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NEW LIPSCHITZ ESTIMATES AND LONG-TIME ASYMPTOTIC

BEHAVIOR FOR POROUS MEDIUM AND FAST DIFFUSION

EQUATIONS

NOEMI DAVID∗ AND FILIPPO SANTAMBROGIO∗

ABSTRACT. We obtain new estimates for the solution of both the porous
medium and the fast diffusion equations by studying the evolution of
suitable Lipschitz norms. Our results include instantaneous regulariza-
tion for all positive times, long-time decay rates of the norms which are
sharp and independent of the initial support, and new convergence re-
sults to the Barenblatt profile. Moreover, we address nonlinear diffusion
equations including quadratic or bounded potentials as well. In the slow
diffusion case, our strategy requires exponents close enough to 1, while
in the fast diffusion case, our results cover any exponent for which the
problem is well-posed and mass-preserving in the whole space.

2020 Mathematics Subject Classification. 35K55; 35K65; 35B45; 35Q92;
Keywords and phrases. Porous medium equation; Fast diffusion; Lipschitz
estimates; Long-time asymptotic behavior; self-similar Barenblatt solutions

1. INTRODUCTION

The goal of this paper is to provide new estimates on the regularity of
the solution n(t, x) of the following nonlinear equation

(1)
∂n

∂t
= ∇ · (n∇(p+ V )), in (0,∞)× Ω, d ≥ 2,

endowed with initial condition n(0, x) = n0(x) ≥ 0, n0 ∈ L1(Ω), where
the domain is either the whole space Ω = R

d or a convex bounded set, for
which the problem is endowed with homogeneous Neumann boundary
conditions. As constitutive law of the pressure we take the signed power
law

p = P (n) := sign(γ)nγ ,

while V : Rd → R is a potential whose regularity will be detailed later on.
Equation (1) is a well-known example of a partial differential equation in-
cluding convective effects and nonlinear diffusion whose theory is nowa-
days well established. For γ > 0 it is an equation of porous medium type,
while for γ < 0 it is referred to as fast diffusion. In the latter case, we only
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2 NEW LIPSCHITZ ESTIMATES FOR NONLINEAR DIFFUSION

consider the usual range of exponents −2/d < γ < 0. We are interested in
proving decay estimates on the quantity

(2) u(t) := max
x

|p(t, x)|b|∇p(t, x) +∇V (x)|2,

where the coefficient b ∈ R will be chosen in an appropriate range. These
estimates will provide regularity and long-time asymptotic results. To this
end, we exploit the fact that the evolution of the pressure is described by

(3)
∂p

∂t
= γp∆q +∇p · ∇q, with q := p+ V.

Our analysis will focus on three cases: the trivial potential V = 0, the qua-
dratic potential V = |x|2/2, and a generic potential with bounded deriva-
tives.

1.1. Historical remarks and recent results. The porous medium (resp. fast
diffusion) equation, namely equation (1) with V = 0, is the simplest exam-
ple of a nonlinear diffusion equation; it can be written as

(4)
∂n

∂t
=

|γ|
γ + 1

∆nγ+1,

for γ > 0 (resp. −2/d < γ < 0). The theory on these equations is nowa-
days well established, we refer the reader to the monographs [27, 28] for
an overview. In this section, we recall some important properties of the
solutions to these equations.
The porous medium equation. It is well known that, unlike solutions of
the heat equation, solutions of the porous medium equation (PME) can ex-
hibit a free boundary. In fact, since the equation is degenerate rather than
uniformly parabolic, the speed of propagation is finite [22]. Consequently,
if the initial data are compactly supported, the solution remains so for all
times, and we may distinguish two regions Ω(t) := {x; n(x, t) > 0} and
{x; n(x, t) = 0}, separated by a free interface. For compactly supported
initial data, even if continuous, the porous medium equation does not ad-
mit a classical solution, since the solution’s gradient is discontinuous on
the free boundary [19]. However, in small enough neighborhoods of points
in which n(x, t) > 0, solutions are smooth and satisfy the equation in the
classical sense. Let us now recall a fundamental estimate for the porous
medium equation [1, 2].

Lemma 1.1 (Aronson-Bénilan estimate). The pressure p = nγ satisfies

(5) ∆p ≥ − 1
(
γ + 2

d

)
t
, for all t > 0.

This lower bound on the Laplacian of the pressure is used in [2] to prove
that there exists a unique strong and continuous solution to the Cauchy
problem with L1-bounded initial data.

In [12], Caffarelli and Friedman prove that the solution n(t, x) to the
porous medium equation is actually Hölder continuous, uniformly in space
and time. This result was further developed in [13] where the authors show
that, after a certain waiting time, the pressure is actually Lipschitz. It is in-
deed known that due to the finite speed of propagation, singularities may
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appear in finite time if the support of the initial data contains "holes". While
in the one-dimensional case the pressure is Lipschitz for all times t > 0,
[1, 19], in higher dimensions the pressure gradient blows up at the focus-
ing time, namely when the hole fully closes [3]. In particular, in [13] the
authors prove that if BR0 is the smallest ball containing the support of n0,
and t∗ := inf{t > 0;BR0 ⊂ Ω(t)} is the focusing time, then ∂tp and ∇p are
bounded for all t > t∗, and the bounds depend on n0 and t.

Let us recall that the source solution of the porous medium equation is
given by the following self-similar profile, usually referred to as the Baren-
blatt solution
(6)

BPME(t, x) = t−αdF
(
xt−α

)
, F (ξ) =

(

C − α
|ξ|2
2

) 1
γ

+

, with α =
1

dγ + 2
,

where C > 0 depends on γ, d, and the mass of the initial data, M = ‖n0‖1.
It is nowadays well established that for t → ∞ the solution of the PME
converges to the self-similar profile. The quest for explicit rates of con-
vergence has attracted a lot of attention over the last few decades, see for
instance [25] and references therein. The solution satisfies the following
convergence results

lim
t→∞

‖n(t)− BPME(t)‖L1(Rd) = 0,

lim
t→∞

tαd‖n(t)− BPME(t)‖L∞(Rd) = 0,

with α defined as in (6). These rates are optimal for solutions with L1(Rd)
non-negative initial data. A related question that has been addressed by
a vast literature is whether these rates of convergence can be improved
for a different class of initial data. Although it is not the purpose of this
paper to review in detail these results, let us mention that entropy methods
have been adopted to find better rates for L1-initial data with finite second
moment, see for instance [14, 15, 23, 24]. Moreover, it has been shown that
the Fisher information of equation (1) with V = |x|2/2, namely

I(n) =
ˆ

Rd

n |x+∇p|2 dx,

decays exponentially

I(n(t)) ≤ I(n(t0))e−λ(t−t0), for t ≥ t0 > 0,

for some λ > 0. This result also holds for the fast diffusion equation for a
more restrictive range of exponents [6, 15]. Let us notice that the functional
I(n) is the integral counterpart of the quantity (2) for b = 1/γ, of which we
study the asymptotic behavior, cf. Theorem 1.14.

Another interesting question is whether it is possible to obtain rates of
convergence for the space derivative of the solution of equation (4). Here
the main challenge arises due to the presence of solutions with compact
support which does not coincide with the one of the self-similar profile. In
[21], Lee and Vázquez show that after a certain time, the pressure is concave
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and converges to a truncated parabolic profile to all orders of differentia-
bility. The authors assume the initial data to be compactly supported and
satisfy a technical non-degeneracy condition.

Fast diffusion equation. Let us now recall some properties of solutions
to equation (4) for negative exponents, namely the standard fast diffusion
equation (FDE). It is well known that, unlike the porous medium equation,
the FDE admits classical solutions if the exponent satisfies −2/d < γ < 0.
In particular, for any n0 ∈ L1(Rd) there exists a unique C∞ solution which
is always strictly positive. If γ is below the critical threshold −2/d, finite
extinction phenomena arise and solutions may lose the mass-preservation
property. Moreover, for −2/d < γ < 0, the Aronson-Bénilan estimate (5)
still holds.

