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A Hierarchical Scheme for Adapting Learned Quadruped Locomotion

Michel Aractingi1,2, Pierre-Alexandre Léziart1, Thomas Flayols1,
Julien Perez2, Tomi Silander2 and Philippe Souères1

Abstract— The quadruped locomotion task is generally con-
ditioned on a velocity command that is user-defined. However,
certain features of the locomotion are not represented in this
high-level definition of the task, e.g., swing feet height, step
length and expended energy. Using reinforcement learning,
many of these features can be determined by the reward
function terms and scales that are often fixed. In this work,
we propose a deep reinforcement learning (DRL) approach to
learn control policies augmented with parameters that modify
different aspects of the reward function and control setup
which, in turn, result in variations of the locomotion. We can
then define a hierarchical architecture where a high level policy
infers the suitable parameters to complete a given task. We
show that this setup makes it possible to learn more complex
behaviours that can be adapted for different terrains and
environments to ensure successful and efficient locomotion. We
display our results on the MIT Mini-Cheetah quadruped.

I. INTRODUCTION

Quadruped locomotion has emerged as an interesting field of
research in both model-based control [1], [2], [3] and model-
free learning [4], [5], [6]. In both approaches, the objective
is similar, i.e., produce robust locomotion when following a
desired velocity command while minimizing the used energy.
However, this is a very abstract definition of the locomotion
task as, in reality, many low-level features of the motion
are required such as how much to lift the feet, the length
and frequency of footsteps, or the best nominal joint pose to
center the movement around.

These different decisions intrinsically make the locomo-
tion problem a highly multi-task one at different levels
regarding the motion of the base and the joints [2]. At the
high-level, the velocity command determines the trajectory of
the center of mass (COM) of the robot, but in more complex
environments that require precise intended movements, e.g.,
going up the stairs or reaching a given location, the velocity
on its own is not enough. At the same time, the low-level
joint control pattern might also need to be modified for such
specific tasks. For example, on rough terrains the robot might
need to lift its feet higher, and in steep slopes the robot would
need to take smaller steps or use more torque [7].

Therefore, there is a clear need to augment the task
description and have the ability to convey the desired be-
havior to dictate the low-level motion. In this paper, we
tackle the multi-task aspect of locomotion using hierarchical
reinforcement learning (HRL). With HRL we can decompose
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Fig. 1: Snapshots of the proposed low-level policy con-
trolling the Mini-Cheetah through different challenging ter-
rains. Full video can be found at: https://youtu.be/
B92HB964xq8

a reinforcement learning (RL) problem into simpler sub-tasks
that are easier to design and learn [8].

We propose learning a low-level policy with an elaborate
reward function that governs many cost terms related to the
desired joint-level control. Along with the state, this low-
level policy is augmented with command parameters which
are variables and weights that define the terms of the reward
function and details of the state dynamics. We use the term
command here because we view these parameters as an
extension of the velocity commands that generally dictate
the locomotion task.

The main contribution of this work is a hierarchical deep
RL system that augments the baseline locomotion policy with
a command parameters vector ω that manipulates different
aspects of the locomotion (swing feet height, step length,
initial pose and PD gains). This baseline policy can then be
used in a hierarchical setup where a high-level policy deter-
mines suitable command parameters to adapt the locomotion
to different situations. We show that this two-level design
improves the performance of velocity tracking policies by
reducing energy consumption and velocity tracking error in
various situations while having better sample efficiency. We
also show how these policies enable the real robot to cross
different structured terrains that the baseline policy would
regularly fail to be robust against Figure 1. We illustrate our
results on the MIT Mini-Cheetah quadruped [9].

The paper is organized as follows. Section II discusses the
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Fig. 2: Policy and control architecture of the low-level policy (right) and the high-level policy (left). The low-level policy’s
state and commands are fed to the policy network that outputs joint displacement offsets. A PD controller turns the network
actions into torques. The high-level policy get task related information in order to actively control the low-level behaviour
by actively adjusting the command parameters.

related literature. Section III introduces some notions and
definitions. Section IV presents in detail the approach and
how the RL policies are designed and trained. Finally, the
experimental results and conclusions are outlined in sections
V and VII respectively.

