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We study an incommensurate XXZ spin chain coupled to a collection of local harmonic baths. At zero
temperature, by varying the strength of the coupling to the bath the chain undergoes a quantum phase tran-
sition between a Luttinger liquid phase and a spin-density wave (SDW). Our results are consistent with the
Berezinskii-Kosterlitz-Thouless (BKT) transition. As opposed to the standard mechanism, the SDW emerges in
the absence of the opening of a gap, but it is due to “fractional excitations” induced by the bath. We also show,
by computing the DC conductivity, that the system is insulating in the presence of a subohmic bath. We interpret
this phenomenon as localization induced by the bath à la Caldeira and Leggett.
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I. INTRODUCTION

Open quantum systems, namely, systems coupled with
external degrees of freedom, are often studied in order to un-
derstand the phenomenon of decoherence and the emergence
of classical laws from a quantum-mechanical description. A
common setup is to consider the Markovian dynamics of
quantum systems subject to repeated measurements [1,2]. One
of the most intriguing results is the possibility to observe a
phase transition in the behavior of the quantum trajectories.
The transition is controlled by the measurement rate: For a
low rate the entanglement grows linearly in time, while at a
high measurement rate, it saturates at a finite value [3–12].
Another important setup is to consider the effect of a thermal
bath on the system. Following the pioneering works [13–16],
we expect that a slow bath (i.e., subohmic and ohmic) can
induce localization in simple systems, such as a particle or a
spin. Note that this dynamical transition cannot be described
by a Lindblad equation [17]. Indeed, in order to capture this
localization phenomenon, it is crucial to relax the Markovian
assumption which is behind the Lindblad equation. Moreover,
from several variational studies of the ground state of the
spin-boson model (namely, the Caldeira-Leggett model for
a single spin), a genuine thermodynamic transition has been
shown to exist for strongly coupled subohmic bath [18,19].

In this work we investigate the possibility of such non-
Markovian transitions in many-body systems. In particular,
we focus on a one-dimensional (macroscopic) interacting and
incommensurate spin chain coupled to local baths of har-
monic oscillators (Fig. 1). This problem was studied in [20]
with a special focus on the ohmic case. Here we generalize the
study to the superohmic and subohmic case, with particular
emphasis on the nature of the dissipative phase both for ther-
modynamic and transport properties. In particular, we show
that the dissipative phase is an incommensurate spin-density
wave of period π/qF , where qF is the Fermi momentum of
the system. Unlike the Peierls scenario [21], this spin-density
wave emerges in the absence of the opening of a gap, but
it is due to “fractional excitations” induced by the slowly

varying bath. The spin-density wave order is not only partic-
ular to subohmic baths but also survives in the presence of
superohmic. However, for a subohmic bath, the environment
can induce “localization” with a gapless insulating phase. The
nature and the details of these “fractional” dissipative phases
are derived by studying the bosonized action with a thorough
variational approach and tested with respect to the exact action
with numerical simulations for the subohmic case.

The metal-insulator transition for subohmic baths is remi-
niscent of the (zero-temperature) localization transition which
occurs in interacting one-dimensional systems due to the pres-
ence of quenched disorder [22,23]. Indeed, local baths can be
thought of as spatially uncorrelated annealed disorders. In the
dissipative phase, the degrees of freedom of the system and
those of the bath optimize collectively to find a low-energy
configuration [24].

We also describe the finite-size and finite-temperature ef-
fects. At finite temperature, the order parameter vanishes,
but the spin-density wave can be observed from correlation
functions below a length scale which grows as β, where β

is the inverse temperature of the system. For finite system
size (and zero temperature) the order parameter vanishes for
superohmic baths, and one recovers the phase transition that
occurs for the spin-boson model with subohmic baths [19].

The manuscript is organized as follows: In Sec. II we
introduce the model. The analytical variational solution of the
model is described in Sec. III. Section IV consists of detailed
discussions about the nature of the order parameter and the
dissipative phase, followed by the comparison of the analyt-
ical solution obtained with the variational ansatz, with exact
numerical simulation in Sec. V. In Sec. VI we discuss the
transport properties of the model, and in Sec. VII we conclude
with a discussion of the nature of the dissipative phase and the
absence of linear response transport in the system.