A self-similar solution with finite mass exists in the range −2/d < γ < 0,
and it exhibits so-called fat tails for large values of |x|

BFDE(t, x) = t−αdF
(
xt−α

)
, F (ξ) =

(

C + α
|ξ|2
2

) 1
γ

, with α =
1

dγ + 2
.

Let us point out that since the exponent belongs to the range −2/d < γ < 0,
we still have α > 0. Therefore, while Bγ

FDE is now convex, the signed
pressure −Bγ

FDE is again concave, though negative.
In the last decades, several results on the convergence of the solution of

the FDE to the Barenblatt profile as t→ ∞ have been established under dif-
ferent assumptions on the initial data, see for instance [6, 11, 16, 20, 28]. In
the very recent work [10], the authors find a necessary and sufficient condi-
tion on the initial data such that the solution convergences to the Barenblatt
profile uniformly in relative error, or weighted convergence, namely

(7) lim
t→∞

∥
∥
∥
∥

n(t)− BFDE(t)

BFDE(t)

∥
∥
∥
∥
L∞(Rd)

= 0.

To achieve this result, they first prove that if the initial data decays for large
|x| in a similar way as the source solution (see (11) for the definition of this
class of data), then the solution can always be bounded from below and
above by two Barenblatt profiles of massesM and M , cf. [10, Theorem 1.1].
In particular, under appropriate conditions on n0, for any t0 > 0, there exist
τ , τ̄ > 0, and M,M > 0 such that

(8) BFDE(t− τ , x;M ) ≤ n(t, x) ≤ BFDE(t+ τ̄ , x;M ), ∀x ∈ R
d, t ≥ t0.

A rate of convergence for the relative error has been recently found in [7,
Theorem 4.1].

Convergence rates of the solution of the fast diffusion to the Barenblatt
profile were found in [6] for any Ck-seminorm with k ∈ N, under the as-
sumption that the initial data is bounded from above and below by two
Barenblatt profiles. To this end, the authors use convenient Hölder interpo-
lation inequalities between L2(Rd) and Ck+1(Rd).

Our contribution compared to the existing results relying on the Bern-
stein technique. Looking in the literature, it is possible to find some results
that use similar techniques to the one we employ in this paper.
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An interesting estimate for the flux ∇nγ+1 that holds uniformly in space
was proved in Bénilan’s notes [5] where, for n0 ∈ L∞(Rd), the author shows

∣
∣∇nγ+1

∣
∣2 ≤ nK1

t
, K1 =

2(γ + 1)2‖n0‖∞
γ(1− γ2(d− 1))

,

under the condition γ2(d − 1) < 1. Our method recovers this estimate.
Indeed, the above inequality can be rewritten in terms of the quantity u(t)
in (2) for b = 1/γ, and gives

u(t) = max
x

n
∣
∣∇nγ

∣
∣2 ≤ K2

t
, K2 =

2γ‖n0‖∞
1− γ2(d− 1)

,

which is the same estimate we provide in Theorem 1.12. As we discuss
later in the paper, the choice b = 1/γ is natural since it is the one which
minimizes the coefficient c0 appearing in (21), and making it as negative as
possible. It is also the choice of b which provides an estimate on n|∇p|2,
in analogy with the role played by the Fisher information. The method ap-
plied in [5] relies on a modified Bernstein technique, which is, in its essence,
analogous to the strategy used in this paper to study (2).

The same strategy of [5] was also adapted in [4] to provide estimates on
the fast diffusion equation with critical zero-order absorption. In this work,
the authors study the Lipschitz norm of the square root of the pressure,
namely nγ/2, which corresponds in our setting to the choice b = −1. This
choice of exponent is natural in that, in the fast diffusion case, the optimal
Lipschitz regularity is expected to be satisfied by

√
p since the pressure

behaves like C(1 + |x|2). Once again, our strategy covers this case.
In [17] the authors prove a priori gradient bounds for the solution itself,

for a large family of nonlinear parabolic equations. This includes equa-
tion (4) for 0 ≤ γ ≤ 4/(d + 3) and it is proven that the Lipschitz regularity
of the solution n(t, x) is preserved. Our main result also covers this case,
since ‖∇n‖∞ corresponds to the choice b = 2/γ − 2 and the conditions for
our theory to apply exactly require 0 ≤ γ ≤ 4/(d + 3). Moreover, we not
only recover the same result as in [17] for the porous medium equation,
but, when the inequality 0 < γ < 4/(d+3) is strict, we show instantaneous
regularization of the Lipschitz norm for solutions with L1 initial data.

The main novelties of our paper are two. The first one concerns the
choice of the exponent b. Indeed, to this day the existing literature has
mainly been focusing only on particular choices of the exponent b in (2).
On the contrary, we propose a comprehensive study where b and γ are
considered as parameters and we look at the conditions that guarantee the
decay of the corresponding quantities. Similar results for more general ex-
ponents have been obtained in [18], where the authors use probabilistic
methods, based in particular on martingale integration, to establish gra-
dient estimates on the solution of the porous medium and fast diffusion
equations. The results in [18] are probably the closest to our analysis, but
the technique is different, and their results are in general expressed in terms
of local quantities which makes it difficult to see their expression in terms
of natural decay.
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The second new aspect concerns the insertion of drift effects. So far,
the Bernstein technique has not been applied to the convective- (nonlin-
ear)diffusion case, equation (1). Yet, considering non-trivial convective ef-
fects, as discussed at the end of this section, allows us to obtain new insight-
ful results on the convergence of the solution to the self-similar profile. As
a consequence, the possibility to easily consider a drift should not be seen
as a mere technical improvement, but as a core feature of the theory.

To summarize, our current contribution is to provide new results on
the study of suitable Lipschitz bounds for solutions of nonlinear diffusion
equations including a drift term, namely estimating the quantity defined
in (2). This strategy has the advantage of working both for the PME and
the FDE in a unified way, and it is essentially independent of assumptions
on the initial data. It yields new results on regularity (valid for t > 0 and
not only after some focusing time) and asymptotic behavior. However, for
γ > 0 our method only works for very small γ, namely when the diffusion
is almost linear. Under mild assumptions on the potential V , we provide
results on equation (1) at least for smooth and suitably decaying solutions,
cf. Proposition 1.11. For the most standard cases V = 0 and V = |x|2/2,
our results actually hold for general solutions and general initial data. In
particular, for the standard equation (4) we consider as initial data any L1-
non-negative function, cf. Theorems 1.12 and 1.14. The main novelty intro-
duced in this paper is to consider equations that also include a drift term.
In particular, in the quadratic case, we exploit the equivalence between the
nonlinear Fokker-Plank equation and the standard equation (by means of
the time-dependent scaling discussed in the following section) hence pro-
viding a new method to infer weighted convergence results of the pressure
gradient to the self-similar profile, cf. Theorem 1.18. In the fast diffusion
case, when (7) holds, such weight - which actually depends on n - can be
replaced by an explicit function of time and space, leading to a new con-
vergence rate in the C1-seminorm.

The estimates we present in this paper are mainly applied to the study
of the asymptotic behavior or the instantaneous regularization of the solu-
tions of the PME or FDE. Yet, one of the main interests of the present paper
is, in our opinion, that it shows that, despite the huge literature existing on
these equations, it is still possible to find new and simple estimates with
quite elementary techniques.

1.2. Preliminaries and assumptions.

Time-dependent scaling. A fundamental remark that has been extensively
used in the literature to study the properties of the standard PME and FDE
consists in observing that solutions to equation (4) can actually be seen as
solutions of a nonlinear Fokker-Planck equation with quadratic potential
V = |x|2/2 through the following time-dependent change of variables

(9) n̂(t, x) := ϕ(t)dn(ψ(t), ϕ(t)x), ϕ(t) = et, ψ(t) = e(dγ+2)t.

