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Abstract

We obtain new estimates for the solution of both the porous medium and the fast dif-

fusion equations by studying the evolution of suitable Lipschitz norms. Our results include

instantaneous regularization for all positive times, long-time decay rates of the norms which

are sharp and independent of the initial support, and new convergence results to the Baren-

blatt profile. Moreover, we address nonlinear diffusion equations including quadratic or

bounded potentials as well. In the slow diffusion case, our strategy requires exponents close

enough to 1, while in the fast diffusion case, our results cover any exponent for which the

problem is well-posed and mass-preserving in the whole space.
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1 Introduction

The goal of this paper is to provide new estimates on the regularity of the solution n(t, x) of the
following nonlinear equation

∂n

∂t
= ∇ · (n∇(p+ V )), in (0,∞) × Ω, d ≥ 2, (1)

endowed with initial condition n(0, x) = n0(x) ≥ 0, n0 ∈ L1(Ω), where the domain is either
the whole space Ω = R

d or a convex bounded set, for which the problem is endowed with
homogeneous Neumann boundary conditions. As constitutive law of the pressure we take the
signed power law

p = P (n) := sign(γ)nγ ,

while V : Rd → R is a potential whose regularity will be detailed later on. Equation (1) is a
well-known example of a partial differential equation including convective effects and nonlinear
diffusion whose theory is nowadays well established. For γ > 0 it is an equation of porous medium
type, while for γ < 0 it is referred to as fast diffusion. In the latter case, we only consider the
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usual range of exponents −2/d < γ < 0. We are interested in proving decay estimates on the
quantity

u(t) := max
x

|p(t, x)|b|∇p(t, x) +∇V (x)|2, (2)

where the coefficient b ∈ R will be chosen in an appropriate range. These estimates will provide
regularity and long-time asymptotic results. To this end, we exploit the fact that the evolution
of the pressure is described by

∂p

∂t
= γp∆q +∇p · ∇q, with q := p+ V. (3)

Our analysis will focus on three cases: the trivial potential V = 0, the quadratic potential
V = |x|2/2, and a generic potential with bounded derivatives.

1.1 Historical remarks and recent results

The porous medium (resp. fast diffusion) equation, namely equation (1) with V = 0, is the
simplest example of a nonlinear diffusion equation; it can be written as

∂n

∂t
=

|γ|
γ + 1

∆nγ+1, (4)

for γ > 0 (resp. −2/d < γ < 0). The theory on these equations is nowadays well established,
we refer the reader to the monographs [24, 25] for an overview. In this section, we recall some
important properties of the solutions to these equations.

The porous medium equation. It is well known that, unlike solutions of the heat equation,
solutions of the porous medium equation (PME) can exhibit a free boundary. In fact, since
the equation is degenerate rather than uniformly parabolic, the speed of propagation is finite
[19]. Consequently, if the initial data are compactly supported, the solution remains so for all
times, and we may distinguish two regions Ω(t) := {x; n(x, t) > 0} and {x; n(x, t) = 0},
separated by a free interface. For compactly supported initial data, even if continuous, the
porous medium equation does not admit a classical solution, since the solution’s gradient is
discontinuous on the free boundary [16]. However, in small enough neighborhoods of points in
which n(x, t) > 0, solutions are smooth and satisfy the equation in the classical sense. Let us
now recall a fundamental estimate for the porous medium equation [1, 2].

Lemma 1.1 (Aronson-Bénilan estimate). The pressure p = nγ satisfies

∆p ≥ − 1
(
γ + 2

d

)
t
, for all t > 0. (5)

This lower bound on the Laplacian of the pressure is used in [2] to prove that there exists a
unique strong and continuous solution to the Cauchy problem with L1-bounded initial data.

In [11], Caffarelli and Friedman prove that the solution n(t, x) to the porous medium equation
is actually Hölder continuous, uniformly in space and time. This result was further developed in
[12] where the authors show that, after a certain waiting time, the pressure is actually Lipschitz.
It is indeed known that due to the finite speed of propagation, singularities may appear in
finite time if the support of the initial data contains "holes". While in the one-dimensional
case the pressure is Lipschitz for all times t > 0, [1, 16], in higher dimensions the pressure
gradient blows up at the focusing time, namely when the hole fully closes [3]. In particular,
in [12] the authors prove that if BR0 is the smallest ball containing the support of n0, and

2



t∗ := inf{t > 0;BR0 ⊂ Ω(t)} is the focusing time, then ∂tp and ∇p are bounded for all t > t∗,
and the bounds depend on n0 and t.

Let us recall that the source solution of the porous medium equation is given by the following
self-similar profile, usually referred to as Barenblatt solution

BPME(t, x) = t−αdF
(
xt−α

)
, F (ξ) =

(
C − k|ξ|2

) 1
γ

+,

α =
1

dγ + 2
, k =

αγ

2(γ + 1)
> 0,

(6)

where C > 0 depends on γ, d, and the mass of the initial data, M = ‖n0‖1. It is nowadays well
established that for t → ∞ the solution of the PME converges to the self-similar profile. The
quest for explicit rates of convergence has attracted a lot of attention over the last few decades,
see for instance [22] and references therein. The solution satisfies the following convergence
results

lim
t→∞

‖n(t)− BPME(t)‖L1(Rd) = 0,

lim
t→∞

tαd‖n(t)− BPME(t)‖L∞(Rd) = 0,

with α defined as in (6). These rates are optimal for solutions with L1(Rd) non-negative initial
data. A related question that has been addressed by a vast literature is whether these rates
of convergence can be improved for a different class of initial data. Although it is not the
purpose of this paper to review in detail these results, let us mention that entropy methods have
been adopted to find better rates for L1-initial data with finite second moment, see for instance
[13, 14, 20, 21]. Moreover, it has been shown that the Fisher information of equation (1) with
V = |x|2/2, namely

I(n) =
ˆ

Rd

n |x+∇p|2 dx,

decays exponentially
I(n(t)) ≤ I(n(t0))e−λ(t−t0), for t ≥ t0 > 0,

for some λ > 0. This result also holds for the fast diffusion equation for a more restrictive range
of exponents [5, 14]. Let us notice that the functional I(n) is the integral counterpart of the
quantity (2) for b = 1/γ, of which we study the asymptotic behavior, cf. Theorem 1.14.

Another interesting question is whether it is possible to obtain rates of convergence for the
space derivative of the solution of equation (4). Here the main challenge arises due to the presence
of solutions with compact support which does not coincide with the one of the self-similar profile.
In [18], Lee and Vázquez show that after a certain time, the pressure is concave and converges
to a truncated parabolic profile to all orders of differentiability. The authors assume the initial
data to be compactly supported and satisfy a technical non-degeneracy condition.