II. RELATED WORK

Recent development of model-based controllers for
quadruped robots have contributed to the growth of
locomotion research [1], [2], [3]. An efficient modular
architecture was proposed in [2]. It includes a contact
planner, a model predictive controller (MPC) that plans the
base motion and the feet contact reaction forces over a
receding horizon, and a whole body controller that executes
the plan by controlling the joints at a higher frequency.
A similar scheme with a simplified inverse kinematics
approach and state estimation was later developed in [3].
While there is a hierarchy of optimization tasks in these
model-based architectures, they are mainly built around
base velocity tracking task and fixed values related to the
gait pattern and feet trajectories. While they produce agile
and efficient locomotion in nominal conditions, they do
not allow for easy adaptation of that locomotion to new
situations.

Alternative deep RL control paradigms were proposed
to learn locomotion in an end-to-end manner. In [4], [5]
authors detail different elements required to learn robust
controllers that works on real robots, e.g., choice of action
space, reward design and actuation modeling. In [10] state
estimation is learned along with the policy which resulted in
a rapid locomotion that broke the speed record of the Mini-
Cheetah [9]. A robust walking gait was learned by biasing
the action space with central pattern generators (CPGs) in
[11]. Other authors suggested to learn an adaptation model
along with the main policy to adapt its control to various
environmental changes [6].

While these deep RL techniques learn robust locomotion
to track a velocity command, they produce monotonic motion
that can be hardly generalized to new situations. In [12]
parameterized policies were learned for wheeled-robot navi-
gation tasks. In order to adapt the behavior, as the dynamics
of the underlying system changes, reward weightings were

incorporated in the state. Recently, parameterized policies
have also been introduced for versatile quadruped locomotion
but without showing benefits of hierarchical RL [13].

Hierarchical reinforcement learning (HRL) methods have
been proposed for learning locomotion strategies, for exam-
ple by learning separate policies for recovery, standing and
locomotion and then a high-level policy that learns to switch
between them [14]. Hierarchical methods, in similar spirit,
have also been developed in planning-based algorithms. The
work in [7] proposes a contact planner for locomotion
in tasks where there are multiple stages of contact and
decomposing the planning into sub-problems is necessary. A
two-level approach was proposed in [15] to control a biped in
simulation, where a low-level policy learns to follow desired
footstep placements and a high-level policy learns to place
the footsteps based on the terrain information. In our work,
we propose embedding a policy with several aspects related
to the control and reward function such that the behaviour
of the low-level policy is very flexible and can be adapted in
different dimensions via a high-level policy. We also show
the effectiveness of the low-level policy on the real system
in challenging terrains and not only in simulation.

The proposed approach to learn parameterized policies for
quadruped locomotion follows an idea similar to the one
developed in [12]. However, we also use parameters like the
gains of the low-level impedance controller that are not part
of the reward, but can have a desired effect on the motion.
In the literature of skill learning, some works propose to
learn separate skills for different purposes [14], [16], [17],
[18] often via imitation learning of trajectories generated
by an optimal controller. Here, we are more interested in
learning a general locomotion policy that we can control
to fulfill specific task. Though it is also possible to follow
a hierarchical approach to learn locomotion policies from
visual input [19], the problem we consider in this work is to
learn the best blind low-level locomotion policy so that we
can control several aspects of it (foot height, stride length).
Since our proposed policies are reactive, there is no planning
involved.