In fact, if n(t, x) is a solution of equation (4), n̂(t, x) satisfies

(10)
∂n̂

∂t
=

|γ|
γ + 1

∆n̂γ+1 +∇ · (n̂x).
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Unlike the drift-less case, equation (10) has a unique compactly supported
stationary state, which coincides with the Barenblatt profile evaluated at
an appropriate time t = t(d, γ). This property allows us to infer long-time
behavior results on the porous medium/fast diffusion equation from the
long-time behavior of solutions of this Fokker-Planck equation.
Tail behavior of the FDE solution. We now review some particular prop-
erties of the FDE that will be used throughout the paper. It is known that if
γ belongs to the range −2/d < γ < 0, the solution exhibits polynomial tails.
In [10, Theorem 1.1], the authors give a necessary and sufficient condition
for the solution to satisfy (8), namely to be bounded from below and above
by two Barenblatt profiles, which is n0 ∈ X \ {0}, where
(11)

X := {u ∈ L1(Rd), u ≥ 0, |u|X <∞}, with |u|X := sup
R>0

R
− 2

γ
−d

ˆ

Bc
R

|u|dx <∞.

Moreover, as shown in the proof of [6, Theorem 4], the gradient of the solu-
tion can be bounded uniformly by |x|2/γ−1. We collect these properties as
follows: for all t0, there exist k(t),K(t), c(t) ∈ L∞

loc(0,∞) and R > 0 such
that ∀|x| > R, t ≥ t0
(12)
k(t)(1 + |x|2)1/γ ≤ n(t, x) ≤ K(t)(1 + |x|2)1/γ , |∇n(t, x)| ≤ c(t)|x|2/γ−1.

This tail behavior will be essential for us in order to rigorously justify the
formal computations. However, this behavior is only known to hold in
the drift-less case (4) and, through the change of variables (9), for equa-
tion (10). In order to provide a rigorous justification for the more general
case, namely equation (1) for a generic potential V , we will impose (12)
as an assumption on the solution, see Definition 1.9. In the trivial and qua-
dratic potential cases, this condition will be removed later on using approx-
imation arguments.
L

∞-regularization of n. An important consequence of the semi- subhar-
monicity of the pressure given by the fundamental estimate (5) is to provide
a local bound on ‖n(t)‖∞. In the porous medium case, this translates into a
bound on ‖p(t)‖∞, while for the fast diffusion, we infer a uniform (in space)
lower bound.

Lemma 1.2. Let n(t, x) be the solution of equation (4) with |γ| < 1. There exists
a positive constant C such that the L∞-norm of n(t) satisfies

(13) ‖n(t)‖∞ ≤ Ct−dα,

which is equivalent to the following bounds on the pressure

• maxx |p(t)| ≤ Ct−dγα, for γ > 0,
• minx |p(t)| ≥ Ct−dγα, for γ < 0.

Proof. Let γ > 0, and let x̄ be a point in the support of n(t). We denote
Br(x̄) the ball with radius r > 0 centered at x̄. Thanks to the Aronson-
Bénilan estimate (5), we know that the function f(x) := p(x) + K

2d |x− x̄|2 is
subharmonic for all x̄ ∈ R

d, where K = 1
(γ+2/d)t . Therefore, from

f(x̄) ≤
 

Br(x̄)
f(x)dx,
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we find
 

Br(x̄)
pdx ≥ p(x̄)− Kr2

2(d + 2)
.

Let us choose a radius R > 0 such that R2 = cp(x̄)t, with c > 0 small
enough. Then, for all 0 < r ≤ R we have

 

Br(x̄)
pdx ≥ Cp(x̄),

where from now on C > 0 denotes a constant that may change value from
line to line. Since p = nγ and we are considering a range in which γ < 1,
by Jensen’s inequality, we have

 

Br(x̄)
ndx =

 

Br(x̄)
p1/γ dx ≥

(
 

Br(x̄)
pdx

)1/γ

≥ Cp(x̄)1/γ .

Using the fact that n has constant mass at all times, integrating between 0
and R we find

M ≥
ˆ

BR(x̄)
ndx ≥ Rdp(x̄)1/γ .

By definition R2 = cp(x̄)t, and we may finally establish the following
bound

p(x̄) ≤ Ct
− dγ

dγ+2 .

Since x̄ was chosen arbitrarily, we conclude that p ∈ L∞
loc(0,∞;L∞(Rd))

and the same upper-bound hols for the L∞-norm of the pressure, while
equation (13) holds for n(t).

For −2/d < γ < 0 the Aronson-Bénilan estimate still holds for p = −nγ .
Therefore, we may argue in the same way choosing R2 = c|p(x̄)|t to obtain

 

Br(x̄)
pdx ≥ Cp(x̄).

Since γ < 0, the function s 7→ s1/γ is convex and decreasing on s > 0, so
that we can use Jensen’s inequality and obtain, for p = −nγ:

 

Br(x̄)
ndx =

 

Br(x̄)
(−p)1/γ dx ≥

(

−
 

Br(x̄)
pdx

)1/γ

≥ C|p(x̄)|1/γ .

Using again that the mass is preserved, we find

M ≥
ˆ

BR(x̄)
ndx ≥ Rd|p(x̄)|1/γ ,

from which we conclude

min
x

|p(x)| ≥ Ct−
dγ

dγ+2 ,

which is the claim. �

Assumptions. We now state the assumptions that we will alternatively
impose on the potential V and the coefficients b, γ.

Assumption 1.3. The potential V satisfies |∇V |,D2V ∈ L∞(Rd).

Assumption 1.4. The potential V is the quadratic one: V (x) = |x|2/2.
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Assumption 1.5. For γ, b > 0, resp. γ, b < 0, we assume

(i) γ ≤ min

(
1√
d
,
2

d
,
1

2

)

, resp. |γ| < min

(
2

d
,

4

3 + d

)

,

(ii) 1−
√

1− γ2(d− 1) < γb < 1 +
√

1− γ2(d− 1),

(iii) γ ≤ γb ≤ 1− γ, resp. |γ| < γb ≤ min(1 + |γ|, 2|γ|).
Assumption 1.6. For γ, b > 0, resp. γ, b < 0, we assume

(i) γ < min

(
1√
d
,
2

d

)

, resp. |γ| < 2

d
,

(ii) 1−
√

1− γ2(d− 1) ≤ γb ≤ 1 +
√

1− γ2(d− 1),

(iii) γb < min

(

1− γ,
2

d

)

, resp. |γ| < γb < min

(

1 + |γ|, 2
d

)

.

Assumption 1.7. For γ, b > 0, resp. γ < 0, b < −1, we assume

(i) γ <
1√
d− 1

, resp. |γ| < 2

d
,

(ii) 1−
√

1− γ2(d− 1) < γb < 1 +
√

1− γ2(d− 1).

Remark 1.8. For assumptions (1.5, 1.6) condition (i) ensure that there exists
b that satisfies both (ii) and (iii). For the sake of completeness, we here
report the proof of this statement. For assumption 1.5, γ > 0, condition (i)
ensures that:

γ < 1/
√
d⇒ 1− γ > 1−

√

1− γ2(d− 1),

γ < 2/d ⇒ γ < 1 +
√

1− γ2(d− 1),

γ < 1/2 ⇒ γ < 1− γ.

This guarantees that under condition (i) we have

max{γ, 1 −
√

1− γ2(d− 1)} < min{1− γ, 1 +
√

1− γ2(d− 1)}.
For γ < 0, condition (i) gives

|γ| < 2/d⇒ |γ| < 1 +
√

1− γ2(d− 1),

|γ| < 4/(3 + d) ⇒ 2|γ| > 1−
√

1− γ2(d− 1),

which guarantees in this case

max{|γ|, 1 −
√

1− γ2(d− 1)} < min{1 + |γ|, 2|γ|, 1 +
√

1− γ2(d− 1)}.
Therefore, in both cases, there exists at least one b ∈ R, γb > 0, that satisfies
both (ii) and (iii).

For assumption 1.6, γ > 0, we first note that we have

2/d > 1−
√

1− γ2(d− 1),

and then, for γ > 0

γ < 1/
√
d⇒ 1− γ > 1−

√

1− γ2(d− 1),
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while for γ < 0,

|γ| < 2/d⇒ |γ| < 1 +
√

1− γ2(d− 1),

and the same conclusion holds in the same way.