II. MODEL

We investigate the zero-temperature low-energy phase dia-
gram of an incommensurate XXZ spin chain in the presence
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FIG. 1. Schematic diagram of a one-dimensional quantum XXZ spin chain coupled with local dissipative baths. Jxy denotes the hopping
energy, and Jz is the interaction between the two nearest-neighbor spins. The baths are characterized by their spectral function J (�) ∼ α�s.
At zero temperature, the baths induce an SDW phase with periodicity π/qF , where qF is the Fermi momentum related to the magnetization of
the chain (see text).

of local subohmic baths. The Hamiltonian of the system is
given by

H = HS + HB + HSB

HS =
L∑

j=1
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j σ
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j σ
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2mk
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∑
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λkXjk .

(1)

The dissipative baths are characterized by their spec-
tral function J (�) ≡ π

2

∑
k (λ2

k/mk�k )δ(� − �k ). The zero-
temperature, low-energy physics of the system depends only
on the small-� (large time) behavior of J (�):

J (� → 0) ∼ πα�s. (2)

Here α denotes the effective coupling strength of the bath to
the system and s sets the nature of the bath. In particular,
for s = 1 the bath is called an “ohmic” bath. Hence, for
0 < s < 1, the bath is known as a “subohmic” bath, and for
1 < s < 2, it is referred to as a “superohmic” bath. For s > 2
the correlations of the bath are short range, and thus the bath
doesn’t induce any phase transition in this system [14]. In
one dimension the XXZ spin chain is a general description
of an interacting many-body system, as it can be mapped onto
a spinless fermionic chain and hard-core bosonic chain via
Jordan-Wigner [25] and Holstein-Primakoff transformation
[26], respectively. Its phase diagram is well known; specif-
ically, at zero temperature and in the finite magnetization
sector (h �= 0), one can use bosonization to arrive at the so-

called Luttinger liquid (LL) action [27]:

SLL = 1

2πK

∫
dxdτ

[
1

u
(∂τφ(x, τ ))2 + u(∂xφ(x, τ ))2

]
, (3)

where φ(x, τ ) is a bosonic field defined in the two-
dimensional space of position x ∈ (0, L) and imaginary time
τ ∈ (0, β ), β being the inverse temperature of the system. u is
the speed of sound, and K is called the Luttinger parameter
and depends on the values of Jz and Jxy. The contribution
coming from the magnetic field, given by − h

π

∫
∂xφ in the

bosonic language, can be absorbed into the action by using
a tilt transformation φ → φ − hKx/u. In this case, the Fermi
momentum of the system qF = π (1 − (M/N ))/2a is incom-
mensurate with the lattice spacing, and hence we refer to the
system as an “incommensurate spin chain.” Here N is the total
number of spins, M is the total magnetization of the chain,
and a is the lattice spacing. This action is known to describe a
metallic, perfectly conducting, and gapless phase.

To analyze the effect of the bath on the spin chain, we apply
bosonization to map the σ z

j operator onto the bosonic fields
φ [27]:

σ z(x) = 1

π

(
−∇φ + 1

a
cos (2φ(x) − 2qF x)

)
. (4)

Then we integrate out the bath degrees of freedom to arrive at
an effective field theory (more details can be found in Sec. III
in [20]):

Seff = SLL + Sdiss

Sdiss = − α

4π2

∫
dxdτdτ ′ cos (2(φ(x, τ ) − φ(x, τ ′)))

|τ − τ ′|1+s
. (5)

The local dissipative baths introduce a long-range cosine
potential acting only along the τ direction, which can break
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symmetry and induce phase transition on the existing LL
phase. See also [28–33], where the long-range term allows one
to establish long-range order by breaking continuous symme-
try. A similar problem but with a single degree of freedom
(particle) was shown to lead to dynamical phase transitions
as a function of the exponent s [34,35]. In particular, the
dynamics of the degree of freedom is frozen in its initial state
in the presence of subohmic baths (s < 1) at zero temperature,
whereas it oscillates in the presence of superohmic baths
(s > 1) [14]. In subsequent sections we show that the ordered
dissipative phase is described by a spin-density wave (SDW)
of the form

〈σ z(x)〉 = σ0 + σ1 cos(2qF x). (6)

Here σ0 is the magnetization per spin σ0 = M/N , while σ1 is
the amplitude of the SDW, which is the order parameter of the
transition.