An interesting estimate for the flux ∇nγ+1 that holds uniformly in space was proved in
Bénilan’s notes [4] where, for n0 ∈ L∞(Rd), the author shows

∣
∣∇nγ+1

∣
∣2 ≤ nK1

t
, K1 =

(γ + 1)2C(‖n0‖∞)

γ(1− γ2(d− 1))
,

under the condition that γ2(d− 1) < 1. Our method recovers this estimate. Indeed, the above
inequality can be rewritten in terms of the quantity u(t) in (2) for b = 1/γ, and gives

u(t) = max
x

n
∣
∣∇nγ

∣
∣2 ≤ K2

t
, K2 =

γC(‖n0‖∞)

1− γ2(d− 1)
,

which is the same estimate we provide in Theorem 1.12.
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Fast diffusion equation. Let us now recall some properties of solutions to equation (4) for
negative exponents, namely the standard fast diffusion equation (FDE). It is well known that,
unlike the porous medium equation, the FDE admits classical solutions if the exponent satisfies
−2/d < γ < 0. In particular, for any n0 ∈ L1(Rd) there exists a unique C∞ solution which is
always strictly positive. If γ is below the critical threshold −2/d, finite extinction phenomena
arise and solutions may lose the mass-preservation property. Moreover, for −2/d < γ < 0, the
Aronson-Bénilan estimate (5) still holds.

A self-similar solution with finite mass exists in the range −2/d < γ < 0, and it exhibits
so-called fat tails for large values of |x|

BFDE(t, x) = t−αdF
(
xt−α

)
, F (ξ) =

(
C − k|ξ|2

) 1
γ ,

α =
1

dγ + 2
, k =

αγ

2(γ + 1)
< 0.

Let us point out that since the exponent belongs to the range −2/d < γ < 0, the constant k
is negative, while α > 0. Therefore, while Bγ

FDE is now convex, the signed pressure −Bγ
FDE is

again concave, though negative.
In the last decades, several results on the convergence of the solution of the FDE to the

Barenblatt profile as t → ∞ have been established under different assumptions on the initial
data, see for instance [5, 10, 15, 17, 25]. In the very recent work [9], the authors find a necessary
and sufficient condition on the initial data such that the solution convergences to the Barenblatt
profile uniformly in relative error, or weighted convergence, namely

lim
t→∞

∥
∥
∥
∥

n(t)− BFDE(t)

BFDE(t)

∥
∥
∥
∥
L∞(Rd)

= 0. (7)

To achieve this result, they first prove that if the initial data decays for large |x| in a similar
way as the source solution (see (11) for the definition of this class of data), then the solution
can always be bounded from below and above by two Barenblatt profiles of masses M and M ,
cf. [9, Theorem 1.1]. In particular, under appropriate conditions on n0, for any t0 > 0, there
exist τ , τ̄ > 0, and M,M > 0 such that

BFDE(t− τ , x;M ) ≤ n(t, x) ≤ BFDE(t+ τ̄ , x;M ), ∀x ∈ R
d, t ≥ t0. (8)

A rate of convergence for the relative error has been recently found in [6, Theorem 4.1].
Convergence rates of the solution of the fast diffusion to the Barenblatt profile were found in

[5] for any Ck-seminorm with k ∈ N, under the assumption that the initial data is bounded from
above and below by two Barenblatt profiles. To this end, the authors use convenient Hölder
interpolation inequalities between L2(Rd) and Ck+1(Rd).

Our contribution. Our current contribution is to provide a new approach to the study of
suitable Lipschitz bounds on the pressure, namely estimating the quantity defined in (2). This
strategy has the advantage to work both for the PME and the FDE in a unified way, and it is
essentially independent of assumptions on the initial data. It yields new results on regularity
(valid for t > 0 and not only after some focusing time) and asymptotic behavior. However,
for γ > 0 our method only works for very small γ, namely when the diffusion is almost linear.
Under mild assumptions on the potential V , we provide results on equation (1) at least for
smooth and suitably decaying solutions, cf. Proposition 1.11. For the most standard cases
V = 0 and V = |x|2/2, our results actually hold for general solutions and general initial data.
In particular, for the standard equation (4) we consider as initial data any L1-non-negative
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function, cf. Theorems 1.12 and 1.14. Moreover, using a proper time-dependent scaling, we also
show a weighted convergence result for the pressure gradient, cf. Theorem 1.16. In the fast
diffusion case, when (7) holds, such weight - which actually depends on n - can be replaced by
an explicit function of time and space, leading to a new convergence rate in the C1-seminorm.

The estimates we present in this paper are mainly applied to the study of the asymptotic
behavior or the instantaneous regularization of the solutions of the PME or FDE. Yet, one of
the main interests of the present paper is, in our opinion, that it shows that, despite the huge
literature existing on these equations, it is still possible to find new and simple estimates with
quite elementary techniques.

1.2 Preliminaries and assumptions

Time-dependent scaling. A fundamental remark which has been extensively used in the
literature to study the properties of the standard PME and FDE consists in observing that
solutions to equation (4) can actually be seen as solutions of a nonlinear Fokker-Planck equation
with quadratic potential V = |x|2/2 through the following time-dependent change of variables

n̂(t, x) := ϕ(t)dn(ψ(t), ϕ(t)x), ϕ(t) = et, ψ(t) = e(dγ+2)t. (9)

In fact, if n(t, x) is a solution of equation (4), n̂(t, x) satisfies

∂n̂

∂t
=

|γ|
γ + 1

∆n̂γ+1 +∇ · (n̂x). (10)

Unlike the drift-less case, equation (10) has a unique compactly supported stationary state, which
coincides with the Barenblatt profile evaluated at an appropriate time t = t(d, γ). This property
allows us to infer long-time behavior results on the porous medium/fast diffusion equation from
the long-time behavior of solutions of this Fokker-Planck equation.

Tail behavior of the FDE solution. We now review some particular properties of the FDE
that will be used throughout the paper. It is known that if γ belongs to the range −2/d < γ < 0,
the solution exhibits polynomial tails. In [9, Theorem 1.1], the authors give a necessary and
sufficient condition for the solution to satisfy (8), namely to be bounded from below and above
by two Barenblatt profiles, which is n0 ∈ X \ {0}, where

X := {u ∈ L1(Rd), u ≥ 0, |u|X <∞}, with |u|X := sup
R>0

R− 2
γ
−d

ˆ

Bc
R

|u|dx <∞. (11)

Moreover, as shown in the proof of [5, Theorem 4], the gradient of the solution can be bounded
uniformly by |x|2/γ−1. We collect these properties as follows: for all t0, there exist k(t),K(t), c(t) ∈
L∞
loc(0,∞) and R > 0 such that

k(t)(1 + |x|2)1/γ ≤ n(t, x) ≤ K(t)(1 + |x|2)1/γ , |∇n(t, x)| ≤ c(t)|x|2/γ−1, ∀|x| > R, t ≥ t0.
(12)

This tail behavior will be essential for us in order to rigorously justify the formal computations.
However, this behavior is only known to hold in the drift-less case (4) and, through the change of
variables (9), for equation (10). In order to provide a rigorous justification for the more general
case, namely equation (1) for a generic potential V , we will impose (12) as an assumption on
the solution, see Definition 1.9. In the trivial and quadratic potential cases, this condition will
be removed later on using approximation arguments.
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Local L
∞-bound on n(t). An important consequence of the semi-subharmonicity of the

pressure given by the fundamental estimate (5) is to provide a local bound on ‖n(t)‖∞. In the
porous medium case, this translates into a bound on ‖p(t)‖∞, while for the fast diffusion, we
infer a uniform (in space) lower bound.

