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Chapter 1

Stability and Bifurcation in non
linear mechanics
Claude Stolz

Abstract

Analysis of stability and bifurcation is studied in non linear mechanics with
mechanisms of dissipation : plasticity, damage, fracture. With introduction of
a set of internal variables, this framework allows a systematic description of
the material behaviour via two potentials : the free energy and the potential
of dissipation. For standard generalized materials internal state evolution is
governed by a variational inequality depending on the mechanism of dissipation.
This inequality is obtained through energetic considerations in an unified
description based upon energy and driving forces associated to internal variable
evolution. This formulation provides criterion for existence and uniqueness of the
system evolution. Examples are presented for plasticity, fracture and for damaged
materials

Keywords: Stability, bifurcation, plasticity, damage, fracture, normality law

1. Introduction

Behaviour of material based on an energetic approach is providing a large
framework for the description of anelastic structures. Various approaches has
been developed. The introduction of the internal variables allows a systematic
description of the material behaviour via two potentials : the free energy and the
potential of dissipation.

The development of such description is due to the works of several authors:
[? ? ? ? ]. The purpose of this article is to study the quasistatic evolution of a
anelastic structure. The system evolution is analysed using of the definition of
functionals presented here in the case of non linear dynamics, firstly for internal
variables associated to volume dissipation in non linear mechanics (plasticity
and damage) , secondly for dissipation due to singularities and discontinuities
propagation (fracture, phase transformation). Quasistatic evolution is studied
for dissipative materials. Stability and uniqueness of the response of the system
under prescribed loading are discussed, due to the formulation of the rate
boundary value problem in terms of velocity and evolution of internal parame-
ters.
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Stability and bifurcation in non linear mechanics

2. Preliminaries and general features

Let a body Ω submitted to external forces described by vector fields f over
Ω and vector fields T along the boundary 𝜕Ω. The external forces are generally
functions of time. Under loading the body is deformed. The actual position x
of a material point is a function Φ of its initial position X and of the time. The
displacement u is then defined by :

x(X, t) = Φ(X, t) = X + u(X, t) (1)

Hence, a material element dX is transported by the motion to the material ele-
ment dx. The corresponding transformation is the linear application associated
with the gradient of transformation F :

dx =
𝜕x
𝜕X

.dX = F.dX (2)

The actual length of the material element is given by :

dx.dx = dX.FT .F.dX = dX.C.dX (3)

The changes of the local geometry, the stretching and the shearing of material
fibers are determined by the Cauchy-Green tensor C = FT .F. In small perturba-
tions the gradient of the displacement is small and the deformation is reduced to
its linear contribution 𝜺(u) : 2 𝜺(u) = ∇u + ∇Tu

2.1 Notion of stability

For conservative system, when the loading T depends on one parameter 𝜆,
the dynamical system associated to the evolution ot he body Ω is defined by a
functional

¤x = F(x, 𝜆) (4)

Then positions of equilibrium are given by F(x, 𝜆) = 0. At this stage without
any particular conditions the uniqueness x(𝜆) is not ensured. But for a known
position x(𝜆) under small perturbation d𝜆 it is possible to determine the corre-
sponding variation dxof the position x(𝜆). Secondly, given some perturbation
of equilibrium at fixed 𝜆, if the response remains closed to that position, the
equilibrium is say stable.

The stability of the position of equilibrium xo(𝜆) is then determined with
respect to Lyapounov definition :

∀𝜺 ∃𝛼 ( | |x(0, 𝜆) − xo(𝜆) | | + | | ¤x(0, 𝜆) | |) ≤ 𝛼 → ||x(t, 𝜆) − xo | | ≤ 𝜺 (5)

where x(t, 𝜆) is solution of ?? with initial conditions near the equilibrium state.
It is clear that the notion of stability of an equilibrium position is a dynamical
notion.
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Study of conservative system

Figure 1.
The metronome.

3. Study of conservative system

The evolution of the system is governed by the total potential energy, which
is composed by the free energy of the material, and by the potential energy of
the loading. A generic point of view is given by the study of the metronome and
introduction of asymptotic expansion to characterized the equilibrium solution [?
? ]

A vertical rigid bar is clamped by a spiral spring with free energy W(θ), and
we applied a vertical loading 𝜆. A mass M is attached at the top of the bar. The
total potential energy E and the kinetic energy satisfy:

E(θ, 𝜆) = W(θ) − 𝜆L(1 − cos θ), K =
1
2

M ¤θ2L2 (6)

Near the position θ = 0 the energy is developed as

W =
1
2

C1θ
2 + 1

3
C2θ

3 + 1
4

C3θ
4 + ... (7)

The dynamical system to study becomes

ML2 ¥θ + 𝜕E
𝜕θ

= 0 (8)

First we characterize equilibrium position (θo, 𝜆o) and the research of equilibrium
position near this point is determined by asymptotic expansion as proposed by [?
? ], linking loading 𝜆 to a position θ.