III. PRELIMINARIES

A. Low-level parametric policies

We model the low level learning environment as a set of
Markov decision processes (MDPs), indexed by parameters
ω, with common, continuous state and action spaces [20]:
MΩ = {(S,A,Rω,P, ρ0)|ω ∈ Ω}, where S is an infinite
set of states, and A is an infinite set of actions. In each
Mω ∈ MΩ, taking an action a in a state s yields a reward,
defined by a function Rω : S×A×S → R. The environment
dynamics is described by a conditional transition probability
distribution P : S×A×S → R+, with the interpretation that
P(s, a, s′) = p(st+1 = s′|st = s, at = a) is a probability
(density) that the next state is s′ given that the current state is
s, and the action taken is a. ρ0 is the initial state probability
distribution. We assume parameters ω ∈ Ω ⊂ Rd to be
sampled from a static distribution ρΩ, and define the learning
task to be finding the common parameters θ for all stochastic
policies πω

θ : S → Pr(A|S) in order to attain a maximum
expected discounted sum of rewards

J(θ) := EρΩEπω
θ ,Pω,ρ0 [

∞∑
t=0

γtRω(st, π
ω
θ (st), st+1)], (1)

where γ ∈ [0, 1] is a discount factor. In practice, πω
θ is

implemented as a neural network thus θ corresponds to its
weights.

B. High-level parameter controlling policy

Given a parameterized set of MDPs (as described above)
and a parameterized set of low-level policies πΩ

θ , we de-
fine the high-level control setting as an MDP MH =
(SH ,Ω,RH ,PH , ρH0 ), where the superscript H stands for
”high-level”. The state space SH = S × Sh may also
contain additional information Sh (e.g., vision data) and the
action space consists of the set of low-level parameters Ω.
The transition dynamics is supposed to respect the low-level
dynamics so that it obeys∫

s′h
pH((s′, s′h)|(s, sh), ω)ds′h = P(s, πω

θ (s), s
′) (2)

for all s, s′ ∈ S, sh ∈ Sh, and ω ∈ Ω.
The high-level learning objective is to find the parameters

ϕ for a high-level stochastic policy
πh
ϕ : SH → Pr(Ω|SH) : πh

ϕ(ω|s) = pϕ(ωt = ω | st = s)
that optimizes the expected discounted cumulative reward

JH(ϕ) := EπΩ
θ ,πh

ϕ,PH ,ρH
0
[

∞∑
t=0

γt
HRH(sHt , ωt, s

H
t+1)], (3)

where γH ∈ [0, 1] is a discount factor, sHt = (st, s
h
t ), and ωt

is computed by the high level policy ωt = πh
ϕ(s

H
t ). Notice

also that sHt+1 = (πωt

θ (st), s
h
t+1).

IV. METHOD

In this section, we will first outline the main procedure
for learning general end-to-end locomotion policies on the
Mini-Cheetah quadruped. The low-level policy has to be
robust while following a set of references determined by the
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Fig. 3: The environment encoder E encodes a representation
of the privileged information into z. The adaptation module
A learns to regress the output of the encoder from the history
of the observations and actions to predict ẑ.

command parameters. The learned policy also has to transfer
to the real system. We will then describe the parameters that
the low-level locomotion task is conditioned on. Finally, we
introduce the high-level policy that adapts the parameterized
locomotion.

A. Low-level policy

The goal of the low level policy is to produce joint angle
control based on the state of the robot and the chosen
command parameters. A general scheme of the low-level
control is depicted in Figure 2.

Observation space. The observation of the robot mainly
depends on the IMU readings and the proprioception of the
joints. The observation at time t is:

ot = (θbody, ωbody, qt, q̇t, at−1), (4)

where θbody is the orientation of the base, ωbody is the angular
velocity of the base, qt and q̇t are the joint angles and
velocities respectively. We also include the previous actions
at−1 to the observation.

State space. Observations in the real system are noisy and
the dynamics of the robot and terrain could vary depending
on the situation. In order to learn policies that are robust and
transferable, one needs to inject noise and randomization in
the observation space and environment’s dynamics [4], [11].
Therefore, relying on a single timestep observation as input
to the control policies would often hinder both learning and
transfer.