1.3. Main results. We may now state the main results of the paper. First of
all, let us give the definition of solutions that allows us to justify our com-
putations. We later prove that in the most relevant cases, these assumptions
can be removed by approximation arguments.

Definition 1.9. Let n(t, x) be a strong solution of equation (1). We say that
n(t, x) is a well-behaved solution if

• (for γ > 0) n is continuous on (0,∞)×R
d, and for each t > 0 the the

support of n(t) is compact and contained in a ball B(0, R(t)) where
R is locally bounded on (0,∞); moreover, n ∈ C∞({(t, x); n(t, x) >
0}), and p ∈ L∞

loc((0,∞);W 1,∞(Rd)),
• (for γ < 0) n ∈ C∞((0,∞)×R

d), n > 0 on (0,∞)×R
d, and n satisfies

(12).

Remark 1.10. In order to justify the formal computation carried on in the
proof of Proposition 1.11 we assume to deal with a solution satisfying the
conditions of definition 1.9. As will be discussed in Section 2, for the cases
V = 0, V = |x|2/2 (which are equivalent one to the other thanks to the
time-dependent scaling (9)), a solution that satisfies definition 1.9 exists for
a large class of initial data which is, in fact, dense in L1(Rd). Therefore,
we will show that the same conclusions hold assuming only n0 ∈ L1(Rd)
upon using an approximation argument and proving the convergence of
the approximating sequence.

Decay estimates on Lipschitz norms.

Proposition 1.11. Let n(t, x) be a solution to (1) that satisfies Definition 1.9.
Then,

• Generic V : under assumptions (1.3) and (1.5), if n ∈ L∞((0,∞)× R
d),

there exist positive constants C1, C2 such that

max
x

|p(t)|b|∇q(t)|2 ≤ max
(
C1, C2t

−1
)
, for all t > 0.

If moreover, supx |p0|b|∇p0 +∇V |2 <∞, we have

max
x

|p(t)|b|∇q(t)|2 ≤ C, for all t > 0.

• QuadraticV : under assumptions (1.4) and (1.6), andC0 := supx |p0|b|∇p0+
x|2 <∞, there exists a positive constant C such that

max
x

|p(t)|b|∇q(t)|2 ≤ C0e
−Ct, for all t > 0.

• Trivial V : assuming V = 0, under assumption (1.7) there exists a posi-
tive constant C such that

max
x

|p(t)|b|∇p(t)|2 ≤ Ct−1−γd(b+1)α, for all t > 0,

where α is given in (6). Moreover, the above exponent is sharp.
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Assuming n0 ∈ L1(Rd)∩L∞(Rd), there exists a positive constant C such
that

max
x

|p(t)|b|∇p(t)|2 ≤ Ct−1, for all t > 0.

For both trivial and quadratic potentials, the same estimates hold for a
much larger class of solutions.

Theorem 1.12 (Trivial potential). Let V = 0, and n(t, x) be the solution of
equation (1) with initial data n0 ∈ L1(Rd). Under assumptions (1.7), there exists
a positive constant C such that

max
x

|p(t)|b|∇p(t)|2 ≤ Ct−1−γd(b+1)α, for all t > 0.

Moreover, this exponent is sharp in that equality holds for the Barenblatt solution.
Finally, assuming n0 ∈ L1(Rd)∩L∞(Rd), there exists a positive constant C such
that

max
x

|p(t)|b|∇p(t)|2 ≤ Ct−1, for all t > 0.

Remark 1.13. One can actually show that given the L∞-norm of the initial
data, N := ‖n0‖∞, t−1 is the sharpest polynomial decay of the quantity
maxx |p(t)|b|∇p(t)|2. This property can be easily verified by considering the
solution whose initial data is the Barenblatt profile at some given time t0,
withL∞-norm equal toN . Then, computing the quantity |p(t, x)|b|∇p(t, x)|2
in |x|2 = t0 and t = εt0 one can show that its maximum satisfies u(t) =
O(1/t).

Theorem 1.14 (Quadratic potential). Let V = |x|2/2, and n(t, x) be the solu-
tion of equation (1) with initial data n0 ∈ L1(Rd). If C0 := supx |p0|b|∇p0 +
x|2 <∞, under assumptions (1.4) and (1.6) the following holds

max
x

|p(t)|b|∇q(t)|2 ≤ C0e
−Ct, for all t > 0,

with C = 1− γbd/2 > 0.

Remark 1.15. Under a weaker assumption on the initial data, we may state
that the above result holds away from t = 0. If we call n̂ a solution of
equation (1) (and p̂ the corresponding pressure) with V = |x|2/2 then, using
the change of variables in (9) the corresponding n solves equation (4). This
means that we have instantaneous regularization for n and hence also for n̂.
In particular, for any τ > 0, maxx |p(τ)|b|∇p(τ)|2 ≤ C(τ). Thus, assuming
only supx |p̂(τ)|b|x|2 <∞, we obtain that Theorem 1.14 holds for n̂(t, x) for
all t > τ .

Corollary 1.16 (Optimal results for
√
p). Let V = 0, γ < 0 and n(t, x) be

the solution of equation (1) with initial data n0 ∈ L1(Rd). Then, the pressure
p(t, x) = −n(t, x)γ satisfies the following estimate

max
x

∣
∣
∣∇
√

p(t, x)
∣
∣
∣

2
≤ 2α

t
,

where α = 1/(dγ + 2). Moreover, the universal constant 2α is optimal.
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Corollary 1.17 (Lipschitz control of n). Let V = 0, 0 < γ ≤ 4/(d + 3) and n
be the solution of equation (1) with initial data n0 ∈ L1(Rd). Then, the quantity

max
x

|∇n(t, x)|2

decreases in time. Moreover, if the inequality γ < 4/(d + 3) is strict, then there
exists a positive constant C such that

max
x

|∇n(t, x)|2 ≤ Ct−1−αd(2−γ),

where α = 1/(dγ + 2).

Long-time convergence to the Barenblatt profile. As already mentioned,
through the change of variables (9), results for the solution to the drift-less
equation can be translated into results for the Fokker-Planck equation and
viceversa. However, let us remark that the results stated above, namely
Theorem 1.12 and Theorem 1.14, actually provide two different informa-
tion, since the quantity for which we find decay rates is not the same for the
two equations. Therefore, the latter result gives additional insights into the
asymptotics of the solution to the standard equation, in particular, it pro-
vides convergence results of its gradient to the gradient of the self-similar
profile. Applying Theorem 1.14 to the rescaled solution allows us to state
the following result.

Theorem 1.18 (Weighted convergence to the Barenblatt gradient). Let n(t, x)
be the solution of equation (4). IfC0 := supx |p0|b|∇p0+x|2 <∞, under assump-
tions (1.6) we have

(14) max
x

|p(t, x)|b
∣
∣∇p(t, x) + xt−1

∣
∣
2 ≤ C0t

βt−
C

dγ+2 , for all t > 0,

with C = 1− γbd/2 and

β := −αγdb− 2 + 2α.

The above inequality provides a convergence result of the pressure gra-
dient towards the gradient of the source solution, although weighted by
|p|b. Let us recall that the pressure of the Barenblatt profile is

(15) P(t, x) := t−αγd

(

C − sign(γ)α
|x|2
2
t−2α

)

+

.

and thus its gradient is proportional to −xt−1. Moreover, the exponent β is
exactly the sharp exponent of Theorem 1.12, which means |P|b|∇P|2 ≃ tβ

in cylinders of the form {(t, x); k|x| = tα}. Therefore, in the fast diffusion
case, assuming to be in a regime in which the solution n(t, x) can actually
be approximated by a Barenblatt profile, we may remove the weight from
(14) and infer a new convergence result of the pressure gradient.
Structure of the paper. In Section 2, we study the decay of the Lipschitz-
like norm defined in (2) and prove Proposition 1.11. Then, using an approx-
imation argument we prove Theorems 1.12 and 1.14, namely the results for
any L1-bounded initial data in the drift-less and quadratic potential cases.
Section 3 deals with the proof of Theorem 1.18 from which we infer the
long-time asymptotic behavior of the solution to the fast diffusion equation.
Finally, in Section 4 we show that the same asymptotic results obtained in
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the whole space also hold for the problem set in a convex bounded domain
with homogeneous Neumann boundary conditions and also discuss the
homogeneous Dirichlet case.