III. VARIATIONAL ANSATZ

The action from Eq. (5) cannot be exactly solved due
to the presence of the cosine term. One can estimate the
critical properties of the action using a perturbative RG
method [36] (see also Appendix B). However, here we rely
on the variational method [37] to describe the nature of the
different phases: We find the best quadratic action Svar =

1
2πβL

∑
q,ωn

φ∗(q, ωn)G−1
var (q, ωn)φ(q, ωn) that describes the

original action [Eq. (5)] effectively at zero temperature.
One can write the free energy of the original system
as Feff = T log Zeff = F0 − T log[〈exp(Seff − Svar)〉Svar ], where
F0 = −T ln Zvar, Zeff is the exact partition function of the
action that one wants to study, and T is the temperature
of the system. We now define a variational free energy
Fvar = − 1

β

∑
q,ωn

log G(q, ωn) + 1
β
〈Seff − Svar〉Svar . Due to the

inequality 〈exp ( − (Seff − Svar))〉 > exp ( − 〈(Seff − Svar)〉), it
can be easily observed that Fvar � Feff. Hence, we minimize
Fvar with respect to the variational propagator by setting
∂Fvar
∂Gvar

= 0 to obtain a quadratic propagator that describes
the system effectively. Applying this protocol to the action
Eq. (5), we find a self-consistent equation for G−1

var:

G−1
var = 1

πK

(
uq2 + ω2

n

u

)
+ α

π2

∫ ∞

τc

dτ
1 − cos ωnτ

τ s+1

× exp

(
− 4

π2

∫ ∞

0
dq′dωn′ Gvar(1 − cos ωn′τ )

)
, (7)

where τc is the timescale after which the bath displays the
power-law behavior. In the next two sections, we describe
the analytical solution of this self-consistent equation. In the
third section, we provide numerical evidence that supports this
solution.

A. Dissipative phase

We first observe that the dissipative phase is gapless.
Namely, for q = ωn = 0, from Eq. (7) we get  ≡ G−1

var (q =
0, ωn = 0) = 0. Secondly, since Sdiss is invariant under
a tilt transformation φ → φ − hφx

π
, the susceptibility

is not affected by the potential, namely, χ =
limq→0 limωn→0(q2/π2)G(q, ωn) = K/(uπ ) (see also

Appendix B in [20]). Hence, to solve this self-consistent
equation, we assume that

G−1
var (q, ωn) = 1

πK

(
uq2 + ω2

n

u
+ F (ωn)

u

)
, (8)

where in the small ωn limit, F (ωn) = η(α)|ωn|ψ1 +
a(α)|ωn|ψ2 . We determine these parameters in the small
ωn limit.

Determination of ψ1. Using this form of the prop-
agator, it can be easily seen that at large τ limit,
one has

∫ ∞
−∞ dq′dωn′Gvar(q′, ωn′ )(1 − cos ωn′τ ) ≈ C(α) −

( ζτ (α)
τ

)1− ψ1
2 , where C(α) and ζτ (α) are α-dependent constants.

Using this, we obtain

η(α)|ωn|ψ1 + a(α)|ωn|ψ2

large τ≈
∫

dτ
(1 − cos ωnτ )

τ s+1

⎛
⎝1 +

(
ζτ (α)

τ

)1− ψ1
2

⎞
⎠. (9)

From power counting of both sides, we find out that ψ1 = s
and ψ2 = 1 + s

2 . Note that ψ2 is subleading for s > 0.
Determination of η. The behavior of the coefficient of

|ωn|s (η(α)) is important to locate the transition point be-
tween the LL and the dissipative phase. It can be estimated
from the variational method. Indeed, neglecting the sub-

leading term, we get G−1
var (q, ωn) = 1

πK (uq2 + ω2
n

u + η

u |ωn|s).
Using this form of the propagator, it can be easily seen that∫ ∞

0 dq
∫ �

0 dωn Gvar(q, ωn) ≈ 2K
2−s log 4�2−s

η
, where � is an ul-

traviolet cutoff. Plugging this result in Eq. (7), we obtain

ηωs
n

uK

small ωn≈ α′
(

η

�′2−s

) 2K
2−s

ωs
n, (10)

where α′ depends on α, s, and �, and �′ = 4
1

2−s �. Comparing
the coefficient of ωs

n on both sides, we see that there is a
critical point at Kc = 1 − s

2 where η goes to zero. For K < Kc,
the solution reads

η = [α′uK�′−2K ]
2−s

2−s−2K . (11)

B. LL phase

To calculate the (eventual) renormalization of the coef-
ficient of ω2

n in the LL phase, we consider that F (ωn) =
νω2

n. We assume that the correction coming from ν is
small compared to K . Hence, to estimate ν, we re-
place Gvar on the right side of Eq. (7) by the bare LL

propagator πK[uq2 + ω2
n

u ]−1. Hence, we find νω2
n/(uK ) =

α
π2

∫ ∞
τc

dτ 1−cos ωnτ
τ 1+s exp(−2K

∫ �

0 dω′
n

1−cos ω′
nτ

ω′
n

). The integral
over ωn′ yields (γE + ln �τ ), and after expanding cos ωnτ for
small ωn, we find

