |zn|6 sin2(z2n)

4

∣∣∣ 1
sinh(zn`)

− 1
sin(zn`)

∣∣∣2 |an|2, proves

the first part of the claim.

If moreover m ∈ M2, we have to show that
∣∣∣ zn sin(z2n)

sin(zn`)

∣∣∣ � 1. We have f(zn) = 0, that is 2 cot(z2
n) =

Azn(coth(zn`)− cot(zn`)), where A =
∑J
j=1 αj . This leads, after a direct computation, to

∣∣∣∣zn sin(z2
n)

sin(zn`)

∣∣∣∣ =
2

A

∣∣∣∣ cos(z2
n)

cos(zn`)− coth(zn`) sin(zn`)

∣∣∣∣ . (4.3)

Now, since m ∈ M2 and ωm ∈ Λ1, then ωm+1 ∈ Λ2 and, in particular, there exists a kn ∈ N∗ such that

ωm+1 =
k2nπ

2

`2 and

∣∣∣∣z2
n −

k2
nπ

2

`2

∣∣∣∣ ≤ γ. (4.4)

Since zn → +∞ as n→ +∞, then the above upper bound implies1 |zn`− knπ| ≤ γ
|zn`+kn| → 0 as n→ +∞ and,

consequently, | cos(zn`)− coth(zn`) sin(zn`)| → 1 as n→ +∞. On the other hand, recalling that by definition
γ < π/4 we deduce that cos(z2

n) ∈ (
√

2/2, 1] and this, together with the identity (4.3) concludes the proof.

We need a technical lemma.

1More precisely, definining mr the strictly increasing subsequence ofM2 such that ωmr ∈ Λ1 for all r and defining nr such that
ωmr = z2nr and kr such that ωmr+1 = k2rπ

2/`2 one has that |znr − k2rπ2/`2| → 0 as r → +∞.
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Lemma 4.3. For all x, y ∈ C and for all β > 0 one has

|x+ y|2 ≥ (cβ − 2β)|x|2 + cβ |y|2 (4.5)

where cβ := 1 + β−
√

1 + β2 ∈ (0, 1). In particular cβ ↓ 0 (i.e., cβ monotonically converges to 0 from the above)
as β → 0+ and the following estimate hold

√
2β + cβ − 2β > 0 for all β ∈ (0, 1).

Proof. If x = 0 then the claim follows straightforwardly. Assume now x 6= 0 and let z := y/x. Note that

|1 + z|2 − cβ(1 + |z|2) = (1 + |z|2)(1− cβ) + 2<(z) ≥ (1− cβ)(1 + <(z)2) + 2<(z) ≥ −2β.

Indeed, by a direct computation, the real valued function g(t) := (1− cβ)(1 + t2) + 2t attains its global minimum
in −2β. Multiplying both sides of the above inequalities by |x|2 yields (4.5). To prove that β ∈ (0, 1) implies√

2β + cβ − 2β > 0, it suffices to remark that when β ∈ (0, 1) this is equivalent to (1 − β +
√

2β)2 > 1 + β2

which readily follows by a direct computation.

Using the previous proposition, we are able to get the following estimates for the observable.

Proposition 4.4. We suppose that ` ∈ L. Then for T > 2, we have

∫ T

0
|∂xu0(t, 0)|2dt+

J∑
j=2

βj

∫ T

0
|∂3xuj(t, 0)|2dt �

∑
n∈Z∗

|zn|4|an|2
(

1 +B

∣∣∣∣ zn sin(z2n)

sin(zn`)

∣∣∣∣2
)

+
∑
k∈Z∗

(
kπ

`

)6 J∑
j=2

βj

∣∣∣∣∣∣
J−1∑
q=1

bk,qeqj

∣∣∣∣∣∣
2

,

where we have set B :=
∑J
j=2 βj. The underlying constants do not depend on J .