3.1 Static equilibrium path

An equilibrium state (𝜆, 𝜃) satisfies

𝜕W
𝜕θ

− 𝜆L sin θ = 𝜃

(
C1 + C2θ + C3θ

2 + ... − 𝜆L(1 − θ2

6
..)
)
= 0 (9)
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Stability and bifurcation in non linear mechanics

then two equilibrium paths exists

θ(𝜆) = 0,∀𝜆, 𝜆L =
1

sin(θ)
𝜕W
𝜕θ

= C1 + (C2 +
1
6

C1)θ + ... (10)

The common point of the paths is the bifurcation point.

𝜆c =
C1

L
, θ = 0 (11)

3.2 Stability analysis

The dynamical behavior around this position is a weakly non linear dynami-
cal system, taking account of a new asymptotic expansion

𝜆 = 𝜆o + 𝜆1𝜉 + 𝜆2𝜉
2 + ...

θ = θo + θ1(𝜏)𝜉 + θ2(𝜏)𝜉2 + ...

𝜏 = 𝜉mt(Ωo + 𝜉Ω1 + 𝜉2Ω2 + ...)
(12)

The characteristic time 𝜏 is chosen to satisfy the dependency of the pulsation of
the system with respect to the loading.

ML2𝜉2m(Ω(𝜉))2 ¥θ + 𝜕W
𝜕θ

− 𝜆L sin θ = 0 (13)

The motion is then governed by

ML2𝜉2m(Ωo + 𝜉Ω1 + 𝜉2Ω2 + ...) ( ¥θ1𝜉 + ¥θ2𝜉
2 + ..) =

(L𝜆o − C1)𝜉θ1 + 𝜉2(L(𝜆oθ2 − 𝜆1θ1) − (C1θ2 + C2θ
2
1))

+ ...

(14)

3.2.1 Discussion

• If 𝜆o ≠ 𝜆c then m = 0 and we have

ML2Ω2
o
¥θ1 = (𝜆o − 𝜆c)Lθ1 (15)

then 𝜆o ≤ 𝜆c the position θ = 0 is stable, Ω2
o =

𝜆c − 𝜆o

ML
> 0 ; and unstable for

𝜆 > 𝜆c.

• If 𝜆 = 𝜆c and 𝜆1 ≠ 0, then m =
1
2

this implies that 𝜉 ≥ 0 and

ML2Ω2
o
¥θ1 = (L𝜆1 − C2θ1)θ1 (16)

If C2 ≠ 0, two positions of equilibrium exist: θ = 0 and θe = 𝜆1
L

C2
. A position

of the fundamental path (𝜆 = 𝜆c + 𝜆1𝜉, 0) with 𝜆1 < 0 is stable, unstable
otherwise.

The position θe is stable if 𝜆1 > 0. Finally, the position (𝜆c, 0) is unstable.

4
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Figure 2.
Case 𝜆1 < 0 ≠ 0, Stable (s) and unstable (u) paths, Phase diagram for 𝜆 < 𝜆c
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Figure 3.
Case 𝜆1 = 0, 𝜆2 > 0, Stable (s) and unstable (u) paths Phase diagram for 𝜆 > 𝜆c

• C2 = 0. It is necessary to consider 𝜆1 = 0, m = 1, and the motion is governed
by

ML2Ω2
o
¥θ1 = (𝜆2L − (C3 +

L𝜆c

6
)θ2

1)θ1 (17)

Then we have three positions of equilibrium, one along the fundamental
path (𝜆 = 𝜆c + 𝜆2𝜉

2, 0), and two other

𝜆 = 𝜆c + 𝜆2𝜉
2, θ = ±𝜉

√√√√ 𝜆2L

C3 +
𝜆c

6

(18)

The fundamental path θ = 0 is stable if 𝜆 < 𝜆c and stability of position along
the secondary path if and only if 𝜆2 > 0, in this case the bifurcation point is
a stable point of equilibrium.

The results are resume on the following picture, with fundamental path (θ = 0, 𝜆),
and particular phase diagram.

