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Abstract

We consider the multiple quantile hedging problem, which is a class of partial
hedging problems containing as special examples the quantile hedging problem
(Föllmer & Leukert 1999) and the PnL matching problem (introduced in Bouchard
& Vu 2012). In complete non-linear markets, we show that the problem can be
reformulated as a kind of Monge optimal transport problem. Using this observation,
we introduce a Kantorovitch version of the problem and prove that the value of both
problems coincide. In the linear case, we thus obtain that the multiple quantile
hedging problem can be seen as a semi-discrete optimal transport problem, for
which we further introduce the dual problem. We then prove that there is no
duality gap, allowing us to design a numerical method based on SGA algorithms
to compute the multiple quantile hedging price.
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1 Introduction

In this work, we introduce and study a novel class of stochastic target problems with
controlled loss. In financial terms, these are partial hedging problems and encapsulate
as particular examples the quantile hedging problem [1] and PnL matching problem [2].
In the quantile hedging problem, a financial agent looks for the minimal initial wealth
which allows to replicate a given contingent claim with a 95% (say) probability of success.
A natural extension is the so-called PnL matching problem introduced in [2]. In their
article, the authors consider a finite number of quantile constraints targeting a given
discrete distribution on the PnL. These partial hedging problems are in sharp contrast
with the classical super-hedging problem, which imposes an almost sure constraint at
the terminal date. Indeed, in complete linear markets, the later can be computed using
only the risk neutral probability distribution Q, while the former introduces an interplay
between Q and the physical probability distribution P, as the quantile constraints are
naturally formulated under P. One motivation behind partial hedging is, when the
option seller is willing to take on some risk, to be able to sell the option at a lower
price than the super-replication price. In incomplete markets, this allows then to define
an alternative pricing notion, complementary to utility indifference pricing. The target
distribution can be seen as a pricing-time risk profile and could be easier to define than
an utility function for risk management purposes.

Various mathematical methods have been considered to solve these partial hedging
problems since the pioneering work [1]. An important contribution was made in [3] by
interpreting this problem as a stochastic target problem on an extended state space in
order to recover time-consistency, and obtaining a dynamic programming principle and
a Partial Differential Equation (PDE) characterization. They applied this approach
to the quantile hedging problem in particular and, in complete linear markets, were
able to obtain a dual formulation for the quantile hedging price. The non-Markovian
case is investigated in [4] and leads to the concept of Backward Stochastic Differential
Equation (BSDE) with weak terminal condition. Other theoretical works have focused
on extending the framework by considering jump processes [5], american type constraints
[6, 7] [8], optimal book liquidation [9], other type of risk constraints see e.g. [10, 11].
We should also mention that it has triggered a new literature on the concept of BSDEs
constrained in law [12, 13]. Few numerical methods have been proposed, whether relying
on the PDE approach, see e.g. [2, 14] or on a dual characterization available in some
cases [6].

We focus here on the case of multiple quantile hedging constraints, close to the PnL
matching problem introduced in [2]. We work in a complete market but consider a non-
linear dynamics for the wealth process of the trader. We define the multiple quantile
hedging price as the minimal initial wealth allowing to reach at terminal time the multi-
ple constraints in law, modeled by a probability distribution µ specified at pricing time.
Quantile hedging and PnL matching, that have been already studied, are particular in-
stances of this problem. Our first goal is to characterize this price. However, we do not
follow the methods previously introduced in the literature. We first recast the multiple
quantile hedging problem as a classical control problem involving the minimisation of a
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non-linear expectation over a tailored class of random variables. We then make the new
and crucial observation that this problem resembles an optimal transportation problem
‘à la Monge’ up to considering a non-linear expectation instead of a classical one and
a target set of dominating probabilities instead of a given target probability. We then
naturally introduce a ‘Kantorovitch version’ for this ‘Monge problem’. Our first main
result is to show that the values of these two problems coincide. We then prove that,
up to considering non-linear expectation, the multiple quantile hedging price is the min-
imal value associated to the ‘transport’ of the underlying probability P to the target
distribution µ. We prove these results in a Brownian setting with a target probability
distribution µ having finite and discrete support. We then consider a more classical
linear framework. In this case, the multiple quantile hedging price is the value of a
semi-discrete optimal transport problem [15, Chapter 5]. We then naturally profit from
this observation by considering the dual formulation of the problem and proving that,
in our setting, duality does hold. The dual characterization that we obtain is new, in
particular for the PnL matching problem. This characterization eventually allows us to
derive a numerical method for the multiple quantile hedging problem based on stochastic
gradient methods.

The rest of the paper is organized as follows. In Section 2, we first rigorously
introduce the multiple quantile hedging problem. We present our main examples of
multiple quantile hedging problem, in particular the PnL distribution hedging problem,
that we solve in a linear setting. We then prove some key reformulation of the price in a
non-linear setting including Monge and Kantorovitch like formulation. Section 3 focuses
then on a linear framework in which we obtain our main duality result. We conclude by
presenting a numerical algorithm based on the dual representation and demonstrate its
efficiency in practice.

Notations that will be used throughout the paper:

• If pΩ,A,F,Pq is a filtered probability space and pE, | ¨ |q a normed space, we define
H 2pF,P;Eq as the set of progressively measurable processes U : Ω ˆ r0, T s Ñ E
with T ą 0 fixed satisfying

E
„
ż T

0
|Ut|

2dt



ă `8,

and S 2pF,P;Eq) as the set of processes U : Ω ˆ r0, T s Ñ E continuous and
adapted such that

E

«

sup
tPr0,T s

|Ut|
2dt

ff

ă `8.

• Given a measurable space pE, Eq, we denote by PpEq the set of probabiliy distri-
butions on E.
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• For two probability measures µ, ν on R, ν ľ µ denotes the first order stochastic
dominance, i.e

ν pr¨,8qq “: Fν ě Fµ :“ µ pr¨,8qq on R.

• For allN ě 1, we set ∆N :“
 

x P RN
ˇ

ˇx1 ď ¨ ¨ ¨ ď xN
(

, ∆N
` :“

 

x P RN
ˇ

ˇ 0 ď x1 ď ¨ ¨ ¨ ď xN
(

,
and QN “

 

q P RN`1
ˇ

ˇ q1 “ 1 ě ¨ ¨ ¨ ě q` ě ¨ ¨ ¨ ě qN`1 “ 0
(

.

• For two metric spaces E,E1, LippE,E1q is the set of Lipschitz continuous function
from E to E1.

For S “ ts1 ă ¨ ¨ ¨ ă sNu a finite subset of R, a σ-alegra A and a measure µ P PpSq,
we consider:

• PµpAq: the set of A-measurable random vector pPnqNn“1 such that
řN
n“1 P

nδsn P

PpSq and
řN
n“1 ErPns δsn “ µ.

• P`
µ pAq “ YνPPpSq,νľµPνpAq.

• QµpAq: the set of A-measurable random vector pQnqN`1
n“1 such that Q is valued in

QN and such that ErQns “ Fµpsnq, 1 ď n ď N .

• Q`
µ pAq “ YνPPpSq,νľµQνpAq.

2 Multiple quantile hedging problem

Let pΩ,A,Pq be a complete probability space supporting a m-dimensional Brownian
Motion W , where m is a positive integer. We denote by F “ pFtqtě0 the natural
P-augmented filtration of W . In the sequel, we work with a finite time horizon T ą 0.

2.1 Problem formulation

We consider controlled processes of the following form: For y P R and Z P H 2pF,P;Rmq,

Y y,Z
t “ y ´

ż t

0
fps, Ys, Zsqds`

ż t

0
ZsdWs, t P r0, T s, (2.1)

where pfpt, ¨qqtPr0,T s is a progressively measurable process taking values in LippRˆRm,Rq
and such that fpt, 0, 0q PH 2pF,P;Rq. Note that the assumptions on f guarantee that the
stochastic differential equation (SDE) (2.1) admits a unique solution Y P S 2pF,P;Rq.

We financially interpret the above controlled process as the wealth process of an
investor with initial wealth y and an auto-financing admissible strategy based on risky
financial assets. The Brownian motion then represents the underlying financial risk. In
the whole paper, we shall follow this intuition but we will stay at this abstract level of
description. We refer to e.g. [16] for classical examples of non-linear specification of the
wealth process.