ν

uK
= α̃ exp(−2Kγ )

�̃2K (2K + s − 2)
, (12)

where α̃ = ατ 2−s
c

2π2 and �̃ = �τc. We see that this estimate for
K > 1 − s/2, large �, and small α represents a small correc-
tion to the action [38]. From the variational ansatz, we see that
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FIG. 2. F (ωn) for ohmic (s = 1, left) and subohmic (s = 0.5, right) bath obtained by numerical solution of Eq. (14) (with β = 1024 and
α = 5). In the dissipative phase, F (ωn) behaves as 0.301|ωn| (purple square points) for ohmic (K = 0.15) and 0.415

√|ωn| for (purple circular
points) subohmic bath (K = 0.3). In the LL phase, F (ωn) = 0.06ω2

n for the ohmic bath (black square points) and F (ωn) = 0.054ω2
n for the

subohmic bath (K = 1) (black circular points).

the Luttinger parameter K is normalized to Kr , given by

Kr = K√
1 + ν

. (13)

This is not the case for the Sine-Gordon model, which cor-
responds to our model for qF = π/(2a) (zero magnetization)
and α = 0 (without the bath). In this model the variational
phase diagram displays a vertical phase boundary, i.e., it
leaves K unrenormalized in the LL phase [27]. The explana-
tion is that the variational procedure captures the perturbative
renormalization group (RG) flow of K up to the first order
in α. In the RG procedure of the Sine-Gordon model, the
renormalization of K at the first order of the coupling is zero
and starts becoming finite only at the second order. On the
contrary, the perturbative renormalization of K is nonzero
for our action [Eq. (5)], even in the first order of α, which
is also captured by the variational method, as we show in
Appendix B.

C. Numerical solution of the self-consistent equation

To support our claim, we also numerically solved the fol-
lowing self-consistent equation for F (ωn) by plugging Eq. (8)
in Eq. (7):

F (ωn) = uKα

π

β−1∑
τ=1

D(τ )(1 − cos ωnτ )

× exp

⎛
⎜⎝−2πK

β

β

2 −1∑
n′=− β

2

1 − cos ωn′τ√
ω2

n′ + F (ωn′ )

⎞
⎟⎠, (14)

where D(τ ) is the long-range kernel of Eq. (7), realized
on a discretized lattice with periodic boundary condition,
namely, D(τ ) = ∑β/2−1

k=β/2 B[(τ + kβ ) − s
2 , s − 1], where B()

is the Beta function (for more details, see Appendix C of
[20]). In Fig. 2 we check the behavior of F (ωn) for ohmic and
subohmic baths in both LL and dissipative phases. Figure 3

shows us the behavior of η and ν for the dissipative phase and
LL, respectively, for ohmic and subohmic baths. For fitting
purposes, we use α′ and � for η and τc and � for ν as fitting
parameters, because they depend on the boundary condition
and discretization. The plots show us that, indeed, our analyti-
cal predictions of Eqs. (11) and (12) are in fair agreement with
the direct numerical solution of Eq. (14).

IV. ORDER PARAMETER AND DISSIPATIVE PHASE

In the dissipative phase, the spin chain develops a long-
range-order spin-density wave. To better understand the
properties of this phase, we first study the order parameter
of the transition, namely, the amplitude of the SDW. Using
Eq. (4), together with the symmetry φ → −φ to remove the
terms 〈∇φ〉 and 〈sin(2φ)〉, we see

〈σ z(x)〉 = 1

πa
〈cos(2φ)〉 cos(2qF x). (15)

Comparing with Eq. (6), we identify the amplitude of the
SDW:

σ1 = 1

πa
〈cos (2φ(x, τ ))〉. (16)

We note two important points:
(1) In contrast with the standard Peierls mechanism, the

amplitude of the SDW is not associated with the formation of
a gap. Indeed, the spin chain is gapless.

(2) For the incommensurate case the global shift φ →
φ + c does not cost any energy, but in the dissipative phase,
this symmetry will be broken by the presence of local field
or impurity. It is then convenient to fix this constant by set-
ting the center of mass of the field φ(x, τ ) to zero, namely,
φ(q = 0, ωn = 0) = 0.