This description of conservative system is well known, the systematic
proposed expansion can be used for study stability of beams, plates,..., the
displacement θ is replaced by a vector displacement. The second derivative of the
potential energy plays a fundamental rule, when this quadratic form is positive
definite then uniqueness is ensured, that is Lejeune-Dirichlet theorem. For non-
conservative system, the proposed asymptotic expansion should be used, static-

5



i
i

“Stolz” — 2023/7/2 — 19:30 — page 6 — #6 i
i

i
i

i
i

Stability and bifurcation in non linear mechanics
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Figure 4.
Case 𝜆1 = 0, 𝜆2 < 0, Stable (s) and unstable (u) paths, Phase diagram for 𝜆 < 𝜆c

uniqueness doesn’t ensure Lyapounov stability, as illustrated with a bi-pendulum
under following load [? ].

4. Mechanical behavior with time independent processes

Let us consider a local free energy 𝜓(𝜺, 𝛼) depending on internal parameters
𝛼, the total potential energy becomes

E(ũ, �̃�,Td) =
∫
Ω

𝜓(𝜺(u), 𝛼)dΩ −
∫
𝜕ΩT

Td.uda. (19)

The admissible fields u satisfy u = ud along 𝜕Ωu.
The evolution of internal parameters 𝛼 is given by additional constitutive law.
Let us consider now time-independent processes, hence there is no viscosity.

This framework permits description of dry friction, plasticity, damage and
fracture.

Let us consider the support function of a convex C defined by a regular
convex function f of the driving force A

A ∈ C = {B/f (B) ≤ 0} (20)

The evolution of internal variables verify the normality rule:

¤𝛼 = 𝜆
𝜕f
𝜕A

= 𝜆N , 𝜆 ≥ 0, f (A)𝜆 = 0 (21)

The internal parameter 𝛼 evolves if the driving force A satisfies f (A) = 0,
otherwise the internal parameter cannot evolve. The rate of 𝛼 is normal to the

equi-potential surface f = 0, the notation N =
𝜕f
𝜕A

is then adopted.

The loading history is described by a increasing parameter 𝜏. At each state
𝜏, the driving force A(x, 𝜏) satisfies the inequality f (A(x, 𝜏)) ≤ 0 and the state

equations A = −𝜕𝜓

𝜕𝛼
.

The system is in equilibrium during the time, so that at the current state,
the potential energy is stationary among the set of admissible displacements 𝛿u

6
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Mechanical behavior with time independent processes

which satisfy 𝛿u = 0 over 𝜕Ωu:

𝜕E
𝜕u

.𝛿u = 0 (22)

The variations of the potential energy are equivalent to

div𝝈 = 0, 𝝈 =
𝜕𝜓

𝜕𝜺
, 𝝈.n = Td over 𝜕ΩT (23)

These equations are true at each state of applied loading, so the evolution of
equilibrium is given by (¤f is the derivative with respect to the fictitious time 𝜏):

div ¤𝝈 = 0 and ¤𝝈 =
𝜕2𝜓

𝜕𝜺𝜕𝜺
: ¤𝜺 + 𝜕2𝜓

𝜕𝜺𝜕𝛼
: ¤𝛼 in Ω and ¤𝝈.n = ¤Td over 𝜕ΩT (24)

which is equivalent to

0 =
d

d𝜏

( 𝜕E
𝜕u

)
.𝛿u =

∫
Ω

𝜺(𝛿u) : ( 𝜕2𝜓

𝜕𝜺𝜕𝜺
: ¤𝜺 + 𝜕2𝜓

𝜕𝜺𝜕𝛼
: ¤𝛼)dΩ −

∫
𝜕ΩT

¤Td
.𝛿uda (25)

The current state is determined by the evolution of the internal state ¤𝛼. To
determine existence and uniqueness of the evolution of the system, the rate
boundary value problem must be studied as pointed out by [? ? ].

4.1 Evolution of 𝛼.

Considering the normality rule, we can conclude that

𝜆 ≥ 0, f ≤ 0, 𝜆f = 0 (26)

For an internal state such that f = 0, the evolution of f satisfies ¤f ≤ 0, and
simultaneously the time derivative of the condition 𝜆f = 0 implies that

¤
𝜆f = ¤𝜆f + 𝜆¤f = 0 (27)

When f = 0, 𝜆¤f = 0 then 𝜆 > 0 if and only of ¤f = 0, that is the classical consistency
condition. This provides the definition of the set P of the admissible fields 𝜆(x).