2. DECAY ESTIMATES ON LIPSCHITZ NORMS

First, we show the main formal computation, from which we will deduce
the decay results of Proposition 1.11 which will be fully justified later on in
this section. Then, we prove Theorems 1.12 and 1.14 through a regulariza-
tion argument.

Given t0 > 0, let us assume that there exists x0 ∈ R
d such that

(16) max
x

eα(p(t0 ,x))|∇q(t0, x)|2 = eα(p(t0,x0))|∇q(t0, x0)|2,

where α = α(p) is a continuously differentiable function of the pressure,
which will be later chosen as α(p) = b ln |p|, b ∈ R. We denote

v(t) := eα(p(t,x0)) |∇q(t, x0)|2
2

,

We now compute
(
d
dtv(t, x0)

)

|t=t0
. For the sake of simplicity, from now on

we omit the dependency upon t0 and x0, and we write α,α′, and α′′ for
α(p), α′(p), and α′′(p). Since x0 is a maximum point, the following condi-
tions hold

∇
(

eα(p)
|∇q|2
2

)

= 0, ∆

(

eα(p)
|∇q|2
2

)

≤ 0.

The first condition gives

D2q∇q = −α
′

2
|∇q|2∇p,(17)

while from the second we infer

∆

(

eα
|∇q|2
2

)

= eα
(
α′′ + |α′|2

2
|∇q|2|∇p|2 + 2α′∇pD2q∇q + α′ |∇q|2

2
∆p+∆

( |∇q|2
2

))

≤ 0.

Using (17), we find

(18) ∆

( |∇q|2
2

)

≤ |∇q|2|∇p|2
2

(
|α′|2 − α′′

)
− α′ |∇q|2

2
∆p.

We compute the time derivative using equation (3)

∂

∂t

(

eα
|∇q|2
2

)

= eα
(

α′ |∇q|2
2

(γp∆q +∇p · ∇q) +∇q · ∇ (γp∆q +∇p · ∇q)
)

= eα
(

γp
α′

2
|∇q|2∆q + α′

2
|∇q|2∇p · ∇q + γ∇q · ∇p∆q

+γp∇q · ∇∆q +∇qD2p∇q +∇qD2q∇p
)

.
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Using (17) and the equality 2∇q · ∇(∆q) = ∆(|∇q|2) − 2|D2q|2, where
|D2q|2 :=

∑d
i,j=1(∂i,jq)

2, we obtain

∂

∂t

(

eα
|∇q|2
2

)

= eα
(

γp
α′

2
|∇q|2∆q + α′

2
|∇q|2∇p · ∇q + γ∇q · ∇p∆q + γp∆

( |∇q|2
2

)

−γp|D2q|2 − α′

2
|∇q|2∇q · ∇p−∇qD2V∇q − α′

2
|∇q|2|∇p|2

)

≤ eα
(

γp
α′

2
|∇q|2∆q + γ∇q · ∇p∆q + γp

|∇q|2|∇p|2
2

(|α′|2 − α′′)

−γpα
′

2
|∇q|2∆p− γp|D2q|2 −∇qD2V∇q − α′

2
|∇q|2|∇p|2

)

= eα
(

γp
α′

2
|∇q|2∆V + γp

|∇q|2|∇p|2
2

(|α′|2 − α′′)

+ γ∇q · ∇p∆q − γp|D2q|2
︸ ︷︷ ︸

A

−∇qD2V∇q − α′

2
|∇q|2|∇p|2



 ,

where in the above inequality we used (18) and the fact that γp > 0.
Let us now treat the term A. We choose some coordinates where the first

vector of the basis is oriented as ∇q/|∇q|. With this choice, we notice that
from (17) we know that the value of the element (D2q)1,1 of the Hessian
matrix is

(D2q)1,1 =

( ∇q
|∇q|

)T

D2q

( ∇q
|∇q|

)

= −α
′

2
∇q · ∇p.

Let us denote

λ := −α
′

2
∇q · ∇p, δi = (D2q)i,i for i = 2, . . . , d, δ :=

d∑

i=2

δi.

Since γp > 0, we have

A = γ∇q · ∇p∆q − γp|D2q|2 ≤ γ∇q · ∇p(λ+ δ)− γp

(

λ2 +

d∑

i=2

δ2i

)

≤ γ∇q · ∇p(λ+ δ)− γp

(

λ2 +
δ2

d− 1

)

= −γα
′

2
|∇q · ∇p|2 + γδ∇q · ∇p

− γp
|α′|2
4

|∇q · ∇p|2 − γp
δ2

d− 1
.
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Using Young’s inequality, we have

γδ∇q · ∇p ≤ γp
δ2

d− 1
+ γ

|∇q · ∇p|2
4p

(d− 1),

and we finally find

A ≤
(

−γα
′

2
+
γ(d− 1)

4p
− γp

|α′|2
4

)

|∇q · ∇p|2.

Coming back to the estimate of the time derivative, and using the above
inequality, we obtain

(19)

∂

∂t

(

eα
|∇q|2
2

)

≤ eα
(

|∇q|2|∇p|2
(

−α
′

2
+ γp

|α′|2
2

− γp
α′′

2

)

+ |∇q · ∇p|2
(

−γα
′

2
+
γ(d− 1)

4p
− γp

|α′|2
4

)

+γp
α′

2
∆V |∇q|2 −∇qD2V∇q

)

.

Now let us take α(p) = b ln |p|, with b ∈ R satisfying the assumptions of
Proposition 1.11. In particular, bγ > 0. Substituting in (19) we get

(20)

∂

∂t

(

|p|b |∇q|
2

2

)

≤ |p|b
(

|∇q|2|∇p|2
(

− b

2p
+
γb2

2p
+
γb

2p

)

+|∇q · ∇p|2
(

−γb
2p

+
γ(d− 1)

4p
− γb2

4p

)

+
γb

2
∆V |∇q|2 −∇qD2V∇q

)

.

We denote

c1 = −|b|
2

+
|γ|b2
2

+
γ|b|
2
,

c2 = −γ|b|
2

+
|γ|(d− 1)

4
− |γ|b2

4
,

and

(21) c0 := c1 + c2 = −|b|
2

+
|γ|b2
4

+
|γ|(d − 1)

4
.

We rewrite (20) as follows

(22)

∂

∂t

(

|p|b |∇q|
2

2

)

≤ |p|b−1
(
c1|∇q|2|∇p|2 + c2|∇q · ∇p|2

)

+ |p|b
(
γb

2
∆V |∇q|2 −∇qD2V∇q

)

.

Note that, because of |∇q · ∇p| ≤ |∇q||∇p|, whenever we have c1 ≤ 0, we
can use

(23) c1|∇q|2|∇p|2 + c2|∇q · ∇p|2 ≤ c0|∇q · ∇p|2.
Now we treat each different choice of potential separately.
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2.1. Generic potential with bounded derivatives. Let V satisfy assump-
tion (1.3), and let n ∈ L∞((0,∞)×R

d). By assumption (1.5) - points (ii) and
(iii) - we have c0 < 0, c1 ≤ 0, so that we can use (23).