Lemma 1.2. Let n(t, x) be the solution of equation (4) with |γ| < 1. There exists a positive
constant C such that the L∞-norm of n(t) satisfies

‖n(t)‖∞ ≤ Ct−
d

dγ+2 , (13)

which is equivalent to the following bounds on the pressure

• maxx |p(t)| ≤ Ct
− dγ

dγ+2 , for γ > 0,

• minx |p(t)| ≥ Ct−
dγ

dγ+2 , for γ < 0.

Proof. Let γ > 0, and let x̄ be a point in the support of n(t). We denote Br(x̄) the ball with
radius r > 0 centered at x̄. Thanks to the Aronson-Bénilan estimate (5), we know that the
function f(x) := p(x)+ K

2d |x− x̄|2 is subharmonic for all x̄ ∈ R
d, where K = 1

(γ+2/d)t . Therefore,
from

f(x̄) ≤
 

Br(x̄)
f(x) dx,

we find
 

Br(x̄)
p dx ≥ p(x̄)− Kr2

2(d+ 2)
.

Let us choose a radius R > 0 such that R2 = cp(x̄)t, with c > 0 small enough. Then, for all
0 < r ≤ R we have

 

Br(x̄)
p dx ≥ Cp(x̄),

where from now on C > 0 denotes a constant that may change value from line to line. Since
p = nγ and we are considering a range in which γ < 1, by Jensen’s inequality, we have

 

Br(x̄)
n dx =

 

Br(x̄)
p1/γ dx ≥

(
 

Br(x̄)
p dx

)1/γ

≥ Cp(x̄)1/γ .

Using the fact that n has constant mass at all times, integrating between 0 and R we find

M ≥
ˆ

BR(x̄)
n dx ≥ Rdp(x̄)1/γ .

By definition R2 = cp(x̄)t, and we may finally establish the following bound

p(x̄) ≤ Ct−
dγ

dγ+2 .

Since x̄ was chosen arbitrarily, we conclude that p ∈ L∞
loc(0,∞;L∞(Rd)) and the same upper-

bound hols for the L∞-norm of the pressure, while equation (13) holds for n(t).
For −2/d < γ < 0 the Aronson-Bénilan estimate still holds for p = −nγ. Therefore, we may

argue in the same way choosing R2 = c|p(x̄)|t to obtain

 

Br(x̄)
p dx ≥ Cp(x̄).

6



Since γ < 0, the function s 7→ s1/γ is convex and decreasing on s > 0, so that we can use
Jensen’s inequality and obtain, for p = −nγ :

 

Br(x̄)
n dx =

 

Br(x̄)
(−p)1/γ dx ≥

(

−
 

Br(x̄)
p dx

)1/γ

≥ C|p(x̄)|1/γ .

Using again that the mass is preserved, we find

M ≥
ˆ

BR(x̄)
n dx ≥ Rd|p(x̄)|1/γ ,

from which we conclude
min
x

|p(x)| ≥ Ct
− dγ

dγ+2 ,

which is the claim.

Assumptions. We now state the assumptions that we will alternatively impose on the poten-
tial V and the coefficients b, γ.

Assumption 1.3. The potential V satisfies |∇V |,D2V ∈ L∞(Rd).

Assumption 1.4. The potential V is the quadratic one: V (x) = |x|2/2.
Assumption 1.5. For γ, b > 0, resp. γ, b < 0, we assume

(i) γ ≤ min

(
1√
d
,
2

d
,
1

2

)

, resp. |γ| < min

(
2

d
,

4

3 + d

)

,

(ii) 1−
√

1− γ2(d− 1) < γb < 1 +
√

1− γ2(d− 1),

(iii) γ ≤ γb ≤ 1− γ, resp. |γ| < γb ≤ min(1 + |γ|, 2|γ|).

Assumption 1.6. For γ, b > 0, resp. γ, b < 0, we assume

(i) γ < min

(
1√
d
,
2

d

)

, resp. |γ| < 2

d
,

(ii) 1−
√

1− γ2(d− 1) ≤ γb ≤ 1 +
√

1− γ2(d− 1),

(iii) γb < min

(

1− γ,
2

d

)

, resp. |γ| < γb < min

(

1 + |γ|, 2
d

)

.

Assumption 1.7. For γ, b > 0, resp. γ, b < 0, we assume

(i) γ <
1√
d− 1

, resp. |γ| < 2

d
,

(ii) 1−
√

1− γ2(d− 1) < γb < 1 +
√

1− γ2(d− 1), resp. |γ| < γb < 1 +
√

1− γ2(d− 1).

Remark 1.8. For assumptions (1.5, 1.6) condition (i) ensure that there exists b that satisfies
both (ii) and (iii). For the sake of completeness, we here report the proof of this statement. For
assumption 1.5, γ > 0, condition (i) ensures that:

γ < 1/
√
d⇒ 1− γ > 1−

√

1− γ2(d− 1),

γ < 2/d ⇒ γ < 1 +
√

1− γ2(d− 1),

γ < 1/2 ⇒ γ < 1− γ.
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This guarantees that under condition (i) we have

max{γ, 1 −
√

1− γ2(d− 1)} < min{1− γ, 1 +
√

1− γ2(d− 1)}.

For γ < 0, condition (i) gives

|γ| < 2/d⇒ |γ| < 1 +
√

1− γ2(d− 1),

|γ| < 4/(3 + d) ⇒ 2|γ| > 1−
√

1− γ2(d− 1),

which guarantees in this case

max{|γ|, 1 −
√

1− γ2(d− 1)} < min{1 + |γ|, 2|γ|, 1 +
√

1− γ2(d− 1)}.

Therefore, in both cases, there exists at least one b ∈ R, γb > 0, that satisfies both (ii) and (iii).
For assumption 1.6, γ > 0, we first note that we have

2/d > 1−
√

1− γ2(d− 1),

and then, for γ > 0
γ < 1/

√
d⇒ 1− γ > 1−

√

1− γ2(d− 1),

while for γ < 0,

|γ| < 2/d⇒ |γ| < 1 +
√

1− γ2(d− 1),

and the same conclusion holds in the same way.

1.3 Main results

Decay estimates on Lipschitz norms. We may now state the main results of the paper.
First of all, let us give the definition of solutions that allows us to justify our computations. We
later prove that in the most relevant cases, these assumptions can be removed by approximation
arguments.

Definition 1.9. Let n(t, x) be a strong solution of equation (1). We say that n(t, x) is a
well-behaved solution if

• (for γ > 0) n is continuous on (0,∞) × R
d, and for each t > 0 the the support of n(t) is

compact and contained in a ball B(0, R(t)) where R is locally bounded on (0,∞); moreover,
n ∈ C∞({(t, x); n(t, x) > 0}), and p ∈ L∞

loc((0,∞);W 1,∞(Rd)),

• (for γ < 0) n ∈ C∞((0,∞) × R
d), n > 0 on (0,∞) ×R

d, and n satisfies (12).

Remark 1.10. In order to justify the formal computation carried on in the proof of Proposi-
tion 1.11 we assume to deal with a solution satisfying the conditions of definition 1.9. As will
be discussed in Section 2, for the cases V = 0, V = |x|2/2 (which are equivalent one to the
other thanks to the time-dependent scaling (9)), a solution that satisfies definition 1.9 exists for
a large class of initial data which is, in fact, dense in L1(Rd). Therefore, we will show that the
same conclusions hold assuming only n0 ∈ L1(Rd) upon using an approximation argument and
proving the convergence of the approximating sequence.