4



A key result in this context is the completeness of the market, i.e. the existence
and uniqueness of solutions to BSDEs with a prescribed terminal value ξ P L 2pFT q, see
e.g. [16]. More specifically, there exists a unique pY0,Zq P RˆH 2pF,P;Rmq such that
Y Y0,Z
T “ ξ. In this case, we define Yt :“ Y Y0,Z

t for all t P r0, T s, so that pY,Zq is the
solution to the BSDE with driver f and terminal condition ξ, namely

Yt “ ξ `

ż T

t
fps,Ys,Zsqds´

ż T

t
ZsdWs, t P r0, T s. (2.2)

To insist on the dependence upon the terminal condition ξ, we shall sometimes denote
the solution of the above BSDE by pYtrξs,Ztrξsq0ďtďT .

In the next section, we will consider the following linear setup for f.

Assumption 2.1. There exists two bounded progressively measurable stochastic pro-
cesses pa, bq valued in Rˆ Rm such that

fpt, y, zq :“ aty ` bJt z, for pt, y, zq P r0, T s ˆ Rˆ Rm . (2.3)

Remark 2.1. Under Assumption 2.1, it is well known that Y0rξs for ξ P L 2pFT q
rewrites as an expectation, see e.g. Proposition 2.2 in [16]. More precisely, let us
introduce the process Γ solution to

Γt “ 1`

ż t

0
Γsasds`

ż t

0
Γsb

J
s dWs, t P r0, T s, (2.4)

which satisfies, for any p ě 1, to

E

«

sup
tPr0,T s

|Γt|
p

ff

ď Cp . (2.5)

Then, one has, for any ξ P L2pFT q,

Y0rξs “ ErΓT ξs . (2.6)

The financial interpretation here is that ΓT represents the pricing kernel and Y0rξs the
replication price of the European contingent claim ξ.

2.1.1 Definition

Let N be a positive integer and S :“ t1, . . . , Nu.
We consider a pFT ,BpRN qq-measurable map

Ω Q ω ÞÑ pGnpωq, 1 ď n ď Nq P RN .

We assume that S Q n ÞÑ Gn P R is P-almost surely non-decreasing and that there exists
C P L 2pFT q such that

max
1ďnďN

|Gn| “ max
`
ˇ

ˇG1
ˇ

ˇ ,
ˇ

ˇGN
ˇ

ˇ

˘

ď C , P-almost surely. (2.7)
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We refer to Section 2.1.2 below for motivating examples and discussion of possible
extensions of our setting.
For ω P Ω, we denote by Ψpω, ¨q the generalized inverse of G¨pωq, defined by

Ωˆ R Q pω, yq ÞÑ Ψpω, yq :“ max t1 ď n ď N | y ě Gnpωqu P S̄, (2.8)

where S̄ :“ S Yt´8u, and using the convention maxH “ ´8. We naturally extend G
on S̄ by setting G´8 :“ ´8, P-almost surely. Note that Ψ is pFT bBpRqq-measurable.
We observe that Ψ is càdlàg, upper bounded by N and satisfies

Ψpω, yq “ ´8 ðñ y ă G1pωq, and (2.9)

GΨpω,¨qpωq ď Idp¨q on R , Idp¨qďΨ ˝G¨pωq on S̄. (2.10)

We consider a probability measure µ P PpSq, such that µptnuq ą 0 for all 1 ď n ď N ,
i.e. the support of µ is exactly S.
We now introduce the multiple quantile hedging problem. The set of multiple quantile
superhedging prices is denoted by

Hpµq :“
!

y P R
ˇ

ˇ

ˇ
DZ P H 2pF,P;Rmq,PpY y,Z

T ě Gnq ě Fµpnq, 1 ď n ď N
)

. (2.11)

We then classically define the multiple quantile hedging price as

VWHpµq :“ inf Hpµq. (2.12)

As mentioned in the introduction, the multiple quantile hedging problem is general
enough to encapsulate in particular the quantile hedging problem and the PnL matching
problem, that we review in the next section.

2.1.2 Examples

Two cases of the above multiple constraints problem are of particular interest.

• For N “ 1, one gets the super-replication problem (see e.g. [17], [18]): G1 “ ξ for
some ξ P L2pFT q, µ “ δ1, and then

VWHpµq “ inf
!

y P R
ˇ

ˇ

ˇ
DZ P H 2pF,P;Rmq,PpY y,Z

T ě ξq ě 1
)

.

• For N “ 2, one recovers the classical quantile hedging problem (see e.g. [1],
[3], [14]) and we denote VWH by VQH in this case: G1 “ 0, G2 “ ξ for some
0 ď ξ P L2pFT q, µ “ p1´ pqδ1 ` pδ2 for p P p0, 1q, and then

VQHpµq “ inf
!

y P R
ˇ

ˇ

ˇ
DZ P H 2pF,P;Rmq, Y y,Z

T ě 0,P-a.s., and PpY y,Z
T ě ξq ě p

)

.

(2.13)
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Let us now consider another example with more structure and wich is inspired by
the article [2].

Example 2.1 (PnL distribution hedging). Let γ : S Q n ÞÑ γpnq P R an increasing
map. For latter use, we denote by γ´1 : γpSq Ñ S the inverse mapping of γ. We are
given a contingent claim ξ P L 2pFT q and a probability distribution µ P PpSq. The map
G is now defined by

Gn :“ ξ ` γpnq , for n P S. (2.14)

According to (2.12), we have

VWHpµq “ inf
!

y P R
ˇ

ˇ

ˇ
DZ P H 2pF,P;Rmq,PpY y,Z

T ě Gnq ě Fµpnq,@n P S
)

“ inf
!

y P R
ˇ

ˇ

ˇ
DZ P H 2pF,P;Rmq,PpY y,Z

T ´ ξ ě γpnqq ě Fµpnq,@n P S
)

“ inf
!

y P R
ˇ

ˇ

ˇ
DZ P H 2pF,P;Rmq,LpY y,Z

T ´ ξq ľ γ7µ
)

. (2.15)

In (2.15), we observe that a constraint on the terminal PnL distribution, given by the
net position Y y,Z

T ´ ξ, is imposed using the probability distribution γ7µ.

To conclude this section and to motivate the use of optimal transport tools, we are going
to solve the above PnL distribution hedging problem in the following setting:

Assumption 2.2. 1. Assumption 2.1 is in force.

2. The P-distribution of ΓT , denoted by LpΓT q, is absolutely continuous with respect
to the Lebesgue measure.

The starting point to solve the problem anticipates slightly the results to come.
Indeed, in the next section, see Proposition 2.2, we are going to prove

VWHpµq “ inf
!

y P R
ˇ

ˇ

ˇ
Dχ P T`pµq, DZ P H 2pF,P;Rmq, Y y,Z

T ´ ξ ě γpχq
)

(2.16)

“ inf
χPT`pµq

ErΓT pξ ` γpχqqs . (2.17)

where T`pµq “
 

χ P L2pFT q
ˇ

ˇPpSq Q χ7P ľ µ
(

. Intuitively, equation (2.16) is a lift at
the level of random variable of the formulation given in terms of law in (2.15). Once this
formulation is obtained, (2.17) comes from classical pricing result in complete market.
We observe also that (2.17) resembles a Monge problem except that the target is not
exactly the distribution µ but possibly any dominating measure in the sense of ľ, the
first order stochastic dominance. To solve this problem, we first solve the more restrictive
problem when the constraint is saturated, namely when χ7P “ µ. It is defined as follows.
For µ P PpSq, we set

VOTpµq :“ inf
χPT pµq

ErΓT pξ ` γpχqqs , (2.18)

where T pµq “
 

χ P L2pFT q
ˇ

ˇχ7P “ µ
(

.
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Lemma 2.1. Under Assumption 2.2, we have

VOTpµq “ ErΓT ξs ´
1

2
E
”

pΓT q
2
ı

´
1

2

ż

x2γ7µpdxq `
1

2
W2

2 pLp´ΓT q, γ7µq.

