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Abstract

The formalism of Simple Temporal Networks (STNs) provides methods for evaluating
the feasibility of temporal plans. The basic formalism deals with the consistency of quan-
titative temporal requirements on scheduled events. This implicitly assumes a single agent
has full control over the timing of events. The extension of Simple Temporal Networks with
Uncertainty (STNU) introduces uncertainty into the timing of some events. Two main ap-
proaches to the feasibility of STNUs involve (1) where a single schedule works irrespective
of the duration outcomes, called Strong Controllability, and (2) whether a strategy exists
to schedule future events based on the outcomes of past events, called Dynamic Control-
lability. Case (1) essentially assumes the timing of uncertain events cannot be observed by
the agent while case (2) assumes full observability.

The formalism of Partially Observable Simple Temporal Networks with Uncertainty
(POSTNU) provides an intermediate stance between these two extremes, where a known
subset of the uncertain events can be observed when they occur. A sound and complete
polynomial algorithm to determining the Dynamic Controllability of POSTNUs has not
previously been known; we present one in this paper. This answers an open problem that
has been posed in the literature.

The approach we take factors the problem into Strong Controllability micro-problems
in an overall Dynamic Controllability macro-problem framework. It generalizes the notion
of labeled distance graph from STNUs. The generalized labels are expressed as max/min
expressions involving the observables. The paper introduces sound generalized reduction
rules that act on the generalized labels. These incorporate tightenings based on observability
that preserve dynamic viable strategies. It is shown that if the generalized reduction rules
reach quiescence without exposing an inconsistency, then the POSTNU is Dynamically
Controllable (DC). The paper also presents algorithms that apply the reduction rules in
an organized way and reach quiescence in a polynomial number of steps if the POSTNU is
Dynamically Controllable.

Remarkably, the generalized perspective leads to a simpler and more uniform frame-
work that applies also to the STNU special case. It helps illuminate the previous methods
inasmuch as the max/min label representation is more semantically clear than the ad-hoc
upper/lower case labels previously used.

1. Introduction

Many applications (for example, the Remote Agent Experiment (Muscettola, Nayak, et al.,
1998), as an early one) have drawn attention to the importance of quantitative reasoning
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about time in practical planning systems. In particular, a need has been felt for temporal
representations to specify scheduling requirements that an agent needs to satisfy. In general,
these requirements could involve exogenous events, as well as the agent’s own actions, and
these events might or might not be observable. A number of formalisms have been estab-
lished in response to the need to model these kinds of problems, and algorithms have been
developed to solve them. The formalism of Simple Temporal Networks and its extensions has
been particularly useful in this regard. Nevertheless, there remain many unsolved problems
and under-developed theories in this area. This paper provides a greater understanding and
solution for one such class of problems.

1.1 STNs and Extensions

1.1.1 STN

A Simple Temporal Network (STN) (Dechter et al., 1991) is a graph in which the edges
are annotated with upper and lower numerical bounds. The nodes in the graph represent
temporal events or timepoints, while the edges correspond to constraints on the durations

between the events. A link A
[l,u]−−→ B in the STN specifies that timepoint B must be executed

at least l and at most u time units after the execution of timepoint A. An STN is consistent
if there exists an time assignment to all timepoints that satisfies all the constraints.

Each STN is associated with a distance graph derived from the upper and lower bound
constraints. In the distance graph, an edge A d−→ B specifies that delay from A to B must not

be more than d (B −A ≤ d). The link A
[l,u]−−→ B of an STN is thus expressed as two edges

A
u−→ B and B

−l−→ A in the equivalent distance graph. An STN is consistent if and only if
the distance graph does not contain a negative cycle. To avoid confusion with the distance
graph, we will refer to edges in the STN as links while the term edges will be reserved for
edges in the distance graph.

A B
[5, 10]

(a) An STN with two timepoints A and B.

A B

10

−5

(b) Distance graph of the STN

Figure 1: An STN and its distance graph. The constraints specify that the timepoint B
must be executed at least 5 time units and at most 10 time units after the timepoint A.

1.1.2 STNU

A Simple Temporal Network With Uncertainty (STNU), introduced by Vidal and
Fargier (Vidal, 2000; Vidal & Fargier, 1999), is similar to an STN except the links are
divided into two classes, requirement links and contingent links. Requirement links are
temporal constraints that the agent must satisfy, like the links in an ordinary STN.
Contingent links may be thought of as representing causal processes of uncertain duration,
or periods from a reference time to exogenous events. Their finish timepoints, called here
contingent timepoints, are controlled by Nature, subject to the limits imposed by the
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bounds on the contingent links. We will refer to the start timepoint of a contingent link
as its activation timepoint. This may itself be a contingent timepoint if it is the finish
point of some other contingent link. All other timepoints, called executable timepoints, are
controlled by the agent, whose goal is to satisfy the bounds on the requirement links. Each
contingent link is required to have finite positive upper and lower bounds. An STNU may
be thought of as determining a family of STNs where the contingent links take on each of
their possible durations; the individual STNs in the family are called projections. An STNU
is said to be Weakly Controllable if every projection is consistent. Weak Controllability was
shown to be in co-NP, and later proved to be co-NP Hard (Morris & Muscettola, 1999).
However, this property does not support a generally useful execution strategy.

The uncontrollable timepoints in STNUs are generally assumed to be either all unob-
servable, or all observable when they occur, giving rise to different execution strategies. An
STNU is Strongly Controllable if there is a single schedule that satisfies the requirements
in all of the projections, and thus does not depend on observations. An STNU is said to
be Dynamically Controllable (Hunsberger, 2009; Morris et al., 2001; Morris, 2014; Vidal &
Fargier, 1999) if there is a strategy for scheduling each executable timepoint that depends
only on observations that are available in the past or present at the time it is scheduled.1

Whether an STNU is Dynamically Controllable or not can be determined by algorithms
that run in cubic time (Cairo et al., 2018; Cairo & Rizzi, 2017; Morris, 2014; Nilsson et al.,
2015).

As mentioned, an STN has an alternative representation as a distance graph (Dechter
et al., 1991). Similarly, there is a representation for an STNU called the labeled distance
graph (Morris & Muscettola, 2005). Similar to an STN, an STNU is dynamically controllable
if and only if its labeled distance graph does not contain a negative cycle of a particular
form, called a semi-reducible negative cycle (Morris, 2014).

1.1.3 POSTNU

A Partially Observable STNU (POSTNU) (Moffitt, 2007) is an STNU in which the con-
tingent timepoints are further subdivided into observable and unobservable (hidden) time-
points. Thus, the controllability problem for a POSTNU may be regarded as a combination
of Strong and Dynamic Controllability. In the general POSTNU problem, a contingent link
may be activated by a hidden timepoint. In that case, if the endpoint is observable, the
POSTNU semantics specifies that when it is observed, we learn only the time of the end-
point, not the duration of the link that was activated by the hidden timepoint. Of course
we do learn (or can easily calculate) the time difference between the observed endpoint and
any previous known time.

The algorithm of Moffitt (2007) for checking the controllability of a POSTNU is com-
plete but not sound in that it might incorrectly label a POSTNU as controllable. Another
algorithm, also relying on the compilation to STNUs, is provided by Bit-Monnot et al.
(2016) that is sound but only complete for a subclass of POSTNUs. Variable Delay prob-

1. The literature varies on whether observations can be reacted to instantaneously, or must be strictly in the
past. The instantaneous variant was the original concept and has some technical advantages, including
allowing an executable timepoint to be simultaneous with an observation.
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(a) An STNU with a contingent timepoint B
and two controllable timepoints A and C.

A B

C

[4, 4]

[−
2
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]

(b) A projection of the STNU into an STN
where the AB contingent link takes its mini-
mal duration 4.

Figure 2: An STNU and derived constructs. The STNU contains a contingent link AB
specifying that the contingent timepoint B will occur sometime between 4 and 9 time units
after the activation timepoint A. Furthermore, the BC requirement link requires that the
controllable time point C be executed at most 2 time units before or after the occurrence
of B. This STNU is dynamically controllable: the strategy of executing C immediately after
observing B will satisfy all requirements. However it is not strongly controllable: if B is not
observed, then there is no execution strategy that satisfies all constraints.

lems (Bhargava et al., 2018) may also be viewed as a restricted subclass of POSTNUs whose
Dynamic Controllability problem can be reduced to STNU checking.

Another paper (Bhargava & Williams, 2019) considers a disjunctive class (PODTNUs)
of partially observable networks, and shows this more general problem is PSPACE-complete.
Their PSPACE algorithm could also be applied to POSTNUs as a special case, but it enu-
merates strategies and does not appear to be polynomial in time. Indeed, the authors
acknowledge that known polynomial algorithms for POSTNUs and Multiagent STNUs
(MaSTNUs) are not complete, and point out the importance of fully addressing the com-
plexity of these problems.

Thus, to the best of our knowledge, for the general POSTNU problem, a polynomial
sound and complete algorithm for assessing Dynamic Controllability, has not previously
been known. We present one here, and in the process introduce new concepts that contribute
to a greater understanding of these problems.

In the following sections, we first present formal definitions and basic concepts, including
a distinction between micro-projections and macro-projections. Then we outline our general
approach to the POSTNU problem, which factors it into separate micro and macro subprob-
lems. For the former, the paper discusses the transfer of requirements from non-observable
timepoints to equivalent constraints on new timepoints called compound observables. For
the macro subproblem, the paper introduces generalized labels and associated generalized
reduction rules. This is followed by a soundness and completeness proof with respect to
these rules. A conceptually simple DC-checking procedure is then shown to have polyno-
mial complexity and result in a dispatchable network. Finally, the paper introduces, as
a more efficient procedure, an adaptation of the cubic algorithm of Morris (2014) to the
POSTNU case and concludes with some closing remarks.
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1.1.4 Other STN Extensions

Over the years, several other extensions to STNs and STNUs have been studied. For in-
stance, Conrad and Williams (2011) and Zavatteri et al. (2019) respectively study STN with
choices and with decisions, where the executor might have the choice between several set
of requirement constraints. In the context of Conditional STNs, Hunsberger and Posenato
(2020) instead focus on determining the dynamic controllability of networks where require-
ment constraints are activated as a result of contingent observations made at runtime.
Combi et al. (2014) consider the introduction of temporal uncertainty in Conditional STNs,
which is further extended with runtime decision points by Zavatteri and Viganò (2019).
Probabilistic STN consider a different form of uncertainty where the duration of contingent
links is not bounded but associated with a probability distribution leading to the study of
adaptations of dynamic controllability (Gao et al., 2020) and strong controllability (Frank,
2019).

The number of extensions to the original STN framework highlight the spectrum of
practical needs for the execution of temporal plans, the partial observability setting that
is under study in this paper being only one extension. However it is important to note
that partial observability is orthogonal to many other extensions. While beyond the scope
of this paper, interesting future work could be done regarding the introduction of partial
observability in, e.g., conditional STNUs or STNUs with decisions.

1.2 Motivations and Overview

Space-related problems are a potential application area for POSTNU algorithms of interest
to the authors. The duration of uncontrolled or natural processes are a source of temporal
uncertainty. Observations are accomplished by imperfect sensors. For example, a spacecraft
process of uncertain duration may be triggered by a temperature rise, which occurs at an
uncertain elapsed time from a reference point. A sensor measuring the temperature may
have a latency of uncertain duration; it can be modeled by a process also triggered by the
temperature rise.

However, for the general reader, we provide here a more everyday example where “Na-
ture” is simulated by a second agent. It should be noted that we do not claim to address
the general two-agent problem, which may not satisfy the restrictions of a POSTNU. The
example we present takes care to satisfy these restrictions.

Consider the situation where my friend and I plan on having lunch in a restaurant and
want to organize ourselves so that none of us waits more than 5 minutes. The restaurant
is close to me (7 to 10 minutes drive, depending on traffic). However my friend wants to
drop a package at the post office on his way, taking him 15 to 30 minutes depending on the
queue and will need another 15 to 20 minutes from the post office to the restaurant. Thus,
if we agree that my friend leaves his house at 11:30am, I can expect him to arrive at the
restaurant between 12pm and 12:20pm. In this situation, the best I can do is to attempt to
arrive at 12:10pm at the restaurant which might result in one of us waiting 10 minutes.

This unsatisfactory situation is caused by my incapacity to observe the departure of my
friend from the post office. To avoid this difficulty, he could notify me of his departure with
a text message (e.g. ”I just left the post office.” or ”I’m on my way to the restaurant.”).
When receiving this message, I will know with little uncertainty his departure time. From it
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I can infer a small time window for his arrival at the restaurant and plan my own departure
accordingly.

This article is concerned with formalizing and proposing a sound and complete algorithm
for such a problem. The problem can be formulated as the POSTNU of Figure 3. The
controllable timepoints are the departure time of my friend (FD, controllable because we
can agree on it) and myself (MD). My friend’s departure from the post office is modeled
as a hidden contingent timepoint (FP), which is necessary as it is not an event that I can
observe. Three observable contingent timepoints model the message’s availability on my
phone (MN) and the arrivals at the restaurant of my friend (FA) and myself (MA).

Friend’s activities

My activities

Departure
(MD)

Arrival
(MA)

Departure
(FD)

Leaves
Post off.

(FP)

Arrival
(FA)

Leave
Notif.
(MN)

[7, 10]

[−5, 5]

[15, 30] [15, 20]

[1, 2]

Figure 3: A POSTNU representing the post office example.

Solving this problem requires finding an execution strategy: a scheme to decide when to
execute controllable events. The strategy can be dynamic: I can decide when to leave the
house based on the occurrence time of past observable events. Thus my strategy might be
to depart 7 minutes after the (observable) Leave Notification event but cannot refer to the
(unobservable) Leaves Post Office event nor to a future Arrival event.

While humans routinely deal with such situations, no existing approach supports this
albeit simple example. Indeed, the algorithm of Moffitt (2007) is unsound while the algo-
rithms of Bit-Monnot et al. (2016) and Bhargava et al. (2018) are only complete for a subset
of POSTNUs which in particular exclude this example. We propose one such algorithm that
generalizes the key concepts required to reason on the dynamic controllability of STNUs to
the partially observable setting.

2. Formal Preliminaries

Formally, an STN may be described as a 4-tuple ⟨N,E, l, u⟩ where N is a set of nodes called
timepoints, E is a set of edges called links, and l and u are functions mapping each edge
into the lower and upper bounds of the interval of possible durations.
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STNU An STNU is a 5-tuple ⟨N,E, l, u, C⟩, where N,E, l, u are as in a STN, and C is
a subset of the links: the contingent links, the others being called requirement links. Each
contingent link e is required to satisfy 0 < l(e) ≤ u(e) <∞.2

The durations of contingent links are assumed to vary independently; thus every com-
bination that satisfies the upper and lower bounds of the contingent links gives rise to an
STN called a projection. Contingent links are not allowed to share finish points. However,
their finish points may be the start timepoints of other contingent links (thus potentially
forming a branching tree structure). The finish timepoints of contingent links are called
contingent timepoints. A contingent timepoint that does not start a new contingent link is
called a terminal contingent timepoint.

A schedule is an assignment of times to all the timepoints. The pre-history of a specific
time t with respect to a schedule T , denoted by T{⪯ t}, specifies the durations of all
contingent links that have finished up to and including time t.

An execution strategy S is a mapping

S : P → T
where P is the set of projections and T is the set of schedules. An execution strategy
S is viable if S(p), henceforth written Sp, is consistent with p for each projection p. An
execution strategy S is dynamic if for projections p1 and p2, and executable timepoint x
where Sp1(x) = t, the strategy satisfies 3

Sp1{⪯ t} = Sp2{⪯ t} ⇒ Sp1(x) = Sp2(x)

An STNU is Dynamically Controllable if there is a viable dynamic execution strategy.

POSTNU A POSTNU is a 6-tuple ⟨N,E, l, u, C,O⟩ where N,E, l, u, C are as in a STNU.
Here O is a subset of the contingent timepoints C, called observable timepoints. A contingent
timepoint that is not observable is called a hidden timepoint. For a POSTNU, we will use the
terminologymicro-projection to describe each STN determined by the possible combinations
of contingent links, which again are assumed to vary independently within their bounds.4

In the POSTNU of Figure 4, observe that the duration of the contingent links will not be
known because they involve the hidden timepoint E whose occurrence cannot be observed.
However since X is controllable, the duration from X to Y (resp. from X to W) will be
known when the occurrence time of Y (resp. W) is observed. Here we say that X is the
closest non-hidden ancestor of Y: the first executable or observable timepoint reached when
following backward the chain of contingent links ending in Y. Because an STNU, hence
also a POSTNU, does not allow two contingent links to have the same finish timepoint,
each observable timepoint is guaranteed to have a unique closest non-hidden ancestor.

Definition 1 (Macro-link). Given an contingent timepoint Y with a closest non-hidden
ancestor X, we call a macro-link the chain of contingent links from X to Y. If Y is observable,
we will refer to it as an observable macro-link as its duration will be observed on the
occurrence of Y.

2. We allow a contingent link with l(e) = u(e) although for STNUs it essentially behaves the same as a
requirement link with the same bounds. However, the behavior can be different in the POSTNU context.