Proposition 1.11. Let n(t, x) be a solution to (1) that satisfies Definition 1.9. Then,
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• Generic V : under assumptions (1.3) and (1.5), if n ∈ L∞((0,∞) × R
d), there exist

positive constants C1, C2 such that

max
x

|p(t)|b|∇q(t)|2 ≤ max
(
C1, C2t

−1
)
, for all t > 0.

If moreover, supx |p0|b|∇p0 +∇V |2 <∞, we have

max
x

|p(t)|b|∇q(t)|2 ≤ C, for all t > 0.

• Quadratic V : under assumptions (1.4) and (1.6), and C0 := supx |p0|b|∇p0 + x|2 < ∞,
there exists a positive constant C such that

max
x

|p(t)|b|∇q(t)|2 ≤ C0e
−Ct, for all t > 0.

• Trivial V : assuming V = 0, under assumption (1.7) there exists a positive constant C
such that

max
x

|p(t)|b|∇p(t)|2 ≤ Ct−1−γd(b+1)α, for all t > 0,

where α is given in (6). Moreover, the above exponent is sharp.

Assuming n0 ∈ L1(Rd) ∩ L∞(Rd), there exists a positive constant C such that

max
x

|p(t)|b|∇p(t)|2 ≤ Ct−1, for all t > 0.

For both trivial and quadratic potentials, the same estimates hold for a much larger class of
solutions.

Theorem 1.12 (Trivial potential). Let V = 0, n0 ∈ L1(Rd) and n(t, x) be the solution of
equation (1). Under assumptions (1.7), there exists a positive constant C such that

max
x

|p(t)|b|∇p(t)|2 ≤ Ct−1−γd(b+1)α, for all t > 0.

Moreover, this exponent is sharp in that equality holds for the Barenblatt solution.
Finally, assuming n0 ∈ L1(Rd) ∩ L∞(Rd), there exists a positive constant C such that

max
x

|p(t)|b|∇p(t)|2 ≤ Ct−1, for all t > 0.

Remark 1.13. One can actually show that given the L∞-norm of the initial data, N := ‖n0‖∞,
t−1 is the sharpest polynomial decay of the quantity maxx |p(t)|b|∇p(t)|2. This property can be
easily verified by considering the solution whose initial data is the Barenblatt profile at some
given time t0, with L∞-norm equal to N . Then, computing the quantity |p(t, x)|b|∇p(t, x)|2 in
|x|2 = t0 and t = εt0 one can show that its maximum satisfies u(t) = O(1/t).

Theorem 1.14 (Quadratic potential). Let V = |x|2/2, n0 ∈ L1(Rd) and n(t, x) be the solution
of equation (1). If C0 := supx |p0|b|∇p0 + x|2 < ∞, under assumptions (1.4) and (1.6) the
following holds

max
x

|p(t)|b|∇q(t)|2 ≤ C0e
−Ct, for all t > 0,

with C = 1− γbd/2 > 0.

Remark 1.15. Under a weaker assumption on the initial data, we may state that the above
result holds away from t = 0. If we call n̂ a solution of equation (1) (and p̂ the corresponding
pressure) with V = |x|2/2 then, using the change of variables in (9) the corresponding n solves
equation (4). This means that we have instantaneous regularization for n and hence also for
n̂. In particular, maxx |p(τ)|b|∇p(τ)|2 ≤ C(τ). Thus, assuming only supx |p̂(τ)|b|x|2 < ∞, we
obtain that Theorem 1.14 holds for n̂(t, x) for all t > τ .

9



Long-time convergence to the Barenblatt profile. As already mentioned, through the
change of variables (9), results for the solution to the drift-less equation can be translated into
results for the Fokker-Planck equation and viceversa. However, let us remark that the results
stated above, namely Theorem 1.12 and Theorem 1.14, actually provide two different informa-
tion, since the quantity for which we find decay rates is not the same for the two equations.
Therefore, the latter result gives additional insights into the asymptotics of the solution to the
standard equation, in particular, it provides convergence results of its gradient to the gradient
of the self-similar profile. Applying Theorem 1.14 to the rescaled solution allows us to state the
following result.

Theorem 1.16 (Weighted convergence to the Barenblatt gradient). Let n(t, x) be the solution
of equation (4). If C0 := supx |p0|b|∇p0 + x|2 <∞, under assumptions (1.6) we have

max
x

|p(t, x)|b
∣
∣∇p(t, x) + xt−1

∣
∣
2 ≤ C0t

βt
− C

dγ+2 , for all t > 0, (14)

with C = 1− γbd/2 and
β := −αγdb− 2 + 2α.

The above inequality provides a convergence result of the pressure gradient towards the
gradient of the source solution, although weighted by |p|b. Let us recall that the pressure of the
Barenblatt profile is

P(t, x) := t−αγd
(
C − k|x|2t−2α

)

+
. (15)

and thus its gradient is proportional to −xt−1. Moreover, the exponent β is exactly the sharp
exponent of Theorem 1.12, which means |P|b|∇P|2 ≃ tβ in cylinders of the form {(t, x); k|x| =
tα}. Therefore, in the fast diffusion case, assuming to be in a regime in which the solution n(t, x)
can actually be approximated by a Barenblatt profile, we may remove the weight from (14) and
infer a new convergence result of the pressure gradient.

Structure of the paper. In Section 2, we study the decay of the Lipschitz-like norm defined in
(2) and prove Proposition 1.11. Then, using an approximation argument we prove Theorems 1.12
and 1.14, namely the results for any L1-bounded initial data in the drift-less and quadratic
potential cases. Section 3 deals with the proof of Theorem 1.16 from which we infer the long-
time asymptotic behavior of the solution to the fast diffusion equation. Finally, in Section 4 we
show that the same asymptotic results obtained in the whole space also hold for the problem set
in a convex bounded domain with homogeneous Neumann boundary conditions and also discuss
the homogeneous Dirichlet case.

2 Decay estimates on Lipschitz norms

First, we show the main formal computation, from which we will deduce the decay results of
Proposition 1.11 which will be fully justified later on in this section. Then, we prove Theo-
rems 1.12 and 1.14 through a regularization argument.

Given t0 > 0, let us assume that there exists x0 ∈ R
d such that

max
x

eα(p(t0,x))|∇q(t0, x)|2 = eα(p(t0 ,x0))|∇q(t0, x0)|2, (16)

where α = α(p) is a continuously differentiable function of the pressure, which will be later
chosen as α(p) = b ln |p|, b ∈ R. We denote

v(t) := eα(p(t,x0)) |∇q(t, x0)|2
2

,
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We now compute
(
d
dtv(t, x0)

)

|t=t0
. For the sake of simplicity, from now on we omit the depen-

dency upon t0 and x0, and we write α,α′, and α′′ for α(p), α′(p), and α′′(p). Since x0 is a
maximum point, the following conditions hold

∇
(

eα(p)
|∇q|2
2

)

= 0, ∆

(

eα(p)
|∇q|2
2

)

≤ 0.