To further robustify the robot behaviour, we use the rapid
motor adaptation (RMA) strategy [6]. RMA is a distillation-
based technique where an encoder network E is trained
to encode useful privileged information (i.e., information
only available in a simulator) to a latent vector zt that
represents environment’s dynamics that are randomized to
mimic the model mismatches and noisiness that are likely to
appear in the real world. At a second stage, an adaptation
model A is trained to learn an estimate ẑt of zt from the
history of observations and actions with a supervised learning
loss. We then use A when deploying the policy on the



real system. In the simulator, the state is st = (ot, zt, ωt),
and in the real robot st = (ot, ẑt, ωt). In this work, we
propose to augment the encoder input with privileged state
information related to the robot’s feet positions and contacts
and the base linear velocity. Ablation studies (see Section V-
B.2) indicate that this helps learning low-level policies that
reach the commanded references better and with less training
iterations. A full scheme of the RMA approach is depicted
in Figure 3.

Reward function The objective of the reward function
is to achieve a specified base velocity while minimizing
costs associated with acquiring resilient and stable locomo-
tion skills. A detailed breakdown of the reward function
components and weightings is presented in Table I. V base

x,y,yaw

refers to the 3D vector consisting of the measured base linear
velocity along x and y and angular yaw velocity. pf,z,i is the
ith foot height in world coordinates while pmax

f,z refers to the
desired foot height in world coordinates and Vf,xy,i is the ith

linear foot velocity along x and y. The foot clearance reward
depends on how close the current foot height is to the desired
one, scaled by the foot velocity, e.g., the faster the feet are
moving the higher the robot should lift its feet. The total
reward function is the weighted sum of these terms. The main
positive term in the reward function is related to tracking the
desired velocity, while negative costs are used for refining the
movement in terms of action magnitude and smoothness, for
raising the feet, and maintaining an appropriate posture and
base stability.

Reward Function Formula
Velocity tracking cvelexp(−||V cmd − V base

x,y,yaw||2/σvel)

Base z velocity cvz∥Vz∥2
Joint angle deviation cjpos||qt − qnominal||2

Joint velocities cq̇ ||q̇t||2
Joint accelerations cq̈ ||q̇t − q̇t−1||2

Joint torques cτ ||τ ||2
Orientation cθ∥θroll,pitch∥2

foot clearance cfcl
∑4

i (pf,z,i − pmax
f,z )2||Vf,xy,i||0.5

action smoothness csmooth∥at − at−1∥2

TABLE I: Reward function terms and coefficients. The total
reward is a weighted sum of all the terms above.

Locomotion command parameters. The reward design
is similar to previous studies on end-to-end RL for locomo-
tion [10], [5], [4], [11], [21]. However, in these previous
works, the velocity command was usually considered the
main command parameter in the reward function. While
training in simulation it is randomly sampled, and on the real
robot, it is controlled by the user with a gamepad device. In
this work, we consider more elaborate command parameters
that are hard to be prescribed by the user. The main parameter
vector ω given to the policy is:

ω = (Vcmd, p
max
f,z , cjpos,Kp,Kd, qnominal),

where Vcmd is 3D the velocity command, linear along x, y
and angular about z. pmax

f,z is the maximum foot height to
reach in the swing phase, which is part of the foot clearance

reward. cjpos is the coefficient that weights the joint angle
deviation penalty, and Kp and Kd are the proportional and
derivative gains for the PD controller, and qnominal is the
initial pose around which the action space is centered.

Action space. The network πθ outputs the joint angle
targets that are fed to a PD controller with zero joint velocity
targets. We center the action space around the nominal joint
angles at the initial position of the robot, so that the PD target
at time t is qtargett = qnominal +λπθ(st, ωt). This centering
is essential for the policy to learn and allows us to control
the limits of the joint angles from the initial position. In our
experiments we found λ = 0.3 to be the best choice. This
action space was used in previous literature [4], [5].

B. High-level policy

The actions of the high-level policy are locomotion parame-
ters that modulate the low-level policy. The main intuition is
that the elements of ω can be varied to change the behaviour
of the robot while still producing stable locomotion that is
learned by the low-level policy.