Since p = q − V , from equation (22) we find

∂

∂t

(

|p|b |∇q|
2

2

)

≤ c0|p|b−1|∇q · ∇p|2 + |p|b
(
γb

2
∆V |∇q|2 −∇qD2V∇q

)

≤ c0|p|b−1|∇q|4 + c0|p|b−1|∇q · ∇V |2 − 2c0|p|b−1|∇q|2∇q · ∇V

+
γb

2
|p|b|∇q|2||∆V ||∞ + |p|b||D2V ||∞|∇q|2

≤ c0|p|b−1|∇q|4 + 2|c0||p|b−1|∇V |∞|∇q|3

+ C(γ, b, ||D2V ||∞)|p|b|∇q|2.
By Young’s inequality, we have

2|c0||p|b−1|∇V |∞|∇q|3 ≤ 3

4
|c0||p|b−1|∇q|4 + 4|c0||p|b−1|∇V |4∞,

hence

(24)
∂

∂t

(

|p|b |∇q|
2

2

)

≤ c0
4
|p|b−1|∇q|4 + 4|c0||p|b−1||∇V ||4∞ + C|p|b|∇q|2,

for some C > 0.
Let us start from the case γ > 0. By the global boundedness of the den-

sity, there exists p > 0 such that |p| ≤ p. By assumption (1.5) b− 1 > 0, thus
we have
∂

∂t

(

|p|b |∇q|
2

2

)

≤ c0
4
|p|2b|p|−b−1|∇q|4 + 4|c0||p|b−1||∇V ||4∞ + C|p|b|∇q|2

≤ −C1|p|2b|∇q|4 + C2|p|b|∇q|2 + C,

where C1, C2 denotes positive constants whose value may from now on
change from line to line. Recalling the definition v(t) := 1

2 |p(t, x0)|b|∇q(t, x0)|2,
we obtain the differential inequality

(25) v′(t0) ≤ −C1v
2(t0) + C2v(t0) + C.

We now consider the fast diffusion case, γ < 0. From n ∈ L∞((0,∞)×R
d),

there exists p < 0 such that |p(t, x)| ≥ |p| for all (x, t) ∈ R
d × (0,∞). We

come back to (24) and write

∂

∂t

(

|p|b |∇q|
2

2

)

≤ c0|p|2b|p|−b−1|∇q|4 + 2|c0||p|3b/2|p|−b/2−1|∇V |∞|∇q|3 + C|p|b|∇q|2,
where we used −b− 1 ≥ 0 and −b/2− 1 ≤ 0, by assumption (1.5). This can
be written in the form

v′(t0) ≤ −C1v
2(t0) + Cv(t0)

3/2 + C2v(t0) + C,

and, after applying the Young inequality v(t0)3/2 ≤ εv(t0)
2 + C(ε) for suit-

able ε > 0 small, we deduce again (25).
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2.2. Quadratic potential. Under assumption (1.4) we have V = |x|2/2 and
equation (22) reads

∂

∂t

(

|p|b |∇q|
2

2

)

≤ |p|b−1
(
c1|∇q|2|∇p|2 + c2|∇q · ∇p|2

)
+ c3|p|b|∇q|2,

where

c3 =
γbd

2
− 1.

Conditions (ii) and (iii) of assumption (1.6) ensure c0 ≤ 0, and c1, c3 < 0.
Therefore, we establish

∂

∂t

(

|p|b |∇q|
2

2

)

≤ c0|p|b|∇q · ∇p|2 + c3|p|b|∇q|2

≤ c3|p|b|∇q|2,
namely

(26) v′(t0) ≤ −Cv(t0).
Remark 2.1. Let us point out that the same conclusion holds for any poten-
tial V that satisfies

D2V −∆V
γb

2
I ≥ cI,

for some positive constant c = c(γ, b, d) where I ∈ R
d × R

d denotes the
identity matrix.

2.3. Trivial potential. If V = 0, then q = p and equation (22) reads

(27)
∂

∂t

(

|p|b |∇p|
2

2

)

≤ c0|p|b−1|∇p|4.

We recall that c0 is defined as in (21), and is negative under assumption (1.7).
Let us first prove the claimed result for n0 ∈ L∞(Rd). For γ, b > 0,

we have |p(t, x)|−b−1 ≥ |p|−b−1. For γ < 0, by assumption b ≤ −1, and
|p(t, x)| ≥ |p|. Therefore, in both cases we find

∂

∂t

(

|p|b |∇p|
2

2

)

≤ c0|p|2b|p|−b−1|∇p|4,

from which we find

(28) v′(t0) ≤ −Cv2(t0).

We now show that we may find a different differential inequality, which
actually improves the rate of decay for large times, by using the bounds
provided by Lemma 1.2. For this, we no longer need the uniform bound-
edness assumption on the initial data.

For γ > 0, we apply (13) to (27) to obtain

∂

∂t

(

pb
|∇p|2
2

)

≤ c0p
2bp−(b+1)|∇p|4

≤ −Cp2b|∇p|4t(b+1) dγ
dγ+2

0 ,
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namely

(29) v′(t0) ≤ −Cv2(t0)tγd(b+1)α
0 .

In the fast diffusion case, we apply the lower bound of Lemma 1.2 to (27)
to infer

∂

∂t

(

|p|b |∇p|
2

2

)

≤ c0|p|2b|p|−(b+1)|∇p|4

≤ −Cp2b|∇p|4t(b+1) dγ
dγ+2

0 ,

where we used b+1 < 0 by assumption (1.7). Finally, we obtain again (29).

2.4. Proof of Proposition 1.11. We conclude the proof of Proposition 1.11
by showing that the differential inequalities (25),(26),(28) and (29) actually
hold for the quantity u(t)

u(t) = max
x

|p(t, x)|b |∇q(t, x)|
2

2
.

In order to do so, we first need to show that for every t0 > 0 there exists
x0 such that (16) holds, namely the maximum is attained. Secondly, we
will prove that u = u(t) is locally Lipschitz on (0,∞). Before proving both
claims in the next paragraph, let us draw now draw the main conclusions.

Since u is locally Lipschitz it is also almost everywhere differentiable. Let
t0 > 0 be a point in which u is differentiable. Since u(t) ≥ v(t) for all t > 0
and u(t0) = v(t0), we have u′(t0) = v′(t0), and the differential inequalities
proven for v at t = t0 also hold for the function u. Now, the definition of the
function v involved x0 (and hence t0), but this is no more the case for the
function u. Hence, u is a locally Lipschitz function on (0,∞) solving a.e. an
ODE, and we can use such an ODE to obtain estimates on u. In particular,
we may conclude that

• for a generic potential V : (25) implies

u(t) ≤ max(C1, C2t
−1), ∀t > 0,

and if in addition we assume supx |p(0, x)|b|∇p(0, x)+∇V (x)|2 <∞,
this implies u(0) <∞, hence

u(t) ≤ C, ∀t ≥ 0,

• for the quadratic potential: (26) gives

u(t) ≤ C0e
−Ct, ∀t > 0,

• for the trivial potential: assuming the uniform boundedness of the
initial data, from (28) we have

u(t) ≤ Ct−1 ∀t > 0,

while from (29) we conclude

(30) u(t) ≤ Ct−1−γd(b+1)α.
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This last rate of decay is actually sharp in that equality holds for the Baren-
blatt solution (6). The pressure of the Barenblatt profile is given by (15) and
its gradient is

∇P(t, x) = −sign(γ)α
x

t
1{α|x|2≤2Ct2α}.

Let t0 > 0 and x ∈ {x;Ct2α0 ≤ α|x|2 ≤ 3
2Ct

2α
0 }. In this region the solution is

positive and x is far from the origin. Therefore, we have

|x| ≃ tα0 , |P| ≃ t−γαd
0 , |∇P| ≃ t−1+α

0 ,

hence

|P|b|∇P|2 ≃ t−γαdb−2+2α
0 ,

which is in fact the same exponent of equation (30).
Finally, we now show that the maximum is attained and that u(t) is lo-

cally Lipschitz. The argument is different for the PME and FDE.

Porous medium equation. Since the solution satisfies Definition 1.9, the
pressure is smooth inside its support, globally Lipschitz, and vanishes on
the free boundary. Hence, the quantity |p(t0, x)|b|∇p(t0, x) + V (x)|2 attains
its maximum value in a point x0 ∈ R

d inside the support.
It now remains to show that the function u = u(t) is locally Lipschitz

in (0,∞). Take an instant t0 > 0. Unless n(t0) is a stationary solution
to the equation (in which case there is essentially nothing to prove), we
have u(t0) > 0. By assumption n is continuous in (t, x) so that a simple
semicontinuity argument shows that there exists δ > 0 such that

u(t) ≥ u(t0)

2
, ∀t ∈ [t0 − δ, t0 + δ].