At each state 𝜏, the domain Ω is decomposed into two complementary sub-
domains Ωr and I𝜏 such that:

x ∈ Ωr = {x ∈ Ω|f (A(x, 𝜏)) < 0}, x ∈ I𝜏 = {x ∈ Ω|f (A(x, 𝜏)) = 0} (28)

Then P is defined as:

P = {𝛽(x) | 𝛽(x) = 0, ∀x ∈ Ωr and 𝛽(x) ≥ 0, ∀x ∈ I𝜏}. (29)

It is obvious that the field 𝜆(x) is an element of P.
Considering now a point x ∈ I𝜏 then 𝜆(x) ≥ 0 and consequently ¤f𝜆 = 0. As

¤f ≤ 0, we deduce:

𝜆(x) ∈ P, (𝜆(x) − 𝛽(x))¤f ≥ 0,∀𝛽(x) ∈ P (30)

7
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Stability and bifurcation in non linear mechanics

and ∫
Ω

(𝜆(x) − 𝛽(x)) ¤f dΩ ≥ 0 (31)

among the set P of admissible fields 𝛽. This is a variational inequality.
By using now the definition of f , considering the equations of state for A and

the normality rule for ¤𝛼, the inequality (eq.??) is rewritten as (N =
𝜕f
𝜕A

):∫
Ω

(𝜆(x) − 𝛽(x))
(
N :

𝜕2𝜓

𝜕𝛼𝜕𝜺
: ¤𝜺 + 𝜕2𝜓

𝜕N : 𝛼𝜕𝛼 : N𝜆

)
dΩ ≤ 0. (32)

This inequality is a formulation similar to that of [? ].

4.2 The rate boundary value problem

Let us consider the functional F based on the velocities:

F (ṽ, �̃�, ¤̃Td) =
∫
Ω

1
2
𝜺(v) : C : 𝜺(v) + 𝜺(v) : M 𝜆 + 1

2
𝜆H𝜆dΩ −

∫
𝜕ΩT

¤Td
.vda (33)

with the notations: C =
𝜕2𝜓

𝜕𝜺𝜕𝜺
,M =

𝜕2𝜓

𝜕𝜺𝜕𝛼
: N ,H = N :

𝜕2𝜓

𝜕𝛼𝜕𝛼
: N .

The solution of the rate boundary value problem satisfies the variational
inequality

𝜕F
𝜕ṽ

.(ṽ − ṽ∗) + 𝜕F
𝜕�̃�

.(�̃� − �̃�∗) ≤ 0 (34)

among the set of admissible fields (ṽ∗, 𝜆∗) ∈ K .A x P.
Generally the modulus of elasticity C is a quadratic positive-definite operator,

then the field v is unique for given ¤𝛼. So the velocity v can be eliminated: vsol =

v(�̃�, ¤̃Td, ṽd) is linear of each argument and so a new functional, that is defined
only on the internal variables, which is quadratic in �̃� is defined:

F ∗(�̃�) = F (ṽsol(�̃�, ¤̃Td, ṽd), �̃�, ¤̃Td) = 1
2
�̃�.Q.�̃� − �̃�.T(vd,

¤Td) (35)

Stability condition. It is known that a solution exist if

∀𝛽 ∈ P, 𝛽.Q.𝛽 ≥ 0, (36)

where P is the set of admissible fields (eq.??). This condition of existence ensures
that the current state is stable.

Uniqueness and no-bifurcation. The solution of the boundary value problem
is also unique if

∀𝛽 ∈ P∗ 𝛽.Q.𝛽 ≥ 0, (37)

where P∗ is the set

P∗ = {𝛽 | 𝛽(x) = 0, ∀x ∈ Ωr, 𝛽(x) ≠ 0, x ∈ I𝜏} (38)

8
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This condition ensures that there is no bifurcation.

4.3 Property of the functional

Let us consider that a solution is determined, the domain I𝜏 is decomposed in
three different domains depending on 𝜆 > 0 or not:

• the loading zone I𝜏+ = {x ∈ Ω/x ∈ I𝜏 , 𝜇𝜏 (x) > 0, ¤f 𝜏 (x) = 0}

• the unloading zone I𝜏− = {x ∈ Ω/x ∈ I𝜏 , 𝜇𝜏 (x) = 0, ¤f 𝜏 (x) < 0}

• the neutral zone I𝜏o = {x ∈ Ω/x ∈ I𝜏 , 𝜇𝜏 (x) = 0, ¤f 𝜏 (x) = 0}

Introducing asymptotic expansion to define a loading path with parameter 𝜏

Td = Td
0 + 𝜏Td

1 + 𝜏2Td
2 + ...

ud = ud
0 + 𝜏ud

1 + 𝜏2ud
2 + ...