Proof. We first have for T > 2, as in the proof of Theorem 2.1,∫ T

0

|∂xu0(t, 0)|2dt =

∫ T

0

|
∞∑

n∈Z∗
z2
nane−

n
|n| iz

2
nt)|2dt �

∞∑
n∈Z∗

|zn|4|an|2. (4.6)

On the other hand, as showed in (4.2), we also have

∫ T

0
|∂3xuj(t, 0)|2dt =

∫ T

0
|
∑

m∈Z∗
cm,jeiωmt|2dt �

∑
m∈M1

|cm,j |2 +
∑

m∈M2

|cm,j + cm+1,j |2 + |ωm+1 − ωm|2
(
|cm,j |2 + |cm+1,j |2

)
.

We use the symbols x � y and x � y to respectively denote x ≤ C1y and x ≥ C2y for some positive constants
C1 and C2. Clearly x � y and x � y is equivalent to x � y.

Note that m ∈M2 implies |ωm+1 − ωm| ≤ γ and, due to the gap condition, m+ 1 ∈M1. This implies

∑
m∈M1

|cm,j |2 +
∑

m∈M2

|cm,j + cm+1,j |2+|ωm+1 − ωm|2
(
|cm,j |2 + |cm+1,j |2

)
≤

∑
m∈M1

|cm,j |2 +
∑

m∈M2

(1 + γ2)(|cm,j |2 + |cm+1,j |2)

≤(2 + γ2)
∑

m∈M1

|cm,j |2 +
∑

m∈M2

(1 + γ2)|cm,j |2

≤(2 + γ2)
∑
m∈Z∗

|cm,j |2.
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Hence ∫ T

0

|∂3
xuj(t, 0)|2dt �

∑
m∈Z∗

|cm,j |2.

By Proposition 4.2, if m ∈ Γ1 then |cm,j |2 � |zn|6 sin2(z2n)
sin2(zn`)

|an|2. If otherwise m ∈ Γ2 then |cm,j |2 =(
kπ
`

)6 ∣∣∣∑J−1
q=1 bk,qe

q
j

∣∣∣2. Then one has the direct inequality

∫ T

0

|∂xu(t, 0)|2dt+

J∑
j=2

βj

∫ T

0

|∂3
xuj(t, 0)|2dt �

∞∑
n∈Z∗

|zn|4|an|2 +

J∑
j=2

βj
∑
m∈Z∗

|cm,j |2

�
∑
n∈Z∗

|zn|4|an|2
(

1 +B

∣∣∣∣zn sin(z2
n)

sin(zn`)

∣∣∣∣2
)

+
∑
k∈Z∗

(
kπ

`

)6 J∑
j=2

βj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

.

To complete the proof we need to prove the inverse inequality. We preliminarly remark that the gap condition
ωm+2 − ωm ≥ 2γ (and the fact that Λ1 and Λ2 are discrete sets) implies that if m ∈ M2 ∩ Γ1 then m + 1 ∈
M1 ∩ Γ2 and

m ∈M2 ∩ Γ2 ⇒ m+ 1 ∈M1 ∩ Γ1. (4.7)

We then apply Lemma 4.3 by deducing that for all β > 0∑
m∈M2

|cm,j + cm+1,j |2 =
∑

m∈M2∩Γ1

|cm,j + cm+1,j |2 +
∑

m∈M2∩Γ2

|cm,j + cm+1,j |2

≥(cβ − 2β)
∑

m∈M2∩Γ1

|cm,j |2 + cβ
∑

m∈M2∩Γ1

|cm+1,j |2

+ cβ
∑

m∈M2∩Γ2

|cm,j |2 + (cβ − 2β)
∑

m∈M2∩Γ2

|cm+1,j |2

≥(cβ − 2β)
∑

m∈M2∩Γ1

|cm,j |2 + cβ
∑

m∈M2∩Γ2

|cm,j |2 + (cβ − 2β)
∑

m∈M1∩Γ1

|cm,j |2

=(cβ − 2β)
∑
m∈Γ1

|cm,j |2 + cβ
∑

m∈M2∩Γ2

|cm,j |2

where the last inequality follows from cβ − 2β < 0 and (4.7). By Proposition 4.2, |cm,j |2 � |zn|4|an|2 for all

m ∈M2 ∩ Γ1 (where n is such that ωm = n/|n|z2
n) and, in particular, |cm,j |2 ≤ Ĉ|zn|4|an|2 for some positive Ĉ