In addition, there exists χ‹ P T pµq such that

VOTpµq “ ErΓT pξ ` γpχ‹qqs ,

which writes explicitely χ‹ “ γ´1pN´1
γ7µ
˝ NLp´ΓT qp´ΓT qq. Here, Nγ7µ stands for the

c.d.f. of the law γ7µ and N´1
γ7µ

its generalized inverse.

Proof. We compute, starting from (2.18), as each χ P T pµq has law µ,

VOTpµq “ ErΓT ξs ` inf
χPT pµq

ErΓTγpχqs

“ ErΓT ξs ` inf
χPT pµq

´Erp´ΓT qγpχqs

“ ErΓT ξs `
1

2
inf

χPT pµq

`

E
“

p´ΓT ´ γpχqq
2
‰

´ E
“

p´ΓT q
2
‰

´ E
“

γpχq2
‰˘

“ ErΓT ξs ´
1

2
E
“

pΓT q
2
‰

´
1

2

ż

x2γ7µpdxq `
1

2
inf

χPT pµq
E
“

p´ΓT ´ γpχqq
2
‰

.

Denote ν :“ Lp´ΓT q, we straightforwardly observe that

inf
χPT pµq

E
“

p´ΓT ´ γpχqq
2
‰

ě inf
X„ν,Y„γ7µ

E
“

|X ´ Y |2
‰

“W2
2 pν, γ7µq. (2.19)

Since Lp´ΓT q is absolutely continuous with respect to the Lebesgue measure, using
Brenier’s theorem (see for example [19, Theorem 5.20]), there exists an optimal transport
map T from ν to γ7µ, i.e. such that T7ν “ γ7µ and

W2
2 pν, γ7µq “

ż

px´ T pxqq2νpdxq.

It is well-known, in our one-dimensional context, see for example [19, Remark 5.15],
that such an optimal transport map is given by x ÞÑ T pxq “ N´1

γ7µ
˝ Nνpxq. Defining

χ‹ :“ γ´1pT p´ΓT qq P T pµq, we have

W2
2 pν, γ7µq “

ż

| ´ x´ T p´xq|2dΓT 7Ppxq “ E
“

p´ΓT ´ γpχ
‹qq2

‰

“ inf
χPTµ

E
“

p´ΓT ´ γpχqq
2
‰

,

which concludes the proof. l

We now make the following simple observation.

Lemma 2.2. Under Assumption 2.2, for any ν, µ P PpSq such that ν ľ µ, we have
VOTpνq ě VOTpµq.
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Proof. By Lemma 2.1, we have that

VOTpνq ´ VOTpµq “ E
”

ΓT

´

γ´1pN´1
γ7ν
pNLp´ΓT qp´ΓT qqq ´ γ

´1pN´1
γ7µ
pNLp´ΓT qp´ΓT qqq

¯ı

“ E
”

ΓT

´

N´1
γ7ν
pUq ´N´1

γ7µ
pUq

¯ı

,

with U :“ NLp´ΓT qp´ΓT q is uniformly distributed on r0, 1s as ΓT has no atom. Since
ν ľ µ and γ is increasing, we have γ7ν ľ γ7µ and N´1

γ7ν
ě N´1

γ7µ
, hence the result, as

ΓT ą 0, P-almost surely. l

Proposition 2.1. Under Assumption 2.2, for all µ P PpSq, we have

VWHpµq “ VOTpµq .

Proof. Since T pµq Ă T`pµq, we have VWHpµq ď VOTpµq.
Conversely, let pχn, n ě 1q, a sequence of elements of T`pµq such that VWHpµq `

1
n ě

ErΓT pξ ` γpχnqqs. We have ErΓT pξ ` γpχnqqs ě VOTppχnq7Pq ě VOTpµq, thanks to
Lemma 2.2. We then have VWHpµq `

1
n ě VOTpµq and sending n to infinity gives the

reverse inequality. l

Remark 2.2. i) In this case, the multiple quantile hedging price is thus the replicating
price of the payoff ξ ` γpχ‹q given in Lemma 2.1.

ii) For the PnL distribution hedging problem, one could follow the above steps to obtain
the result for more general probability density µ P PpRq, general γ : R Ñ R such
that γ7µ P P2pRq and Gxpωq “ ξpωq ` γpxq. The study in our setting of the general
weak hedging problem with an arbitrary, possibly uncountable, number of quantile
constraints, is however left for further research.

2.2 The Monge representation

We now turn to the systematic study of the multiple quantile hedging problem defined
in (2.12). In particular, we first prove that the multiple quantile hedging price can be
obtained as an optimisation of non-linear expectation.

Proposition 2.2. Under our standing assumptions, the following equivalent formula-
tions hold for the multiple quantile hedging price

VWHpµq “ VRMpµq :“ inf
χPT`pµq

Y0rG
χs . (2.20)

and

VWHpµq “ inf H̃pµq, with H̃pµq :“
!

y P R|DZ P H 2pF,P;Rmq,ΨpY y,Z
T q7P ľ µ

)

,

(2.21)

recall (2.8).
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Proof. 1. We first prove (2.20). Set pHpµq :“ tY0rG
χs |χ P T`pµqu.

1.a Let χ P T`pµq and set ξ :“ Gχ. Observe that, since G¨ is non-decreasing, for each
n P S, we have tχ ě nu Ă tξ ě Gnu. Thus Ppξ ě Gnq ě Ppχ ě nq ě Fµpnq as χ7P ľ µ.
Using (2.7), we have that ξ P L2pFT q and then the BSDE pYrξs,Zrξsq, recall (2.2), is
well posed. We deduce Y0rξs P Hpµq. Thus pHpµq Ă Hpµq and hence VWHpµq ď VRMpµq.
1.b Conversely, let y P Hpµq, so that there exists Z P H 2pF,P;Rmq s.t. Y y,Z

T satisfies
to PpY y,Z

T ě Gnq ě Fµpnq for all n P S. We set χ :“ ΨpY y,Z
T q which is valued in S,

as Fµp1q “ 1 and Ψ satisfies (2.9). Recalling (2.10), we have that Y y,Z
T ě Gn implies

χ “ ΨpY y,Z
T q ě Ψ ˝ Gn ě n. Thus, Ppχ ě nq ě PpY y,Z

T ě Gnq ě Fµpnq yielding
χ7P ľ µ. Again from (2.10), we also observe that Gχ “ GΨpY y,ZT q ď Y y,Z

T leading to
Y0rG

χs ď Y0rY
y,Z
T s “ y by the comparison theorem for Lipschitz BSDEs. We then

obtain VRMpµq ď y, hence VRMpµq ď VWHpµq.
2. We now turn to the equivalent formulation (2.21). Set ṽpµq :“ inf H̃pµq. From the
step 1.b above, we obtain that VWHpµq ě ṽpµq. Now, let y P H̃pµq, then there exists
Z, s.t. χ :“ ΨpY y,Z

T q satisfies χ7P ľ µ. Using (2.10), we observe that Y y,Z
T ě Gχ.

In particular on tχ ě nu, we have, since G is non-decreasing, that Y y,Z
T ě Gn. Thus

PpY y,Z
T ě Gnq ě Fµpnq proving that y P Hpµq. l

Remark 2.3. 1. The formulation (2.21) given in the previous proposition shows that
the multiple quantile hedging problem is a particular instance of more generic weak
stochastic target problem: Consider a set M Ă PpRq and a right continuous non
decreasing random function O and solve

inf
!

y P R
ˇ

ˇ

ˇ
DZ P H 2pF,P;Rmq,OpY y,Z

T q7P PM
)

. (2.22)

The multiple quantile hedging problem corresponds to the case O “ Ψ and M :“
tν P PpSq|ν ľ µu for a given µ. In [4], the authors introduce a similar problem to
(2.22) where M :“

 

ν P PpRq |
ş

γνpdγq ě p
(

for a given level p P R.

2. The formulation (2.21) opens the way to a dynamic approach to characterize the
solution of the quantile hedging problems as a BSDE, as done in [4] in a special
case or to a PDE characterization in a Markovian setting, as done in [3]. The
extension of these results to our framework is left for further research.