(39)

A local response in terms of displacement and internal variable fields is assumed
to be developed also as an asymptotic expansion:

𝛼 = 𝛼0 + 𝜏𝛼1 + 𝜏2𝛼2 + ... u = u0 + 𝜏u1 + 𝜏2u2 + ... (40)

The term of order one corresponds to the solution of the boundary value pro-
blem in velocities. Similar asymptotic expansions are deduced from the yielding
function f satisfying the normality rule at each order and constraints are then
obtained on the successive orders of the internal state. Hence the characterization
of order two shows that

𝜆2f1 + 𝜆1f2 = 0 (41)

The properties of 𝜆2 are given related to the decomposition of I𝜏 and the field 𝜆2
is an element of the set P2

P2 = {�̃�/


𝜇(x) = 0, if x ∉ I𝜏 ∪ I𝜏+ ∪ I𝜏o ,
𝜇(x) ≥ 0, if x ∈ Io,

𝜇(x) ∈ ℜ, if x ∈ I𝜏+

} (42)

The boundary value problem for the order two has the same form that for order
one, except that the linear term contains terms due to order one.[? ]

F2(ũ2, �̃�2) =
1
2

Q((ũ2, �̃�2), (ũ2, �̃�2)) + F2 ((ũ1, �̃�1), (ũ2, �̃�2)) (43)

and the solution of the rate boundary value problem of order 2 satisfies

𝜕F2

𝜕ũ2
(ũ∗

2 − ũ2) +
𝜕F2

𝜕�̃�2
(�̃�∗2 − �̃�2) ≥ 0 (44)

among the set of admissible field ũ∗
2 which may satisfied the boundary conditions

at order two and �̃�∗2 is an element of P2.

9
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Stability and bifurcation in non linear mechanics

λ

θ

u

Figure 5.
The Shanley column.

The condition of stability on order two is quite different than the condition of
order one, due to the presence of unloading zone. The condition of no-bifurcation
is also changed taking account of 𝜆 = 0 on I𝜏o . The loss of positivity of Q on these
new spaces changes the critical value Td

c , u
d
c .

5. The Shanley column

This model has been used by many authors [? ], especially to study plastic
buckling as discussed in [? ].

The rigid rod model has two degrees of freedom : the downward vertical
displacement u and the rotation 𝜃.

The column is supported by the a uniformly distributed springs along
the segment [−l, l]. The behaviour of the spring is elasto-plastic with linear
hardening.

𝜓(𝜺, 𝛼) = 1
2

E(𝜺 − 𝛼)2 + 1
2

H𝛼2 (45)

Let us consider a state for which the plastic domain I𝜏+ is [d, l]. The value of d is
determined by the condition of neutral loading [ ¤𝛼] (d, t) = 0 The equations of
equilibrium are deduced from the potential energy

E(u(x), 𝛼(x),Td) =
∫ l

−l
𝜓(𝜺, 𝛼)dx + Td(u + L(1 − θ2/2)) 𝜺(x) = u − x𝜃 (46)

then the equilibrium state obeys to

0 = Td +
∫ +l

−l
E(x) (𝜺 − 𝛼)dx 0 = −TdL𝜃 +

∫ +l

−l
E(x)x(𝜺 − 𝛼)dx (47)

These equations are valid during the loading process, taking account of the
determination of d(t). Then, we obtain

0 = ¤Td +
∫ d

−l
E ¤𝜺dx +

∫ l

d
ET ¤𝜺dx 0 = −L

¤
Tdθ +

∫ +d

−l
Ex ¤𝜺dx +

∫ l

d
ETx ¤𝜺dx (48)

10
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A non trivial solution in θ is obtained by introducing the time-scale 𝜏 such that
the velocity x1 = ¤d of propagation of the unloading domain is finite. The domain
I𝜏+ = [x𝜏 , l] is defined with a asymptotic expansion

d = x𝜏 =
∑︁

i

xi𝜏
i. (49)

At point x𝜏 , the condition [ ¤𝛼(x𝜏 , 𝜏)] = 0 where 𝛼(x, t) = ∑
i 𝛼i(x)𝜏i gives conditions

on the asymptotic expansion:

0 = [𝛼1(xo)] 0 = [𝛼2(xo)]+x1 [𝛼′
1(xo)] 0 = [𝛼3(xo)]+2x1 [𝛼′

2(xo)]+(2x2
1+x2) [𝛼′

1(xo)]
(50)

A non trivial solution is then obtained as

𝛼∗(x, 𝜏) = 𝛼(𝜏) + m(𝜏)x (51)

We can take the time-derivative of the equilibrium equations taking account of
the position of x𝜏 and of discontinuities (??) of the mechanical quantities on this
boundary. It is obvious that we have:

d
dt

∫ l

−l
f (x, 𝜏)dx =

∫ l

−l

¤f (x, 𝜏)dx + [f (x, 𝜏)]x+𝜏
x−𝜏
¤x𝜏 (52)

We find Tc = TT =
2l3E
3L

=
H

E + H
TE, m1 = 0 and m2 = −T2/2Hl2,

x2
1 =

4l2

3
T2

TE − TT

T = TT + T2
𝜏2

2

𝜃 =
ElT2

3LH(TE − TT)
𝜏2

2
+ ...