The first condition gives

D2q∇q = −α
′

2
|∇q|2∇p, (17)

while from the second we infer

∆

(

eα(p)
|∇q|2
2

)

= eα
(
α′′ + |α′|2

2
|∇q|2|∇p|2 + 2α′∇pD2q∇q + α′ |∇q|2

2
∆p+∆

( |∇q|2
2

))

≤ 0.

Using (17), we find

∆

( |∇q|2
2

)

≤ |∇q|2|∇p|2
2

(
|α′|2 − α′′

)
− α′ |∇q|2

2
∆p. (18)

We compute the time derivative using equation (3)

∂

∂t

(

eα
|∇q|2
2

)

= eα
(

α′ |∇q|2
2

(γp∆q +∇p · ∇q) +∇q · ∇ (γp∆q +∇p · ∇q)
)

= eα
(

γp
α′

2
|∇q|2∆q + α′

2
|∇q|2∇p · ∇q + γ∇q · ∇p∆q + γp∇q · ∇∆q

+∇qD2p∇q +∇qD2q∇p
)

.

Using (17) and the equality 2∇q · ∇(∆q) = ∆(|∇q|2)− 2|D2q|2, where |D2q|2 :=∑d
i,j=1(∂i,jq)

2,
we obtain

∂

∂t

(

eα
|∇q|2
2

)

= eα
(

γp
α′

2
|∇q|2∆q + α′

2
|∇q|2∇p · ∇q + γ∇q · ∇p∆q + γp∆

( |∇q|2
2

)

− γp|D2q|2

−α
′

2
|∇q|2∇q · ∇p−∇qD2V∇q − α′

2
|∇q|2|∇p|2

)

≤ eα
(

γp
α′

2
|∇q|2∆q + γ∇q · ∇p∆q + γp

|∇q|2|∇p|2
2

(|α′|2 − α′′)− γp
α′

2
|∇q|2∆p

−γp|D2q|2 −∇qD2V∇q − α′

2
|∇q|2|∇p|2

)

= eα
(

γp
α′

2
|∇q|2∆V + γp

|∇q|2|∇p|2
2

(|α′|2 − α′′)

+ γ∇q · ∇p∆q − γp|D2q|2
︸ ︷︷ ︸

A

−∇qD2V∇q − α′

2
|∇q|2|∇p|2



 ,

where in the above inequality we used (18) and the fact that γp > 0.
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Let us now treat the term A. We choose some coordinates where the fist vector of the basis
is oriented as ∇q/|∇q|. With this choice, we notice that from (17) we know that the value of
the element (D2q)1,1 of the Hessian matrix is

(D2q)1,1 =

( ∇q
|∇q|

)T

D2q

( ∇q
|∇q|

)

= −α
′

2
∇q · ∇p.

Let us denote

λ := −α
′

2
∇q · ∇p, δi = (D2q)i,i for i = 2, . . . , d, δ :=

d∑

i=2

δi.

Since γp > 0, we have

A = γ∇q · ∇p∆q − γp|D2q|2 ≤ γ∇q · ∇p(λ+ δ) − γp

(

λ2 +

d∑

i=2

δ2i

)

≤ γ∇q · ∇p(λ+ δ) − γp

(

λ2 +
δ2

d− 1

)

= −γα
′

2
|∇q · ∇p|2 + γδ∇q · ∇p− γp

|α′|2
4

|∇q · ∇p|2 − γp
δ2

d− 1
.

Using Young’s inequality, we have

γδ∇q · ∇p ≤ γp
δ2

d− 1
+ γ

|∇q · ∇p|2
4p

(d− 1),

and we finally find

A ≤
(

−γα
′

2
+
γ(d− 1)

4p
− γp

|α′|2
4

)

|∇q · ∇p|2.

Coming back to the estimate of the time derivative, and using the above inequality, we obtain

∂

∂t

(

eα
|∇q|2
2

)

≤ eα
(

|∇q|2|∇p|2
(

−α
′

2
+ γp

|α′|2
2

− γp
α′′

2

)

+ |∇q · ∇p|2
(

−γα
′

2
+
γ(d− 1)

4p
− γp

|α′|2
4

)

+γp
α′

2
∆V |∇q|2 −∇qD2V∇q

)

.

(19)

Now let us take α(p) = b ln |p|, with b ∈ R satisfying the assumptions of Proposition 1.11. In
particular, bγ > 0. Substituting in (19) we get

∂

∂t

(

|p|b |∇q|
2

2

)

≤ |p|b
(

|∇q|2|∇p|2
(

− b

2p
+
γb2

2p
+
γb

2p

)

+ |∇q · ∇p|2
(

−γb
2p

+
γ(d− 1)

4p
− γb2

4p

)

+
γb

2
∆V |∇q|2 −∇qD2V∇q

)

.

(20)
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We denote

c1 = −|b|
2

+
|γ|b2
2

+
γ|b|
2
,

c2 = −γ|b|
2

+
|γ|(d− 1)

4
− |γ|b2

4
,

and

c0 := c1 + c2 = −|b|
2

+
|γ|b2
4

+
|γ|(d − 1)

4
.

We rewrite (20) as follows

∂

∂t

(

|p|b |∇q|
2

2

)

≤|p|b−1
(
c1|∇q|2|∇p|2 + c2|∇q · ∇p|2

)
+|p|b

(
γb

2
∆V |∇q|2 −∇qD2V∇q

)

. (21)

Note that, because of |∇q · ∇p| ≤ |∇q||∇p|, whenever we have c1 ≤ 0, we can use

c1|∇q|2|∇p|2 + c2|∇q · ∇p|2 ≤ c0|∇q · ∇p|2. (22)

Now we treat each different choice of potential separately.

2.1 Generic potential with bounded derivatives

Let V satisfy assumption (1.3), and let n ∈ L∞((0,∞)×R
d). By assumption (1.5) - points (ii)

and (iii) -, we have c0 < 0, c1 ≤ 0, so that we can use (22).
Since p = q − V , from equation (21) we find

∂

∂t

(

|p|b |∇q|
2

2

)

≤ c0|p|b−1|∇q · ∇p|2 + |p|b
(
γb

2
∆V |∇q|2 −∇qD2V∇q

)

≤ c0|p|b−1|∇q|4 + c0|p|b−1|∇q · ∇V |2 − 2c0|p|b−1|∇q|2∇q · ∇V

+
γb

2
|p|b|∇q|2||∆V ||∞ + |p|b||D2V ||∞|∇q|2

≤ c0|p|b−1|∇q|4 + 2|c0||p|b−1|∇V |∞|∇q|3 + C(γ, b, ||D2V ||∞)|p|b|∇q|2.