The high-level policy πh
ϕ can control Vcmd when it is

not tuned by a user, like for example, in an autonomous
point goal navigation task. The maximum desired foot height,
pmax
f,z , is an important parameter that has consequences on

transfer [10], [21]. On complex terrain the robot might need
to lift its feet higher than on flat terrain where the robot can
safely save some energy by not lifting its feet much. cjpos
determines the joint angle deviation penalty weight. In our
experiments in Section V-B.1, we found that different values
of this coefficient result in different stride length. Therefore,
we use it as an indirect way of controlling the stride length.
Controlling the PD gains adds variable impedance control
aspects to learned policies [22]. It also adds robustness to
variations in the environment [23] and makes it possible to
control the expended torques to perform tasks that require
more power.

The choice of parameters the high-level policy controls
depends on the task. In this work, we experiment with a high-
level task of traversing a variety of complex terrains while the
high-level policy only optimizing for velocity tracking and
energy consumption. The high-level policy takes a scan of the
height measurements surrounding the robot as input Figure 5.
The actions of this policy are deltas to the default command
parameters vector ω excluding the velocity commands. We
chose this task to show how we can easily learn to adapt the
low-level policy behaviour that is trained on a flat terrain in
order to be useful on more complex terrains. The high-level
reward function rh is based on the velocity tracking term (in
Table I) and the energy consumption terms:

rht = rvelt − 0.002|τTt q̇t|. (5)

In the next section, an analysis of the resulting low-level
policy with the elaborate locomotion parameters input is
displayed. We then present some high-level tasks to showcase
the benefits of the proposed hierarchical scheme. For each
task, the high-level state, action and reward will be explained
in detail along with the results.



V. EXPERIMENTAL RESULTS

This section includes full implementation details about the
entire approach. We conduct our experiments to answer the
following questions: (1) Which aspects of the locomotion
vary when modifying the command parameters of the low-
level policy? (2) Does our additions to the encoder net-
work improve the learned performance? (3) How would
a hierarchical policy improve on the baseline end-to-end
approaches on flat terrains and complex structured terrains
in the presence of exteroception?

A. Implementation details

As mentioned before, we conduct our experiments with the
Mini-Cheetah quadruped, which has 12 degrees-of-freedom
with 3 actuators per leg [9]. The two levels are trained one
after the other. First, the low-level policy is trained to follow
different random values of the command parameters. After
that, depending on the high-level task, one trains a high-level
policy that controls the parameters of the already learned
parametric low-level policy.

Both policies have the same architecture which is a multi-
layer perceptron (MLP) with three hidden layers of sizes
512, 256, 128. The RL algorithm used to train both levels is
PPO [24] with generalized advantage estimation [25]. We
train our policy networks with actor-critic approach with
critic having the same architecture as the actor but with
a scalar value for the value estimation [26]. The policies
run at a frequency of 50Hz while the simulation frequency
runs at 200 Hz. On the robot the same control frequency
is maintained while the low-level PD control runs in a high
frequency feedback loop of 40 KHz.

Low-level policy training. The observation space is 45-
dimensional while the actions are 12-dimensional, equal to
the number of actuated joints. We use the exponential linear
unit (ELU) activation function in the neural networks.The
critic also receives directly the privileged state of the robot.

We use the IsaacGym simulator from Nvidia [27]. The en-
vironment code is based on the legged gym repository [28].
In the current experiments, 4096 agents are run in parallel
in an infinite horizon objective where the environment does
not reset with each new training episode, but continues with
the latest reached state. However, we found that introducing
random resets also helps. We were able to learn the low-level
policy with command parameters in 5000 iterations.

A linear curriculum was implemented on the penalty terms
of the reward. A curriculum factor kc ∈ [0, 1] was introduced
to scale the reward. This factor is increased as training
progresses to give more weight to the penalties. At the start
of training the agent is mostly concerned with learning a
movement that follows the reference velocity in any possible
way. As training progresses the movement is refined to
optimize the penalty terms [4], [21]. The reward function
term weights in Table I are chosen to be: cvel = 1.0, cvz =
−1.2, cq̇ = cτ = −0.0003, cq̈ = −0.00001, cθ = −3.0,
cfcl = −5. and csmooth = −0.01.