Remark 2.4. 1. In the problem (2.20), “RM” stands for “Relaxed Monge”. Indeed,
let Assumption 2.1 hold. Then Y0 is a linear operator, since Y0rξs “ ErΓT ξs where
ΓT is defined by (2.4), according to Remark 2.1. Then, one has

VRMpµq “ inf
χPT`pµq

ErΓTGχs “ inf
χPT`pµq

ż

ΓT pωqG
χpωqpωqPpdωq, (2.23)

which can be interpreted as an “à la Monge” optimal transport problem with cost
function

pω, nq ÞÑ ΓT pωqG
npωq.
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We use the term ‘relaxed’ as the target distribution is not exactly µ, but can be
any probability distribution (with support included in S) stochastically dominating
µ. The linear framework will be extensively studied in Section 3.

2. In connection with the previous point, we introduce the Monge Problem (MP). In
our non-linear context, it reads:

VMPpµq :“ inf
χPT pµq

Y0rG
χs . (2.24)

In the next section, we shall show that the values VMP and VRM are equal. This
has already been observed in the specific context of Example 2.1, recall Proposition
2.1.

2.3 The Kantorovitch representation

Let us denote sΩ :“ Ωˆ S and sFT :“ FT b FpSq, with FpSq the discrete sigma-algebra
of S. We define the following projections

pr1 : sΩ Q pω, nq ÞÑ ω P Ω, and pr2 : sΩ Q pω, nq ÞÑ n P S.

We then define the following set of couplings

C`pP, µq :“
 

Π P PpsΩq
ˇ

ˇ ppr1q7Π “ P and ppr2q7Π ľ µ
(

. (2.25)

Using the previous notations, we introduce the Kantorovitch representation of the
multiple quantile hedging price. We define

VKPpµq :“ inf
ΠPC p̀P,µq

Y0

«

N
ÿ

n“1

GnρΠptnuq

ff

, (2.26)

where ρΠ is obtained from the disintegration of the measure Π: for all Π P PpsΩq, there
exists a FT -measurable map ρΠ : Ω Ñ PpSq such that (see e.g. Villani [20, p.209])
Πpdω,diq “ ρΠpω,diqPpdωq “

řN
n“1 ρ

Πpω, tnuqδnpdiqPpdωq, i.e. the ρΠptnuq are FT -
measurable random variables in r0, 1s such that

řN
n“1 ρ

Πptnuq “ 1, P-almost surely.
If additionally Π P C p̀P, µq, one easily observes that pρΠptnuq, 1 ď n ď Nq P P`

µ pFT q,
and conversely, any element P P P`

µ pFT q induces a probability distribution Π P

C p̀P, µq, hence

VKPpµq “ inf
PPP`

µ pFT q
Y0

«

N
ÿ

n“1

GnPn

ff

. (2.27)

Remark 2.5. In the linear setting of Remark 2.4, (2.20) writes

VRMpµq “ inf
χPT`pµq

ż

ΓT pωqG
χpωqpωqdPpωq,
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and the associated Kantorovitch Problem (KP) (2.26)

VKPpµq “ inf
ΠPC p̀P,µq

ż

ΓpωqGnpωqdΠpω, nq.

Moreover, using disintegration Πpdω,diq “ ρΠpω,diqPpdωq “
řN
n“1 ρ

Πpω, tnuqδnpdiqPpdωq
as above, we obtain

VKPpµq “ inf
ΠPC`pP,µq

ż

ΓT pωq
N
ÿ

n“1

GnpωqρΠpω, tnuqPpdωq

“ inf
ΠPC`pP,µq

E

«

ΓT

N
ÿ

n“1

GnρΠptnuq

ff

,

which motivates our definition (2.26). Proposition 2.5 shows that it is indeed the natural
non-linear counterpart of the previous relation.

The following proposition, shows, that in our setting the target constraint is saturated in
the Kantorovitch problem, namely, one can restrict to couplings satisfying to ppr2q7Π “
µ.

Proposition 2.3. The Kantorovitch problem (2.27) writes

VKPpµq “ inf
PPPµpFT q

Y0

«

N
ÿ

n“1

GnPn

ff

, (2.28)

“ inf
QPQµpFT q

Y0

«

G1 `

N
ÿ

n“2

Qn
`

Gn ´Gn´1
˘

ff

. (2.29)

Proof. 1. From (2.27) and the definition of Q`
µ pFT q, we straightforwardly deduce

VKPpµq “ inf
QPQ`µ pFT q

Y0

«

G1 `

N
ÿ

n“2

Qn
`

Gn ´Gn´1
˘

ff

. (2.30)

For each Q P Q`
µ pFT q, we are going to build a Q̌ P QµpFT q such that Q̌n ď Qn for

n P t1, . . . , N ` 1u. Since n ÞÑ Gn is non-decreasing by assumption, we get

G1 `

N
ÿ

n“2

Qn
`

Gn ´Gn´1
˘

ě G1 `

N
ÿ

n“2

Q̌n
`

Gn ´Gn´1
˘

(2.31)

The proof is then concluded by invoking the comparison theorem for BSDE.
2. In this step, we build by induction on the component 1 ď n ď N`1, for Q P Q`

µ pFT q,
the Q̌ used above. In preparation, we denote ν P PpSq defined by Fνpnq :“ ErQns ě
Fµpnq, n P t1, . . . , Nu. With a slight abuse of notations, let pQtqtPr0,T s be the martingale
defined by Qt “ EtrQs. We observe that it is valued in QN (by convexity) and satisfies
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Qn0 “ Fνpnq, n P t1, . . . , Nu. We now build a martingale pQ̂tqtPr0,T s s.t. QnT ě Q̂nT

and such that E
”

Q̂nT

ı

“ Q̂n0 “ Fµpnq, for all n P t1, . . . , Nu. The proof is done by
induction on the components and we introduce the following induction hypothesis for
n P t1, . . . , N ` 1u:
- Hn : for j P tn, . . . , N ` 1u, there are martingales p pQjt qtPr0,T s, such that pQj ď Qj ,

pQnt ě ¨ ¨ ¨ ě
pQjt ě ¨ ¨ ¨ ě

pQN`1
t “ 0, t P r0, T s ,

and for j P tn` 1, . . . , Nu, E
”

pQjt

ı

“ Fµpjq.

• For component n “ N ` 1, HN`1 holds trivially by setting Q̂N`1
t :“ 0, t P r0, T s;

• Assume now that, for n P t1, . . . , Nu, Hn`1 holds. Then, set

Q̃nt :“ Qnt ´Q
n
0 ` Fµpnq, t P r0, T s, and τn :“ inf

!

t ě 0 | Q̃nt “
pQn`1
t

)

^ T.

Observe that τn ą 0 since Q̃n0 “ Fµpnq ą Fµpn` 1q “ pQn`1
0 , by induction hy-

pothesis. We finally define

pQnt :“ Q̃nt^τn `
´

pQn`1
t ´ pQn`1pτnq

¯

1ttąτnu, t P r0, T s.

It is a martingale and we thus have that E
”

pQnt

ı

“ Fµpγnq. Moreover, by construc-
tion, we observe that

on tt ď τnu : pQn`1
t ď pQnt “ Q̃nt ď Qnt ,

tt ą τNu : pQnt “
pQn`1
t ď Qn`1

t ,

where we use the induction hypothesis for the last inequality. This allows us to
obtain Hn.

We then simply set Q̌ :“ pQT to conclude the proof of this step. l

We conclude this section by observing that there exists an optimal coupling in the KP
problem above, under a convexity assumption.

Proposition 2.4. Assume ξ ÞÑ Y0rξs is convex, then there exists a P̄ P PµpFT q, s.t.

VKPpµq “ Y0

«

N
ÿ

n“1

GnP̄n

ff

.

Proof. The set PµpFT q is convex and strongly closed in the separable Hilbert space
L 2pFT ,RN q, hence it is also weakly closed. We consider a minimizing sequence pP kq
for the problem VKP. The variables P k are uniformly bounded and thus there exists
subsequence (still denoted pP kq) which converges weakly to some P̄ P PµpFT q. Invoking
Mazur’s Lemma, we know that there exists a strongly convergent sequence using convex
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combination of pP kq, namely: P̃ k “
řKk
j“k λ

k
jP

j with
řKk
j“k λ

k
j “ 1 and P̃ k Ñ P̄ . By

convexity, we also have

Y0r

N
ÿ

n“1

GnpP̃ kqns ď
Kk
ÿ

j“k

λkjY0r

N
ÿ

n“1

GnpP jqns (2.32)

By strong convergence Y0r
řN
n“1G

npP̃ kqns Ñ Y0r
řN
n“1G

npP̄ qns. Moreover, we know
that Y0r

řN
n“1G

npP jqns Ñ VKPpµq and thus
řKk
j“k λ

k
jY0r

řN
n“1G

npP jqns Ñ VKPpµq. We
then obtain Y0r

řN
n“1G

npP̄ qns ď VKPpµq from (2.32), which concludes the proof. l

2.4 Equality between KP and MP

In this section, we will show that the Monge Problem and the Kantorovitch Problem,
respectively introduced in (2.24) and (2.26), coincide. This will allow us to obtain the
representation of the multiple quantile hedging price.