Let us denote L := supt∈[t0−δ,t0+δ] Lip(q(t)). For t ∈ [t0 − δ, t0 + δ], we
can restrict the set on which we take the maximum in the definition of the
function u(t). More precisely, we have for t in this interval

u(t) = max
x∈H(t)

|p(t, x)|b |∇q(t, x)|
2

2
,

where H(t) := {x; |p(t, x)|b ≥ u(t0)
4L2 }. It is now sufficient to prove that

there exists a set E ⊂ R
d, independent of time, such that H(t) ⊂ E ⊂

{x; p(t, x) > 0} for all t ∈ [t0 − δ, t0 + δ]. Let us define

E := {x; p(t0, x) ≥ a} , with a :=

(
u(t0)

8L2

)1/b

.

Then, let us suppose that there exist tn ∈ [t0 − δ, t0 + δ], and xn ∈ R
d

such that p(tn, xn) ≥ 2a and p(t0, xn) < a, namely, that xn ∈ H(tn) and
xn /∈ E. Since there exists a bounded set K ⊂ R

d large enough such that
xn ∈ supp p(tn) ⊂ K , we can extract a subsequence xnk

such that xnk
→

x ∈ K , and therefore

p(t0, x) ≥ 2a, p(t0, x) < a,
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which is a contradiction. By a similar argument, one can show that E ⊂
{x; p(t, x) > 0}. Therefore, we have proven that we have

u(t) = max
E

|p(t, x)|b |∇p(t, x) +∇V (x)|2
2

,

where E is independent of time. Since |p(t, x)|b|∇p(t, x)|2 is C∞ on the
positivity set of the pressure, it is, therefore, Lipschitz continuous in t uni-
formly in x. Hence u(t) is Lipschitz continuous on [t0 − δ, t0 + δ], and this
concludes the proof.

Fast diffusion equation. We now show that there exists x0 ∈ R
d in which

the quantity |p(t0)|b|∇q(t0)|2 attains its maximum. To this end, we show
lim|x|→∞ |p|b|∇q|2 = 0. This tail behavior follows from assumption (12)
and the fact that we imposed b > −1. Since n(t, x) satisfies (12), we have

|∇p(t, x)| ≤ C(t)(1 + |x|),
where the constant C(t) is locally bounded in time. Note moreover that in
any of the three cases (trivial potential, quadratic potential, generic poten-
tial with bounded derivatives) we also have |∇V (x)| ≤ C(1 + |x|). There-
fore, we get

|p(t, x)|b|∇q(t, x)|2 ≤ C(t)(1 + |x|2)b+1,

and we obtain the desired result since b < −1, which proves that the maxi-
mum is attained.

In order to conclude that u is differentiable almost everywhere and u′(t0) =
v′(t0), it remains to show that the function u = u(t) is locally Lipschitz in
(0,∞) and exactly as for the porous medium case, we only need to show
that the maximum can be localy restricted to a fixed subset independent
of time. Again it is enough to assume u(t0) > 0, find δ > 0 such that
u(t) > u(t0)/2 for t ∈ [t0 − δ, t0 + δ], and restrict to a ball B(0, R) such that
|p(t, x)|b |∇q(t,x)|2

2 < u(t0)
2 for t ∈ [t0− δ, t0+ δ] and x /∈ B(0, R), which is pos-

sible because the above estimates on p and ∇p are supposed to be uniform
in time.

2.5. Proof of the main results. To extend the results for V = 0 and V =
|x|2/2 to the class of solutions with L1 initial data, we proceed by approx-
imation and compactness arguments. In order to show that the approxi-
mating sequence is compact and that its initial data convergences to n0, we
need to show local equicontinuity in time. To this end, it is crucial to infer
a bound on nγ+1.

Lemma 2.2. Let n(t, x) be the solution of equation (4), with |γ| < 1. There exists
r > 1 such that nγ+1 ∈ Lr([0, T ] × R

d)) for every T > 0.

Proof. For any T > 0, we have
ˆ T

0

ˆ

Rd

|n(t)|(γ+1)r dxdt ≤
ˆ T

0
‖n(t)‖(γ+1)r−1

∞

(
ˆ

Rd

n(t)dx
)

dt

=M

ˆ T

0
‖n(t)‖(γ+1)r−1

∞ dt.
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By Lemma 1.2 we have

‖n(t)‖∞ ≤ Ct
− d

dγ+2 ,

which shows that it is enough to choose r > 1 such that

[(γ + 1)r − 1]
d

dγ + 2
< 1,

i.e. 1 < r < γ+2/d+1
γ+1 . �

We note that in the case γ < 0 the same result could be obtained in a
much simpler way, since we have n ∈ L1 and 1

γ+1 > 1.
We have now all the elements to prove the main results.

Proof of Theorem 1.12. If γ > 0, let us take n0,ε ∈ Cc(R
d) such that its support

is a ball B(0, Rε) and n0,ε → n0 strongly in L1(Rd). Moreover, let us assume
that the initial pressure p0,ε = (n0,ε)

γ is such that |∇p0,ε(x)| is bounded from
below by a positive constant on ∂B(0, Rε) and that n0,ε is strictly positive
inside B(0, Rε). It is known that the solution nε(t, x) of (1) with initial data
n0,ε satisfies Definition 1.9.

If γ < 0, let us take n0,ε ∈ X \ {0}. Then by [10, Theorem 1.1] and [6,
Theorem 4], the solution nε(t, x) of equation (4) satisfies property (12), and
therefore Definition 1.9. We conclude that Proposition 1.11 holds for nε.

Because of the well-known contractivity in L1 of the PME an FDE we
deduce that nε(t) is Cauchy in L1(Rd) for every t and we call n its limit as
ε→ 0.

Thanks to Proposition 1.11, given τ > 0,
∣
∣∇nγ(b/2+1)

ε (t)
∣
∣ is uniformly

bounded for all t > τ . The control of this quantity implies that the se-
quence of regularized solutions is equicontinuous in space. Equicontinuity
in time follows, for instance, from Lemma 2.2, namely the fact that ∂tnε is
uniformly bounded in Lr

loc(0,∞;W−2,r(Rd)). Thus, for all τ > 0 we have

nε → n in Cloc((τ,∞)× R
d),

and n(t, x) satisfies equation (4) for all t > 0. Moreover, n(t) → n0 as t →
0 thanks to the uniform bound on n in W 1,r(0, T ;W−2,r(Rd)). Therefore,
n(t, x) is the unique solution of equation (4) with initial data n0. Since n 7→
maxx |∇nγ(b/2+1)|2 is lower semi-continuous we conclude. �

Proof of Theorem 1.14. We argue by approximation as before. In fact, through
the time-scaling (9), equation (1) with V = |x|2/2 is equivalent to equation
(4). The equicontinuity properties still hold since they are not affected by
the change of variable, and therefore we have uniform convergence of the
sequence. The functional p 7→ maxx |p|b|∇p+ x|2 is lower semi-continuous,
and therefore we conclude. �

2.6. Proof of Corollaries 1.16 and 1.17. We now discuss some interesting
implications of our result in the trivial potential case, for b → −1 and b =
2/γ − 2.
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Proof of Corollary 1.16. Let us take n0 ∈ L1(Rd)∩L∞(Rd). From Theorem 1.12
we have

max
x

|p(t)|b|∇p(t)|2 ≤ Ct−1,

for all b < −1 that satisfy assumption (1.7). From the computation carried
out in Section 2.3 and in particular from inequality (28) we find

C =
1

2|c0||p̄|−b−1
,

with c0 defined as in (21) and p̄ := ||n0||γL∞ . Let us now take the limit
b→ −1. Since in this case we have 2|c0| → 1/(2α), we obtain

max
x

|p(t)|b|∇p(t)|2 ≤ 2αt−1.

This estimate has been obtained assuming n0 ∈ L∞, but it no longer de-
pends on the L∞ norm of n0. Hence, by approximation, the result is also
true for any given initial data n0 ∈ L1(Rd) (actually the assumption n0 ∈ L1

can also be removed, and is kept only in order to provide a precise func-
tional meaning to the equation).