(53)

This is a bifurcated path. The condition of stability of the fundamental path (θ =

0,T) is preserved for loading near T = Tc but for T ≥ Tc another path exists which
is also a stable path. This is quite different of conservative system, for which the
bifurcation point correspond to a loss of stability of the fundamental path.

More applications can be found in many papers for elasto-plasticity [? ] with
implications on the constitutive laws [? ? ]. Influence of pre-bifurcation conditions
have been also analysed [? ? ].

5.1 A simple model of fracture

Let us consider a straight beam under bending with fixed extremities l1, l2,
where the beam is clamped. The length of the beam is l1 + l2, the displacement
is v(x) defined on segment [−l1, l2]. The strain is defined by the vertical dis-
placement v : 𝜺 = v”(x)y. We applied a load at the origin, and we study the
possibility of decohesion at points l1, l2. We study two cases, first the applied load
is a vertical displacement v(o) = V and second the load is controlled at the origin

11
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Stability and bifurcation in non linear mechanics

T(o) = F. For the first case the potential energy at the equilibrium is

W(l1, l2,V) = 3
2

EIV2 (l1 + l2)3

l31l32
=

1
2

kV2 (54)

We define Ji = −𝜕W
𝜕li

J1 = 3
(l1 + l2)2

l31l32

l2
l1

(55)

and J2 is obtained permuting indices. The evolution of the delamination is given
by the normality law

¤li ≥ 0, Ji ≤ Gc, (Ji − Gc)¤li = 0 (56)

and existence and uniqueness are given with respect to positivity or not of Q
such that

Qij = −Jij =
𝜕2W
𝜕li𝜕lj

= 18EIV2 l1 + l2
l51l52

[
l32(l1 + 2l2) l21l22

l21l22 l31(2l1 + l2)

]
(57)

For l1 = l2, Q is always positive definite, the position is then always stable and we
have no bifurcation.

When the force is controlled

W(l1, l2, F) = −F2

k
, k = 3EI

(l1 + l2)3

l31l32
(58)

The associated Q matrix becomes

Q = −2F2

EI
l1l2

(l1 + l2)2

[
l32(l2 − l1) 2l21l22

2l21l22 l31(l1 − l2)

]
(59)

is always negative definite. The symmetric equilibrium is always an unstable
state with possible bifurcation, the eigenvalue of Q having opposite signs.

For multi-cracking of a body, the rate boundary value problem has been
formulated and condition of existence and uniqueness have been deduced [? ?
].

6. Stability of moving surfaces

We study now a moving surface associated with a change of mechanical
properties. This framework is used to describe damage or phase transformation.
Variational formulations were performed to describe the evolution of the surface
between the sound and the damaged material [? ? ? ]. Connection with the notion
of configurational forces [? ] can be investigate.

12
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Stability of moving surfaces

6.1 Some general features

The domain Ω is composed of two distinct volumes Ω1,Ω2 of materials with
different mechanical characteristics. The bounding between the materials is
perfect and the interface is denoted by Γ, (Γ = 𝜕Ω1 ∩ 𝜕Ω2). The external surface
𝜕Ω is decomposed in two parts 𝜕Ωu and 𝜕ΩT on which the displacement ud and
the loading Td are prescribed respectively. We consider isotherm processes.
The material 1 changes into material 2 as the motion of the interface Γ by an
irreversible process. Hence Γ moves with the normal velocity c = 𝜙𝜈 in the
reference state, 𝜈 is the outward Ω2 normal, then 𝜙 is positive.

Along Γ, the mechanical quantities f can have a jump denoted by [f ]
Γ
= f1 − f2,

and any volume average has a rate defined by

d
dt

∫
Ω(Γ)

f dΩ =

∫
Ω(Γ)

¤f dΩ −
∫
Γ

[f (x
Γ
, t)]

Γ
𝜙da (60)

where 𝜙 is the normal propagation of the interface.
The state of the system is characterized by the displacement field u, from

which the strain field 𝜺 is derived. The main internal parameter is the spatial
distribution of the two phases given by the position of the interface boundary
Γ. We analyse quasi-static motion of Γ under given loading prescribed on the
boundary 𝜕Ω.