By Young’s inequality, we have

2|c0||p|b−1|∇V |∞|∇q|3 ≤ 3

4
|c0||p|b−1|∇q|4 + 4|c0||p|b−1|∇V |4∞,

hence
∂

∂t

(

|p|b |∇q|
2

2

)

≤ c0
4
|p|b−1|∇q|4 + 4|c0||p|b−1||∇V ||4∞ + C|p|b|∇q|2, (23)

for some C > 0.
Let us start from the case γ > 0. By the global boundedness of the density, there exists

p > 0 such that |p| ≤ p. By assumption (1.5) b− 1 > 0, thus we have

∂

∂t

(

|p|b |∇q|
2

2

)

≤ c0
4
|p|2b|p|−b−1|∇q|4 + 4|c0||p|b−1||∇V ||4∞ + C|p|b|∇q|2

≤ −C1|p|2b|∇q|4 + C2|p|b|∇q|2 + C,
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where C1, C2 denotes positive constants whose value may from now on change from line to line.
Recalling the definition v(t) := 1

2 |p(t, x0)|b|∇q(t, x0)|2, we obtain the differential inequality

v′(t0) ≤ −C1v
2(t0) + C2v(t0) + C. (24)

We now consider the fast diffusion case, γ < 0. From n ∈ L∞((0,∞) × R
d), there exists p < 0

such that |p(t, x)| ≥ |p| for all (x, t) ∈ R
d × (0,∞). We come back to (23) and write

∂

∂t

(

|p|b |∇q|
2

2

)

≤ c0|p|2b|p|−b−1|∇q|4 + 2|c0||p|3b/2|p|−b/2−1|∇V |∞|∇q|3 + C|p|b|∇q|2,

where we used −b− 1 ≥ 0 and −b/2 − 1 ≤ 0, by assumption (1.5). This can be written in the
form

v′(t0) ≤ −C1v
2(t0) + Cv(t0)

3/2 + C2v(t0) + C,

and, after applying the Young inequality v(t0)
3/2 ≤ εv(t0)

2 + C(ε) for suitable ε > 0 small, we
deduce again (24).

2.2 Quadratic potential

Under assumption (1.4) we have V = |x|2/2 and equation (21) reads

∂

∂t

(

|p|b |∇q|
2

2

)

≤ |p|b−1
(
c1|∇q|2|∇p|2 + c2|∇q · ∇p|2

)
+ c3|p|b|∇q|2,

where

c3 =
γbd

2
− 1.

Conditions (ii) and (iii) of assumption (1.6) ensure c0 ≤ 0, and c1, c3 < 0. Therefore, we
establish

∂

∂t

(

|p|b |∇q|
2

2

)

≤ c0|p|b|∇q · ∇p|2 + c3|p|b|∇q|2

≤ c3|p|b|∇q|2,
namely

v′(t0) ≤ −Cv(t0). (25)

Remark 2.1. Let us point out that the same conclusion holds for any potential V that satisfies

D2V −∆V
γb

2
I ≥ cI,

for some positive constant c = c(γ, b, d) where I ∈ R
d × R

d denotes the identity matrix.

2.3 Trivial potential

If V = 0, then q = p and equation (21) reads

∂

∂t

(

|p|b |∇p|
2

2

)

≤ c0|p|b−1|∇p|4. (26)

We recall that c0 is defined as

c0 = −|b|
2

+
|γ|b2
4

+
|γ|(d− 1)

4
,
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and is negative under assumption (1.7).
Let us first prove the claimed result for n0 ∈ L∞(Rd). For γ, b > 0, we have |p(t, x)|−b−1 ≥

|p|−b−1. For γ < 0, by assumption b ≤ −1, and |p(t, x)| ≥ |p|. Therefore, in both cases we find

∂

∂t

(

|p|b |∇p|
2

2

)

≤ c0|p|2b|p|−b−1|∇p|4,

from which we find
v′(t0) ≤ −Cv2(t0). (27)

We now show that we may find a different differential inequality, which actually improves the
rate of decay for large times, by using the L∞-bounds provided by Lemma 1.2. For this, we no
longer need the uniform boundedness assumption on the initial data.

For γ > 0, we apply (13) to (26) to obtain

∂

∂t

(

pb
|∇p|2
2

)

≤ c0p
2bp−(b+1)|∇p|4

≤ −Cp2b|∇p|4t(b+1) dγ
dγ+2

0 ,

namely

v′(t0) ≤ −Cv2(t0)tγd(b+1)α
0 . (28)

In the fast diffusion case, we apply the lower bound of Lemma 1.2 to (26) to infer

∂

∂t

(

|p|b |∇p|
2

2

)

≤ c0|p|2b|p|−(b+1)|∇p|4

≤ −Cp2b|∇p|4t(b+1) dγ
dγ+2

0 ,

where we used b+ 1 < 0 by assumption (1.7). Finally, we obtain again (28).

2.4 Proof of Proposition 1.11

We conclude the proof of Proposition 1.11 by showing that the differential inequalities (24),(25),(27)
and (28) actually hold for the quantity u(t)

u(t) = max
x

|p(t, x)|b |∇q(t, x)|
2

2
.

In order to do so, we first need to show that for every t0 > 0 there exists x0 such that (16) holds,
namely the maximum is attained. Secondly, we will prove that u = u(t) is locally Lipschitz
on (0,∞). Before proving both claims in the next paragraph, let us draw now draw the main
conclusions.

Since u is locally Lipschitz it is also almost everywhere differentiable. Let t0 > 0 be a
point in which u is differentiable. Since u(t) ≥ v(t) for all t > 0 and u(t0) = v(t0), we have
u′(t0) = v′(t0), and the differential inequalities proven for v at t = t0 also hold for the function
u. Now, the definition of the function v involved x0 (and hence t0), but this is no more the case
for the function u. Hence, u is a locally Lipschitz function on (0,∞) solving a.e. an ODE, and
we can use such an ODE to obtain estimates on u. In particular, we may conclude that

• for a generic potential V : (24) implies

u(t) ≤ max(C1, C2t
−1), ∀t > 0,

and if in addition we assume supx |p(0, x)|b|∇p(0, x)+∇V (x)|2 <∞, this implies u(0) <∞,
hence

u(t) ≤ C, ∀t ≥ 0,
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• for the quadratic potential: (25) gives

u(t) ≤ C0e
−Ct, ∀t > 0,

• for the trivial potential: assuming the uniform boundedness of the initial data, from (27)
we have

u(t) ≤ Ct−1 ∀t > 0,

while from (28) we conclude
u(t) ≤ Ct−1−γd(b+1)α. (29)

This last rate of decay is actually sharp in that equality holds for the Barenblatt solution (6).
The pressure of the Barenblatt profile is given by (15) and its gradient is

∇P(t, x) = −2k
x

t
1{k|x|2≤Ct2α}.

Let t0 > 0 and x ∈ {x; 2Ct2α0 ≤ 4k|x|2 ≤ 3Ct2α0 }. In this region the solution is positive and x is
far from the origin. Therefore, we have

|x| ≃ tα0 , |PPME| ≃ t−γαd
0 , |∇PPME| ≃ t−1+α

0 ,

hence
|PPME|b|∇PPME|2 ≃ t−γαdb−2+2α

0 ,

which is in fact the same exponent of equation (29).
Finally, we now show that the maximum is attained and that u(t) is locally Lipschitz. The

argument is different for the PME and FDE.

Porous medium equation. Since the solution satisfies Definition 1.9, the pressure is smooth
inside its support, globally Lipschitz, and vanishes on the free boundary. Hence, the quantity
|p(t0, x)|b|∇p(t0, x) + V (x)|2 attains its maximum value in a point x0 ∈ R

d inside the support.
It now remains to show that the function u = u(t) is locally Lipschitz in (0,∞). Take an

instant t0 > 0. Unless n(t0) is a stationary solution to the equation (in which case there is
essentially nothing to prove), we have u(t0) > 0. By assumption n is continuous in (t, x) so that
a simple semicontinuity argument shows that there exists δ > 0 such that

u(t) ≥ u(t0)

2
, ∀t ∈ [t0 − δ, t0 + δ].