(independent from j, because of the definition of cm,j when m ∈ Γ1) and for all j = 2, . . . , J . Similarly, again

by Proposition 4.2, |cm,j |2 ≥ D̂|zn|6 sin2(z2n)
sin2(zn`)

|an|2 for some positive D̂ and for all j = 2, . . . , J . Therefore

∑
m∈M1

|cm,j |2+
∑

m∈M2

|cm,j + cm+1,j |2 + |ωm+1 − ωm|2
(
|cm,j |2 + |cm+1,j |2

)
≥

∑
m∈M1

|cm,j |2 +
∑

m∈M2

|cm,j + cm+1,j |2

=
∑

m∈M1∩Λ1

|cm,j |2 +
∑

m∈M1∩Λ2

|cm,j |2 +
∑

m∈M2

|cm,j + cm+1,j |2
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≥ Γ(1 + cβ − 2β)
∑

m∈M1∩Γ1

|cm,j |2 + cβ
∑
m∈Γ2

|cm,j |2 + (cβ − 2β)
∑

m∈M2∩Γ1

|cm,j |2

> (
√

2β + cβ − 2β)
∑

m∈M1∩Γ1

|cm,j |2 + cβ
∑
m∈Γ2

|cm,j |2 + (cβ − 2β)
∑

m∈M2∩Γ1

|cm,j |2

= (
√

2β + cβ − 2β)
∑
m∈Γ1

|cm,j |2 + cβ
∑
m∈Γ2

|cm,j |2 −
√

2β
∑

m∈M2∩Γ1

|cm,j |2

≥ BD̂(
√

2β + cβ − 2β)
∑
n∈Z∗

|zn|6
sin2(z2

n)

sin2(zn`)
|an|2

+ cβ
∑
k∈Z∗

(
kπ

`

)6 J∑
j=2

βj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

−BĈ
√

2β
∑
n∈Z∗

|an|2|zn|4

Now, using (4.6), let K0 > 0 be such that∫ T

0

|∂xu0(t, 0)|2dt =

∫ T

0

|
∞∑

n∈Z∗
z2
nane−

n
|n| iz

2
nt|2dt ≥ K0

∞∑
n∈Z∗

|zn|4|an|2

and let K1 > 0 be such that∫ T

0

|∂3
xuj(t, 0)|2dt ≥ K1

( ∑
m∈M1

|cm,j |2 +
∑

m∈M2

|cm,j + cm+1,j |2 + |ωm+1 − ωm|2
(
|cm,j |2 + |cm+1,j |2

))
.

We choose β ∈ (0, 1/2) sufficiently small to have K0−K1BĈ
√

2β > 0. Using above estimates and recalling that
β < 1 implies

√
2β + cβ − 2β > 0, we conclude

∫ T

0

|∂xu(t, 0)|2dt+

J∑
j=2

βj

∫ T

0

|∂3
xuj(t, 0)|2dt ≥ (K0 −K1BĈ

√
2β)

∑
n∈Z∗

|zn|4|an|2

+K1BD̂(
√

2β + cβ − 2β)
∑
n∈Z∗

|zn|6
sin2(z2

n)

sin2(zn`)
|an|2

+K1cβ
∑
k∈Z∗

(
kπ

`

)6 J∑
j=2

βj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

�
∑
n∈Z∗

|zn|4|an|2
(

1 +B

∣∣∣∣zn sin(z2
n)

sin(zn`)

∣∣∣∣2
)

+
∑
k∈Z∗

(
kπ

`

)6 J∑
j=2

βj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

and this completes the proof.