In the thermodynamic limit L → ∞ and zero-temperature
limit β → ∞, the order parameter is zero in the LL phase
(no true long-range order), whereas it is constant in the dissi-
pative phase. Indeed, we can estimate the value of the order
parameter in the dissipative phase using the variational ansatz
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FIG. 3. The parameters η and ν obtained from the numerical solution of Eq. (14) (with β = 1024 and α = 5). For η (top row), we use α′

and � from Eq. (11) as fitting parameters. For the ohmic case (purple square), α′ = 10.096, � = 1.963, and for the subohmic case (purple
circle), α′ = 8.29, � = 3.29. For the plot of ν (bottom row), the fitting parameters are τc and � from Eq. (12). For the ohmic case (black
square), τc = 1.68, � = 0.272, and for the subohmic case (black circle), τc = 1.241, � = 0.415.

Gvar(q, ωn) = πK[uq2 + η
|ωn|s

u + ω2
n

u ]−1:

σ1 = 1

πa
〈cos(2φ)〉 = 1

πa
e− 2

π2

∫ �

0 dωn
∫ ∞

0 dq Gvar (q,ωn )
. (17)

It is instructive to consider the effect of finite temperature
and finite size. One can easily find out that in the Fourier
space, the order parameter is given by

〈cos 2φ〉L,β = exp(− 2

βL

∑
q,ωn

q,ωn �=0

Gvar(q, ωn)).

As shown in Appendix A, this sum can be decomposed into
three contributions:

(1) The contribution of ωn = 0, q �= 0 terms, which ac-
counts for finite-size effects.

(2) The contribution of ωn �= 0, q = 0 terms, which ac-
counts for finite-temperature effects.

(3) The contribution of ωn �= 0, q �= 0 terms, which can be
approximated by Eq. (17) with subleading corrections.

Using the variational action [Eq. (8)] with the LL ansatz
F (ωn) = νω2

n, one can find that (for details, see Appendix A)

〈cos 2φ〉LL
L,β ∼ e− π2

6

[
χ L

β
+ρs

β

L

]−Kr ln min(β,L)
. (18)

Here χ is the susceptibility (πχ = K/u = Kr/ur) and ρS =
limq→0 limωn→0(ω2

n/π
2)G(q, ωn) is the spin stiffness (πρs =

Krur).

Using the variational action with dissipative phase ansatz
F (ωn) = η|ωn|s, it behaves as

〈cos 2φ〉diss
L,β ∼ σ1e−χ π2

6
L
β
+ 2uK

η

b0 (s)

(2π )s−1
βκ (s)

L +c1β
s
2 −1

. (19)

Three limits should be discussed:
(1) In the thermodynamic limit L → ∞ and finite temper-

ature, both order parameters vanish as ∼ exp(−π2χL/6β ).
(2) In the zero-temperature limit β → ∞ and for a finite

length L, in the LL regime the order parameter σ LL
1L,∞ van-

ishes exponentially as ∼ exp(−π2ρsβ/6L). In the dissipative
regime, the order parameter σ diss

1L,∞ vanishes as a stretched ex-
ponential ∼ exp(−βs−1/L) for the superohmic bath, while it
converges to a constant in the subohmic case. This ordered
phase at finite L can be related to the transition observed
for single-particle models in the presence of a subohmic bath
[34,35].

(3) In the numerical simulation, we set L = β and send
β → ∞. In this limit we find

〈cos 2φ〉LL
L=β=∞ ∼ L−Kr

〈cos 2φ〉diss
L=β=∞ ∼ σ1e− π2χ

6 (1 + c1L
s
2 −1 + c2Ls−2), (20)

where Kr is defined in Eq. (13).

A. Two-point correlation function

To understand the nature of the order in the dissipative
phase, it’s important to introduce the two-point correlation
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functions:〈
σ z

x,τ σ
z
0,τ

〉 ∼ 〈ei2φ(x,τ )e−i2φ(0,τ )〉 cos (2qF x)〈
σ z

x,τ σ
z
x,0

〉 ∼ 〈ei2φ(x,τ )e−i2φ(x,0)〉. (21)

Note that The spatial spin-spin correlator has an over-
all oscillating factor of cos(2qF x), which doesn’t af-
fect the decay of the correlator at large x. Under
the gaussian variational approximation, one can see that
〈ei2φ(x,τ )e−i2φ(0,τ )〉 = e−2〈(φ(x,τ )−φ(0,τ ))2〉 ≡ e−2B(x) and simi-
larly for 〈ei2φ(x,τ )e−i2φ(x,0)〉 = e−2B(τ ). From Eqs. (B7) and
(B11) of Appendix B, one can easily see that for large x at
finite temperature and in the thermodynamic limit,