Let us denote L := supt∈[t0−δ,t0+δ] Lip(q(t)). For t ∈ [t0 − δ, t0 + δ], we can restrict the set on
which we take the maximum in the definition of the function u(t). More precisely, we have for
t in this interval

u(t) = max
x∈H(t)

|p(t, x)|b |∇q(t, x)|
2

2
,

where H(t) := {x; |p(t, x)|b ≥ u(t0)
4L2 }. It is now sufficient to prove that there exists a set E ⊂ R

d,
independent of time, such that H(t) ⊂ E ⊂ {x; p(t, x) > 0} for all t ∈ [t0 − δ, t0 + δ]. Let us
define

E := {x; p(t0, x) ≥ α} , with α :=

(
u(t0)

8L2

)1/b

.

Then, let us suppose that there exist tn ∈ [t0 − δ, t0 + δ], and xn ∈ R
d such that p(tn, xn) ≥ 2α

and p(t0, xn) < α, namely, that xn ∈ H(tn) and xn /∈ E. Since there exists a bounded set
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K ⊂ R
d large enough such that xn ∈ supp p(tn) ⊂ K, we can extract a subsequence xnk

such
that xnk

→ x ∈ K, and therefore

p(t0, x) ≥ 2α, p(t0, x) < α,

which is a contradiction. By a similar argument, one can show that E ⊂ {x; p(t, x) > 0}.
Therefore, we have proven that we have

u(t) = max
E

|p(t, x)|b |∇p(t, x) +∇V (x)|2
2

,

where E is independent of time. Since |p(t, x)|b|∇p(t, x)|2 is C∞ on the positivity set of the
pressure, it is, therefore, Lipschitz continuous in t uniformly in x. Hence u(t) is Lipschitz
continuous on [t0 − δ, t0 + δ], and this concludes the proof.

Fast diffusion equation. We now show that there exists x0 ∈ R
d in which the quantity

|p(t0)|b|∇q(t0)|2 attains its maximum. To this end, we show lim|x|→∞ |p|b|∇q|2 = 0. This tail
behavior follows from assumption (12) and the fact that we imposed b > −1. Since n(t, x)
satisfies (12), we have

|∇p(t, x)| ≤ C(t)(1 + |x|),
where the constant C(t) is locally bounded in time. Note moreover that in any of the three cases
(trivial potential, quadratic potential, generic potential with bounded derivatives) we also have
|∇V (x)| ≤ C(1 + |x|). Therefore, we get

|p(t, x)|b|∇q(t, x)|2 ≤ C(t)(1 + |x|2)b+1,

and we obtain the desired result since b < −1, which proves that the maximum is attained.
In order to conclude that u is differentiable almost everywhere and u′(t0) = v′(t0), it remains

to show that the function u = u(t) is locally Lipschitz in (0,∞) and exactly as for the porous
medium case, we only need to show that the maximum can be localy restricted to a fixed subset
independent of time. Again it is enough to assume u(t0) > 0, find δ > 0 such that u(t) > u(t0)/2

for t ∈ [t0 − δ, t0 + δ], and restrict to a ball B(0, R) such that |p(t, x)|b |∇q(t,x)|2

2 < u(t0)
2 for

t ∈ [t0 − δ, t0 + δ] and x /∈ B(0, R), which is possible because the above estimates on p and ∇p
are supposed to be uniform in time.

2.5 Proof of the main results

To extend the results for V = 0 and V = |x|2/2 to the class of solutions with L1 initial
data, we proceed by approximation and compactness arguments. In order to show that the
approximating sequence is compact and that its initial data convergences to n0, we need to
show local equicontinuity in time. To this end, it is crucial to infer a bound on nγ+1.

Lemma 2.2. Let n(t, x) be the solution of equation (4), with |γ| < 1. There exists r > 1 such
that nγ+1 ∈ Lr([0, T ]× R

d)) for every T > 0.

Proof. For any T > 0, we have

ˆ T

0

ˆ

Rd

|n(t)|(γ+1)r dxdt ≤
ˆ T

0
‖n(t)‖(γ+1)r−1

∞

(
ˆ

Rd

n(t) dx

)

dt =M

ˆ T

0
‖n(t)‖(γ+1)r−1

∞ dt.

By Lemma 1.2 we have

‖n(t)‖∞ ≤ Ct
− d

dγ+2 ,
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which show that it is enough to choose r > 1 such that

[(γ + 1)r − 1]
d

dγ + 2
< 1,

i.e. 1 < r < γ+2/d+1
γ+1 .

We note that in the case γ < 0 the same result could be obtained in a much simpler way,
since we have n ∈ L1 and 1

γ+1 > 1.
We have now all the elements to prove the main results.

Proof of Theorem 1.12. If γ > 0, let us take n0,ε ∈ Cc(R
d) such that its support is a ball

B(0, Rε) and n0,ε → n0 strongly in L1(Rd). Moreover, let us assume that the initial pressure
p0,ε = (n0,ε)

γ is such that |∇p0,ε(x)| is bounded from below by a positive constant on ∂B(0, Rε)
and that n0,ε is strictly positive inside B(0, Rε). It is known that the solution nε(t, x) of (1)
with initial data n0,ε satisfies Definition 1.9.

If γ < 0, let us take n0,ε ∈ X \{0}. Then by [9, Theorem 1.1] and [5, Theorem 4], the solution
nε(t, x) of equation (4) satisfies property (12), and therefore Definition 1.9. We conclude that
Proposition 1.11 holds for nε.

Because of the well-known contractivity in L1 of the PME an FDE we deduce that nε(t) is
Cauchy in L1(Rd) for every t and we call n its limit as ε→ 0.

Thanks to Proposition 1.11, given τ > 0,
∣
∣∇nγ(b/2+1)

ε (t)
∣
∣ is uniformly bounded for all t > τ .

The control of this quantity implies that the sequence of regularized solutions is equicontinuous
in space. Equicontinuity in time follows, for instance, from Lemma 2.2, namely the fact that
∂tnε is uniformly bounded in Lr

loc(0,∞;W−2,r(Rd)). Thus, for all τ > 0 we have

nε → n in Cloc((τ,∞) × R
d),

and n(t, x) satisfies equation (4) for all t > 0. Moreover, n(t) → n0 as t → 0 thanks to
the uniform bound on n in W 1,r(0, T ;W−2,r(Rd)). Therefore, n(t, x) is the unique solution of
equation (4) with initial data n0. Since n 7→ maxx |∇nγ(b/2+1)|2 is lower semi-continuous we
conclude.

Proof of Theorem 1.14. We argue by approximation as before. In fact, through the time-scaling
(9), equation (1) with V = |x|2/2 is equivalent to equation (4). The equicontinuity properties
still hold since they are not affected by the change of variable, and therefore we have uniform
convergence of the sequence. The functional p 7→ maxx |p|b|∇p + x|2 is lower semi-continuous,
and therefore we conclude.