Introducing the total potential energy of the system

E(u, Γ,Td) =
∫
Ω1

𝜓1(𝜺)dΩ +
∫
Ω2

𝜓2(𝜺)dΩ −
∫
𝜕Ω

Td.uda (61)

The behaviour of the phase i is assumed linear elastic. The state equations are
reduced to

𝜓i =
1
2
𝜺 : Ci : 𝜺, 𝝈 =

𝜕𝜓i

𝜕𝜺
(62)

We can notice that the position of the interface Γ becomes an internal parameter
for the global system. The characterization of any equilibrium state is given by

the stationary point of the potential energy (
𝜕E
𝜕u

· 𝛿u = 0) among the set of the

admissible field 𝛿u satisfying 𝛿u = 0 over 𝜕Ωu. This formulation is equivalent to
the set of local equations :

• local constitutive relations: 𝝈 = 𝜌
𝜕𝜓i

𝜕𝜺
= Ci : 𝜺, on Ωi,

• momentum equations div 𝝈 = 0 on Ω, [𝝈]
Γ
.𝜈 = 0 over Γ, 𝝈.n =

Td over 𝜕ΩT,

• compatibility relations 2𝜺 = ∇u + ∇tu, [u]
Γ
= 0 over Γ, u = ud over 𝜕Ωu.

This equation emphasized the fact that the position of the interface Γ plays the
role of internal parameters.

13
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Figure 6.
Propagation of the interface

The driving force associated to the motion of the interface Γ is obtained as

−𝜕E
𝜕Γ

.𝛿Γ =

∫
Γ

G(x
Γ
, t)𝛿𝜙(s)da,G(s) = [𝜓]

Γ
− n.𝝈.[∇u]

Γ
.n = [𝜓]

Γ
− 𝝈 : [𝜺]

Γ
(63)

An energy criterion is chosen as a generalized form of the well known theory of
Griffith. Then, we assume

𝜙 ≥ 0, Gx
Γ
,t − Gc ≤ 0, (G(x

Γ
, t) − Gc)𝜙 = 0, (64)

This decomposed the interface into two part Γ+ where G = Gc and the
complementary part. At a point x

Γ
in Γ+, where the propagation occurs

d
dt

(G(x
Γ
(t), t) − Gc) = 0, and 𝜙 ≥ 0 (65)

The critical value is conserved following the moving interface: D𝜙G = 0. This
leads to the consistency solution, which determines 𝜙(x

Γ
)

(𝜙 − 𝜙∗)D𝜙G(x
Γ
(t), t) ≥ 0,∀𝜙∗ ≥ 0, over Γ+ (66)

For a given loading vd,
¤Td and a propagation 𝜙(s) of the interface, the evolution of

the internal state satisfies

• local constitutive relations: ¤𝝈 = Ci : 𝜺(v), on Ωi,

• momentum equations div ¤𝝈 = 0 on Ω,D𝜙 ( [𝝈]Γ .𝜈) = 0 over Γ, ¤𝝈.n =
¤Td over 𝜕ΩT,

• compatibility relations 2𝜺(v) = ∇v + ∇tv, D𝜙 (discu) = 0 over Γ, v =

vd over 𝜕Ωu.

where

D𝜙 [u]Γ = [v]
Γ
+ 𝜙[∇u]

Γ
.𝜈 = 0

D𝜙 [𝝈]Γ .𝜈 = [ ¤𝝈]
Γ
.𝜈 − divΓ ( [𝝈]Γ𝜙) = 0

(67)

14
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Stability of moving surfaces

Figure 7.
Delamination of a thin membrane

with divΓ F = div F − 𝜈.∇F.𝜈. The velocity v is the solution of a problem of
heterogeneous elasticity with boundary conditions linear with respect to the
propagation 𝜙 : vsol = v(𝜙, vd,

¤Td) And we obtain

D𝜙G = [𝝈]
Γ

: ∇v1 − ¤𝝈2 : [∇u]
Γ
− 𝜙Gn

Gn = −[𝝈]
Γ

: (∇∇u1.𝜈) + ∇𝝈2.𝜈 : [u]
Γ

(68)

Finally the evolution of the system is determined by the functional

F (v, 𝜙) =
∫
Ω

1
2
𝜺(v) : C : 𝜺(v)dΩ −

∫
𝜕ΩT

¤Td.vda −
∫
Γ

𝜙[𝝈]
Γ

: ∇v1da + 1
2
𝜙2Gnda

and the variational inequality

𝜕F
𝜕v

(v − v∗) + 𝜕F
𝜕𝜙

(𝜙 − 𝜙∗) ≥ 0 (69)

The stability of the actual state is determined by the condition of the existence
of a solution W = F (vsol, 𝜙,

¤Td)

𝛿𝜙
𝜕2W
𝜕𝜙𝜕𝜙

𝛿𝜙 ≥ 0, 𝛿𝜙 ≥ 0 on Γ+, 𝛿𝜙 ≠ 0, (70)

and the uniqueness and non bifurcation is characterized by

𝛿𝜙
𝜕2W
𝜕𝜙𝜕𝜙

𝛿𝜙 ≥ 0, 𝛿𝜙 ≠ 0 on Γ+. (71)

6.2 Delamination of a thin membrane under pressure

The strain energy of the membrane is given as 𝜓(u) = 1
2

K(∇u)2 where u is the
transverse displacement as depicted on Fig.??.