Command parameters ω are sampled at the start of a new
training episode and given as input to the low-level policy.

The parameters are resampled when the policy fails (e.g.,
robot falls) or at random times if the policy does not fail.
The sampling range for each element in ω can be found
in Table III1. Each parameter is sampled from a uniform
distribution that samples deviations around the parameter’s
default value within the specified range. The sampling is also
scaled by the curriculum factor kc, i.e., we use the curriculum
on the command parameters as well as on the reward terms.

Random Observations: Random Dynamics:
θbody U3(−0.05, 0.05) Motor Strength U12(−0.9, 1.1)
ωbody U3(−0.20, 0.20) Ground Friction U(0.5, 1.0)

q U12(−0.05, 0.05) Ground restitution U(0.0, 1.0)
q̇ U12(−1.00, 1.00) Body Mass U(−1.0, 1.0)

COM displacement U3(−0.2, 0.2)

TABLE II: Ranges and dimensions of uniform noise for
randomizing the dynamics and observations.

Element Range Default
Foot height target [cm] [3.0 , 15.0] 7.0

Joint angle deviation [-1.0, -0.2] -0.5
Position gain [17.0, 30.0] 20.0

X: [-2.0, 2.0] 0.0
Velocity reference [m/s] Y : [-1.0, 1.0] 0.0

z yaw: [-1.0, 1.0] 0.0
Shoulder: [0.0, 0.1] 0.05

qnominal [rad] Hip : [-2.0, -0.1] -0.8
Knee: [1.3, 1.9] 1.6

TABLE III: Default values of the command parameters and
ranges in which the commands are sampled.

Domain randomization and RMA. For transferring the
learned policy to the robot, it is essential to randomize
various aspects of the observation and dynamics in order to
mimic the perturbations and imperfections of the real system.
The randomized values in the observations, robot dynamics,
and terrain dynamics are shown in Table II. However, we
found that, for the Mini-Cheetah, relying solely on domain
randomization does not yield good transfer. To enhance
transfer, we used rapid motor adaptation (RMA) [6], [29],
in which one first learns a latent embedding zt that encodes
privileged information around the randomized dynamics, and
then uses supervised learning to build an adaptation model
that estimates this zt based on the sequence of state variables
that are also available in the real robot.

In our setup, the embedding size for zt is 18 while the
input size of the privileged information is 29. The privileged
input is constructed from the vector of random dynamics
values (ranges presented in Table II) and the privileged data
regarding the feet height in world frame, terrain contact
indicators and base linear velocities. The encoder E and
adaptation model A are both MLPs with two hidden layers
of sizes 256 and 128. The adaptation model takes as input
the last N = 15 observations and outputs an estimate ẑ of
the latent vector z. Further information on this method can
be found in [6], [29].

1Note the value of the derivative gain is coupled with the position gain,
i.e., Kd is chosen to be a scaled value of K0.5

p as in [22].



Fig. 4: Front left foot height for different pmax
f,z targets (5, 10

and 15cm), when running the robot controlled by the low-
level policy at a 1.0m/s forward velocity command.

B. Low-level policy study
1) Understanding the parameterized low-level control: It

is important to first quantitatively and qualitatively observe
the effect that the parameters ω have on the final locomotion
in order to be able to define useful tasks that could benefit
from a policy that controls ω. In this section we outline
the difference in aspects of the resulting locomotion when
changing some command parameters individually.

Joint angle penalty weight = −0.1
Vx [m/s] 0.5 1.0 1.5

footstep [m] 0.27 ± 0.03 0.33 ± 0.03 0.42 ± 0.04
Joint angle penalty weight = −0.5

Vx [m/s] 0.5 1.0 1.5
footstep [m] 0.22 ± 0.001 0.32 ± 0.005 0.39 ± 0.02

Joint angle penalty weight = −1.0
Vx [m/s] 0.5 1.0 1.5

footstep [m] 0.17 ± 0.001 0.25 ± 0.001 0.33 ± 0.003

TABLE IV: Average foot step length as a function of the
forward velocity command (angular velocity is set to zero)
and joint angle deviation penalty weight.