In preparation of the proofs, we introduce an approximation of Yr¨s which will also
be useful: For s P r0, T s a terminal time and ζ P L 2pFsq, we denote pYst rζs,Zs

t rζsqtPr0,ss
the solution to

Yt “ ζ `

ż s

t
fpu, Yu, Zuqdu´

ż s

t
ZudWu, t P r0, ss . (2.33)

With this notation, we have in particular that Ytrξs “ YTt rξs “ Yst rYTs rξss “ Yst rYsrξss
for ξ P L 2pFT q and 0 ď t ď s ď T .

The proof of the next lemma, which is based on classical arguments and estimates
of BSDEs solution is postponed to the end of the section.

Lemma 2.3. For ξ P L 2pFT q and 0 ă ε ă T , we have that

|YT´ε0 rErξ|FT´εss ´ YT0 rξs | ď C}ξ}L2
ε
1
4 . (2.34)

Proposition 2.5. The following holds true

VMPpµq “ VKPpµq. (2.35)

Proof. 1. We first observe that, for all ε ą 0, there exists a FT -measurable ran-
dom variable Uε with uniform distribution and independent of FT´ε, for example Uε “

N
´

WT´WT´ε?
ε

¯

. Here, N denotes the c.d.f of the standard centered gaussian law.

2. Let χ P T pµq. We have

Gχ “
N
ÿ

i“1

Gn1tχ“nu,
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Defining the FT -measurable random variables Pn :“ 1tχ“nu for all 1 ď n ď N . Since
P P PµpFT q, we have

Y0 rG
χs ě VKPpµq,

where we used Proposition 2.3. Taking the infinimum over χ P T pµq, we obtain
VMPpµq ě VKPpµq.

3. We now prove the converse inequality.
3.a Let η P p0, 1q and P η P PµpFT q, such that

VKPpµq ě Y0

«

N
ÿ

n“1

GnpP ηqn

ff

´ η. (2.36)

We set Qη P QµpFT q such that pP ηqn “ pQηqn`1 ´ pQηqn, 1 ď n ď N and define

P ηT´ε :“ ErP η|FT´εs and QηT´ε :“ ErQη|FT´εs , for ε P p0, T q. (2.37)

We observe that P ηT´ε P PµpFT´εq and QηT´ε P QµpFT´εq. We now introduce the
FT -measurable random variable

χη,ε :“
N
ÿ

n“1

n1tpQηT´εqněUεąpQ
η
T´εq

n`1u, (2.38)

where Uε is constructed in step 1. We compute that, for all 1 ď n ď N ,

E
“

1tχη,ε“nu
ˇ

ˇFT´ε
‰

“ pQηT´εq
n`1 ´ pQηT´εq

n “ pP ηT´εq
n. (2.39)

Since P ηT´ε P PµpFT´εq, we deduce, for all 1 ď n ď N ,

P pχη,ε “ nq “ E
“

E
“

1tχη,ε“γnu
ˇ

ˇFT´ε
‰‰

“ E
“

pP ηT´εq
n
‰

“ pn.

which implies that χη,ε P T pµq. Assume that

Y0

«

N
ÿ

n“1

GnpP ηqn

ff

ě Y0

“

Gχ
η,ε‰

` oη,εp1q (2.40)

where oη,εp1q ÑεÑ0 0, for all η P p0, 1q.
From the definition of VMPpµq, we straightforwardly obtain

Y0

«

N
ÿ

n“1

GnpP ηqn

ff

ě VMPpµq ` oη,εp1q, (2.41)

which, combined with (2.36), leads to

VKPpµq ě VMPpµq ´ oη,εp1q ´ η.
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Sending first ε to 0 and then η to 0 yields the inequality for this step and thus (2.35).
3.b To conclude, it remains to prove (2.40).
We define, for all 1 ď n ď N , GnT´ε :“ ErGn |FT´εs. According to (2.38), we observe
that

E
”

Gχ
η,ε

T´ε

ˇ

ˇ

ˇ
FT´ε

ı

“

N
ÿ

n“1

GnT´εpP
η
T´εq

n “ E

«

N
ÿ

n“1

GnpP ηT´εq
n

ˇ

ˇ

ˇ

ˇ

ˇ

FT´ε

ff

. (2.42)

We have, using (2.42) and the fact that YT0 r¨s “ YT´ε0 rYTT´εr¨s,

Y0

«

N
ÿ

n“1

GnpP ηqn

ff

´ Y0

“

Gχ
η,ε‰

“ Aη,ε `Bη,ε ` Cη,ε `Dη,ε, with

Aη,ε :“ Y0

«

N
ÿ

n“1

GnpP ηqn

ff

´ Y0

«

N
ÿ

n“1

GnT´εpP
ηqn

ff

,

Bη,ε :“ YT´ε0 YTT´ε

«

N
ÿ

n“1

GnT´εpP
ηqn

ff

´ YT´ε0

«

ET´ε

«

N
ÿ

n“1

GnT´εpP
ηqn

ffff

,

Cη,ε :“ YT´ε0

”

ET´ε
”

Gχ
η,ε

T´ε

ıı

´ YT´ε0 YTT´ε
”

Gχ
η,ε

T´ε

ı

, and

Dη,ε :“ Y0

”

Gχ
η,ε

T´ε

ı

´ Y0

“

Gχ
η,ε‰

.

Using stability property of BSDEs, see e.g. [16, Remark (b) p.20], we have that

|Aη,ε| ď C}
N
ÿ

n“1

`

Gn ´GnT´ε
˘

pP ηqn}L 2 .

Using Cauchy-Schwarz inequality and dominated convergence theorem, we obtain eas-
ily that }

řN
n“1

`

Gn ´GnT´ε
˘

pP ηqn}L 2 “ oη,εp1q, which, combined with the previous
inequality leads to,

Aη,ε “ oη,εp1q. (2.43)

For the B term, we first observe that }
řN
n“1G

n
T´εpP

ηqn}L 2 ď }C}L 2 , recall (2.7). Then
invoking Lemma 2.3, we obtain

Bη,ε ď Cε
1
4 . (2.44)

For the C-term (resp.D-term), we use similar arguments as for the B-term (resp.A-
term), to obtain

Cη,ε `Dη,ε “ oη,εp1q. (2.45)

The proof for this step is then concluded by combining (2.43), (2.44) and (2.45). l

16



Theorem 2.1. The following representation holds true

VWHpµq “ inf
PPPµpFT q

Y0

«

N
ÿ

n“1

GnPn

ff

. (2.46)

Proof. According to the definitions of VMPpµq in , VRMpµq in and VKPpµq in ,we have

VMPpµq ě VRMpµq ě VKPpµq.

Proposition 2.5 allows then to get

VMPpµq “ VRMpµq “ VKPpµq.

The proof is concluded by combining (2.28) and (2.20) with the previous equalities. l

We conclude the section with the proof of the auxiliary lemma.