3. This incorporates the flaw correction of Hunsberger (2013) and provides for an instantaneous reaction.
4. We will later also define macro-projection. The distinction between the two will be somewhat analogous

to the distinction between microstate and macrostate in thermodynamics.
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X E

Y

W

[1, 2]
[1, 2]

[1, 2
]

Figure 4: Example POSTNU where W and Y are observable contingent timepoints, E is a
hidden contingent timepoint and X is an executable timepoint. The dashed representation of
the XE contingent link is intended only to signal that its contingent timepoint E is hidden.

In Figure 4, there are two observable macro-links X ⇒ E ⇒ Y and X ⇒ E ⇒ W.
Unlike the original contingent links of the POSTNU, the duration of these macro-links are
observable. In Figure 4, observing the occurrence time of Y and W will provide us with
the duration of their respective macro-links. Finally, note that the durations of the macro-
links XW and XY are correlated since they share the hidden contingent link XE. As a
consequence, observing the duration of XW to be 4 (implying XE = EY = 2), means that
the possible values of XY are either 3 or 4, depending on the value taken by EY.

To emphasize the distinction from macro-links and to be more consistent with the micro-
projection terminology, we may often refer to the original contingent links as micro-links.

Still in Figure 4, consider the micro-projection p1 where XE=1, EW=EY=2 and the
micro-projection p2 where XE=2 and EW=EY=1. Even though the micro-links have differ-
ent durations, the two macro-links have a duration of 3 in both micro-projections. Having
only access to the duration of macro-links, an observer will not be able to distinguish p1
from p2 due to the hidden nature of E.

Definition 2. Two micro-projections p1 and p2 are observationally equivalent if the dura-
tions of all the observable macro-links are the same in p1 and p2.

Clearly this relation is symmetric, reflexive, and transitive: thus, an equivalence relation.
Its equivalence classes will be called macro-projections. Note that the observable macro-links
have fixed durations in a macro-projection.

For example, in the POSTNU (where only E is hidden)

X
[1,10]
===⇒ E

[1,10]
===⇒ Y

the set of micro-projections where XE and EY sum to 15, such as 6+9, 10+5, etc., constitute
a macro-projection where XY = 15. Observe that the “extremal” macro-projections where
XY = 2 and 20 each contain only one micro-projection.

For a POSTNU, an execution strategy S is viable if Sp is consistent with p for each
micro-projection p. In order to define Dynamic Controllability for POSTNUs, we can now
simply modify the definition of pre-history.

Definition 3. The observational pre-history of a specific time t with respect to a schedule
T , denoted by T{� t}, specifies the durations of all observable macro-links that have finished
up to and including time t.
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A dynamic strategy S for a POSTNU is defined similarly as for an STNU except we
require it to satisfy

Sp1{� t} = Sp2{� t} ⇒ Sp1(x) = Sp2(x)

instead, i.e., we replace ⪯ with � in the definition. Then, as for an STNU, a POSTNU is
Dynamically Controllable if there is a viable dynamic execution strategy.

As noted by Vidal and Fargier (1999), if the start timepoint of a contingent link is
non-hidden, we may assume without loss of generality that it is an executable timepoint. (If
not, we may replace it by an executable timepoint that is constrained to be simultaneous
with the original. Note that this does not change the Dynamic Controllability status of the
network.) However, we may not make this assumption for hidden timepoints.

3. Analysis and General Approach

In an STNU, the durations of all contingent links are assumed to be independent. As we
saw, this remains true for the micro-links of a POSTNU but does not hold for the duration
of the macro-links. This introduces a fundamental difference as observing the duration
a macro-link might provide indirect information on the duration of another, correlated,
macro-link.

Definition 4 (Correlated macro-links). We say that the durations of two macro-links are
correlated iff they share at least one micro-link.

Since the POSTNU definition does not permit two contingent links to have the same
endpoint, notice that two correlated macro-links necessarily have the same source (the
closest non-hidden ancestor) and at least their first micro-link will be shared. This makes the
correlation relation between two macro-links transitive. Since it is also obviously reflexive
and symmetric, the correlation relation defines an equivalence class that we can use to
partition the macro-links (and their underlying micro-links) into non-independent groups:
hidden groups

Definition 5 (Hidden groups). Two contingent links (micro-links) are in the same hidden
group iff they appear in two macro-links whose durations are correlated.

In our post-office example, this definition would imply two hidden groups that can be
seen in Figure 5. From this partition, one can state that, e.g., observing the MN event might
provide indirect information one the occurrence time of FP and FA, since their macro-links
are in the same hidden group and thus correlated. On the other hand, being in another
hidden group implies that the MA event will no provide any information regarding the
duration of macro-links in the other group.

Since the POSTNU definition does not permit two contingent links to have the same
endpoint, the links in a hidden group G will form the edges of a tree rooted at some non-
hidden timepoint A, which will be the closest non-hidden ancestor for all the timepoint nodes
in the tree. The leaves of the tree will be either observable timepoints, or terminal hidden
timepoints. A possible algorithm for partitioning contingent links into hidden groups is to
start a group from a contingent link with a non-hidden timepoint and recursively expand the
group with outgoing contingent links until an observable timepoint is met (Algorithm 1).
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Departure
(MD)

Arrival
(MA)

Departure
(FD)

Leaves
Post off.

(FP)

Arrival
(FA)

Leave
Notif.
(MN)

[7, 10]

[15, 30] [15, 20]

[1, 2]

Figure 5: The two hidden groups of the post office example.

Algorithm 1 Partition contingent links of a POSTNU into hidden groups

1: function HiddenGroups(⟨N,E, l, u, C,O⟩)
2: HGroups = ∅
3: for all contingent link cl ∈ C where activation(cl) is non-hidden do
4: G← {cl}
5: if target(cl) is hidden then
6: Q← Q ∪ {cl}
7: while Q non empty do
8: cl← pop(Q)
9: for all cl′ ∈ C where target(cl) = activation(cl′) do

10: G← G ∪ {cl′}
11: if target(cl) is hidden then
12: Q← Q ∪ {cl′}
13: HGroups← HGroups ∪ {G}

return HGroups

Each observable leaf will be called an eye of the hidden group. Notice that observing an
eye of a hidden group will provide information limiting occurrence time of other contingent
timepoints in the hidden group. In Figure 5 for instance, after observing the occurrence of
MN at time 10 one can infer that the hidden FP event occurred in the [8,9] interval. This
information can be further propagated to infer that the FA event will occur in the [23,29]
range.

General approach Our approach for checking the Dynamic Controllability of a POSTNU
essentially factors the problem into two parts:

(1) We transfer requirements constraints away from hidden timepoints, onto synthetic
observable timepoints consistent with indirect knowledge brought by the eyes.
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(2) We solve a dynamic controllability problem on the resulting network that is free of
hidden timepoints but where knowledge on the duration of a macro-link may come
from several observable timepoints.

For part (1), the occurrences of hidden timepoints will be restricted to values consistent
with the observations of the eyes. In that case, satisfying the requirement links is tantamount
to solving special cases of the temporal decoupling problem (Hunsberger, 2002) where the
observations are treated as additional constraints on Nature, which is viewed as the second
agent. Given a fixed macro-projection P , the relative time of a hidden timepoint E within
its hidden group G may vary over the micro-projections of P . However, the earliest and
latest occurrences of E relative to G will be fixed in P , and determined by the observations.
We will see that the requirement links on E can be effectively transferred to a new pair of
timepoints related to the earliest and latest possible occurrences of E.

For part (2), the resulting earliest and latest occurrences of contingent timepoints in the
macro-projections can be expressed in terms of formulas with parameters that depend on the
observations. These formulas can be interpreted as generalized versions of the labels used in
the labeled distance graph of a standard STNU. We introduce corresponding generalizations
of the STNU reduction rules. These are shown to be sound and complete for determining
Dynamic Controllability.

We will prove the transformation steps and generalized reduction rules are sound by
showing they leave the set of viable dynamic strategies unchanged. (This set may be empty
if the POSTNU is not Dynamically Controllable.) Completeness will be a consequence
of the fact that successful completion of the reduction process will make the projections
dispatchable, and this implies Dynamic Controllability (Morris, 2014, 2016).

4. Transferring Requirement Constraints

The task of transferring requirement links away from hidden timepoints may be thought
of as a type of multi-agent temporal decoupling problem (Hunsberger, 2002). Accordingly,
we adopt a viewpoint where Nature is regarded as an agent scheduling the hidden groups
subject to the observations, which are regarded as additional constraints on what Nature
could have done. This leads to the following concept of a Nature STN.

Definition 6 (Nature STN). The Nature STN for a hidden group G with root timepoint
X is an STN schema that contains an STN link for each micro-link in G, with the same
bounds. In addition, for each eye Y of G, the network contains a rigid link from X to Y of
length Ẏ , where Ẏ is a variable representing the observed duration of the macro-link from
X to Y .

The links in the Nature STN that correspond to the micro-links will be called concrete
links, while those corresponding to the observations will be called observation links.

Note that the Nature STN schema instantiates to a specific STN for each macro-
projection (where the observed durations have definite values). By construction all such
STNs are consistent as the existence of a macro-projection implies the existence of a micro-
projection (and of the corresponding consistent assignment to the concrete links of the
STN). Since this implies the absence of negative cycles, we can assume the existence of
shortest paths that are well-defined and non-cyclic. We can also assume that the observed
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Figure 6: Nature STN schema (left) and corresponding distance graph (right) of the hidden
group depicted in Figure 4.

durations are non-negative since they result from the combination of contingent links that
are non-negative by definition.

We wish to transfer requirement constraints from hidden timepoints to equivalent con-
straints on observable timepoints. The following lemma supports an intermediate step in
that direction. Suppose E is a hidden timepoint in some hidden group G rooted at X.

Lemma 1. Consider some fixed macro-projection P where [e−, e+] are the inferred tightest
bounds of the XE temporal distance in the Nature STN. Let Elo = X+e− and Ehi = X+e+.
Suppose [z−, z+] are the bounds on a requirement link Z that has E as the source timepoint
and some other timepoint Z (not part of the same hidden group) as the target timepoint.
Then Z can be replaced by the constraint Ehi + z− ≤ Z ≤ Elo + z+.

Proof. Observe that the micro-projections within the P macro-projection will contain all
the possible values for E in the solutions of the Nature STN relative to P , i.e., all E in the
range [Elo,Ehi]. Note that:

(∀E ∈ [Elo,Ehi] : E + z− ≤ Z) ≡ Ehi + z− ≤ Z

(∀E ∈ [Elo,Ehi] : Z ≤ E + z+) ≡ Z ≤ Elo + z+.

Thus, Z can be replaced by the equivalent Ehi + z− ≤ Z ≤ Elo + z+.

As illustrated in Figure 7, it is useful to think of Elo and Ehi as virtual timepoints
that have fixed offsets from X in each macro-projection (but the offsets may vary between
macro-projections). The virtual timepoint Ehi would be executed at the latest possible
occurrence time of E. To ensure the minimal delay z− from E to Z, it follows that the Z
must be scheduled at least z− time units after Ehi. Similarly, Elo would be executed at
the earliest possible occurrence time of E and any maximum delay constraint on E can be
transferred to Elo.

Note that requirements between timepoints of the same hidden group are excluded from
Lemma 1: their viability is independent of observation and any scheduling, and must be a
logical consequence of the micro-links in the group.

Motivated by the lemma, we are interested in tight lower/upper bounds on the distance
from X to E in the Nature STN that would hold in all macro-projections. We now develop
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Figure 7: Result of applying Lemma 1 to transfer a requirement link E
[z−,z+]−−−−→ Z, where e−

and e+ are the tightest bounds on XE in the Nature STN.

symbolic formulas that express the bounds for each macro-projection in terms of the raw
bounds and the observed durations.

Upper bound To exploit Lemma 1, we are interested in computing UB(X,E), the upper
bound on the duration from X to E, where X is the root of the hidden group and E an hidden
timepoint of the same group. Recall that the upper bound in an STN may be calculated
as the shortest-path distance in the distance graph (Dechter et al., 1991). Denoting as
SD(X,E) the length of the shortest path from X to E in the Nature STN, we thus have
UB(X,E) = SD(X,E).

Lemma 2. In the Nature STN of a hidden group G, a minimal shortest path from the root
X to any other timepoint E is either:

• a path composed only of concrete edges, or

• a path that starts with an observation edge X Ẏ−→ Y and ends with the shortest path
over concrete edges from Y to E (where Y ∈ eyes(G)).

Proof. A Nature STN being consistent by definition, it contains no negative cycles. Thus
for any shortest path, there is a minimal shortest path of the same length that is non-cyclic
and can be obtained by removing the zero-length cycle. Thus any minimal shortest path is
non-cyclic.

The first edge of any path from X is either an observation edge X Ẏ−→ Y or a concrete
edge. Observe that in the distance graph of a Nature STN all observation edges start or
end at the root X of the hidden group. Except for the first edge, there might not be another
observation edge in the minimal shortest path as it would imply that the path goes again
through X and is cyclic.

Let us define CSD(A,B) as the shortest distance over only concrete edges of the Nature
STN. Based on Lemma 2, the length of a shortest path from X to E is thus:

• CSD(X,E) if the path only involves concrete edges, and
• Ẏ +CSD(Y,E) if it passes through an eye Y of the hidden group.

We can now express UB(X,E) as the length of the shortest path among all candidates:

UB(X,E) = SD(X,E) = min { CSD(X,E), min
Y ∈eyes(G)

(Ẏ +CSD(Y,E)) }

Recalling that Ẏ = Y −X, it is convenient to regard the root timepoint X as an additional
special eye called the root eye such that Ẋ = 0 always. (The other eyes will then be called
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leaf eyes to distinguish them.) Then we can rewrite the formula (where the notation Eyes(G)
includes the root eye) as

UB(X,E) = min
Y ∈Eyes(G)

(Ẏ +CSD(Y,E))

Lower bound We now turn our attention to LB(X,E), the lower bound on the duration
from X to E. In an STN distance graph, this lower bound is equal to the negated shortest
distance from E to X, i.e., LB(X,E) = −SD(E,X) (Dechter et al., 1991).

Reapplying the reasoning behind Lemma 2, observe that a minimal shortest path from

E to X is either exclusively composed of concrete edges or ends with a single Y −Ẏ−−→ X
observation edge where Y is an eye of the hidden group. Again, the shortest path distance
from E to X, can be expressed as a min expression over the eyes:

SD(E,X) = min
Y ∈Eyes(G)

(CSD(E, Y )− Ẏ ).

Recalling that LB(X,E) = −SD(E,X), we express the lower bound as

LB(X,E) = max
Y ∈Eyes(G)

(Ẏ − CSD(E, Y )).

Notice that min changes to max and the rigid link value Ẏ ends up as an added term in
the lower bound representation.

Synthesis Let us define the concrete upper bound CUB(Y,E) = CSD(Y,E) and the con-
crete lower bound CLB(Y,E) = −CSD(E, Y ), the bounds on YE implied by the concrete
edges. As they involve only concrete edges, these concrete bounds will boil down to a unique
numeric constant in every macro-projection. Substituting them in the previous formulas,
we obtain

UB(X,E) = min
Y ∈Eyes(G)

(Ẏ +CUB(Y,E))

LB(X,E) = max
Y ∈Eyes(G)

(Ẏ +CLB(Y,E))

as concise bound expressions.

Since Ehi = X +UB(X,E) and Elo = X +LB(X,E), we could now apply Lemma 1 to
transfer any requirements on E to requirements on Ehi and Elo, whose fixed bounds with
respect to X can be expressed in terms of formulas involving the observations.

Example 1. Consider the following POSTNU where X and Z are executable timepoints,
E is hidden, and Y is observable.

X E Y

Z

[0, 5]

[0, 10]

[5, 10]
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Even though E is not observable, the occurrence time of both X and Y provide indirect

information on E. We are thus interested in reformulating the E
[0,10]−−−→ Z requirement link

in terms of symbolic expressions involving the occurrence times of X and Y .
E is part of a hidden group composed of the micro-links XE and EY , for which the

corresponding Nature STN distance graph is the following (note that Z is not part of the
hidden group of E and hence not represented in the Nature STN).

X E Y
5

0

10

-5

Ẏ

−Ẏ

It is easy to see that the shortest distances XE and EX depend on Ẏ , the duration of the
macro-link XY, resulting in the following shortest distance expressions:

SD(X,E) = min{5, Ẏ − 5}
SD(E,X) = min{0, 10− Ẏ }

and the corresponding bounds:

UB(X,E) = min{5, Ẏ − 5}
LB(X,E) = max{0, Ẏ − 10}

Interpreting these expression as the virtual timepoints Elo and Ehi, we obtain the following
definitions and corresponding bounds on Z.

Elo = X +max{0, Ẏ − 10} Z ≤ Elo + 10

Ehi = X +min{5, Ẏ − 5} Z ≥ Ehi

Let us give an intuitive interpretation of this result. We know that E occurs after X.
Additionally, we know that E occurs at most 10 time units before Y . This is reflected in
the definition of the virtual timepoint Elo which should be interpreted as: it is not possible
for E to occur before Elo. The requirement of scheduling Z at most 10 time units after
Elo thus ensures that Z is scheduled at most 10 time units after E, which was our original
constraint.