The joint angle deviation term in the reward penalizes the
policy based on how far the joint positions are from the
nominal pose. Intuitively, modifying this penalty coefficient
in the reward should allow us to control the range of joint
movement which affects the step length. We verify that the
step length in the parameterized low-level policy is a function
of the coefficient cjpos by examining the average foot step
length of the forward left foot as a function of the forward
velocity in Table IV. This table shows a clear relationship
between the foot step length and coefficient value. For all
values of cjpos the average step length increases with the
increase in the commanded Vx. However, the average step
length for the same velocity command decreases when the
absolute magnitude of cjpos is increased. In other words,
the more weight given to the joint angle deviation term the
smaller the average foot steps are and vice versa. We also
notice the high variance of the average step length when
cjpos = −0.1 which suggests the limit to which cjpos could
be varied while the penalty still retains an effect on the
overall behaviour.

The pmax
f,z parameter defines the target foot height when

the foot is in swing mode. Figure 4 shows a plot of the

Fig. 5: Left: Terrain types in the HRL experiments.
Right: Height-map measurements around the robot.

Fig. 6: The average episodic reward per training iteration.
The curves show two experimental setups: when additional
information is added to the encoder network (yellow), and
when it is not (purple).

achieved height of the front left foot as a function of time
when running the low-level policy with a forward velocity
command of 1.0m/s for four seconds. The figure shows
patterns when the foot is swinging and when it is resting on
the ground. We can clearly see the increase in foot height
for higher values of pmax

f,z . Another interesting behaviour that
emerges from changing the foot height target is a change in
the stepping period. The 5cm height target results in shorter
stepping period than the 10cm target, which in turn results in
a shorter period than the 15cm target. Note that the achieved
foot height is lower than the target because the foot clearance
reward does not only depend on pmax

f,z but is also scaled by
the velocity of the feet, see Table I.

2) Ablation studies: In Section IV-A, we introduced ad-
ditional information regarding the feet height, feet contacts
and the base linear velocity as additional input to the encoder
network E. We show in Figure 6 the average episodic reward
achieved during training as a function of the training step
with and without the additional data to the encoder input.
Each curve in the plot is the average over five seeds of
the same experiments. We notice the higher overall attained
reward with the proposed additions. The additional input
allows the learning to optimize rewards like foot clearance
whose target value is varied from one episode to another.

C. High-level policy study

The strength of the proposed approach is the ability to reuse
the low-level policy for different high-level tasks. In this
section, we verify that we are able to learn a high-level policy
that adapts the low-level policy, learned on a flat terrain, in
order to successfully traverse complex terrain that includes
flat and rough plains, stairs, slopes and obstacles as shown
in Figure 5.

Baseline comparison. We compare the results of the
proposed hierarchic approach with a baseline end-to-end



approach that learns to traverse the terrain from scratch
with the height map state as input along with the low-level
policy observation and reward function. However, we add
the energy consumption cost term to the reward function
for fairness of the comparison between the baseline and the
proposed hierarchical approach. The training approach using
the elevation map is inspired by the work done in [28].
We also use a similar curriculum on the terrain in order
to gradually introduce the robot to terrains with increasing
difficulty. It is important to note that the baseline training
also uses the same RMA technique to enable the transfer of
the learned policies on the real robot.

Figure 7 shows a scatter plot featuring the power con-
sumption as a function of measured linear velocity. We
collect the data points of the plot by running the two policies
(hierarchic approach and baseline) on the velocity commands
Vx = {0.0, 0.5, 1.0, 1.5, 2.0}[m/s] for ten seconds at each
velocity over a flat terrain. The figure shows that the pro-
posed approach leads to lower overall power consumption
with less variance than the baseline, especially at higher
velocities. The hierarchic policy also tracks the commanded
velocity better than the baseline policy both in terms of
accuracy and variance.