Proof of Lemma 2.3 From stability estimates for BSDEs, see e.g. [16, Remark (b)
p.20], and the fact thatYT0 r¨s “ YT´ε0

“

YTT´ε r¨s
‰

,we have

|YT´ε0 rErξ|FT´εss ´ YT0 rξs | ď C}Erξ|FT´εs ´ YTT´ε rξs }L 2 . (2.47)

Let us denote pU, V q the solution of the BSDE with terminal value ξ and null generator
i.e. for all t ď T ,

Ut “ ξ ´

ż T

t
VsdWs “ Erξ|Fts ,

and to alleviate the notation pYt,Ztq “ pYTt rξs,ZT
t rξsq, t ď T . Define finally δY “ U´Y

and δZ “ V ´ Z. Classical computations for comparison of two BSDEs lead to

|δYt|
2 ď CE

„
ż T

t
|fps, Us, VsqδYs|ds|Ft



. (2.48)

We also know, see e.g. [16, Remark (b) p.20], that

Et

«

sup
sPrt,T s

|Ys|2 `
ż T

t
|Zs|2ds

ff

ď CEt
„

|ξ|2 `

ż T

t
|fps, 0, 0q|2ds



, (2.49)

Et

«

sup
sPrt,T s

|Us|
2 `

ż T

t
|Vs|

2ds

ff

ď CEt
“

|ξ|2
‰

. (2.50)

From (2.48), we compute

|δYt|
2 ď CE

«

sup
sPrt,T s

|δYs|

ż T

t
|fps, Us, Vsq|ds|Ft

ff

, (2.51)
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and then using Cauchy-Schwarz inequality,

|δYt|
2 ď C

?
T ´ tEt

«

sup
sPrt,T s

|δYs|
2

ff
1
2

Et
„
ż T

t
|fps, Us, Vsq|

2ds



1
2

. (2.52)

Using the Lipschitz property of f , we get

Et
„
ż T

t
|fps, Us, Vsq|

2ds



ď C

ˆ

Et
„
ż T

t
|fps, 0, 0q|2ds



` Et
„
ż T

t
|Us|

2ds



` Et
„
ż T

t
|Vs|

2ds

˙

(2.53)

which using (2.50), leads to

Et
„
ż T

t
|fps, Us, Vsq|

2ds



ď CEt
„

|ξ|2 `

ż T

t
|fps, 0, 0q|2ds



. (2.54)

Combining (2.49) and (2.50), we obtain also

Et

«

sup
sPrt,T s

|δYs|
2

ff

ď CEt
„

|ξ|2 `

ż T

t
|fps, 0, 0q|2ds



. (2.55)

Inserting back (2.54) and (2.55) into (2.48), we get

|δYt|
2 ď C

?
T ´ tEt

„

|ξ|2 `

ż T

t
|fps, 0, 0q|2ds



. (2.56)

Combining the previous inequality at t “ T ´ ε and (2.47), we get

|YT´ε0 rErξ|FT´εss ´ YT0 rξs | ď Cε
1
4E
„

|ξ|2 `

ż T

t
|fps, 0, 0q|2ds



,

which concludes the proof. l

3 Linear setting: duality and numerical illustration

We now focus on a special framework, useful for application, where tractable and im-
plementable formula can be derived, namely the linear setting. We thus assume that
Assumption 2.1 is in force throughout the section. It turns out that the multiple quan-
tile hedging problem corresponds then to a semi-discrete optimal tranport problem see
e.g. [21, Chapter 5] and the references therein. We shall thus rely here further on the
approach of optimal transport to solve our problem and in particular we use duality
methods.
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3.1 Dual representation

In the setting of Remark 2.1, we define the random vector

Hpωq “ pHnpωq :“ ΓT pωqG
npωqqNn“1 . (3.1)

We now assume

H P L 2pFT ,RN q. (3.2)

In this framework, Theorem 2.1 reads as follows.

Corollary 3.1. Under Assumptions 2.1, the following holds

VWHpµq “ inf
PPPµpFT q

E

«

N
ÿ

n“1

HnPn

ff

. (3.3)

We introduce a dual formulation for the multiple quantile hedging problem, which is
the classical optimal transport formulation of the dual Kantorovitch probem. We set

VDPpµq :“ sup
pX,ΦqPP

˜

ErXs `
N
ÿ

n“1

Φnpn

¸

, (3.4)

where

P :“
 

pX,Φq P L 2pFT q ˆ RN
ˇ

ˇHn ě X ` Φn, 1 ď n ď N,P´ a.s.
(

. (3.5)

We first make the classical observation without proof,

Lemma 3.1. Under Assumption 2.1, for µ P PpSq,

VWHpµq “ VKPpµq ě VDPpµq.

The goal of this section is to prove that there is no duality gap, i.e. that VKPpµq “
VDPpµq. To this effect, we introduce, for µ “

řN
n“1 p

nδn P PpSq with
řN
n“1 p

n “ 1 and
pn P p0, 1q for all 1 ď n ď N , the map

D : L2pFT ;RN q Ñ R (3.6)

h ÞÑ ´ sup
pX,ΦqPPphq

˜

ErXs `
N
ÿ

i“1

Φnpn

¸

, (3.7)

where

Pphq :“
 

pX,Φq P L 2pFT q ˆ RN
ˇ

ˇHn ´ hn ě X ` Φn, 1 ď n ď N,P´ a.s.
(

.

Observe that ´VDPpµq “ Dp0q and P “ PH,µp0q. We first collect some properties of
the map D.
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Proposition 3.1. The map D is continuous and convex. Moreover, for h P L2pFT ;RN q,
we have

Dphq “ ´ sup
ΦPpR`qN

˜

E
„

min
1ďnďN

pHn ´ hn ´ Φnq



`

N
ÿ

n“1

Φnpn

¸

, (3.8)

“ ´

˜

E
„

min
1ďnďN

`

Hn ´ hn ´ Φn
h

˘



`

N
ÿ

n“1

Φn
hp

n

¸

, (3.9)

for some Φh P pR`qN .

Proof. 1. We first observe that in Definition (3.6), we can replace pX,Φq P Pphq by
pminnpH

n ´ hn ´ Φnq,Φq P Pphq as the criterion is improved. Thus, we get

Dphq “ ´ sup
ΦPRN

˜

E
„

min
1ďnďN

pHn ´ hn ´ Φnq



`

N
ÿ

n“1

Φnpn

¸

Let us now consider the set

E “
 

x P pR`qN | Dj P t1, . . . , Nu , s.t. xj “ 0
(

. (3.10)

Observe to Φ P RN , we can associate Φ̃ P E by setting

Φ̃n “ Φn ´ min
1ďjďN

Φj ,

and we have, as
ř

n p
n “ 1,

E
„

min
1ďnďN

pHn ´ hn ´ Φnq



`

N
ÿ

n“1

Φnpn “ E
„

min
1ďnďN

´

Hn ´ hn ´ Φ̃n
¯



`

N
ÿ

n“1

Φ̃npn.

We then have proved

Dphq “ ´ sup
ΦPE

whpΦq with whpΦq :“ E
„

min
1ďnďN

pHn ´ hn ´ Φnq



`

N
ÿ

n“1

Φnpn, (3.11)

which a fortiori implies (3.8).
2. We now prove the existence of optimal potential, namely (3.9). First, for Φ P E,
there is k P t1, . . . , Nu such that Φk “ 0 and thus

N
ÿ

n“1

Φnpn “
ÿ

n‰k

Φnpn ď |Φ|8
ÿ

n‰k

pn ď |Φ|8p1´ qq with q :“ min
n
pn ą 0.

Then, we observe that

whpΦq “
N
ÿ

n“1

Φnpn ´ E
„

max
1ďnďN

pΦn ´Hn ` hnq



ď |Φ|8

ˆ

p1´ qq ´
1

|Φ|8
E
„

max
1ďnďN

pΦn ` hn ´Hnq

˙

. (3.12)
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Since
1

|Φ|8
E
„

max
1ďnďN

pΦn ` hn ´Hnq



ě 1´
1

|Φ|8
E
„

min
1ďnďN

|hn ´Hn|



(3.13)

Combining the previous inequality with (3.12), we obtain, for Φ P E,

whpΦq ď |Φ|8

ˆ

´q `
1

|Φ|8
E
„

min
1ďnďN

|hn ´Hn|

˙

. (3.14)

We also observe that whp0q “ Ermin1ďnďN pH
n ´ hnqs and thus for Φ s.t.