Similarly, we know that E occurs at most 5 time units after X and at least 5 time units
before Y . This is reflected in the definition of the virtual timepoint Ehi which should be
interpreted as: it is not possible for E to occur after Ehi. The requirement of scheduling Z
after Ehi ensure that Z is scheduled after E which was our original constraint.

Example 2 (running example). We present here the effect of computing the lower and
upper bound expressions of the FA timepoint for the post office example of Figure 3:

FD+ LB(FD,FA) ≤ FA ≤ FD+UB(FD,FA)

FD+max{30, ḞA, ṀN+ 13} ≤ FA ≤ FD+min{50, ḞA, ṀN+ 19}
which should be interpreted as:
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• FA is known not to have occurred as long as: less that 30 minutes have elapsed since
FD, FA has not occurred and less that 13 time units have elapsed since the occurrence
of MN.

• FA is known to have occurred once: 50 minutes have elapsed since the the friend’s
departure (FD), FA has been observed or 19 minutes have elapsed since the receiving
the notification (MN).

Note that in any macro-projection, the two bounds converge to a single value FD+ ḞA.
The figure below gives an initial intuition of how this information can be represented

in a distance graph by expressing the bounds as the corresponding edges. Building such a
distance graph in a systematic way will be the purpose of the next two sections.

Departure
(FD)

Arrival
(FA)

−min(50, ḞA, ṀN+ 19)

max(30, ḞA, ṀN+ 13)

5. Enforcing Observability of Virtual Timepoints

In this section we are interested in making the virtual timepoints Elo and Ehi observable,
which is desirable to simplify the mechanisms of dynamic controllability checking. As a
motivation for doing so, we first informally discuss how the full observability is leveraged
in STNUs. Then we propose a way to transfer the constraints on virtual timepoints onto
observable timepoints.

Exploiting the full observability of STNUs In an STNU, the occurrence time of a
contingent (observable) timepoint is always known when it occurs. Consider a contingent
link X =⇒ Y where Y is observable and X is executable. The duration Ẏ of the link will
be known at time X + Ẏ which is also the time at which Y will occur. Note that the
contingent Y timepoint could be replaced by an executable timepoint Z subject to the

constraint X
[Ẏ ,Ẏ ]−−−→ Z. Indeed, a dynamic execution strategy will need to wait until the Ẏ

duration is observed at time X + Ẏ and immediately schedule Z. Both Y and Z would
occur exactly at the same time, making them indistinguishable, regardless of whether their
occurrence time is decided by Nature or by the controlling agent. In a nutshell, it means that
an observable contingent timepoint Y can be treated as an executable subject to constraints
on the Ẏ duration. In STNUs, DC-checking algorithms such as the one of Morris (2014)
exploit this property to avoid distinguishing between contingent and executable timepoints
in their reduction rules.

Making virtual timepoints observable Lemma 1 permits us to transfer requirements
on hidden timepoints to virtual timepoints Ehi and Elo that are fixed within each macro-
projection, and depend only on the observation durations. One drawback, however, is that
Ehi and Elo may not be themselves observable.

For example, given an eye Y , the CUB(Y,E) value could be either negative or non-
negative. (The E timepoint could be an ancestor or cousin of Y with respect to the tree
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structure of the hidden group.) If it is negative, then the value of Ẏ + CUB(Y,E) will not
be known until later, when Y is observed. Consequently, we may not be able to tell whether

Ehi = X + min
Y ∈Eyes(G)

(Ẏ +CUB(Y,E))

has occurred or not, at the time it occurs. We now show how virtual timepoints can be made
observable by artificially delaying them, while preserving viable strategies by compensating
for this delay on the requirement links they are involved in. Our objective in the process
is to build a network with homogeneous properties that can be exploited in the reduction
phase.

Note that we can always choose some minimal fixed value δhi(E) ≥ 0 such that
CUB(Y,E) + δhi(E) ≥ 0 for every Y ∈ Eyes(G). The δhi(E) value depends only on the
weights of the concrete links and does not vary with the observations.5

In contrast to the Ehi value, Ehi+δhi(E) will be observable. This suggests introducing a
new virtual timepoint Ehi+ = Ehi + δhi(E). Similarly, we can introduce a virtual timepoint
Elo+ = Elo+δlo(E) so that the offsets in the LB(X,E)+δlo(E) formula will be non-negative.

The following lemmas justify the transfer of requirement constraints from Ehi and Elo
to Ehi+ and Elo+, respectively, and establish their observability. The lemmas are stated
for completeness. We omit the proofs, which are immediate.

Lemma 3. If Ehi+ = Ehi+δhi(E), then Ehi+z− ≤ Z is equivalent to Ehi++(z−−δhi(E)) ≤
Z. If Elo+ = Elo + δlo(E) then Z ≤ Elo + z+ is equivalent to Z ≤ Elo+ + (z+ − δlo(E)).

Lemma 4. If an event Ẏ is observable, then the event Ẏ + p, where p ≥ 0 is some fixed
value, is also observable. If every event in some set S is observable, then miny∈S(y) and
maxy∈S(y) are also observable.

We can paraphrase miny∈S(y) as “whichever is earliest of the events in S, and maxy∈S(y)
as “whichever is latest of the events in S.” Applying this interpretation to the

Ehi+ −X = min
Y ∈Eyes(G)

(Ẏ +CUB(Y,E) + δhi(E))

Elo+ −X = max
Y ∈Eyes(G)

(Ẏ +CLB(Y,E) + δlo(E))

expressions, we can regard Ehi+ and Elo+ as compound observables, derived from the eyes,
with non-negative offsets calculated from the bounds of the contingent links. Repeated
applications of the two lemmas have the effect of transferring the requirement constraints
from hidden timepoints to equivalent constraints on compound observables.

Example 3. Following on from Example 1, where we had

Elo = X +max{0, Ẏ − 10} Z ≤ Elo + 10

Ehi = X +min{5, Ẏ − 5} Z ≥ Ehi

This could be interpreted as the following distance graph.

5. For definiteness, we could choose δhi(E) to be the smallest value with this property. The same value, but
with opposite sign, is added to the weight of the transferred requirement constraint. As we see below in
a lemma, the transferred edge is logically equivalent to the original, so it actually would not matter if a
larger value were chosen to be added and subtracted.
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X

Ehi

Elo

Z
−min{5, Ẏ − 5}

0

10
max{0,

Ẏ − 10}

Consider the macro-projection where Ẏ = 12. Further assume that X is scheduled at
the temporal origin (X = 0). In this macro-projection, Elo would occur at time 2 while

Ehi would occur at time 5. However this information is unknown until the duration Ẏ is
observed at time 12 (when the observable Y is observed).

We can now define the compound observables Ehi+ = Ehi + δhi(E) and Elo+ = Elo +
δlo(E) by choosing the appropriate δhi(E) and δlo(E) terms such that all terms in the
min/max expressions are non-negative. Choosing δhi(E) = 5 and δlo(E) = 10, we obtain the
following expressions and corresponding distance graph.

Elo+ = X +max{10, Ẏ } Z ≤ Elo+

Ehi+ = X +min{10, Ẏ } Z ≥ Ehi+ − 5

X

Ehi+

Elo+

Z
−min{10, Ẏ }

5

0
max{10

, Ẏ }

Example 4. Suppose we have five events: X, E, A, Y, and Z, where E is hidden and Z

is executable. We have a contingent link X
[0,5]
==⇒ E, a contingent link E

[1,1]
==⇒ A, and a

contingent link E
[106,106]
=====⇒ Y. We also have a requirement link E

[2,2]−−→ Z.

It’s clear from the example setup that Y is in some sense superfluous. Intuitively, we
can execute Z exactly one unit of time after we see A. It may therefore seem odd that Y
has an outsize influence on the encoding of Ehi+ and Elo+ via the parameter δ, although the
modification produces a logically equivalent network.

This is not a problem for correctness of the approach. The reformulated network contains
these constraints:

X
[−min(5+106,Ȧ−1+106,Ẏ)]←−−−−−−−−−−−−−−−−− Ehi+

−2+106←−−−−− Z

X
[max(0+106,Ȧ−1+106,Ẏ)]−−−−−−−−−−−−−−−−→ Elo+

+2−106−−−−−→ Z

Since 0 ≤ Ȧ− 1 ≤ 5 and Ẏ = Ȧ− 1 + 106 in this example, these reduce to

X
−((Ȧ+1)−2+106)←−−−−−−−−−−− Ehi+

−2+106←−−−−− Z

X
(Ȧ+1)−2+106−−−−−−−−−→ Elo+

+2−106−−−−−→ Z
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which can be rewritten as

(A + 1)
−(−2+106)←−−−−−−− Ehi+

−2+106←−−−−− Z

(A + 1) −2+106−−−−−→ Elo+
+2−106−−−−−→ Z

and it is now easy to see that executing Z at time (A+1) is consistent with both requirements.
(It can be seen from the description that the Ehi+−(A+1) = −(−2+106) and Elo+−(A+1) =
−2 + 106 values are fixed in this example.) Thus, the intuitive strategy still works for the
reformulated network. This is not surprising since replacing requirements by equivalent ones
preserve all viable strategies, including the dynamic ones. (It is of interest that, when we
later consider plus/minus reductions, the added and subtracted 106 amounts will cancel in
this example.)

The rationale for the introduction of the Ehi+ and Elo+ observables is that it allows us
to confine the initialization phase to operations that preserve all the viable strategies. We
defer operations that may preserve only the dynamic viable strategies until the plus/minus
reduction phase. (Other approaches are possible at the cost of complicating the initialization
phase.)

6. Construction of a Generalized Distance Graph

Having identified a way to transfer requirements from hidden timepoints onto observable
ones, we now turn our attention to the construction of a generalized distance graph as a
generalization of the labeled distance graph of conventional STNUs. This section’s focus is
on the construction and characterization of the initial graph. A later section will introduce
the reduction rules whose role are to extend the graph with implied edges until a violation
of dynamic controllability is identified or quiescence is reached.

6.1 Generalized Labels

Here we interpret the max/min bound expressions for the compound observables as gener-
alized labels analogous to those in the labeled distance graph of a conventional STNU. (See
for example (Morris, 2014)).

Since the requirements have been transferred to observables, our further discussion is
mostly in terms of the macro-projections. Thus, in the following, we may sometimes use the
unqualified term “projection” to mean macro-projection, when it is clear from the context
what is intended. (However, we must remain mindful that the independence of macro-links
is limited by possibly shared micro-links.)

Recall that a compound observable of the form Ehi+ provides a lower-bound

min
Y ∈Eyes(G)

{ Ẏ +CUB(Y,E) + δhi(E) }

on the X to Ehi+ distance that could potentially combine with a Ehi+ to Z lower bound
of some requirement. In our generalized distance graph, this lower bound on the X to Ehi+
distance will be represented as an edge X ←− Ehi+ with weight

ℓhi+(E) = − min
Y ∈Eyes(G)

{ Ẏ +CUB(Y,E) + δhi(E) } . (1)
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Notice that all the Ẏ +CUB(Y,E)+ δhi(E) terms evaluate to non-negative numbers. More-
over, Ẏ for the leaf eyes is always positive. Thus, the negated expression will evaluate to a
negative number. The edge is analogous to an Upper-Case edge in an STNU distance graph,
and for convenience we will sometimes call it an Upper-Case edge here.

Similarly, for a compound observable of the form Elo+, there will be an edge X −→ Elo+
with weight

ℓlo+(E) = max
Y ∈Eyes(G)

{ Ẏ +CLB(Y,E) + δlo(E) } . (2)

The Ẏ + CLB(Y,E) + δlo(E) terms all evaluate to non-negative numbers in each macro-
projection. The edge is analogous to a Lower-Case edge in an STNU distance graph, and
we will sometimes use that terminology here also.

When there are multiple leaf eyes, it is also possible for observations of one eye to
provide information that restricts the possible time of occurrence of another eye before it
has occurred, and this may be useful for an early determination that a requirement has
been satisfied. This may happen if the macro-links for the two eyes share micro-links. The
generalized labels for each eye Y must therefore reflect inferences from observations of the
other eyes. As it turns out, the appropriate labels for Y are the same as if Y were also a
hidden timepoint. The Ẏ coming from the direct observation of Y is simply included as
another term in the min/max formulas. Note, however, that the CLB(Y, Y ) and CUB(Y, Y )
terms will be 0. As an example, in the POSTNU of Figure 4, UB(X,Y ) = max(2, Ẏ , Ẇ −1)
and LB(X,Y ) = min(4, Ẏ , Ẇ + 1).

Relationship with STNU It is instructive to regard an ordinary STNU as a special case
of a POSTNU where there are no hidden timepoints. If we were to treat each contingent

link X
[y−,y+]
=====⇒ Y as a degenerate “hidden group” with a single micro-link and a single

leaf eye, the above analysis could still be applied, resulting in an upper-case label of the
form −min(Ẏ , y+) and a lower-case label of max(Ẏ , y−). These may be compared to the
conventional Y :−y+ and y : y− labels of an STNU, and suggests a semantic interpretation
of those labels. It is helpful to bear this comparison in mind when we consider reduction
rules, in the next section.

6.2 Construction of the Labeled Distance Graph

Given a POSTNU Π, we now give the complete procedure for the construction of the
labeled distance graph (V,Edges). The set of vertices V will be composed of the controllable
and observable timepoints of Π as well as the two compound observables of each hidden
timepoint of Π. The set of edges Edges is obtained by (i) converting macro-links to upper
and lower case edges, and (ii) transferring requirement links involving hidden timepoints to
the corresponding compound observables.

The algorithm is detailed in Algorithm 2. It works by first extracting all hidden groups.
For each hidden group, lines 8-10 add the compound observable timepoints and the corre-
sponding upper and lower case edges to the network. The δlo(E) and δhi(E) can be arbri-
trarily fixed to a constant number greater that the length of any shortest path in the Nature
STN of E. Each observable eye is also added with the corresponding lower and upper bound
expressions (being observable, those do not need to be delayed). Then lines 13-20 add the
requirement constraints, transferring from the hidden timepoints to the new observables.
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Algorithm 2 Construction of the labeled distance graph of a POSTNU Π

1: procedure DistanceGraph(Π)
2: V ← Controllables(Π) ∪Observables(Π)
3: Edges← ∅
4: { G1, . . . , Gn } ← HiddenGroups(Π)
5: for all Gi do
6: X ← root(Gi)
7: Construct nature STN of Gi

8: for all hidden timepoint E ∈ Gi do
9: V ← V ∪ { Elo+,Ehi+ }

10: Edges← Edges ∪ { X ℓlo+(E)−−−−→ Elo+,Ehi+
ℓhi+(E)−−−−→ X }

11: for all observable timepoint Y ∈ eyes(Gi) do

12: Edges← Edges ∪ { X UB(X,Y)−−−−−→ Y,Y
−LB(X,Y)−−−−−−→ X }

13: for all A ℓ−→ B ∈ Requirements(Π) do
14: if A is hidden then
15: A← Alo+
16: ℓ← ℓ− δlo(A)

17: if B is hidden then
18: B ← Bhi+
19: ℓ← ℓ+ δhi(B)

20: Edges← Edges ∪ { A ℓ−→ B }
21: return (V,Edges)

Complexity Observe that in a Nature STN with n vertices, the number of edges m is
bounded above by 4× (n− 1): each of the n− 1 non-root vertex has exactly one incoming
contingent link, which is transformed into at most 4 edges in the Nature STN distance
graph. In the worst case, computing the labels of the generalized distance graph requires us
to know the shortest distance between any two timepoints in a Nature STN. This can be
done in a single pass of Johnson’s algorithm with a complexity of O(n2 × log(n) + n×m).
Given that m ∈ O(n) this further reduces to O(n2× log(n)). This process must be repeated
for each of the Nature STNs.

Further observe that the Nature STNs are built by partitioning the set of contingent
edges and that there is exactly 1 contingent link per contingent timepoint. The total number
of nodes across all Nature STNs is thus bounded above by 2× |C| where |C| is the number
of contingent timepoints. The complexity of computing the generalized labeled graph in
Algorithm 2 is thus O(|C|2 × log|C|).

This dominates the complexity of extracting the hidden groups which is linear in the
number of contingent links (Algorithm 1). For completeness we must also incorporate the
cost of transforming the requirement edges, each of which is treated exactly once in constant
time. The overall complexity of Algorithm 2 is thus O(|C|2× log|C|+ |E|), where |E| is the
number of requirement links in the original POSTNU. As we will see, this is dominated by
the overall complexity of checking the Dynamic Controllability of the resulting network.
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Example 5 (running example). Following on from Example 2, we present in Figure 8 a
directly relevant subset of the generalized distance graph that would be built by our procedure
for the post office example of Figure 3.

Departure
(MD)

Arrival
(MA)

Departure
(FD)

Arrival
(FA)

−min(50, ḞA, ṀN+ 19)

max(30, ḞA, ṀN+ 13)

55

max(7, ṀA)

−min(10, ṀA)

Figure 8: Generalized distance graph of the post-office example (Figure 3). Note that the
MN, FPhi+ and FPlo+ timepoints are not subject to any requirement and thus omitted
from the graph.