15



i
i

“Stolz” — 2023/7/2 — 19:30 — page 16 — #16 i
i

i
i

i
i

Stability and bifurcation in non linear mechanics

The potential energy of the whole system is:

E(u(x, y), p) =
∫
Ω

1
2

K(∇u)2da −
∫
Ω

puda (72)

The displacement u = 0 over 𝜕Ω. When the boundary 𝜕Ω is moving with normal
velocity 𝜙 the variation of energy determines the associated driving force

Dm =

∫
Ω

𝜕

𝜕u
(𝜓 − pu) 𝛿udΩ −

∫
𝜕Ω

(𝜓 − p u)𝛿𝜙(s)da (73)

The displacement 𝛿u is related to the boundary 𝜕Ω which is moves with the
velocity 𝛿𝜙. Along the front u = 0 at each instant, then the variations are linked
as:

𝛿u + ∇u.n 𝛿𝜙 = 0

In the domain, the variations of the solution satisfies

KΔ𝛿u = 0 x ∈ Ω

The driving force G satisfies

Dm =

∫
𝜕Ω

𝜓𝛿𝜙da =

∫
𝜕Ω

G(s)𝛿𝜙(s)da, G = 𝜓 |𝜕Ω

The variational inequality takes the form∫
𝜕Ω

d
dt

(G − Gc) (𝛿𝜙 − 𝜙)da ≥ 0, ∀𝛿𝜙 ≥ 0 (74)

The boundary value problem is given by the functional

F (ṽ, 𝜙) =
∫
Ω

1
2

K(∇v)2dΩ −
√︁

2KGc

∫
𝜕Ω

n.∇∇u.n𝜙2da (75)

v and 𝜙 are linked by the constrain v + 𝜙∇u.n = 0 over 𝜕Ω. The evolution of G is
given by

𝛿G = K∇u.∇𝛿u + (K∇u.∇∇u.n)𝛿𝜙

The set of the admissible velocities v is

K = {(ṽ, 𝜙)/v(s) + 𝜙(s)∇u.n = 0, 𝜙 ≥ 0, G ≤ Gc, 𝜙(G − Gc) = 0} (76)

For circular geometry, the displacement solution is u =
p

4K
(R2 − r2) and the

propagation is possible when G = Gc that defines the critical pressure pc =
2
R
√

2KGc. Consider a change of shape by a Fourier expansion

𝛿𝜙 = ao +
∑︁

i

ai cos(i𝜃) + bi sin(i𝜃) (77)
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the associated velocity solution of the rate boundary value problem is

vsol =
pR
2K

(
ao +

∑︁
i

(ai cos(i𝜃) + bi sin(i𝜃)) ( r
R
)i
)

(78)

Evaluating the functional W(𝜙) = F (vsol, 𝜙), the condition of stability is deduced
as

2𝜋Gc

(
− 2a2

o +
∑︁

i

(i − 1) (a2
i + b2

i )
)
≥ 0, (79)

hence the circular shape is unstable for pressure controlled system.
If now the volume is controlled, the pressure becomes the Lagrange multiplier

associated to the condition
∫
Ω

udΩ = Vd. The condition of stability under this
applied loading, becomes

2𝜋Gc

(
6a2

o +
∑︁

i

(i − 1) (a2
i + b2

i )
)
≥ 0. (80)

The stability is ensured, but uniqueness is not, a1 and b1 can be defined such that
𝛿𝜙 = ao + a1 cos 𝜃 + b1 sin 𝜃 ≥ 0. Many other examples are founded in literature for
more complicated situations.

7. Conclusions

We have presented an introduction to the analysis of bifurcation and stability
during the evolution of non linear system governed by potential energy, potential
of dissipation and normality rule. This framework is used in elasto-plasticity, in
fracture and for moving interfaces.

The rate boundary value problem has a formal identical structure and leads
to variational inequalities that the evolution of internal state must satisfy. These
inequalities are based on the second derivative of the energy of the system, and
are quadratic operators. The properties of these operators give the condition of
existence and uniqueness of the system evolution.

Some applications have been presented. Many other situations can be
investigated as in phase transformation [? ]. This last example show how the
analysis of stability bifurcation has strong implications in homogenization of the
existence of an homogenized constitutive behaviour.

The conditions of stability and no-bifurcation can also be used to determine
criterion of initiation of defect as pointed out in [? ? ].
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