Proposition 4.5. We suppose that ` ∈ L. Then, for αj � βj , j = 2, . . . , J , we have

∑
k∈Z∗

(
kπ

`

)6 J∑
j=1

αj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

�
∑
k∈Z∗

(
kπ

`

)6 J∑
j=2

βj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

,
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where A =
∑J
j=1 αj, B :=

∑J
j=2 βj and the underlying constants do not depend on J , assuming that

∑J
j=1 αj

is bounded independently of J and α1 ≥ c, with a constant c > 0 independent of J (we recall also that αj > 0
for all j).

Proof. We already have

∑
k∈Z∗

(
kπ

`

)6 J∑
j=2

βj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

�
∑
k∈Z∗

(
kπ

`

)6 J∑
j=2

αj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

,

since αj � βj , j = 2, . . . , J . We know that α1eq1 = −
∑J
j=2 αje

q
j . Thus, we have, using Cauchy-Schwarz inequality

α2
1

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
1

∣∣∣∣∣
2

=

∣∣∣∣∣∣
J−1∑
q=1

bk,q

J∑
j=2

αje
q
j

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
J∑
j=2

α
1/2
j α

1/2
j

J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣∣
2

≤ (A− α1)

J∑
j=2

αj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

,

and thus

J∑
j=1

αj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

≤
(
A− α1

α1
+ 1

) J∑
j=2

αj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

=
A

α1

J∑
j=2

αj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

,

and so

α1

A

J∑
j=1

αj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

≤
J∑
j=2

αj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

≤
J∑
j=1

αj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

,

leading to

∑
k∈Z∗

(
kπ

`

)6 J∑
j=2

αj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

�
∑
k∈Z∗

(
kπ

`
)6

J∑
j=1

αj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

and to the result.

Proof of Theorem 2.3. Let (u0, u1) ∈ Z and let (an) and (bk,q) be the corresponding coefficients. In view of
Proposition 4.4 and Proposition 4.5, for T > 2 we have

∫ T

0

|∂xu(t, 0)|2dt+

J∑
j=2

βj

∫ T

0

|∂3
xuj(t, 0)|2dt �

∑
n∈Z∗

|zn|4|an|2
(

1 + (A− α1)

∣∣∣∣zn sin(z2
n)

sin(zn`)

∣∣∣∣2
)

+
∑
k∈Z∗

(
kπ

`

)6 J∑
j=1

αj

∣∣∣∣∣
J−1∑
q=1

bk,qe
q
j

∣∣∣∣∣
2

,

which concludes the proof.
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5. Numerical results

The code that is used for the numerical results is available here

https://github.com/mehrenbe/InghamWaveBeam.

On Figure 3, we represent the gap z2
n+1 − z2

n with respect to
√
n, for n ∈ {1, . . . , 104}, for different values of

` > 0 belonging to L, and taking A = 1
` . We remark that the gap oscillates between a value γmin ' 2 and π for

large values of n. The gap is almost always around π, but almost periodically, with a period proportional to
1/`, it falls down near γmin. The behavior at the beginning is different. In particular, when ` is large, the gap
becomes very small, even if it still remains strictly positive. These results are in agreement with the gap result
in Proposition 4.1.

On Figure 6, we represent now the gap ωm+1 − ωm with respect to
√
m. The results are then quite different,

and we can see on these numerical results that we no longer have a gap.
In order to have an idea of the constants c1(T ), c2(T ) such that

c1(T )
∑
k

|ak|2 ≤
∫ T

0

∣∣∣∣∣∑
k

akeiz
2
kt

∣∣∣∣∣
2

dt ≤ c2(T )
∑
k

|ak|2,

we look for constants c1,n,Nloc
(T ), c2,n,Nloc

(T ) such that

c1,n,Nloc
(T )

n+Nloc∑
k=n

|ak|2 ≤
∫ T

0

∣∣∣∣∣
n+Nloc∑
k=n

akeiz
2
kt

∣∣∣∣∣
2

dt ≤ c2,n,Nloc
(T )

n+Nloc∑
k=n

|ak|2,

which are obtained by looking at the minimal (on Fig. 4) and maximal (on Fig. 5) eigenvalues of the matrix