6.3 Initial Labels: Properties and Notation

In this section, we note some properties of the generalized labels in the constructed labeled
distance graph. These will be useful later when we introduce derived labels, and establish
invariants that are preserved by the derivations. Here, we show the properties hold for the
labels on the initial edges between root timepoints and observables. Recall the formulas

UB(X,E) = min
Y ∈Eyes(G)

(Ẏ +CUB(Y,E))

LB(X,E) = max
Y ∈Eyes(G)

(Ẏ +CLB(Y,E)).

We have the following lemmas that will be important for the derivations.

Lemma 5. The following inequalities hold in general.

CUB(X,E) ≥ CUB(Y,E) for all Y ∈ eyes(G)

CLB(X,E) ≥ CLB(Y,E) for all Y ∈ eyes(G)

Proof. Recall that CLB(P,Q) = −CUB(Q,P ) for any P and Q.
Consider any Y ∈ eyes(G). Then

CUB(Y,E) ≤ CUB(Y,X) + CUB(X,E) ≤ CUB(X,E)

by the triangle inequality and CUB(Y,X) = −CLB(X,Y ) ≤ 0. Also, by the triangle in-
equality, we have

CUB(E,X) ≤ CUB(E, Y ) + CUB(Y,X)
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and so
CLB(Y,E) + CLB(X,Y ) ≤ CLB(X,E).

Then
CLB(Y,E) ≤ CLB(Y,E) + CLB(X,Y ) ≤ CLB(X,E).

Consider a fixed macro-projection P . With respect to P and the above formulas, we will
say an eye W ∈ Eyes(G) is UB active for E if it sets the tightest UB of E:

Ẇ +CUB(W,E) = min
Y ∈Eyes(G)

(Ẏ +CUB(Y,E)).

We will also say a subset W of Eyes(G) is UB active for E if it contains an eye that is UB
active for E. Note that this implies

min
Y ∈W

(Ẏ +CUB(Y,E)) = min
Y ∈Eyes(G)

(Ẏ +CUB(Y,E)).

Analogously, W ∈ Eyes(G) is LB active for E if

Ẇ +CLB(W,E) = max
Y ∈Eyes(G)

(Ẏ +CLB(Y,E))

and we similarly extend this concept to subsets of Eyes(G).
The following lemma identifies special macro-projections Pmax, where the root eye is

UB active, and Pmin, where the root eye is LB active.

Lemma 6. There is a macro-projection Pmax where UB(X,E) = CUB(X,E), and a
macro-projection Pmin where LB(X,E) = CLB(X,E) .

Proof. Let us consider the All-Max projection Pmax where all micro-links take on their
maximum bounds. Given an observable Y , note that in the Pmax projection, Ẏ takes its
maximum value Ẏmax and there is a concrete path XY of the length Ẏmax in the Nature
STN. Thus the XY concrete shortest path can not be greater that Ẏmax:

CUB(X,Y ) ≤ Ẏmax.

Adding the YE distance to both sides of the inequality we obtain

CUB(X,Y ) + CUB(Y,E) ≤ Ẏmax + CUB(Y,E).

With the triangle inequality we can state CUB(X,E) ≤ CUB(X,Y )+CUB(Y,E) and thus

CUB(X,E) ≤ Ẏmax + CUB(Y,E).

Hence in the All-Max projection Pmax, UB(X,E) = CUB(X,E), the smallest term of the
min expression.

Similarly, the All-Min projection, where each micro-links takes on its minimum bound,
satisfies the conditions for LB(X,E) = CLB(X,E).
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Recall that macro-link observations have only limited independence from each other—
their durations may be correlated if they involve shared micro-links. Nevertheless, the fol-
lowing lemma establishes some flexibility with respect to which observations are active in
the max/min computations. This will be useful for showing the existence of projections with
different properties that have related past histories.

Lemma 7. Suppose: E is a subset of Eyes(G) that includes the root eye; E is a hidden
timepoint of G; and P is any macro-projection. Then there exists macro-projections P ′ and
P ′′, in which Ẏ is unchanged for Y ∈ E, such that (a) E is UB active for E in P ′, and (b)
E is LB active for E in P ′′.

Proof. Consider the Nature STN instance Γ corresponding to P . Delete the rigid constraints
corresponding to the W observations for W not in E . This forms a new STN Γ′.

For part (a), by (Dechter et al., 1991), there is a solution of Γ′ where Ẇ = UB(X,W ) for
W not in E . Consequently, we can add to Γ′ rigid constraints of the form Ẇ = UB(X,W ),
for W not in E , without creating an inconsistency, and we form P ′ accordingly.

Note that in Γ′, for W not in E ,

UB(X,E) ≤ UB(X,W ) + UB(W,E) ≤ UB(X,W ) + CUB(W,E)

using the triangle inequality. It follows that, in P ′,

min
Y ∈E

(Ẏ +CUB(Y,E)) ≤ Ẇ +CUB(W,E)

for W not in E . Thus, E is UB active for E in P ′.
For part (b), we analogously use the (Dechter et al., 1991) solution where Ẇ = LB(X,W )

to form P ′′. In Γ′ we have

LB(X,E) ≥ LB(X,W ) + LB(W,E) ≥ LB(X,W ) + CLB(W,E)

so in P ′′ we have

max
Y ∈E

(Ẏ +CLB(Y,E)) ≥ Ẇ +CLB(W,E)

and thus E is LB active for E in P ′′.

Label Notation For the rest of the paper, it is convenient to introduce a more compact
notation for generalized labels, as follows. Suppose I is an index set for eyes(G). We can
rewrite the initial labels as

ℓhi+(E) = −min(v0,min
i∈I

(Ẏi + vi))

where v0 = CUB(X,E) + δhi(E) and vi = CUB(Yi, E) + δhi(E). Similarly, we can rewrite

ℓlo+(E) = max(u0,max
j∈I

(Ẏj + uj))

where u0 = CLB(X,E) + δlo(E) and uj = CLB(Yj , E) + δlo(E).
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This notation makes it easier to treat the contribution from the root eye specially which
will be useful in the study of both the initial labels (from Algorithm 2) and the derived
labels. Notice that it follows from Lemma 6 that

u0 = min
P

(max(u0,max
j∈I

(Ẏj + uj))) and − v0 = min
P

(−min(v0,min
i∈I

(Ẏi + vi)))

where P ranges over all the projections. Thus, u0 and −v0, respectively, are the tightest
values the labels can have over the projections.

7. Properties and Invariants of the Distance Graph

Having an initial distance graph, the next step for building a DC-checking procedure is the

definition of reduction rules that reduce a pair A
ℓ1−→ B

ℓ2−→ C into a single edge A
ℓ1◦ℓ2−−−→ C

whose label results from the composition of the two edges. In this section, we establish two
preliminary results for the definition of the reduction rules:

• We introduce an observability tightening process that simplifies a generalized label
while leaving intact the set of viable dynamic strategies.

• We establish invariants of the edges in the initial graph as well as the sufficient con-
ditions for these invariants to hold for any derived edge.

Instead of limiting the analysis to labels initially derived by Algorithm 2, we will typically
analyse labels of the form ℓ ± q where ℓ is an initial generalized label in the max or min
form and q is a scalar term. This will allow the results of this section to also apply to any
derived edge produced from the combination of an initial label ℓ with a scalar term q (with
few restrictions on q).

7.1 Observability Tightening

The following results exploit the sensitivity of dynamic strategies to observability. They
emphasize the asymmetry of dynamic controllability with respect to the direction of time
(in contrast to weak and strong controllability). Here we establish the results for the initial
labels (before applying any reduction rules). We will later extend the reasoning to derived
labels.

The intuition behind observability tightening is as follows: if a constraint involves an
event that cannot be observed when it is needed during execution, then a dynamic strategy
must instead satisfy a suitably tightened constraint that is observable. For example, suppose
there is a deadline of max(u,B− 5) for some timepoint Z, where u is the earliest time that
the observable B can occur. If the time of occurrence of B is not known until it is observed,
then it would be unsafe to wait until after u to execute Z, since by the time B is observed,
the B − 5 bound has already passed. Thus, the deadline should be tightened to u. On the
other hand, suppose there is a release time (lower bound) of min(v,B− 5) for Z, where v is
the latest time that the observable B can occur. In this case, we should tighten the release
time to min(v,B) to take advantage of an earlier occurrence of B since this satisfies the
lower bound. These intuitions formed the basis for the reductions in the earlier dynamic
controllability work (Morris et al., 2001).
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7.1.1 Tightening of Edges to Enforce Observability

The following lemmas exploit this type of reasoning and make it precise. Although the basic
idea is clear, a rigorous proof of the results in this setting is nontrivial, as we see below.
This is due to the possibility of shared micro-links between eyes, which prevents us from
simply reasoning about each eye separately.

As context for the lemmas, we suppose Z is an executable timepoint and X is the root
of some hidden group for which {Yi} is the indexed set of leaf eyes.

Lemma 8 (Min observability tightening). Suppose a viable dynamic strategy satisfies Z −
X ≥ (−ℓhi+(E))− q for all projections, where

ℓhi+(E) = −min(v0,min
j

(Ẏj + vj))

is an initial label and 0 ≤ q < v0. Then the strategy must also satisfy

Z −X ≥ min(v0 − q,min
j

(Ẏj +max(0, vj − q)))

Proof. We are assuming Z −X ≥ (−ℓhi+(E))− q, that is, Z −X ≥ min(v0 − q,maxi(Ẏi +
vi − q)), for all projections.

To simplify notation, we set qi = vi−q. Then q0 ≥ 0, and Z−X ≥ min(q0,mini(Ẏi+qi))
for all projections. We need to show this implies

Z −X ≥ min(q0,min
i
(Ẏi + q+i ))

for all projections, where q+i = max(0, qi).
Our approach will be to show that if there is a projection that does not satisfy the

condition, then there is a dynamically indistinguishable projection with a contradictory
property. This establishes that the condition is satisfied for all projections.

Suppose P is a projection that does not satisfy the condition. Let ZP be the time
assigned to Z in P by the viable dynamic strategy. Then

min(q0,min
i
(Ẏi + qi)) ≤ ZP −X < min(q0,min

i
(Ẏi + q+i ))

in P .6

Note that dropping terms from a min expression will not decrease its value. Thus,

ZP −X < min(q0,min
qi≥0

(Ẏi + q+i )) = min(q0,min
qi≥0

(Ẏi + qi))

and
ZP −X < min(q0,min

qi<0
(Ẏi + q+i )) = min

qi<0
(Ẏi).

Let E be the subset of Eyes(G) defined by E = {Yi : ZP −X < Ẏi + qi in P}. Thus, E
includes the root eye X = Y0 and is a superset of {Yi : qi ≥ 0} by our assumption. Since
ZP −X < minqi<0(Ẏi), the ZP value is assigned before the Yi not in E have been observed.

6. To minimize clutter, only ZP , which is referenced in a wider context, is superscripted with P .
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By lemma 7 part (a), there is another projection P ′ where Ẏi is unchanged for Yi ∈ E
and E is UB active. Let M = minYi∈E(Ẏi + qi). (Note that the value of M is the same in
P ′ and P .) Thus, ZP − X < M ≤ Ẏi + qi in P ′ for all i, including the Yi not in E (since
E is UB active). However, Ẏi + qi ≤ ZP − X in P for the Yi not in E (by the definition
of E). Thus, Ẏi is increased in the transition from P to P ′ for Yi /∈ E (and is unchanged
otherwise). Consequently, at time ZP , the observables that are in the future in P are also
in the future in P ′, and those in the past are unchanged.

It follows that the pre-history at time ZP is the same in P ′ as it is in P . Since the
strategy is dynamic, therefore ZP ′

= ZP . Thus, ZP ′ − X < Ẏi + qi in P ′ for all i, but
that violates the constraint that Z − X ≥ min(q0,mini(Ẏi + qi)) for all projections. This
contradiction establishes the result.

Lemma 9 (Max observability tightening). Suppose a viable dynamic strategy satisfies Z −
X ≤ ℓlo+(E)− q for all projections, where

ℓlo+(E)) = max(u0,max
i

(Ẏi + ui))

is an initial label and 0 ≤ q ≤ u0. Then it must also satisfy

Z −X ≤ max(u0 − q,max
ui≥q

(Ẏi + ui − q))

(i.e., the terms where (ui − q) is negative may be dropped).

Proof. We are assuming Z − X ≤ ℓlo+(E) − q, that is, Z − X ≤ max(u0 − q,maxi(Ẏi +
ui − q)), for all projections. The proof has similar steps to lemma 8 but there is an added
complication, as we will see.

To simplify notation, we set qi = ui−q. Then q0 ≥ 0, and Z−X ≤ max(q0,maxi(Ẏi+qi))
for all projections. We need to show this implies

Z −X ≤ max(q0,max
qi≥0

(Ẏi + qi))

for all projections.
Our approach will be to show that if there is a projection that does not satisfy the

consequent, then there is a dynamically indistinguishable projection with a contradictory
property. This establishes that the condition is satisfied for all projections.

Suppose P is a projection that does not satisfy the condition. Let ZP be the time
assigned to Z in P by the viable dynamic strategy. Then

max(q0,max
qi≥0

(Ẏi + qi)) < ZP −X ≤ max(q0,max
i

(Ẏi + qi))

in P . (Again, to minimize clutter, only ZP is superscripted.)
Let E be the subset of Eyes(G) defined by E = {Yi : Ẏi + qi < ZP −X in P}. Thus, E

includes the root eye X = Y0 and is a superset of {Yi : qi ≥ 0} by our assumption. Note
also that ZP −X ≤ Ẏi+ qi < Ẏi in P for any Yi not in E . Thus, ZP is assigned before these
Yi have been observed. Without loss of generality, we may assume that E has a maximum
size among projections P that do not satisfy the condition.
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By lemma 7 part (b), there is another projection P ′ where Ẏi is unchanged for Yi ∈ E
and E is LB active for E. Let M = maxYi∈E(Ẏi+ qi). (Note that the value of M is the same
in P ′ and P .) Thus, Ẏi + qi ≤ M < ZP − X in P ′ for all Yi, including the Yi not in E .
However, ZP −X ≤ Ẏi + qi in P for the Yi not in E . Thus, Ẏi is reduced in the transition
from P to P ′ for Yi /∈ E (and is unchanged otherwise).

Since the Ẏi are reduced, rather than increased as in the proof of lemma 8, we require
additional work to obtain a suitable projection indistinguishable from P .

Note that the projections of a POSTNU form a convex set. Thus, we can form a convex
linear combination P ′′ = µ ∗ P ′ + (1 − µ) ∗ P for any value µ such that 0 ≤ µ ≤ 1, where
any contingent link that has duration d′ in P ′ and duration d in P would have duration
d′′ = µ ∗ d′ + (1− µ) ∗ d in P ′′. (Note that d′ = d implies d′′ = d′ = d.)

As µ transitions from 0 to 1, the intermediate projection P ′′ will transition between the
properties of P and those of P ′. Set yq = minYi /∈E(Ẏi + qi) and y = minYi /∈E(Ẏi). Note that
yq < y (since the qi are negative). Then, as µ increases, both yq and y increase towards
ZP − X, and yq eventually just passes it while y remains smaller. Thus, we can choose µ
and hence P ′′ such that: (1) ZP −X < Ẏi for all Yi not in E ; and (2) Ẏi + qi < ZP −X
for some Yi not in E .

By (1) it follows that the pre-history at time ZP is the same in P ′′ as it is in P . Since
the strategy is dynamic, therefore ZP ′′

= ZP . With respect to (2), note that Ẏi + qi <
ZP − X cannot be true for all Yi not in E , since that would violate the constraint that
Z−X ≤ max(u0− q,maxi(Ẏi+ui− q)) for all projections. It follows that P ′′ would provide
a counterexample to the lemma where E has a larger size than in P , which violates the
maximum assumption. This contradiction establishes the result.

Example 6. Consider once again Example 3. Composing the X ← Ehi+ and Ehi+ ← Z

edges, we can infer for the X ← Z edge a label of −min(5, Ẏ − 5). Observability tighten-
ing would then allow us to rewrite that as −min(5, Ẏ ) without loss of any dynamic viable
strategies. Observability tightening is utilized in the reduction rule phase, discussed below,
where edges are composed.

Remark The observability tightening lemmas may also be applied where Z is an observ-
able timepoint. To see this, note that Z could be paired with an executable Z ′ constrained
to be simultaneous with it, in which case observability tightening of Z ′ transfers to Z.7

7.1.2 Observability Tightening Notation

We may use the terms “min observability tightening” (minot) and “max observability
tightening,” (maxot) respectively, for the types of observability tightening sanctioned by
lemmas 8 and 9, respectively.

Given max and min labels ℓ1 = max(u0,maxi(Ẏi+ui)) and ℓ2 = −min(v0,minj(Ẇj+vj))
respectively, define

maxot(ℓ1) = max(u0,max
ui≥0

(Ẏi + ui))

minot(ℓ2) = −min(v0,min
j

(Ẇj +max(vj , 0))).