|Φ|8 ąM :“
2

q
E
„

min
1ďnďN

|hn ´Hn|



(3.15)

we obtain that whpΦq ă ´|whp0q|. Thus, the supremum in (3.11) is achieved for Φ s.t.
|Φ| ďM . Combining this with the fact that whp¨q is continuous on the closed set E, we
obtain the existence of Φh s.t. the supremum is achieved, concluding the proof of this
step.
3.a Since h ÞÑ whpΦq is continous, we straightforwardly obtain that D is upper semi-
continous. Now let phkqkě0 converging in L2pFT ;RN q to ĥ and denote Φk an optimal
potential associated to the optimisation Dphkq. We compute, by suboptimality of Φk

for the optimisation Dpĥq, according to (3.8),

Dpĥq ď ´E

«

ÿ

n

Φn
kp

n `min
n
pHn ´ ĥn ´ Φn

kq

ff

(3.16)

ď ´E

«

ÿ

n

Φn
kp

n `min
n
pHn ´ hnk ´ Φn

kq

ff

` E
”

min
n
|hnk ´ ĥn|

ı

(3.17)

ď Dphkq ` E
”

|h´ hk|
ı

. (3.18)

Taking the liminf in this last inequality,* we obtain that D is lower semi-continous,
hence continous.
3.b Let λ P r0, 1s, h1, h2 in L2pFT ;RN q and denote Φ1, Φ2 the associated optimal
potentials. By suboptimality, we obtain

Dpλh1 ` p1´ λqh2q ď ´
ÿ

n

pλΦn
1 ` p1´ λqΦ

n
2 qp

n (3.19)

´ E
”

min
n
pλpHn ´ hn1 ´ Φn

1 q ` p1´ λqpH
n ´ hn2 ´ Φn

2 qq

ı

. (3.20)

Since

min
n
pλpHn ´ hn1 ´ Φn

1 q `p1´ λqpH
n ´ hn2 ´ Φn

2 qq ě

λmin
n
pHn ´ hn1 ´ Φn

1 q ` p1´ λqmin
n
pHn ´ hn2 ´ Φn

2 q,

we obtain

Dpλh1 ` p1´ λqh2q ď λDph1q ` p1´ λqDph2q,

which conclude the proof for the convexity of D. l
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Proposition 3.2. Let D‹ be the Fenchel transform of D, namely

D‹ : L2pFT ;RN q Ñ R,

P ÞÑ sup
hPL2pFT ;RN q

E

«

N
ÿ

n“1

hnPn

ff

´Dphq.

We then have

D‹pP q “ E

«

N
ÿ

n“1

HnPn

ff

1tPPPµpFT qu ` p`8q1tPRPµpFT qu.

Proof. 1 From the definition of D, we observe that

D‹pP q “ sup
ph,X,ΦqPE

E

«

N
ÿ

n“1

hnPn `X

ff

`

N
ÿ

n“1

Φnpn (3.21)

with

E “
 

ph, X,Φq P L2pFT ;RN qˆL 2pFT qˆRN
ˇ

ˇHn ´ hn ě X ` Φn, 1 ď n ď N and P-a.s.
(

.
(3.22)

For a given P P L2pFT ;RN q and λ ě 0, we introduce hλ P L
2pFT ;RN q defined by

hnλ “ Hn ´ λ1tPnă0u,

and we observe that phλ, 0, 0q P E. We then obtain

D‹pP q ě E

«

N
ÿ

n“1

hnλP
n

ff

“ λE

«

N
ÿ

n“1

´Pn1tPnă0u

ff

. (3.23)

Thus, as soon as PpP P pR`qN q ă 1, we get D‹pP q “ `8 by letting λ Ñ 8 in the
inequality above.
2. We now consider P P L2pFT ; pR`qN q. To ph, X,Φq P E, we associate ph̃, X,Φq P E
where h̃n “ Hn ´ pX ` Φnq, 1 ď n ď N . We observe, since P has non-negative
components, that

E

«

N
ÿ

n“1

hnPn

ff

ď E

«

N
ÿ

n“1

h̃nPn

ff

“ E

«

N
ÿ

n“1

HnPn ´X
N
ÿ

n“1

Pn ´
N
ÿ

n“1

ΦnPn

ff

.

We therefore get that

D‹pP q “ E

«

N
ÿ

n“1

HnPn

ff

` sup
XPL 2pFT q,ΦPRN

E

«

Xp1´
N
ÿ

n“1

Pnq

ff

`

N
ÿ

n“1

Φnppn ´ ErPnsq.

From this expression, we deduce that, as soon as P R PµpFT q, D‹pP q “ `8. If
P P PµpFT q, we then get D‹pP q “ E

”

řN
n“1H

nPn
ı

which concludes the proof. l
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Theorem 3.1. Duality holds and then

VWHpµq “ sup
ΦPpR`qN

˜

E
„

min
1ďnďN

pHn ´ Φnq



`

N
ÿ

n“1

Φnpn

¸

. (3.24)

Proof. By Proposition 3.1, D is convex and continuous. It implies that D “ D‹‹ by
the Fenchel-Moreau theorem, with

D‹‹phq :“ sup
PPL2pFT ;RN q

E

«

N
ÿ

n“1

hnPn

ff

´D‹pP q, h P L2pFT ;RN q.

By Proposition 3.2, we then have

D‹‹phq “ sup
PPPµpFT q

E

«

N
ÿ

n“1

phn ´HnqPn

ff

.

Taking h “ 0, we obtain

´VDPpµq “ Dp0q “ D‹‹p0q “ sup
PPPµpFT q

´E

«

N
ÿ

n“1

HnPn

ff

“ ´ inf
P PPµpFT q

E

«

N
ÿ

n“1

HnPn

ff

“ ´VKPpµq.

The proof is concluded by invoking Lemma 3.1 and using the representation of Dp0q
given in (3.8). l

Corollary 3.2. The multiple quantile hedging problem solution is also given by

VWHpµq “ E
“

H1
‰

` sup
ζP∆N´1

`

˜

E
„

min
1ďnďN´1

´

H̃n`1 ´ ζn
¯

´



`

N´1
ÿ

n“1

ζnpn`1

¸

.

where x´ :“ minpx, 0q for x P R and H̃n “ Hn ´H1, 1 ď n ď N .

Proof. We first go back to the definition of VDPpµq in (3.4)-(3.5). In particular, we
observe that to pX,Φq P P, we can associate pX, Φ̃q P P s.t. Φ̃n ě Φn and Φ̃ P ∆N .
Indeed, one simply sets Φ̃n “ ess infωPΩH

npωq´Xpωq. The fact that Φ̃n ě Φ̃n´1 comes
from the fact that G¨ is non-decreasing. Then, we get the equivalent formulation

VWHpµq “ sup
ΦP∆N

˜

N
ÿ

n“1

Φnpn ` E
„

min
1ďnďN

pHn ´ Φnq



¸

. (3.25)

Setting ζn “ Φn`1 ´ Φ1, for 1 ď n ď N ´ 1, concludes the proof. l
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3.2 Numerical illustration

We now turn to numerical considerations associated to the above partial hedging prob-
lem. To this end, we first introduce a Markovian setting where our previous results can
be straightforwardly restated.
We consider an underlying process X solution of the following SDE

Xt “ X0 `

ż t

0
bpXsqds`

ż t

0
σpXsqdWs , (3.26)

where b : Rm Ñ Rm, σ : Rm Ñ Rmˆm are Lipschitz continuous functions. The starting
point X0 P Rm at time 0 is arbitrary and we omit it in the notation. In this setting, the
controlled process Y y,Z satisfies, according to (2.1),

Y y,Z
s “ y ´

ż s

t
fpr,Xr, Y

y,Z
r , Zrqdr `

ż s

t
ZrdWr , (3.27)

where f : r0, T s ˆ Rm ˆ Rˆ Rm Ñ R is a Lipschitz-continuous function.
In the linear framework, we are considering, Assumption 2.1 on f reads as follows,

Assumption 3.1. There exists a bounded continuous map pα, βq : r0, T sˆRm Ñ RˆRm
such that

f pt, x, y, zq “ αpt, xqy ` βpt, xqJz, pt, x, y, zq P r0, T s ˆ Rm ˆ Rˆ Rm.