Figure 8 shows the adaptation of the command parameters
when the robot has to climb stairs. We see the change from
their default value (dashed line). The high-level policy raises
the foot height target (Fh) and the position gains which helps
the robot use more power to climb the stairs. The angles of
the hip and knee joints are lowered from their default values
which could explain the overall improved energy efficiency
of the robot (seen in Figure 7), since standing on straighter
legs requires less power.

Sample Efficiency. Our hierarchical learning method also
needs fewer samples for training since it splits complex
problems into simpler sub-problems. In our experiments, the
baseline method that learns to cross terrains from scratch
required 20000 training iterations which is around two billion
samples. However, with the hierarchical approach we are
able to learn a low-level policy with 5000 iterations and
a high-level policy with 3000 iterations. This means that
our approach requires less than half the number of samples
that the baseline needs because the complex problem of
learning locomotion is done in the low-level policy on a
simple terrain.

D. Real robot transfer

On its own, the low-level policy can be successfully trans-
ferred to the Mini-Cheetah robot. We attach a video showing
the policy in action with different command parameters. The
video first shows the low-level policy run with different
desired feet height and online changing of the nominal pose.
We can see the feet lifted differently and the robot changing
its pose as it is moving. We also show multiple videos of the
low-level policy traversing difficult surfaces ( going up and
down stairs, going over pavements and crossing steep slopes
on muddy grass terrain) in a very robust manner when using
parameters similar to the one learned by the high-level policy

Fig. 7: Average power vs. measured velocity for the hierar-
chic and baseline policies.

Fig. 8: Some command parameters’ values adapted by the
high-level policy while climbing stairs.

in the structured terrains. The video attachment also shows
that a policy trained with fixed sets of parameters completely
fails to be robust over structured terrains. The transfer of the
high-level policy to the robot requires more instrumentation
and handling exteroception (vision) that is beyond the scope
of the current paper and will be the aim of a future work.

VI. DISCUSSION AND LIMITATIONS

We presented a hierarchical scheme for adapting learned
quadruped locomotion. The main strength of the work lies
in the versatile low-level policy training that can be reused
for different tasks and in different environments and terrains.
The low-level policy embeds several behaviour through the
command parameters. However, having a single low-level
policy could also make training harder since we have to
find one policy that is optimal for all combinations of the
command vector. It is possible that training low-level policy
on specialized subspaces of the command vectors would
produce more specialized diverse skills. For example, we
could train one policy that specializes in lifting its feet high



and another one that specializes in taking long steps, and then
combine these two policies in an ensemble manner [30]. This
is an interesting question to explore in our future research.

We chose a specific set of commands that can directly
and indirectly control aspects of the learned behaviour so
we can simply show how they affect the policy when varied.
For future work, an interesting objective could be to expand
the command parameters to include all parameters related
to the reward coefficients and learned pattern. For example,
while we have assumed that PD gains are fixed for all joints,
depending on the type of pattern we could propose learning
a different gain for each leg or joint.

VII. CONCLUSION

In this work, we argued for expanding the notion of the
command in learned locomotion policies by actively setting
targets for locomotion features such as the swing feet height,
stepping length, initial pose and gains. We show that we are
able to learn a locomotion policy that reacts to the targets set
by the command parameters. This makes it possible to adapt
the low-level policy for different tasks. For this effect, we
propose a hierarchical RL setup where a high-level policy
learns to adapt the parameters of the low-level policy for
versatile locomotion. We also showed that this hierarchical
setup speeds up the learning of new tasks and that adapted
policies can be better in quality than policies learnt from
scratch. With parameterized policies we made our real robot
successfully traverse complex terrains on which the baseline
policy fails. In the future we will add exteroception to the
Mini-Cheetah in order to be able to deploy and test high-level
policies on the real robot in more complex tasks than those
now demonstrated with a parameterized low-level policy.
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