7. This relies on the “instantaneous reaction” aspect of the POSTNU definition.
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Notice that the maxot and minot representations of derived labels have the following
elementary properties:

maxot[ maxot(ℓ− q1)− q2 ] = maxot(ℓ− q1 − q2)

minot[ minot(ℓ+ q1) + q2 ] = minot(ℓ+ q1 + q2)

q1 ≥ q2 =⇒ maxot(ℓ− q1) ≤ maxot(ℓ− q2)

q1 ≤ q2 =⇒ minot(ℓ+ q1) ≤ minot(ℓ+ q2)

for labels ℓ of the relevant max/min form.

7.2 Edge Invariants

In this subsection, we study some of the invariants of the edges in the generalized distance
graph. For both upper and lower case edges, we state two lemmas that are trivially correct
in the original graph. As corollaries of each lemma, we deduce a set of invariants that hold
for each kind of edge. We will see that the lemmas, and thus their corollaries, still hold for
any edge derived by the reduction rules of the next section.

7.2.1 Upper Case Edges

Lemma 10. For any upper case edge B −→ A in the generalized distance graph, there is a

lower case edge C
lorig−−→ A in the original graph constructed by Algorithm 2 such that the

label of B −→ A can be expressed as

B
minot(lorig+q)−−−−−−−−−−→ A

where lorig = −min(v′0,minj(Ẇj + v′j)), and v′0 > q ≥ 0.

This is originally true as the upper case label lorig of an edge C −→ A in the original
graph can be expressed as minot(lorig) (Lemma 8). We will see that any derived upper case
edge also fulfills this property.

As a corollary of Lemma 10 we can state that the label of an upper case edge B −→ A
has the form

−min(v0,min
j

(Ẇj + vj))

with invariants:

1. The label can be expressed as

−min(v′0 − q,min
j

(Ẇj +max(0, v′j − q)))

where −min(v′0,minj(Ẇj + v′j)) is the label of one of the original upper case edges in
the labeled distance graph, as constructed by algorithm 2, and v′0 > q ≥ 0. This can
be verified by expanding the minot(lorig + q) expression from Lemma 10.

2. v0 > 0 and ∀j ̸= 0 : vj ≥ 0. From previous invariant. Note that v′0 = 0 is impossible,
otherwise the original edge would be an ordinary requirement edge with label 0. Also
implies Ẇj + vj > 0
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3. The edge is negative (in all projections). Implied by the previous invariant.

4. v0 ≥ vj . Initially true (Lemma 5) and then implied by the first invariant.

5. The target timepoint A of this edge is also the root observable timepoint for each Ẇj

in the label. Initially true (since theWj are in the same hidden group), and maintained
by Lemma 10.

7.2.2 Lower Case Edges

Lemma 11. For any lower case edge A −→ B in the generalized distance graph, there is a

lower case edge A
lorig−−→ C in the original graph constructed by Algorithm 2 such that the

label of A −→ B can be expressed as

A
maxot(lorig−q)−−−−−−−−−−−→ B

where lorig = max(u′0,maxi(Ẏi + u′i), and u′0 ≥ q ≥ 0.

This is originally true as the lower case label lorig of an edge A −→ C in the original graph
can be expressed as maxot(lorig) (Lemma 9). We will see that any derived lower case edge
also fulfills this property.

As a corollary of Lemma 11, we can state that the label of a lower case edge A −→ B has
the form

max(u0,max
i

(Ẏi + ui))

with invariants:

1. The label can be expressed as

max(u′0 − q,max
u′
i≥q

(Ẏi + u′i − q))

where max(u′0,maxi(Ẏi + u′i)) is the label of one of the original lower case edges, as
constructed by algorithm 2, and u′0 ≥ q ≥ 0. This can be verified by expanding the
maxot(lorig − q) expression of Lemma 11.

2. ∀i : ui ≥ 0 (includes i = 0). From previous invariant. Also implies Ẏi + ui > 0.

3. The edge is non-negative (in all projections). Implied by the previous invariant.

4. u0 ≥ uj . Initially true (Lemma 5) and then implied by the first invariant.

5. The source timepoint A of this edge is also the root observable timepoint for each Ẏi
in the label. Initially true (since the Yi are in the same hidden group) and maintained
by Lemma 11.
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7.2.3 Scalar Terms in Generalized Labels

It is convenient to refer to the u0 and v0 values as the scalar terms in the labels, noted
scalar(ℓ) for any label ℓ. Notice that maxot and minot do not involve any modification
of the scalar terms. We may regard the scalar as preserving a record of the q offset to the
initial label.

Assuming the invariants hold, we have an extension of Lemma 6 and its Pmax and Pmin
special projections to derived labels.

Lemma 12. The derived label −min(v0,minj(Ẇj + vj)) reduces to −v0 in the Pmax spe-
cial projection. The derived label max(u0,maxi(Ẏi + ui)) reduces to u0 in the Pmin special
projection.

Proof. First, note that the q modification applied uniformly to all terms does not dis-
turb the special projections property, which holds for the initial labels. Second, if v0 =
min(v0,minj(Ẇj + vj)) then

v0 ≤ min
j

(Ẇj + vj) ≤ min
j

(Ẇj +max(vj , 0))

so the minot operation does not affect the property. Similarly, if u0 = max(u0,maxi(Ẏi+ui))
then

u0 ≥ max
i

(Ẏi + ui) ≥ max
ui≥0

(Ẏi + ui)

so the maxot operation also preserves the property.

8. Generalized Reduction Rules

The reduction rules that we will introduce can be interpreted as generalizations of the
“classical” STNU reduction rules. However, it is useful to view them in a slightly different
way that makes more sense in the generalized context. In particular, each reduction rule
application incorporates two separate types of transformation:

(1) the addition of a logically implied constraint that leaves the entire set of viable strate-
gies unchanged; and

(2) an observability tightening step, as discussed previously, that may filter out some viable
strategies, but not any dynamic viable strategies.

The second step is essentially what validates the removal of lower-case labels that is inherent
in the classical Lower-Case and Cross-Case Reductions, and is also implicit in the derivation
of upper-case labels. Its effect is to replace derived constraints that are not observable by
minimally strengthened constraints that are observable.

The overall purpose of STNU reduction rules is to try to make every projection dis-
patchable, since this implies Dynamic Controllability (Morris et al., 2001; Morris, 2014;
Shah et al., 2007). In an STN, dispatchability can be achieved by applying “Plus/Minus”
operations that compose non-negative edges with following negative edges. The aim is to
ensure the path constraints are enforced by “V-paths” where any non-negative edges follow
any negative edges. If this process terminates without producing a negative cycle, then the
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resulting network is dispatchable (Morris, 2016). For an STNU, the negative edges include
upper-case edges not subject to Label Removal, and the non-negative edges include lower-
case edges. In effect, the reductions constitute the operations needed to create V-paths, and
their action is global across all of the projections.

The same approach is applicable to the generalized labels considered here. Thus, we
have analogues of the Upper-Case, Lower-Case, and Cross-Case reductions that incorpo-
rate observability tightening steps. Actually, edges with ordinary numeric weights may be
regarded as special cases of the generalized labels where the sets of leaf eyes are empty. (For
non-negative edges, the root timepoint is the source; for negative edges, it is the target.)
Thus, we only need to consider the generalized Cross-Case reduction.

The Cross-Case reduction involves a composition of a negative labeled edge (aka Upper
Case) and a non-negative labeled edge (aka Lower Case), where the timepoints are either
executable or observable, as follows:

max(u0,max
i

(Ẏi + ui))−min(v0,min
j

(Ẇj + vj))

where i and j range over suitable index sets for leaf eyes.

A special case of the Cross-Case reduction occurs when the source timepoint of the
non-negative edge coincides with the destination timepoint of the negative edge so that the
combination forms a self-loop. In this case we are only concerned with whether the combina-
tion is negative or non-negative. If negative, the network in not Dynamically Controllable;
if non-negative, the combination is ineffectual and may be discarded. Thus, the self-loop
combination, does not add a new edge to the network (but it does need to be checked, as
discussed later).

Otherwise, if the source and destination are different timepoints, the derived edge will
be given a derived label and added to the network. The following discussion applies to the
derived labels.

The input edges to the reduction will be called the parent edges, and the resulting edge is
the child edge. The ui and vi values for the initial edges are determined by the construction
of the labeled distance graph. The derived edges will have derived ui and vi values computed
according to the Cross-Case reduction rules. Since each reduction involves a non-negative
edge and a negative edge and results in either a non-negative or negative edge, exactly one
of the parents will have the same sign as the derived edge. If we iterate this relationship, we
can trace back a line of same-sign ancestors that leads back to a unique edge in the initial
labeled distance graph.

Certain properties of the initial labels will be maintained for the derived labels, as we
will see. Thus, they will constitute invariants that are preserved by the derivation process.
Since their validity essentially depends on an inductive argument, we may assume they
hold for the inputs of the derivations, and it will be shown that they hold for the outputted
derived labels.

Cross Case Reduction The cross case reduction requires combining two edges with max
and min labels:

A
max(u0,maxi(Ẏi+ui))−−−−−−−−−−−−−→ B

−min(v0,minj(Ẇj+vj))−−−−−−−−−−−−−−→ C (3)
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into a single upper case or lower case edge A −→ C whose label should derive from:

max(u0,max
i

(Ẏi + ui))−min(v0,min
j

(Ẇj + vj)) (4)

There are two cases to be considered: (1) where the root timepoints of the combining
edges are different (i.e. A ̸= C); and (2) where they are the same (i.e. A = C). Both cases
are important for consistency checking. However, in our approach, only case (1) may add
an edge to the network.

In the following, we first consider case (1) where the root timepoints are different.

8.1 Different Root Case

Here we deal with the non-same-root case (i.e. A ̸= C in Eq. (3)). This implies that the
observables in the max label come from a different hidden group than those in the min label.
Thus, there are no cross-correlations, durations of macro-links vary independently between
the two groups, and we may speak of a local projection of a hidden group. In particular, we
will utilize local versions of the Pmax and Pmin special projections for one of the hidden
groups while the local projection for the other hidden group is unrestricted. Note that the
proofs of lemma 6 and lemma 12 depend only on the properties of the local projection.

The cross-independence simplifies the analysis in one way compared to the same-root
case. In particular, under certain circumstances, observability tightening can be applied for
an observable in one group provided only that it is applicable in any local projection of the
other group.

We now specify the form of the derived labels, and note how they preserve invariants.
This will followed by a formal proof of soundness of the derivation rules.

The result of the

max(u0,max
i

(Ẏi + ui))−min(v0,min
j

(Ẇj + vj))

combination in the non-same-root case is defined as follows.

Negative Result (Upper Case): If u0 < v0, the result is

−min(v0 − u0,min
j

(Ẇj +max(vj − u0, 0))).

Note the observation variables are all inherited from the negative parent edge. Since the
target of the edge is also inherited from the negative parent, this preserves the invariant
that it coincides with the root timepoint of the observables. Also note the result may be
expressed as minot(ℓ+u0) where ℓ is the negative parent label, preserving the representation
invariant (Lemma 10).

Non-negative Result (Lower Case): If u0 ≥ v0, the result is

max(u0 − v0, max
ui≥v0

(Ẏi + ui − v0))

Note the observation variables are now inherited from the non-negative parent edge.
Since the source of the edge is also inherited from the non-negative parent, this preserves
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the invariant that it coincides with the root timepoint of the observables. Also note the result
may be expressed as maxot(ℓ−v0) where ℓ is the non-negative parent label, preserving the
representation invariant (Lemma 11).

The non-negative case may be viewed as a generalization of the STNU reduction cases
that reduce away a lower-case edge. Here, the result is a lower-case edge that has fewer
observation variables and/or smaller offsets.

Theorem 1. The Cross Case reduction rules are sound in both the negative and non-
negative result cases.

Proof. Recall that we have 0 ≤ ui ≤ u0 and 0 ≤ vj ≤ v0 as invariants. In the following, we
will use the symbol ’≈’ to indicate a non-equivalent transformation step that nevertheless
preserves the set of viable dynamic strategies because of observability tightening.

We are composing the max/min labels

max(u0,max
i>0

(Ẏi + ui))−min(v0,min
j>0

(Ẇj + vj))

corresponding to a X1 −→ Z −→ X2 combination.
First suppose u0 < v0. Then the W0 root timepoint must be scheduled before the Y0

root timepoint. (Otherwise, the combination would not be consistent with all projections.)
Consequently, W0 must be scheduled before any of the Yi : i ≥ 1 are observed, and a viable
dynamic strategy must satisfy the composed edge in the Pmin local projection for the Yi
group where the max label reduces to u0 (lemma 12). Thus, it must satisfy

X2 −X1 ≤ u0 −min(v0,min
j>0

(Ẇj + vj))

= −min(v0 − u0,min
j>0

(Ẇj + vj − u0))

≈ −min(v0 − u0,min
j>0

(Ẇj +max(vj − u0, 0))).

Next suppose u0 ≥ v0. Then W0 cannot be scheduled before Y0, and the latter must
be scheduled before the Wj : j ≥ 1 are observed. Consequently, a viable dynamic strategy
must satisfy the composed edge in the Pmax local projection for the Wj group where the
min label reduces to v0 (lemma 12). Thus, it must satisfy

X2 −X1 ≤ max(u0,max
i>0

(Ẏi + ui))− v0

= max(u0 − v0,max
i>0

(Ẏi + ui − v0))

≈ max(u0 − v0, max
ui≥v0

(Ẏi + ui − v0))

This establishes the soundness of the reductions in both the negative and non-negative
result cases.

The following result will be useful in a later section.

Lemma 13. The edges derived by the reductions are at least as tight as what would be
obtained by composing the input edges.
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Proof. In the non-negative result case, the reduction is equivalent to applying observability
tightening to max(u0,maxi(Ẏi))− v0. Since −v0 ≤ −min(v0,minj(Ẇj + vj)), this is at least
as tight as composing the edges.

In the negative result case, the reduction is equivalent to applying observability tight-
ening to u0 −min(v0,minj(Ẇj + vj)). Since u0 ≤ max(u0,maxi(Ẏi + ui)), this is at least as
tight as composing the edges.

Synthetic rules Having performed this analysis, we can now reformulate the two re-
ductions rules in terms of max/min observability tightening and scalar terms of the labels
(Table 1). Recalling that an edge with a purely scalar label q can be interpreted as a lower-
case label if q ≥ 0 or as an upper-case label if q < 0, these two rules allow the combination
of any non-negative edge with a following negative edge.

A ℓ+−→ B ℓ−−→ C is reduced to

A
maxot[ℓ+−scalar(ℓ−)]−−−−−−−−−−−−−−−−→ C if scalar(ℓ+)− scalar(ℓ−) ≥ 0

A
minot[ℓ−+scalar(ℓ+)]−−−−−−−−−−−−−−−→ C if scalar(ℓ+)− scalar(ℓ−) < 0

Table 1: Reduction rules, applicable where ℓ+ is a non-negative label, ℓ− is a negative label
and A ̸= C.

8.2 Same Root Case

Our next task in composing the max and min labels

max(u0,max
i

(Ẏi + ui))−min(v0,min
j

(Ẇj + vj))

is to deal with the case where the source timepoint of the edge with the max label coincides
with the target of the edge with the min label (i.e. A = C in Eq. (3)). We will call this the
same-root case, since the root eye is the same for both labels. According to the invariants,
this will also be the root timepoint for each of the Ẏi and Ẇj observables.

In the same-root case, we are only really interested in determining whether the sign of the
combination is negative or non-negative. If negative, then the POSTNU is not Dynamically
Controllable, since a timepoint cannot precede itself. Otherwise the result derives a non-
negative distance from the root timepoint to itself, which can be discarded as redundant,
since a timepoint will never follow itself.

The essential issue with same-root checking is to determine whether the self-loop arising
from the combined label will have a negative value in any macro-projection. However, since
the observables may be correlated because of shared micro-links, this determination requires
consideration of the underlying Nature STN.

The combination can be conveniently written as

max
i≥0,j≥0

(Ẏi + (ui − vj)− Ẇj) (5)
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where Ẏ0 = Ẇ0 = 0. If any of the terms in the maximization is non-negative, then the
combination is also. More precisely, the condition for discarding the combination can be
expressed as: for every projection, there is some i and j such that Ẏi − Ẇj ≥ vj − ui. This
sub-problem can be stated negatively as determining whether there is no projection, which
can be limited to the observables in the hidden group, such that the terms are all negative,
i.e., such that:

∀i, j : Ẏi − Ẇj < vj − ui.

Given that Ẏ is the shorthand for Y −X where X is the root observable for Y and that all Yi
and Wj have the same root observable, the above inequalities can be rewritten as Yi−Wj <
vj − ui which are essentially Simple Temporal constraints except that the inequalities are
strict. The bounds on the micro-links may also be viewed as Simple Temporal constraints,
and the problem reduces to determining whether this partially strict STN has a solution. A
standard STN algorithm such as Bellman-Ford (Cormen et al., 1990) can be used to look for
either an explicit negative cycle, or an implied negative cycle where the bounds sum to zero
and the cycle passes through one or more of the strict edges.8 Note that if this derived STN
is consistent, then the POSTNU is NOT Dynamically Controllable. If it is not consistent,
then the same-root combination is discarded.