Under Assumption 3.1, the process Γ, following Remark 2.1, is solution to

Γt “ 1`

ż t

0
Γsαps,Xsqds`

ż t

0
Γsβps,Xsq

JdWs, 0 ď t ď T. (3.28)

Regarding the terminal constraint, we consider a measurable function:

Rm Q x ÞÑ pgnpxqqNn“1 P RN , (3.29)

such that n ÞÑ gnp¨q is non-decreasing. And we set, for all n P S,

Gn “ gnpXT q and Hn “ ΓTG
n. (3.30)

The link made in the previous section to semi-discrete optimal transport allows us
to use some numerical methods already developed in this field, see e.g. [21, Chapter 5].
In particular, we use the dual representation formula obtained in Corollary 3.2. Since
the value we want to compute is obtained via the maximisation of the expectation of
a concave function, we will naturally rely here on Stochastic Gradient Ascent (SGA),
methods. In this regard, we shall use the ADAM optimiser [22], described below in
Definition 3.1. Let us mention that stochastic gradient algorithms have already been
considered to compute quantile in a financial context, see e.g. [23].
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We introduce the function W : ∆N´1
` ˆL 2pFT q ˆL 2pFT q Ñ R, given by,

pζ,Γ, Xq ÞÑWpζ,Γ, Xq “
N´1
ÿ

n“1

ζnpn`1 ` min
1ďnďN´1

`

Γrgn`1pXq ´ g1pXqs ´ ζn
˘

´
.

(3.31)

and w : ∆N´1
` Ñ R, given by ,

ζ ÞÑ wpζq “ ErWpζ,ΓT , XT qs . (3.32)

With this notation, we get that

VWHpµq “ E
“

g1pXT q
‰

` sup
ζP∆N´1

`

wpζq. (3.33)

We introduce the following partition, for 1 ď n ď N ´ 1,

Lnpζ,Γ, Xq :“

"

H̃n`1 ´ ζn ă 0, H̃n`1 ´ ζn ă min
jăn

H̃j`1 ´ ζj , H̃n`1 ´ ζn “ min
jěn

H̃j`1 ´ ζj
*

(3.34)

recalling that H̃n`1 “ Γrgn`1pXq ´ g1pXqs. We have that

Wpζ,Γ, Xq “
N´1
ÿ

n“1

ζnpn`1 ` pH̃n`1 ´ ζnq1Lnpζ,Γ,Xq.

We then observe that the function

pζ,Γ, Xq ÞÑ dpζ,Γ, Xq “ pn`1 ´ 1Lnpζ,Γ,Xq (3.35)

is a subgradient of ζ ÞÑWpζ,Γ, Xq. We use this function to perform the gradient ascent,
in the ADAM optimizer, see Definition 3.1 below. The algorithm requires in particular
the introduction of a stepsize pηmqmě1 satisfying generally

ÿ

mě1

ηm “ `8 and
ÿ

ně1

η2
m ă `8. (3.36)

We are also given a maximal number of iteration Miter ě 1 and we allow the use of
batch with batchsize B ě 1.

Definition 3.1 (ADAM optimizer [22] for SGA). 1. At initial step m “ 0, set ran-
domly ζ0 and initialize first moment m0 “ 0, and second moment v0 “ 0.

2. For m “ 1, ¨ ¨ ¨ ,Miter:

(a) generate pΓ̄b`pm´1qB, X̄b`pm´1qBq1ďbďB independent copies of pΓT , XT q inde-
pendently from the past values pΓ̄k, X̄kqkďpm´1qB (if m ą 1) and ζ0.
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(b) Compute then

gm “
1

B

B
ÿ

b“1

dpζm´1, Γ̄b`pm´1qB, X̄b`pm´1qBq , (3.37)

mn “ β1mn´1 ` p1´ β1qgm, (3.38)

vm “ β2vm´1 ` p1´ β2q|gm|
2, (3.39)

m̂m “
mm

1´ βm1
, v̂m “

vm
1´ βm2

, (3.40)

ζm “ ζm´1 ´ ηm
m̂m

a

v̂m ` ε
, (3.41)

for some small ε ą 0 and pβ1, β2q P p0, 1q
2.

(c) If |ζm ´ ζm´1| ă ι, then stop the computation, for a given small ι.

In all our numerical experiments, we set ε “ 10´8, β1 “ 0.9, β2 “ 0.999 and the early
stopping criterion ι “ 10´6. The stepsize is given by ηm “ η0{m, m ě 1 with η0 possibly
varying in each numerical test.

Then, to obtain the approximation of VWHpµq, we perform the two following steps:

1. Compute, by using the above SGA algorithm, ζ‹ realizing approximately the max-
imum of w above;

2. Compute, by Monte-Carlo simulation, the value E
“

g1pXT q
‰

` wpζ‹q which then
approximates VWHpµq according to (3.33).

The numerical experiments are done using the Black & Scholes model, which has already
been used extensively in the context of quantile hedging problem for numerical purposes
in [14, 1].

Example 3.1 (Black & Scholes Model). The process X satisfies

Xt “ X0 `

ż t

0
b̂Xsds`

ż t

0
σXs dWs ,

with b̂ P R, σ ą 0 and X0 ą 0. The function f is given by:

fpt, x, y, zq “ ´ry ´
b̂´ r

σ
z “: ´ry ´ λz, (3.42)

with r ě 0 the interest rate, and λ :“ b̂´r
σ the risk premium. The Radon-Nikodym

derivative defined in (3.28) is thus:

ΓT “
dQ
dP

ˇ

ˇ

T
“ exp

´r ´ b̂

σ
WT ´

1

2

pr ´ b̂q2

σ2
T
¯

.
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Quantiles p2, p3 γ2, γ3 SGA (std) OT-solver

(0.3,0.5) (10,20) 17.38 (0.001) 17.48
(0.05,0.05) 8.48 (0.002) 8.41
(0.05,0.9) 24.53 (0.002) 24.44
(0.3,0.5) (10,100) 42.07 (0.002) 42.19
(0.05,0.05) 9.77 (0.002) 9.62
(0.05,0.9) 87.15 (0.01) 87.57

Table 1: Numerics of measure µ “ p1´p2´p3qδ1`p2δ2`p3δ3 with different probabilities
and quantiles with SGD algorithm and OT-solver. Algorithm’s parameters as follows:
Miter “ 105, B “ 256 and γ0 “ 0.01.

3.2.1 Numerical solution for the PnL distribution hedging problem

We work in the setting of Example 2.1 with N “ 3, γ1 “ 0 ă γ2 ă γ3, and

gipxq :“ px´Kq` ` γi , (3.43)

for some K P R.
We consider in this part the discrete measure µ “ p1´ p2 ´ p3qδ1 ` p2δ2 ` p3δ3. To

validate empirically the results obtained via the SGA algorithm, we rely on the formula
obtained for Example 2.1 in Lemma 2.1. We call this approach below OT-solver. We
do not use the PDE method proposed in [2] which is more delicate to implement.
The numerical results are reported in the Table 1. We observe that the numerical
solutions by SGD perform well in comparison to the OT-solver.

3.2.2 SGA for quantile hedging problem

We conclude this section by revisiting the numerical approximation of the classical
quantile hedging problem using SG algorithms. We are thus in the setting of (2.13).

The two terminal constraints imposed on the portfolio value Y y,Z
T are: PpY y,Z

T ě

0q “ 1 and PpY y,Z
T ě g̃pXT qq “ p, with g̃ a Lipschitz continuous function. In our

numerical test, we consider for g̃ the payoff of European put and call options. We
also compute the quantile hedging price on set of probabilites p :“ t i20 , 0 ď i ď 20u,
reaching thus some extreme quantile value. The numerical results are compared to the
value given by the theoretical formula in [1]. We observe that our quantile hedging
price approximation is able to reproduce perfectly the true solution of call and put
options claim, even for extreme values of p, as reported in Figure 1. In term of SGA
algorithm to obtain the approximated quantile, we observe that the call option example
is less demanding computationally than the put option example. Both are much less
computationally demanding than the example of the previous section.
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(a) Put option pK ´ Sq` (b) Call option pS ´Kq`

Figure 1: Comparison of two methods: Approximated & Exact solution [14, 1] for
put and call option, with parameters X0 “ 100, r “ 0, σ “ 0.2 and b̂ “ 0.1, strike
K “ 100, terminal time T “ 1. For the put, the algorithm’s parameters are as follows:
Miter “ 5000, B “ 256 and γ0 “ 0.01. For the call, the algorithm’s parameters are as
follows: Miter “ 2500, B “ 64 and γ0 “ 0.01.
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