(
∫ T

0
ei(z

2
j−z

2
k)tdt)n+Nloc

j,k=n . We vary the value of Nloc; the larger it is, the better is the result. We remark that the
constant c1,n,Nloc

(T ) can be quite small for low values of n, in the case where ` is large; this is coherent with the
previous result, as the gap is very small for n small (low frequencies). The results are then better by increasing
the value of T . There are some oscillations in the graphs which are pushed at later n, taking a larger Nloc.
Finally, we do the same for

c3,n,Nloc
(T )

n+Nloc∑
k=n

|ak|2 ≤
∫ T

0

∣∣∣∣∣
n+Nloc∑
k=n

akeiω
2
kt

∣∣∣∣∣
2

dt ≤ c4,n,Nloc
(T )

n+Nloc∑
k=n

|ak|2,

by looking at the minimal (on Fig. 7) and maximal (on Fig. 8) eigenvalues of the matrix (
∫ T

0
ei(ω

2
j−ω

2
k)tdt)n+Nloc

j,k=n

We see that c3,n,Nloc
(T ) is no more minored by a strictly positive constant, which is coherent, because there is

no longer an asymptotic gap. On the other hand, when we express in the basis of divided differences, we observe
a minoration by a strictly positive constant (for small n, the value is still very small, especially for big value
of `, as for the case for (z2

k), but it’s getting better by increasing the value of T ) which is coherent with the
weakened gap condition.

Note that the theoretical part is based on such estimates, for which we now have a numerical illustration of
the behavior of its underlying constants. In particular, we observe that time of observation, even if it is enough
to take it greater than π, we should take it bigger for having not too small constants, which can occur when
taking ` large.

6. Data availability statement

The code connected with this article is available in a public data repository, at the following link https:
//github.com/mehrenbe/InghamWaveBeam, and referred as [14].

https://github.com/mehrenbe/InghamWaveBeam
https://github.com/mehrenbe/InghamWaveBeam
https://github.com/mehrenbe/InghamWaveBeam
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Figure 3. Gap z2
n+1 − z2

n for A = 1
` vs

√
n, for 1 ≤ n ≤ 104 and ` ∈

{1/50, 1/20, 1/2, 1, 2, 10, 20, 50}.
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Figure 4. Minimal eigenvalue of (
∫ T

0
ei(z

2
j−z

2
k)tdt)n+Nloc

j,k=n for A = 1
` vs

√
n, with 1 ≤ n ≤ 104,

(`, T ) ∈ {(1, 2.1), (1, 3), (10, 2.1), (10, 10)} and Nloc ∈ {50, 100}.
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Figure 5. Maximal eigenvalue of (
∫ T

0
ei(z

2
j−z

2
k)tdt)n+Nloc

j,k=n for A = 1
` vs

√
n, with 1 ≤ n ≤ 104,

(`, T ) ∈ {(1, 2.1), (1, 3), (10, 2.1), (10, 10)} and Nloc ∈ {50, 100}.
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Figure 6. Gap ωn+1 − ωn for A = 1
` vs

√
n, for 1 ≤ n ≤ 104 and ` ∈

{1/50, 1/20, 1/2, 1, 2, 10, 20, 50}.
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Figure 7. Minimal eigenvalue of (
∫ T

0
ei(ωj−ωk)tdt)n+Nloc

j,k=n for A = 1
` vs

√
n; dd stands for

expressing in the basis of divided differences.
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Figure 8. Maximal eigenvalue (
∫ T

0
ei(ωj−ωk)tdt)n+Nloc

j,k=n for A = 1
` vs

√
n; dd stands for

expressing in the basis of divided differences.
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