A shortcut that avoids the need for the negative restatement in many cases is if there
is a fixed choice of i and j for which Ẏi − Ẇj ≥ vj − ui for all projections. For example,
this might be true if Yi = Wj and ui = vj = 0. In that case, we can immediately discard
the same-root combination. However, if vj > ui, then the shortcut does not work for this
Yi and Wj pair.

Example 7. In the classic STNU theory, there is an ad-hoc restriction that the Cross-Case
reduction cannot be applied when the upper and lower case labels involve the same contingent
timepoint. However, with the generalized labels, an ad-hoc restriction is not needed. Consider

A
[u.v]
==⇒ B. We have

max(u, Ḃ)−min(v, Ḃ) = max(Ḃ − Ḃ, . . .) ≥ 0.

Thus, the combination is non-negative and is discarded. The negatively stated analysis dis-
cussed above would produce constraints including B − B < 0 so the derived STN is incon-
sistent and the combination is also discarded with the more general analysis.

Example 8. Consider the following POSTNU with an executable timepoint Z that is con-
strained relative to contingent timepoints Y and W in the same hidden group rooted at X,
where the two macro-links share an XE microlink to the hidden timepoint E.

X E

Y

W

Z
[10, 20]

[1, 3]

[1, 3
]

[−1,
1]

[−1, 1]

8. In practice, one could simply decrement the strict bounds by a tiny amount and use standard STN
methods.
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(a)

X Y Z

max(11, Ẏ , Ẇ − 2)

−min(23, Ẏ , Ẇ + 2)

1

1

(b)

X Y Z

−min(23, Ẏ , Ẇ + 2)

max(11, Ẏ )

1

1

(c)

X

W

Z
−min(22, Ẏ , Ẇ + 1)

max(11, Ẇ )
1

(d)

X Z

−min(22, Ẏ , Ẇ + 1)

−min(22, Ẇ , Ẏ + 1)

Figure 9: Labeled Edge Processing for Example 8.

Note the symmetry between Y and W in the example, which simplifies the exposition.

In Figure 9, we show the stages of processing for the labeled edges. The portion of the
graph related to the Y timepoint is shown in diagrams (a) and (b). The remaining por-
tion of the graph involving W is not shown, but is symmetrically similar with Y and W
interchanged. In diagrams (c) and (d), we have combined relevant elements from the two
symmetrical portions.

The initial graph produced by Algorithm 2 is shown in (a) (before observability tightening)
and in (b) (after observability tightening). The XYX same-root cycle in (b) is similar to the
STNU case in that it reduces to max(Ẏ − Ẏ , . . .), which is non-negative. The XYZYX path
does not produce a same-root cycle because the YZYX path does not lead to a tighter YX
edge.

Now if we perform a reduction of the ZY and YX edges and consider the additional sym-
metric graph portion through W that was hidden in the (a),(b) diagrams, we see in diagram
(c) that there is a further same-root cycle that passes through Z. A WZX reduction will
now produce a −min(21, Ẏ , Ẇ ) label. (Note the application of min observability tightening
to the Ẏ − 1 term.) This same-root case then reduces to max(Ẇ − Ẇ , . . .), which is also
non-negative. Thus, the reductions do not produce a negative cycle.
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It is also interesting to see (diagram (d)) that XZ obtains a min(22, Ẏ , Ẇ + 1) lower
bound constraint and (symetrically) min(22, Ẇ , Ẏ +1), both of which must hold. Combining
these, we get

max(min(22, Ẏ , Ẇ + 1),min(22, Ẇ , Ẏ + 1))

which simplifies to min(22, Ẏ +1, Ẇ +1,max(Ẏ , Ẇ )). This is analogous to a wait condition
in the classical STNU theory. Thus, Z must wait for execution until at least one of the
following four events has occurred: 22 after X, or 1 after Y, or 1 after W, or both Y and
W have been observed.

9. Completeness and Algorithms

Previous sections established the soundness of the generalized reduction rules. This section
considers the issue of whether they can support a complete procedure for determining
dynamic controllability for POSTNU networks, and whether it has polynomial complexity.
In particular, we will consider an algorithm that performs the reductions in an organized
way, show it terminates, and has a polynomial complexity. Furthermore we will show that if
the algorithm completes with success (i.e., without revealing an inconsistency), this implies
the existence of a viable dynamic strategy for the problem, and hence it is dynamically
controllable.

Given the awkwardness of the “non-same-root reduction” terminology, henceforth, we
will refer to non-same-root reductions as binary reductions (involving two different roots).
Since the “same-root” reductions only result in checks and do not produce new edges, we
will continue to refer to them as same-root checks (rather than unary reductions).

Our approach will be to repurpose ideas and methods from previous STNU work, adapt-
ing them where necessary. Some issues arise in this regard:

1. What is the equivalent of “reduced distance” for generalized labels?

2. Is it necessary to consider “normal form” (Morris, 2014)?

3. How do we handle the same-root checking?

We deal with these issues now.
In an STNU labeled distance graph, the reduced distance of a path was defined to be

the sum of the lengths of the edges, ignoring any labels. (Morris & Muscettola, 2005). The
reductions preserved the reduced distance. For generalized labels, we will define the scalar
length of a non-negative edge to be the scalar component of the label, while for a negative
edge, it is the negation of the scalar component. For example, the scalar length of an edge
with label −min(v0,mini(Ẏi+vi)) is −v0. We then define the scalar distance of a path to be
the sum of the scalar lengths of the edges in the path. Note that the generalized reductions
preserve the scalar distance.

In (Morris, 2006, 2014), STNU problems were converted to normal form, where a con-
tingent link was broken into a “certain” portion (the minimum duration part) and the
remaining “fully uncertain” portion. This was done as an intended simplification that had
the effect of making a Label Removal rule assume a simpler form. However, it was later
realized that this was unnecessary because the simpler form, though weaker, was neverthe-
less sound in the general case, and was sufficient for determining Dynamic Controllability.
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Thus, the stronger, more complex, version of Label Removal, though also sound, was not
useful in this context.

Interestingly, our generalized cross-case reduction implicitly incorporates a form of label
removal, in that it discards the non-scalar components from one of the parent eyes. There is
no separate label removal reduction, and none is needed. Thus, normal form has no relevance
to the approach considered here.

In the STNU work, there is no same-root checking because reductions between upper
and lower case labels from the same contingent link are not allowed. In our approach, as
we have seen, STNU-like combinations (i.e., with no hidden variables) always result in non-
negative self-loops, which are discarded. However, the same is not true for general POSTNU
combinations, where negative self-loops may be derived. Thus, the checking described earlier
is required. It is important to note, however, that the same-root combinations do not add
any new edges to the network. Thus, they have no effect on the binary reduction process,
which can proceed independently.

This means we can defer the same-root checking until after the binary reductions have
completed. This may forego a possible early determination that the network is not Dynam-
ically Controllable, but it allows the binary reduction process to more closely resemble the
STNU reduction process, and any negative self-loops will still be discovered eventually when
the same-root checking is done (as a post-process). However, the binary reduction process
may produce a cycle of all-negative edges. If a negative self-loop or cycle of all-negative
edges is produced, the POSTNU cannot be dynamically controllable. Since the reductions
have been shown to preserve the set of viable dynamic strategies, such a derivation implies
that this set is empty.

In this context, the hidden timepoints are only relevant to the same-root checking. For
the binary reductions, we can confine our attention to the non-hidden timepoints and their
edges, including the labeled edges that have been added either by the pre-processing step,
or by the reductions. The graph formed by these edges will be referred to as the gener-
alized labeled distance graph. Each macro-projection (hereafter called simply a projection)
instantiates this labeled graph to the distance graph of an STN.

Next we address the question of how many edges can occur at any stage in the reduction
process. The labeled distance graph is actually a multigraph, which can have multiple edges
between two timepoints. For our POSTNU analysis, this can involve multiple edges with
different labels. Clearly, there is no need for the reduction process to add a new labeled
edge if it is implied by (i.e., strictly weaker than) an existing edge. Furthermore, an existing
edge may be removed if it is implied by a newly added edge. However, the max/min labels,
which involve variables and resemble vectors, may not be directly comparable. We will refer
to these as compound labels and their edges as compound edges.

The following discussion provides rules for determining whether some edges are clearly
implied by other edges. (The intent here is to limit the number of edges, not to provide an
absolute determination of edge implication.) We will say an edge e1 subsumes an edge e2 if
it implies it according to these rules. We will also say e1 is tighter than e2 if it subsumes it,
but is not subsumed by it.

The key to limiting the number of non-subsumed edges arises from the invariant proper-
ties of edges, in particular, the property that a negative label can be expressed as minot(ℓ1+
q) for some q where ℓ1 is the label of an initial min edge, while a non-negative label can
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be represented as maxot(ℓ2 − q) for some initial max edge ℓ2. Moreover, ℓ1 and ℓ2 are the
respective same-sign ancestor edges in both cases. This means that we can use the q values
to compare two compound labels that are derived from the same initial edge, and thus limit
their number. For example, in Figure 9, diagram (e), while there are two compound labeled
edges from Z to X, they are derived from two different initial edges.

Observe that initial edges with compound labels have distinct end-points (the compound
observables). Thus, their number is limited by the number of timepoints in the initial labeled
distance graph. Consequently, the number of tightest compound labels at any point in the
reduction process may be limited to the number of pairs of an initial compound edge, and
some other timepoint, i.e., it is O(N2), where N is the number of timepoints in the labeled
distance graph (including the compound observables).

Also, it is clear that labels with ordinary numeric weights can be compared directly.
Thus, the number of edges with such labels can be limited to the usual O(N2). Consequently,
the total number of incomparable edges in the labeled distance graph can be limited to an
O(N2) bound.

To summarize, if we follow a policy where binary reductions only add edges when they
are not subsumed by existing edges, and existing edges are removed if they are subsumed
by newly added edges, then the number of edges in the labeled distance graph will have an
O(N2) bound.

Definition 7. A binary reduction is ineffective if it would produce an edge that is subsumed
by an existing edge in the labeled distance graph; otherwise it is effective. An existing edge
is superseded if it is subsumed by a newly added edge.

Thus the proposed policy is to ignore ineffective reductions and remove superseded
edges.

Remark A binary reduction is effective if it produces an edge that is not subsumed by an
existing single edge. However, the edge produced need not be the shortest path between its
endpoints. For example, addition of a non-negative edge could be effective even if there is a
path between the endpoints of two or more negative edges. (This ensures that determination
of effectiveness is a low complexity operation.)

The following concepts will be generally useful.

Definition 8. The labeled distance graph is quiescent if any further binary reductions would
be ineffective.

Note that quiescence does not necessarily imply consistency. For example, a graph con-
sisting of a cycle of all-negative edges would be quiescent (since no binary reductions are
applicable) but would not be consistent.

Definition 9. In the labeled distance graph (possibly after some reductions), the generation
number of a negative edge is defined inductively as follows. For an initial negative edge,
the generation number is 0. Otherwise, the generation number of a negative edge equals the
generation number of its negative parent incremented by 1.

Lemma 14. If only effective reductions add edges, the generation number of a negative edge
can never exceed N , where N is the number of timepoints in the network.
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Proof. Suppose a negative edge e has generation number greater than N . Then there is
some sequence of negative edges e−1 , . . . , e

−
k = e such that e−1 is an initial edge and, for each

i, e−i+1 is derived from e−i by a reduction with some“partner” non-negative edge e+i .
Now consider the “partner” sequence e+1 , . . . , e

+
k . This must form a path of non-negative

edges of length greater than N . Thus, it must involve a repeated timepoint, so the path
contains a loop of non-negative scalar length from some e+i1 to e+i2. However, this implies e−i2
is subsumed by e−i1, so it would not have been added to the network, which is a contradiction.

Lemma 15. If the POSTNU labeled distance graph has a cycle of all-negative edges, or a
cycle that is reducible to a cycle of all-negative edges, then the POSTNU is not Dynamic
Controllable (DC).

Proof. Suppose first there is a cycle of all-negative edges. Then there must be a simple cycle
(i.e., without repeated timepoints) of all-negative edges. It follows that the negative edges
in the simple cycle must have distinct target timepoints, hence distinct root timepoints,
and any compound edges must belong to different hidden groups. Consequently, there will
be a projection in which the edges have their scalar values. Thus, the projection will have
a negative cycle, and so the POSTNU cannot be DC.

Since the reductions are sound, we have a similar conclusion if there is a cycle that is
reducible to an all-negative cycle.

In light of the importance of reducibility to an all-negative cycle, we will give this
property a name.

Definition 10. A POSTNU labeled distance graph has an essential negative cycle if it has
a cycle that is reducible to a cycle of all negative edges.

Remark In contrast to an essential negative cycle, a cycle simply with a negative scalar
distance does not in general exclude Dynamic Controllability for a POSTNU. For example,

the same-root cycle A
max(5,Ẏ)−−−−−−→ B

−min(10,Ẏ)−−−−−−−→ A has negative scalar distance but the same-
root check succeeds.

9.1 Näıve Algorithm

We now consider an algorithm that performs the reductions in an organized way. One of
our main goals in this paper is to show the POSTNU problem is polynomial, which answers
a question posed by (Bhargava & Williams, 2019). Accordingly, the algorithm is chosen for
conceptual simplicity rather than efficiency. In a nutshell, the algorithm applies the binary
reductions repeatedly in a breadth-first manner. The process terminates if quiescence is
reached. We will show this happens after a polynomially bounded number of steps if the
POSTNU is Dynamically Controllable.

At that point, if the network has no all-negative cycles, and if the same-root checking
succeeds, then the POSTNU is classified as Dynamically Controllable (DC). Otherwise, it
is classified as not DC.

The following procedure extends the breadth-first expansion by one level, that is, it
applies the binary reductions in all possible effective ways to the edges in the input graph.
It also removes superseded edges. We call this a round of reductions.
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Algorithm 3 A single round of reduction in the POSTNU generalized labeled graph.

procedure Do-Round-Of-Reductions(Γ)
Γ′ ← Γ
for all edge-pairs e1, e2 ∈ Γ do

if e1, e2 are binary reducible to e then
if e is not subsumed in Γ′ then

Γ′ ← (Add e to Γ′)
if e′ ̸= e ∈ Γ′ is superseded by e then

Γ′ ← (Remove e′ from Γ′)

Γ← Γ′

9.1.1 Termination

In the following, N is the number of timepoints in the initial labeled distance graph. Recall
that quiescent means that any further binary reductions would produce edges with labels
that are subsumed by the labels of existing edges. The following lemma limits the number
of reduction rounds needed to reach quiescence. Recall that an essential negative cycle is a
cycle that is reducible to a cycle of all negative edges.

Lemma 16. (a) If a POSTNU is Dynamically Controllable (DC), then quiescence is
achieved in at most N2+N rounds of reductions. (b) If a POSTNU distance graph does not
contain an essential negative cycle, then quiescence is achieved in at most N2 +N rounds
of reductions.

Proof. Suppose e is a non-negative edge that is produced after any number of rounds of
reductions. We will show that e will be produced in at most N2 rounds of reductions. The
following reasoning has a lot in common with that used in (Morris, 2006) to prove the
Nesting Lemma. We prove a similar Nesting property here, but it is applied to negative
edges whereas (Morris, 2006) applies it to non-negative edges.

If we unroll (play in reverse) the binary reductions that gave rise to e, the result cor-
responds to some ancestral path e1, . . . , ek in the initial labelled distance graph. Consider
any negative ei in this path. Since ei must be eventually reduced away in order for the path
to reduce to the non-negative e, there must be some ej preceding ei in the path such that
the scalar distance from ej to ei, inclusive, is non-negative. Without loss of generality, we
assume ej is the closest such edge, i.e., such that the path from ej to ei has the fewest
number of edges.

Using terminology analogous to “moat edge” in (Morris, 2006), we will call ej a wall
edge for ei. We can pair each negative edge in the unrolled path with a corresponding
wall edge. We will call the inclusive path between the two edges the cancel subpath for the
negative edge. This has the prefix/postfix property (Morris, 2006) that every proper prefix
is non-negative, and every proper postfix is negative. It follows that if two cancel subpaths
intersect, one must be contained in the other. (Otherwise, the intersected subpath would
be both negative and non-negative, which is a contradiction.) Thus, the cancel subpaths
are either nested or disjoint. It may be helpful to visualize the nested subpaths as being
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surrounded by parentheses, as in this example

(A
+2−−→ (B

+5−−→ C
−3−−→ D)

+7−−→ E
−10−−→ F)

where the reductions in the inner nested subpaths occur before those of the outer subpaths
can be completed.

Now consider an innermost cancel subpath within the nesting structure. Observe that
it must consist of one or more non-negative edges and a single negative edge. (Otherwise, it
would not be innermost.) More generally, each cancel subpath has one or more non-negative
edges, or nested cancel subpaths that reduce to non-negative edges, and a single negative
edge.