Computing the Lipschitz norm of
√
P , where the profile of the Barenblatt

pressure is given by equation (15) with γ < 0, we find

max
x

|∇P(t, x)|2
|P(t, x)| = 2αt−1,

which indicates that the constant is sharp. �

Proof of Corollary 1.17. The result is a straightforward application of Theo-
rem 1.12 with γb = 2(1− γ). Let us point out that for 0 < γ ≤ 4/(d+3) this
choice of b satisfies assumption (1.7). In particular, from (21) we have

c0 =
γ

4
(d+ 3)− 1 ≤ 0.

This provides the first part of the claim. Moreover, if the inequality γ <
4/(d + 3) is strict, we also obtain a decay estimate which provides, from
Theorem 1.12,

max
x

|∇n(t, x)|2 ≤ Ct−1−αd(2−γ). �

3. ASYMPTOTIC BEHAVIOUR AT LARGE TIMES

We want to study the asymptotic behavior as t → ∞ of the solution
n(t, x) to the drift-less porous medium and fast diffusion equations (4). In
order to do so, we take advantage of the fact that n(t, x) can be seen as the
solution of a convective porous medium equation with quadratic potential
through the change of variables (9).

Proof of Theorem 1.18. Since n̂ defined in (9) satisfies equation (10), by The-
orem 1.14 we have

max
x

|n̂(t, x)|γb
∣
∣sign(γ)∇n̂γ(t, x) + x

∣
∣2 ≤ C0e

−Ct.
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Using the definition of n̂(t, x) we find

eγbdt max
x

|n(ψ(t), etx)|γb
∣
∣
∣|γ|ed(γ−1)te(d+1)tnγ−1(ψ(t), etx)∇n(ψ(t), etx) + x

∣
∣
∣

2

≤ C0e
−Ct.

Let us denote s := ψ(t) and y = etx. Substituting in the equation above, we
obtain sequentially

s
γbd

dγ+2 max
y

|n(s, y)|γb
∣
∣
∣|γ|s

dγ+1
dγ+2nγ−1(s, y)∇n(s, y) + ys−

1
dγ+2

∣
∣
∣

2

≤ C0s
− C

dγ+2 ,

s
γbd

dγ+2 max
y

|n(s, y)|γb
∣
∣
∣sign(γ)s

dγ+1
dγ+2∇|n(s, y)|γ + ys−

1
dγ+2

∣
∣
∣

2

≤ C0s
− C

dγ+2 ,

s
γd(2+b)+2

dγ+2 max
y

|n(s, y)|γb
∣
∣sign(γ)∇nγ(s, y) + ys−1

∣
∣
2 ≤ C0s

− C
dγ+2 .

Therefore

(31) max
x

|n(t, x)|γb
∣
∣sign(γ)∇nγ(t, x) + xt−1

∣
∣
2 ≤ C0t

βt
− C

dγ+2 ,

with β = −αγdb− 2 + 2α, and this concludes the proof. �

Weighted convergence of the pressure gradient. For −2/d < γ < 0, since
n(t, x) is always positive and the gradient of the Barenblatt pressure is pro-
portional to xt−1, equation (31) gives an interesting insight on the rate of
convergence of the gradient of nγ for large times. Let us take n0 ∈ X \ {0}.
We recall that the pressure of the Barenblatt profile of the fast diffusion
equation is

P(t, x) = t−αγd

(

C − α
|x|2
2
t−2α

)

.

Let us take x ∈ Ca,b(t) := {x; |x|t−α ∈ [a, b]} for some constants 0 < a < b.
Since by [10, Theorem 1.1] n satisfies (8) if and only if n0 ∈ X \{0}, we have,
for x ∈ Ca,b(t), a behavior of the form nγb(t, x) & t−αγdb. Moreover, in such
region we also have |∇P(t, x)|2 ≃ t−2+2α. Let us recall β = −αγdb−2+2α.
Finally, from (31) we find

∥
∥∇p(t)−∇P(t)

∥
∥2

L∞(Ca,b(t))
∥
∥∇P(t)

∥
∥2

L∞(Ca,b(t))

. t
− C

dγ+2 , ∀t > 0.

4. PROBLEM POSED ON A BOUNDED DOMAIN

We now discuss the same problem posed on bounded domains, both
for Neumann and Dirichlet homogeneous boundary conditions. For an
overview of the asymptotic behavior of the PME and FDE in bounded do-
mains, we refer the reader to [8, 9, 26] and references therein.
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4.1. Neumann boundary conditions on a convex domain. Let us now con-
sider the same equation on a bounded, smooth, and convex domain Ω ⊂ R

d







∂n

∂t
= ∇ · (n∇q), in (0,∞) × Ω,

n(0, x) = n0(x), in Ω,

∇q · ν = 0, on (0,∞) × ∂Ω,

where q = p+V and ν represents the outward normal to ∂Ω. Let us assume
that

∂νV ≥ 0 on ∂Ω.

The computation performed in Section 2 follows through in the same way.
We only need to ensure that the maximum of the quantity eα(p)|∇q|2 is not
attained on ∂Ω.

First of all, we denote h(x) a convex function such that Ω = {x;h(x) < 0},
∂Ω = {x;h(x) = 0}. We assume ∇h 6= 0 and D2h > 0 (in the sense of
positive-definite symmetric matrices) on ∂Ω. We fix an instant t and write
q for q(t, ·). Therefore, for any curve ω : (0, 1) → ∂Ω we have ∇q(ω(s)) ·
∇h(ω(s)) = 0. We differentiate (in s) and obtain

ω′(s)(D2(q(ω(s)))∇h(ω(s)) +D2h(ω(s))∇q(ω(s))) = 0.

We can choose ω′(s) = ∇q(ω(s)) (which is a possible choice, since ∇q is a
tangent vector) to obtain

(32) ∇q(ω(s))D2(q(ω(s)))∇h(ω(s)) +∇q(ω(s))D2h(ω(s))∇q(ω(s))) = 0.

Let us assume that the maximum is attained on the boundary. This implies
that there exists a positive constant µ such that

α′(p)|∇q(ω(s))|2∇p(ω(s)) + 2D2q(ω(s))∇q(ω(s)) = µν,

which, taking the scalar product with ν = ∇h, gives

∇h(ω(s))D2q(ω(s))∇q(ω(s)) > 0,

since ∂νp = ∂νq − ∂νV ≤ 0 on ∂Ω and α′ > 0 (we recall that we use α(p) =
b log |p|, so that α′(p) = b/p and the choice of the sign of b guarantees that b
and p always have the same sign). Thus, from (32) we deduce

∇q(ω(s))D2h(ω(s))∇q(ω(s))) < 0,

which is a contradiction since h is convex.

4.2. Dirichlet boundary conditions. For the problem set in a bounded do-
main with homogeneous Dirichlet boundary conditions, the computations
of Section 2 could still be performed at a formal level. However, the quan-
tity under investigation, namely

u(t) = max
x

|p(t, x)|b|∇p(t, x)|2 = max
x

|∇nγ(b/2+1)(t, x)|2,
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is actually not finite for our range of exponents b. Indeed, let us consider
the drift-less problem







∂n

∂t
=

|γ|
γ + 1

∆nγ+1, in (0,∞)× Ω

n(0, x) = n0(x), in Ω,

n = 0, on (0,∞)× ∂Ω.

This problem admits a solution of the form n(t, x) = a(x)b(t), where the
functions a(x), b(t) satisfy

b′(t) = − |γ|
γ + 1

bγ+1(t), and a(x) = −∆aγ+1(x),

for t > 0 and x ∈ Ω. We denote ã(x) := aγ+1(x). This function satisfies
−∆ã = ã1/(γ+1) > 0, in Ω and ã = 0 on ∂Ω. Thus, on the boundary, we
have ∂ν ã < 0. Let us now consider the quantity

|∇aγ(b/2+1)| = |∇ãθ|,
with θ = γ(b/2 + 1)/(γ +1). Even for the maximum value of b allowed, the
one such that we have γb = 1+

√

1− γ2(d− 1), we obtain θ < 1. Therefore
the quantity |∇aγ(b/2+1)| blows up on the boundary, hence u(t) = +∞.
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