3 Asymptotic behaviour at large times

We want to study the asymptotic behavior as t → ∞ of the solution n(t, x) to the drift-less
porous medium and fast diffusion equations (4). In order to do so, we take advantage of the fact
that n(t, x) can be seen as the solution of a convective porous medium equation with quadratic
potential through the change of variables (9).

Proof of Theorem 1.16. Since n̂ defined in (9) satisfies equation (10), by Theorem 1.14 we have

max
x

|n̂(t, x)|γb
∣
∣sign(γ)∇n̂γ(t, x) + x

∣
∣2 ≤ C0e

−Ct.
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Using the definition of n̂(t, x) we find

eγbdt max
x

|n(ψ(t), etx)|γb
∣
∣
∣|γ|ed(γ−1)te(d+1)tnγ−1(ψ(t), etx)∇n(ψ(t), etx) + x

∣
∣
∣

2
≤ C0e

−Ct.

Let us denote s := ψ(t) and y = etx. Substituting in the equation above, we obtain sequentially

s
γbd
dγ+2 max

y
|n(s, y)|γb

∣
∣
∣|γ|s

dγ+1
dγ+2nγ−1(s, y)∇n(s, y) + ys

− 1
dγ+2

∣
∣
∣

2

≤ C0s
− C

dγ+2 ,

s
γbd

dγ+2 max
y

|n(s, y)|γb
∣
∣
∣sign(γ)s

dγ+1
dγ+2∇|n(s, y)|γ + ys−

1
dγ+2

∣
∣
∣

2

≤ C0s
− C

dγ+2 ,

s
γd(2+b)+2

dγ+2 max
y

|n(s, y)|γb
∣
∣sign(γ)∇nγ(s, y) + ys−1

∣
∣
2 ≤ C0s

− C
dγ+2 .

Therefore
max
x

|n(t, x)|γb
∣
∣sign(γ)∇nγ(t, x) + xt−1

∣
∣
2 ≤ C0t

βt−
C

dγ+2 , (30)

with β = −αγdb− 2 + 2α, and this concludes the proof.

Weighted convergence of the pressure gradient. For −2/d < γ < 0, since n(t, x) is
always positive and the gradient of the Barenblatt pressure is proportional to xt−1, equation
(30) gives an interesting insight on the rate of convergence of the gradient of nγ for large times.
Let us take n0 ∈ X \ {0}. We recall that the pressure of the Barenblatt profile of the fast
diffusion equation is

P(t, x) = t−αγd
(
C − k|x|2t−2α

)
.

Let us take x ∈ Ca,b(t) := {x; |x|t−α ∈ [a, b]} for some constants 0 < a < b. Since by [9,
Theorem 1.1] n satisfies (8) if and only if n0 ∈ X \ {0}, we have, for x ∈ Ca,b(t), a behavior of
the form nγb(t, x) & t−αγdb. Moreover, in such region we also have |∇P(t, x)|2 ≃ t−2+2α. Let us
recall β = −αγdb− 2 + 2α. Finally, from (30) we find

∥
∥∇p(t)−∇P(t)

∥
∥2

L∞(Ca,b(t))
∥
∥∇P(t)

∥
∥2

L∞(Ca,b(t))

. t−
C

dγ+2 , ∀t > 0.

4 Problem posed on a bounded domain

We now discuss the same problem posed on bounded domains, both for Neumann and Dirichlet
homogeneous boundary conditions. For an overview of the asymptotic behavior of the PME and
FDE in bounded domains, we refer the reader to [7, 8, 23] and references therein.

4.1 Neumann boundary conditions on a convex domain

Let us now consider the same equation on a bounded, smooth, and convex domain Ω ⊂ R
d







∂n

∂t
= ∇ · (n∇q), in (0,∞) × Ω,

n(0, x) = n0(x), in Ω,

∇q · ν = 0, on (0,∞) × ∂Ω,
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where q = p+ V and ν represents the outward normal to ∂Ω. Let us assume that

∂νV ≥ 0 on ∂Ω.

The computation performed in Section 2 follows through in the same way. We only need to
ensure that the maximum of the quantity eα(p)|∇q|2 is not attained on ∂Ω.

First of all, we denote h(x) a convex function such that Ω = {x;h(x) < 0}, ∂Ω = {x;h(x) =
0}. We assume ∇h 6= 0 and D2h > 0 (in the sense of positive-definite symmetric matrices) on
∂Ω. We fix an instant t and write q for q(t, ·). Therefore, for any curve ω : (0, 1) → ∂Ω we have
∇q(ω(s)) · ∇h(ω(s)) = 0. We differentiate (in s) and obtain

ω′(s)(D2(q(ω(s)))∇h(ω(s)) +D2h(ω(s))∇q(ω(s))) = 0.

We can choose ω′(s) = ∇q(ω(s)) (which is a possible choice, since ∇q is a tangent vector) to
obtain

∇q(ω(s))D2(q(ω(s)))∇h(ω(s)) +∇q(ω(s))D2h(ω(s))∇q(ω(s))) = 0. (31)

Let us assume that the maximum is attained on the boundary. This implies that there exists a
positive constant µ such that

α′(p)|∇q(ω(s))|2∇p(ω(s)) + 2D2q(ω(s))∇q(ω(s)) = µν,

which, taking the scalar product with ν = ∇h, gives

∇h(ω(s))D2q(ω(s))∇q(ω(s)) > 0,

since ∂νp = ∂νq − ∂νV ≤ 0 on ∂Ω and α′ > 0 (we recall that we use α(p) = b log |p|, so that
α′(p) = b/p and the choice of the sign of b guarantees that b and p always have the same sign).
Thus, from (31) we deduce

∇q(ω(s))D2h(ω(s))∇q(ω(s))) < 0,

which is a contradiction since h is convex.

4.2 Dirichlet boundary conditions

For the problem set in a bounded domain with homogeneous Dirichlet boundary conditions, the
computations of Section 2 could still be performed at a formal level. However, the quantity
under investigation, namely

u(t) = max
x

|p(t, x)|b|∇p(t, x)|2 = max
x

|∇nγ(b/2+1)(t, x)|2,

is actually not finite for our range of exponents b. Indeed, let us consider the drift-less problem







∂n

∂t
=

|γ|
γ + 1

∆nγ+1, in (0,∞)× Ω

n(0, x) = n0(x), in Ω,

n = 0, on (0,∞) × ∂Ω.

This problem admits a solution of the form n(t, x) = a(x)b(t), where the functions a(x), b(t)
satisfy

b′(t) = − |γ|
γ + 1

bγ+1(t), and a(x) = −∆aγ+1(x),
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for t > 0 and x ∈ Ω. We denote ã(x) := aγ+1(x). This function satisfies −∆ã = ã1/(γ+1) > 0, in
Ω and ã = 0 on ∂Ω. Thus, on the boundary we have ∂ν ã < 0. Let us now consider the quantity

|∇aγ(b/2+1)| = |∇ãθ|,

with θ = γ(b/2 + 1)/(γ + 1). Even for the maximum value of b allowed, the one such that we
have γb = 1 +

√

1− γ2(d− 1), we obtain θ < 1. Therefore the quantity |∇aγ(b/2+1)| blows up
on the boundary, hence u(t) = +∞.
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