It now follows that in an innermost cancel subpath, the subpath of non-negative edges
cannot have length greater than N . Otherwise the reductions would have produced a nega-
tive edge with generation number greater than N , contrary to lemma 14. This means that
N rounds of reductions will be sufficient to reduce away the innermost subpaths, i.e., to
effectively decrement the depth of nesting by one level. In that case, the next to innermost
level becomes the innermost level and similar reasoning can be applied.

Next we claim that the initial depth of nesting cannot be greater than N . If the depth
of nesting were greater than N , an end timepoint would repeat, as illustrated here, where
the numbers over the edges should be interpreted as scalar lengths rather than numeric
weights.

(. . . (. . . (. . . (. . .
−5−−→ A) . . . (. . .) . . .

−5−−→ B) . . .
−5−−→ A) . . . ).

Note that the scalar distance from the end timepoint of each nested group to the end
timepoint of the next outer nested group must be negative (by the prefix/postfix property).
Thus, the subpath between the repetitions constitutes a cycle with negative scalar distance.
Note that a subset of the reductions used to derive e will suffice to reduce this to an all-
negative cycle; hence it is an essential negative cycle. Thus the POSTNU is not DC by
lemma 15, contrary to our assumption. It follows that the depth of nesting is not greater
than N , and consequently all of the nested structure can be reduced to e within N2 rounds
of reductions.

It follows that any non-negative edge that will ever be added will have been added at
that point, and any further edges that might be added will all be negative. From then
on, the reductions will involve a fixed set of non-negative “partners,” and will proceed
independently of each other. That is, the negative edges added in subsequent rounds, except
for the first such round, will each have a negative parent that was itself added in the previous
round. Thus, the generation numbers of added edges will steadily increase in the subsequent
rounds. Since the generation numbers cannot exceed N (lemma 14), an additional N rounds
of reduction will suffice to complete the addition of all the remaining negative edges. Thus,
all the edges that will ever be added will be added within N2 +N rounds of reductions.

For the (b) part, note that the proof of (a) only needs the weaker condition of no essential
negative cycle.

The following is then the full simple algorithm that we propose to classify the Dynamic
Controllability (DC) status of a POSTNU.
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Algorithm 4 Näıve implementation of Dynamic Controllability checking of the generalized
labeled graph of a POSTNU.

procedure Simple-POSTNU-DC(Γ)
i← 0
while i < N2 +N and Γ not quiescent do

Do-Round-of-Reductions(Γ)
i← i+ 1

if Γ not quiescent then
return false

if Γ has all-negative cycle then
return false

if same-root checks fail in Γ then
return false

return true

Note that the algorithm only checks for cycles of all-negative edges, not for arbitrary
negative cycles. We will see that this is the correct check for inconsistency (in combination
with same-root checking) when the network is quiescent.

The termination bound suggests the algorithm is polynomial. However, we defer a de-
tailed analysis of the complexity until we finish dealing with the completeness issue.

Example 9 (running example). Below is the result of applying the algorithm on our running
example where we should meet a friend at a restaurant (Figure 3). The algorithm is run on
the generalized distance graph of Figure 8 and we display the edges that are constraining for
the MD node (my own departure), as derived by the algorithm.

Friend’s
Departure

(FD)

My
Departure

(MD)

−min(38, ḞA, ṀN+ 7)

max(25, ṀN+ 8)

The graph shows the constraints that were derived between the MD controllable timepoint
that depicts my departure time and the hidden group of my friend’s activities rooted at the
FD timepoint.

In particular the derived MD −→ FD edge specifies the minimal delay constraint that
MD should satisfy with respect to the observable events of my friend’s hidden group: it should
be executed either 38 minutes after the friend’s departure (FD), after its arrival (FA) or 7
minutes after getting the notification that he leaved the post office (MN).

Likewise, the derived FD −→ MD edge specifies a deadline on the MD event: it should be
executed either at most 25 minutes after the friend’s departure (FD) or at most 8 minutes
after getting the notification (MN).

These two edges constitute a same-root case that would pass the controllability check,
resulting in the network being classified as dynamically controllable.

44



9.2 Viable Dynamic Strategy

Our main result in this section will be to show that reaching quiescence without detecting
an inconsistency (i.e., an all-negative cycle or a same-root checking failure) implies that the
POSTNU is Dynamically Controllable. This will establish the completeness of the reduction
algorithm.

We will do this by proving the existence of a viable dynamic strategy. Recall that
a strategy is a mapping from projections to schedules. Each of the projections has an
earliest-time schedule. We will show that, after reaching quiescence without detecting an
inconsistency, the mapping from projections to their earliest-time schedules constitutes a
viable dynamic strategy.

The following definitions and lemmas will be helpful for this purpose. Loosely speaking,
an STN distance-graph is plus/minus closed if it is closed under an operation that composes
consecutive plus/minus edge pairs. More formally, we have the following.

Definition 11. An STN distance-graph is plus/minus closed if for every pair of consecutive

edges A
x−→ B

−y−−→ C such that x is non-negative, −y is negative, and A ̸= C, there is an
edge A

z−→ C such that z ≤ x− y.

The following lemma shows that the binary reduction process, in effect, performs this
closure operation simultaneously on all of the projections.

Lemma 17. When quiescence is reached for the POSTNU distance graph, all its projections
are plus/minus closed.

Proof. Consider plus/minus consecutive edges A
x−→ B

−y−−→ C in the distance graph of
a projection, where A ̸= C. There will be a corresponding plus/minus edge pair in the
POSTNU distance graph, with labels (possibly compound) that instantiate to the x and
−y weights in the projection. Then, lemma 13 implies the quiescent POSTNU distance graph
will contain an AC edge whose label is at least as tight as that resulting from composing
the plus/minus edge pair. Thus, the projection will have an instantiated A

z−→ C edge such
that z ≤ x− y.

The following result shows the DC algorithm also effectively applies consistency checking
simultaneously to all the projections.

Lemma 18. If quiescence is reached for the POSTNU distance graph without detecting an
all-negative cycle or a same-root checking failure, then all its projections are consistent as
STNs.

Proof. Suppose a projection STN is inconsistent. Then it has a negative cycle and hence
has a negative cycle with a minimal number of edges. Note that in an STN such a minimal
cycle must be simple (no repeated timepoints).

First suppose the cycle has two edges. If they are both negative, then the corresponding
edges in the POSTNU distance graph will also be negative, and this will constitute an
all-negative cycle that will be detected by the DC checking algorithm.

Otherwise one edge is negative and the other non-negative. Consider the corresponding
edges in the POSTNU distance graph, which will also be negative and non-negative, respec-
tively. Since the root for a non-negative edge is at its start timepoint, while the root for a
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negative edge is at its end timepoint, this will be a same-root case. The same-root checking
is designed to determine whether there is a projection such that the combination self-loop
is negative. Since that is the case here, the same-root checking will fail.

Now suppose the minimal cycle has three or more edges. If they are all negative, then
the inconsistency will be detected. Otherwise, there must be a non-negative edge that is
followed by a negative edge. But then plus/minus closure implies there is a negative cycle
with fewer edges, which contradicts the minimality assumption.

Thus, the assumption of inconsistency implies one of the DC tests will fail, which es-
tablishes the result.

To summarize, if the algorithm successfully completes (without detecting an inconsis-
tency), every projection will be both consistent and plus/minus closed. This has further
consequences using concepts analogous to those in (Morris, 2014, 2016) that relate dynamic
controllability of STNUs to dispatchability of their projections. We now consider these
consequences.

Definition 12. Given an STN distance graph, a V-path is a path that consists of zero or
more negative edges followed by zero or more non-negative edges.

It is immediate that every subpath of a V-path is itself a V-path.
In the dispatchability work (Muscettola, Morris, et al., 1998), it is noted that negative

edges propagate lower bounds in their reverse direction, while non-negative edges propagate
upper bounds in the forward direction. Thus, negative edges may be thought of as pointing
backward in time, and non-negative edges as pointing forward in time. If time is visualized
as advancing away from the viewer, then a V-path may be visualized as having a shape like
the letter V, hence the name. Intuitively, a V-path corresponds to a path through the past,
and a V-path constraint between two timepoints is satisfied if it is satisfied with respect to
events in the past. This is the intuition behind the connection to a dynamic strategy. The
following formal results capture this intuition.

Definition 13. A consistent STN has the V-path property with respect to its distance graph
if for every path between two timepoints A and B there is a shortest path between A and B
that is a V-path.

Loosely speaking, the V-path property means that every path constraint is “enforced”
by a V-path. Thus, a partial solution that locally satisfies V-path constraints will locally
satisfy the minimal graph of (Dechter et al., 1991) and will have an extension to a complete
solution, which is the essence of dispatchability. It is shown in (Morris, 2016) that the V-
path property is, in fact, equivalent to dispatchability for a consistent STN. However, for
our results, it suffices to work with the V-path property directly, using the following result.

Lemma 19. If a consistent STN is plus/minus closed then it has the V-path property.

Proof. Among all the shortest paths between two timepoints A and B, consider a path p
with a minimal number of edges. Since the STN is consistent, this must be a simple path
(no repeated timepoints). We claim it will also be a V-path. Suppose otherwise. Then there
must be a non-negative edge e1 in p that comes before a negative edge e2. Without loss
of generality, we may assume that e2 immediately follows e1 like this: C

e1−→ D
e2−→ E. By
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plus/minus closure, there will then be an edge from C to E that is at least as tight as the
composition of e1 and e2. But this implies a shortest path between A and B with fewer
edges than p, which contradicts the minimality of p. This establishes the result.

It follows from the lemma that successful completion of the POSTNU Dynamic Con-
trollability checking algorithm results in a labeled distance graph such that every projection
has the V-path property.

Next we consider the concept of an earliest time schedule for a consistent STN. This
has particular significance in the case of STNs that have the V-path property.

Definition 14. (Dechter et al., 1991) The earliest-time schedule S for an STN is obtained
as follows. An initial node ⊙ is added, and for each node X in the original STN we add
an edge from X to ⊙ of weight 0. Then S(X) is defined as −D(X) where D(X) is the
shortest-path distance from X to ⊙.

The node ⊙ and its edges are merely used for convenience in defining S; they should
not be considered part of the STN (although we may mention them in reasoning about the
properties of S).

Note that since every node has a direct edge to ⊙ of length 0, S(X) ≥ 0 for all X. The
following result has independent interest as well as being useful here.

Theorem 2. For a consistent STN that has the V-path property, and the earliest-time
schedule S, every timepoint X either satisfies S(X) = 0 or there is a shortest path of all
negative edges from X to some node Y such that S(Y ) = 0.

Proof. Suppose S(X) > 0. Then D(X) < 0 and there is a shortest path from X to ⊙ that
is negative. Since the STN has the V-path property, we can assume that the subpath up to
(but not including) the final edge to ⊙ is a V-path. Note that the final edge to ⊙ has a zero
weight. Thus, the start timepoint Y of the final edge must satisfy S(Y ) = 0. Without loss
of generality, we may assume that Y is the node with fewest edges between X and Y such
that S(Y ) = 0. Then D(Z) < 0 for every intermediate node Z on the path. Since the path
from X to Y is a V-path (and recall that every subpath of a V-path is itself a V-path), it
follows that every edge on that path has a negative weight.

This remarkable result implies that for a consistent STN that has the V-path property,
the non-negative edges are irrelevant as far as the earliest time schedule is concerned. It is
only if the execution deviates from the earliest time schedule that the non-negative edges
(and deadlines) matter.

Returning our attention to the POSTNU problem, we are now in a position to define our
candidate strategy. We will say a POSTNU distance graph is verified if it is quiescent with
respect to the binary reductions, and if it has no all-negative cycles or same-root checking
failures.

Definition 15. Given a verified distance graph for a POSTNU, the earliest time execution
strategy S̆ (pronounced “S-breve”) is defined for any projection p by S̆(p) = S̆p where S̆p is
the earliest time schedule for p.

This leads us to our main theorem.
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Theorem 3 (Completeness). If the generalized reductions produce a verified distance graph,
then the POSTNU is dynamically controllable.

Proof. We will show that the earliest time execution strategy S̆ is both viable and dynamic.
Viability is immediate since (1) having reached quiescence, all projections are consistent
STNs (Lemma 18) and (2) the earliest time schedule for a consistent STN is known to be
a solution (Dechter et al., 1991).

To establish that S̆ is dynamic, consider a projection p and an executable timepoint X.
Suppose S̆p(X) = t. Let p′ be any other projection such that S̆p(� t) = S̆p′(� t). We must

show that S̆p(X) = S̆p′(X).

By theorem 2 the earliest-times schedules for p and p′ (and thus the values of S̆p(X)
and S̆p′(X)) depend only on the negative edges in their distance graphs. Furthermore, the
negative paths emanating from X necessarily lead to timepoints that are in the past (in
any schedule). Since S̆p(� t) = S̆p′(� t), any negative edges in those paths that arise from
macro-links must have the same weights in p and p′. Also, any edges that arise from negative
labeled edges have their weights determined by macro-links that have already finished by
time t. Thus, the negative paths emanating from X in p are also there in p′.

The only possible confounding issue might be if an outgoing edge from X could be
non-negative in p but negative in p′. However, we see from the invariants that while the
magnitudes of the values of labeled edges may vary between projections, their signs do not
change. We conclude that S̆p(X) = S̆p′(X).

For the following corollary, recall that an essential negative cycle is a cycle that is
reducible to a cycle of all negative edges.

Corollary 3.1. If a POSTNU is not Dynamically Controllable, then either the initial labeled
distance graph contains an essential negative cycle, or N2+N rounds of reductions will lead
to a failed same-root check.

Proof. Suppose the initial labeled distance graph does not contain an essential negative
cycle. By lemma 16 (b), quiescence will be achieved within N2+N rounds of reductions. If
there are no failed same-root checks at that point, then the POSTNU will be Dynamically
Controllable (DC) by the Completeness Theorem. Thus, if it is not DC, one of the conditions
must be untrue.

Remark The property for a POSTNU of having an essential negative cycle is analogous
to the property for an STNU of having a semi-reducible negative cycle. However, for a
POSTNU, that property is only sufficient to exclude Dynamically Controllability. For a
necessary condition, it must be coupled with the same-root checks, as specified in the
corollary.

9.3 Earliest Time Execution Design

It is of interest to consider a possible implementation design for the earliest time execution
strategy.

We assume a separate thread is assigned to an executable timepoint X to manage its
activation. The negative edges emanating fromX constitute enabling conditions. The thread
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keeps a count of how many conditions are still unsatisfied and executes X as soon as the
count becomes zero. From the point of view of X, the target Y of a negative edge from X is
something to be observed, even if Y is itself an executable timepoint. In general, therefore
the edge will involve an enabling condition of the form

min
i∈I

(Yi + ui)

where the Yi may be observable or executable timepoints (and where I may be a singleton).
The X thread will normally be sleeping. It will wake if any of the Yi events occur. If that

happens, the X thread will initiate a separate “alarm-clock” thread that will “ring” ui units
of time later. At any time there may be several such clocks that are active for a particular
edge. The first one to ring will wake the X thread, at which point it will deactivate the
other clocks for that edge, and will decrement the enablement count.

It is easy to see that the execution need only perform a bounded amount of active work
for each Yi + ui condition. Thus, the execution complexity is linear in the number of such
conditions. For example, in a class of POSTNUs where the label sizes are bounded (such
as STNUs), the complexity would be linear in the number of edges, and thus quadratic in
the number of timepoints. This is similar to the STNU execution complexity for the latest
time approach in (Cairo et al., 2018; Cairo & Rizzi, 2017).

Example 10 (running example). Given the final network of the post office example that
was classified as dynamically controllable:

Friend’s
Departure

(FD)

My
Departure

(MD)

−min(38, ḞA, ṀN+ 7)

max(25, ṀN+ 8)

the earliest time execution strategy would only consider the negative edge MD −→ FD.
The table below gives the execution time that would be chosen for my departure (MD)

based on the observed occurrence times of FD, MN and FA. Without loss of generality, the
FD timepoint was set to execute at time 0, while the occurrence time of FA does not impact
the schedule and is left unspecified.

FD MN FA MD (execution time)

0 16 - 23 (= MN+ 7)
0 17 - 24 (= MN+ 7)
0 18 - 25 (= MN+ 7)

. . .
0 31 - 38 (= MN+ 7 = FD+ 38)
0 32 - 38 (= FD+ 38)

It should be noted that here the execution strategy switches from ”7 minutes after the notifi-
cation” to ” 38 minutes after the friend’s departure” once the notification arrives 31 minutes
after the departure. This allows a more eager execution than a more ad-hoc strategy while
still guaranteeing the satisfaction of all constraints.
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9.4 Polynomial Complexity of the Näıve Algorithm

The precise complexity of the Dynamic Controllability algorithm depends on how cleverly
the data structures and operations are represented. For a straightforward implementation,
performing a round of reductions can be done by (1) iterating through pairs of edges, (2)
reducing them if applicable and effective, and (3) removing any superseded edge. Since the
number of incomparable edges is limited to O(N2), iterating through the pairs is bounded by
O(N4). For each of these pairs, (2) and (3) can be done in O(N) time. Thus, the combined
time complexity is O(N5) for a single round of reductions. Since there are N2+N = O(N2)
rounds, the total comes to O(N7) for the whole binary reduction portion.

It remains to consider the complexity of detecting all-negative cycles, and doing the
same-root checking. Checking whether the directed subgraph of negative edges contains a
cycle can be done in time proportional to the number of edges, which for our purposes has
an O(N2) bound. This bound is dominated by the O(N7) bound of the binary reduction
process.

Same-root checking The same-root checking requires a more careful analysis. First,
consider same-root cases where at least one of the edges has an ordinary numeric weight.
Since the numeric weight is independent of any compound label, this resembles the binary
reduction case, and is easily resolved in O(1) time by comparing the scalar components of
the edges. Moreover, since only the tightest numeric weight is at issue, there are at most
O(N2) such cases.

Note also that it is possible for two distinct hidden groups to share the same root
timepoint. (This could occur if they do not share any microlinks.) In this case, labels from
the two hidden groups will vary independently, and again these same-root cases can be
resolved in O(1) time by comparing the scalar components. The number of cases depends
on the number of initial compound labels in each hidden group, which is bounded by O(N).
Thus, the number of cases is bounded by O(N2).

Otherwise, each same-root checking problem corresponds to a pair of initial compound
labels within the same hidden group. Given a hidden group G, let Gl be the number of
initial compound labels. Then G2

l is an upper bound on the number of pairs. If Gt is the
number of timepoints in G, then the complexity of solving the derived STN for each pair can
be expressed as O(G3

t ). (This dominates the setup time for the STN.) The total complexity
of same-root checking for G is then O(G2

l ∗G3
t ). For the whole network, we get

O(
∑
G

(G2
l ∗G3

t )) ≤ O(
∑
G

(Gl ∗N ∗N3)) = O(N4
∑
G

(Gl)) ≤ O(N5)

as a generous overall complexity. This bound is also dominated by the O(N7) complexity
derived earlier for the binary reduction process.

It is worth noting that if the individual hidden groups are bounded in the number of
timepoints, as may be the case in practice, then both Gl and Gt are O(1), and the complexity
of the same-root checking phase is O(N).

This confirms the overall problem is polynomial, answering the question posed by (Bhar-
gava &Williams, 2019) for POSTNUs. However, this complexity is not the best possible. We
now consider some improvements to the algorithm that reduce the order of the polynomial
for individual portions and the overall algorithm.
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9.5 Improved Algorithm

The first thing to notice for the binary checking phase is that the invariant representations
can be exploited to reduce the complexity of performing the reductions. The MINOT and
MAXOT expressions do not actually need to be evaluated until the same-root checking
post-process. During the binary reduction phase, the MINOT and MAXOT expressions
can be retained as symbolic representations of the labels. Let scalar(ℓ) denote the scalar
component of a label ℓ. Note that

scalar(maxot(ℓ1 − q1)) = scalar(ℓ1)− q1

scalar(minot(ℓ2 + q2)) = scalar(ℓ2) + q2.

Consequently, a binary reduction

maxot(ℓ1 − q1) +minot(ℓ2 + q2)

reduces to either maxot(ℓ1 − q1 − (scalar(ℓ2) + q2)) or minot(ℓ2 + q2 + (scalar(ℓ1) − q1))
depending on whether

(scalar(ℓ1)− q1)− (scalar(ℓ2) + q2)

is, respectively, non-negative or negative.
In this form, the binary reductions take O(1) (constant) time, which shaves one factor

of N from the overall complexity. Also observe that

q1 = scalar(ℓ1)− scalar(maxot(ℓ1 − q1)).

A similar remark applies to the minot labels. Thus, we can recover the invariant represen-
tation of a label from its scalar length and its initial edge. Consequently, a representation
of the label as a pair of those items is simpler and has the same information.

Next we can notice, for a round of reductions, that we only need to iterate through pairs
of consecutive edges, not through all pairs of edges. To exploit that, we introduce a more
compact representation of edge values.

Consider an enumeration E consisting of (1) all timepoints, and (2) labels ℓ, where ℓ
is an initial compound label. Since initial compound labels do not share their compound
observable timepoints, the cardinality of E is O(N). Let ET denote the subset of timepoints
in E while EL denotes the subset of labels. For ℓ in EL, we will denote the root timepoint
of ℓ by root(ℓ). We will also adopt the convention for x in ET that root(x) = x.

Now consider a table T (E) that has a row and column for each element of E . The
cell corresponding to a row element x and a column element y may be used to store a
representation of a label on an edge from root(x) to root(y). If x or y is a compound label
the cell may be used to store derived scalar distances. If x and y are both timepoints, the
cell may be used to store derived ordinary distances.

In more detail, the cells of the table are used to store values as follows:

1. Cells where the row and column are both timepoints are used to store the weights of
derived edges that have ordinary numeric values.

2. Cells where the row is a non-negative label and the column is a timepoint are used to
store non-negative scalar distances.
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3. Cells where the row is a timepoint and the column is a negative label are used to store
negative scalar distances.

4. The other cells are unused.

Thus, the table is used to maintain propagated distances as the binary reduction process
proceeds. Separate cells are used to maintain separate distance calculations for the different
initial labels and for the ordinary numeric values.

Using this table representation of the edges, the Do-Round-Of-Reductions procedure
can iterate through triples x, y, z of elements in E , where y is restricted to timepoints and
root(x) ̸= root(z) (to avoid the same-root case). From x and y we can recover an edge and
its invariant representation, and similarly for y and z. We may then consider those edges,
which are consecutive, for a reduction. This reduces the complexity of a round of reductions
to O(N3) and the whole binary reduction phase to O(N5).

A major remaining source of inefficiency is that edges are added that are later superseded
by tighter edges. For quiescence, it is sufficient to derive edges that are never superseded,
i.e., the tightest edges for a row/column pair in the table representation. Recall the example

(A
+2−−→ (B

+5−−→ C
−3−−→ D)

+7−−→ E
−10−−→ F)

illustrating an unrolled initial path that reduces to a non-negative edge. After the innermost
nested group is reduced, this becomes

(A
+2−−→ B

+2−−→ D
+7−−→ E

−10−−→ F).

Note that the non-negative subpath from A to E may not be the shortest non-negative
subpath between those two timepoints. If not, then the derived edge from A to F will not
be the tightest, and it will eventually be superseded by a tighter edge. We could avoid that
fate by only considering shortest non-negative subpaths in our derivations, similar to the
behavior of the recursive Dijkstra algorithm of Morris (2014).

Recursive Algorithm We now consider an adaption to POSTNUs of the (Morris, 2014)
algorithm, which is cubic for STNU problems. Like in the STNU case, the key to an efficient
binary reduction process is to perform the reductions in an organized way that tries to avoid
producing non-tightest edges that would ultimately be superseded.

This is not a problem for the (Morris, 2014) algorithm because it computes tightest
edges as it goes. That approach was based on some key ideas (originally suggested by
Nicola Muscettola).

1. Compute reduced distance backward from negative nodes

2. Use Dijkstra’s algorithm (D) for shortest paths along non-negative edges.

3. Invoke recursively at negative nodes before continuing D.

4. A recursive loop characterizes not DC.

In our adaption, essential negative cycles play a role similar to semi-reducible nega-
tive cycles in the original algorithm. However, a post-process is required for the same-root
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checks since the essential negative cycles do not fully characterize the failure criteria. We
also introduce a post-process to check for all-negative cycles. (This might not be strictly
necessary, but is a low-complexity operation that simplifies the analysis.)

We will make use of the T (E) table discussed earlier to store derived distances. As in
(Morris, 2014), a negative node is one that has incoming negative edges in the labeled
distance graph. Note that the reductions do not alter the set of negative nodes (since the
new negative edges will always have the same root node as the parent negative edge).

To support Dijkstra computations, we will utilize a priority queue Qx for each negative
node x in ET and a priority queue Ql for each negative label in EL. The Qx priority queue
will store edges incoming to x (original and derived) that have negative numerical weights.
The queue is ordered by the weights (increasing order) as stored in the T table. (Note the
comments in (Morris, 2014) regarding the validity of Dijkstra computations when the only
negative edges are initial edges.) The Ql priority queue stores edges incoming to root(l)
with a restricted set of labels. This set contains only l itself or negative compound labels in
a chain derived from l. The queue is ordered by the scalar distances (increasing order) as
stored in the T table.

In (Morris, 2014), for expository simplicity, a preprocessing step divided the start nodes
of contingent links into multiple nodes connected by simultaneity constraints. Each divided
node either had only ordinary incoming negative edges, or was the start of only a single
contingent link. The purpose was to separate distinct distance calculations. In the current
work, distinct priority queues serve the same purpose, so we avoid dividing the root nodes.
However, the algorithm has separate recursive calls corresponding to the separate priority
queues.

Notation Given a node x, we will denote the set of original incoming negative compound
edges by ONC(x), and the set of original incoming negative ordinary edges by ONO(x).

Detailed Recursive Algorithm The complete algorithm is shown in algorithms 5 and
6. It is very similar to the recursive backprop algorithm in (Morris, 2014) except we have
divided the DCBackprop part into several subprocedures that initialize different priority
queues for the different distance calculations. The processing of the queues is the same and
is isolated in a separate subprocedure.

Like the näıve algorithm, the Recursive-POSTNU-DC algorithm starts by comput-
ing tightest derived edges necessary for DC checking (lines 2-4). It does so by running a
backward propagation procedure DCBackprop exactly once on each negative node, i.e.,
node with incoming negative edges. This is to ensure that every negative node is eventually
processed, but some of the calls may be trivial in the sense that the negative node has
already been processed by a prior recursive call from DCBackProp.

DCBackprop(source,Γ) maintains a queue of negative edges B → source ordered
by increasing scalar value. Given such an edge, lines 51-56 select any non-negative edge
A → B and applies non-same-root cross-case reduction to get a new edge A → source
that is added to the network unless subsumed by an existing edge. If the derived edge is
negative, it is enqueued for later processing. Prior to performing this cross-case reduction, we
ensure that all tightest non-negative Edges incoming to B have been derived by a recursive
call to DCBackprop(B,Γ) (lines 48-50). The reduction process continues until all (i.e.
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Algorithm 5 Improved algorithm for DC checking of POSTNUs, based on the recursive
derivation of tightest edges.

1: procedure Recursive-POSTNU-DC(Γ)
2: for all negative node n ∈ Γ do
3: if DCBackprop(n,Γ) = false then
4: return false
5: if all-negative cycle in Γ then
6: return false
7: if same-root check fails in Γ then
8: return false
9: return true

10:

11: procedure DCBackprop(source,Γ)
12: if ancestor DCBackprop call with same source then
13: return false
14: if prior terminated call with same source then
15: return true
16: if DCBackprop N(source,Γ) = false then
17: return false
18: for all edge l ∈ ONC(source) do
19: if DCBackprop L(l,Γ) = false then
20: return false
21: return true

existing and derived) negative edges targeting source have been extracted from the queue
and processed.

The recursive structure enables two early exits of DCBackprop. First, a call to
DCBackprop(X,Γ) that would result in a recursive invocation to DCBackprop(X,Γ)
exhibits the presence of a cycle of all-negative edges and one can infer the uncontrollability
of the network (line 13). Second, if a previous call to DCBackprop with the same source
previously completed, the propagation exits immediately as it would not result in any new
reduction (line 15).

As in the näıve algorithm, once the propagation process has completed, the algorithm
proceed to assess the controllability of the network by looking for cycles of negative edges
and performing the same-root cross-case checks (lines 5-8). If both checks succeed, then the
network is classified as dynamically controllable (line 9).

Completeness and Correctness Before establishing its complexity, we now prove com-
pleteness and correctness of this algorithm.

Lemma 20. If the recursive backprop algorithm completes successfully, the resulting gen-
eralized distance graph is quiescent.

Proof. Suppose otherwise. Then after completion, there is a plus/minus pair A
+x−−→ B

−y−−→ C
with an effective reduction, where +x is non-negative, −y is negative, and A ̸= C (thus not
a same-root case).
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Algorithm 6 Helper functions for the recursive algorithm. These adapt the Dijkstra al-
gorithm for ordered edge derivation with a recursive invocation on encountered negative
nodes.

33: procedure DCBackprop N(source,Γ)
34: PriorityQueue q ← empty
35: for all edge e0 ∈ ONO(source) do
36: insert e0 ∈ q

37: return DCBackprop Q(q,Γ)

38:

39: procedure DCBackprop L(l,Γ)
40: PriorityQueue q ← empty
41: insert l ∈ q
42: return DCBackprop Q(q,Γ)

43:

44: procedure DCBackprop Q(q,Γ)
45: while q not empty do
46: pop edge e from q
47: node n← start(e)
48: if n is negative node then
49: if DCBackprop(n,Γ) = false then
50: return false
51: for all non-negative e′ in InEdges(n) do
52: if e, e′ is not same-root case and e, e′ effectively derives e′′ then
53: add e′′ to Γ
54: remove any superseded e′′′ from Γ
55: if e′′ is negative edge then
56: insert e′′ in q

57: return true

Consider the precursor paths A
+x′−−→ . . .B and B . . .

−y′−−→ C in the initial graph that

eventually reduce to A
+x−−→ B and B

−y−−→ C, respectively.

Since all the negative nodes will eventually be selected for processing by DCBackprop
(either from Recursive-POSTNU-DC directly or via a recursive call from DCBack-

prop Q, at some point C will be selected, and the B . . .
−y′−−→ C path will be reduced to

B
−y−−→ C. However, this reduced edge is negative, so the processing of C will not be complete

until any edges preceding B have been considered.

There are now three possibilities. First, the A
+x−−→ B edge may have been present in the

initial graph, in which case the precursor path is the edge itself. The processing of C will

then continue until the A
+x−−→ B

−y−−→ C plus/minus pair has been reduced. If the precursor
path is not the edge itself, then in order to reduce to it, the edge entering B in the path must
be negative; thus, B must be a negative node. The two remaining possibilities are that B is
processed before C or after C. If B is processed before C, the outcome is the same as in the
first possibility. Otherwise, during the processing of C, there will be a recursive call when
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B is reached. This means the processing of B will be finished before that of C even though
not started before C. Again, the outcome is the same. This contradicts the assumption that
the reduction after completion is effective, and establishes the result.

Theorem 4. The recursive algorithm completes successfully if and only the POSTNU is
Dynamically Controllable.

Proof. Unsuccessful completion implies either a recursive loop, or an all-negative cycle, or
a same-root checking failure. It is easy to see that a recursive loop also implies a derived
all-negative cycle. Thus, all of these conditions rule out Dynamic Controllability.

If none of these conditions apply, then after completion, the generalized distance graph
is quiescent by lemma 20 and does not contain an all-negative cycle or a same-root incon-
sistency. In that case, the proof of theorem 3 applies and shows the existence of a viable
dynamic strategy. Thus, the POSTNU is Dynamically Controllable.

Remark Our prior results also show that after application of the algorithm, the projec-
tions of the generalized distance graph are plus/minus closed, have the V-path property,
and are dispatchable.

Complexity In the following, N and E are the number of nodes and edges, respectively,
in the final labeled distance graph.

As discussed previously, the invariant representation allows binary reductions to be
performed in O(1) (bounded) time. The complexity of the binary reduction phase involves
O(N) calls to the backward Dijkstra algorithm (one for each element in E). The cost of a
single call to this algorithm is O(E + N ∗ log(N)). As discussed previously the number of
non-redundant edges can be limited to O(N2). Thus the overall complexity of this phase
has an O(N3) bound.

Also, as previously discussed, the checking for all-negative cycles is O(N2). The same-
root checking is O(N5) in general, so this dominates the overall complexity of the whole
algorithm. In the special case where the hidden groups have bounded size, the overall
complexity is O(N3), which is the same theoretical complexity as the algorithm of Morris
(2014) for checking the Dynamic Controllability of STNUs.

10. Closing Remarks

The focus of this paper has been theoretical with the goal of providing a sound and complete
process for determining the Dynamic Controllability of partially observable STNUs. We have
presented two algorithms for this determination that run in polynomial time, including an
adaption of the STNU recursive backward Dijkstra approach of Morris (2014). Given a
POSTNU with N timepoints, this second algorithm has a worst-case complexity in O(N5)
in the general case. In the common case where the individual non-observable components
of the network have a bounded size, its complexity reduces to O(N3).

The approach here answers the question posed by Bhargava and Williams (2019) for
POSTNUs: the complete problem indeed has polynomial complexity. A more long-term
objective would be to generalize the setting further, and replace Nature by a second agent,
thus considering two-agent plans with limited communication. This would be related to
the MaSTNU problem also discussed by Bhargava and Williams (2019). However, in that
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extended problem, the second agent could have a more general STN than the Nature one,
and this would affect many of the assumptions used in this paper for POSTNUs. Thus, the
question of the complexity of the MaSTNU problem remains open.

An approach in another paper (Mountakis et al., 2017) considers dynamic updates during
execution of a multi-agent problem using what may be regarded as a Strong Controllability
form of multi-agent decoupling. However, this is not the same as Dynamic Controllability,
which determines the existence of a dynamic execution strategy offline prior to execution.
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