〈
σ z

x,τ σ
z
0,τ

〉
LL ∼ exp

(
−2π2χx

β

)
x−2Kr cos (2qF x)

〈
σ z

x,τ σ
z
0,τ

〉
diss ∼ σ 2

1 exp

(
−2π2χx

β

)(
1 + a2x1− 2

s
)

× cos(2qF x), (22)

and for large τ at zero temperature and for finite L,

〈
σ z

x,τ σ
z
x,0

〉
LL ∼ exp

(
−2π2ρsτ

L

)
(urτ )−2Kr

〈
σ z

x,τ σ
z
x,0

〉
diss ∼ σ 2

1 exp

(
−Kuτ f (s)

ηL

)
(1 + a1τ

s
2 −1), (23)

where f (s) = 0 for the subohmic bath and f (s) = 1 − s for
the superohmic bath.

These results show that in the limit of finite temperature,
above a length scale β/2π2χ , both the order in the dissi-
pative phase as well as the quasiorder in the LL phase are
exponentially suppressed. On the other hand, at T = 0 there
is long-range order:

lim
x→∞

〈
σ z

x,τ σ
z
0,τ

〉
diss = σ 2

1 cos (2qF x). (24)

Connected spatial and imaginary time correlations decay
in a power-law fashion at T = 0, with an exponent which
increases upon decreasing s. These results, along with the
behavior of the order parameter, show that at zero tempera-
ture the dissipative phase is indeed an SDW with a gapless
spectrum and long-range order. This ordered phase exists
due to the spontaneous breaking of the continuous symmetry
φ → φ + c due to the presence of the long-range dissipative
action Sint.

V. NUMERICAL SIMULATIONS

We verify the validity of our variational ansatz, both
qualitatively and quantitatively, via numerical simulation
of the original action with the cosine potential, Eq. (5).
We numerically solve the Langevin dynamics differential
equation associated with the action, namely, the stochasti-
cal differential equation dφ(t )

dt = − ∂Seff
∂φ

+ �(t ), where �(t ) is
Gaussian white noise with 〈�(t )〉 = 0, 〈�(t )�(t ′)〉 = 2δ(t −
t ′). Note that � is the noise that thermalizes to exp(−Seff )
and is not related to the temperature of the dissipative bath,
which is zero. Discretizing the action and applying periodic
boundary conditions in both x and τ direction, we obtain the

following differential equation that we simulate numerically:

dφi j (t )

dt
= 1

Kπu
(φi+1, j + φi+1, j − 2φi, j )

+ u

Kπ
(φi, j+1 + φi, j−1 − 2φi, j ) + �i j (t )

+ α

π2

∑
i′

D(|i − i′|) sin[2(φi′ j − φi j )], (25)

where i ∈ (1, β ) and j ∈ (1, L) represent the discretized τ and
x indices, respectively. We solve this differential equation at
long time and obtain equilibrated configurations φeq(x, τ ). We
then calculate various correlation functions on these config-
urations and match them against our analytical predictions.
We compare the Langevin equation simulation with the vari-
ational method prediction, obtained from numerically solving
Eq. (7). The values of the parameters chosen for both simu-
lations are K = 1, u = 1, s = 0.5, and dt = 0.05, where dt
is the Langevin time step. We varied the value of α, and
for each value of α, we simulate Eq. (25) for different sizes.
We adopt the Berezinskii-Kosterlitz-Thouless (BKT) scaling,
characterized by the dynamical exponent z = 1, so that L =
β. From the variational study, we expect that there exists a
critical dissipative strength αc(K ) such that for α < αc, the
correlation functions will correspond to the LL propagator

G−1
LL = 1

πK (uq2 + ω2
n

u (1 + ν)), and for α > αc, they will be-
have according to the dissipative phase propagator G−1

var =
1

πK (uq2 + η|ωn|s
u + a1|ωn|1+ s

2

u + a2ω
2
n

u ). In Fig. 4 we show the
results for α = 2 (top row), which we find to be in the
LL phase, and α = 6, which turns out to be in the dissipa-
tive phase. The first quantity we compute is (q2/π )G(q, ωn).
Figure 4, left, shows that this quantity, both with the Langevin
method and the variational method, remains unrenormalized
and equal to K/u for all values of q and both values of α.
This is in agreement with our variational ansatz. Next we
compute C(ωn) = 1

πL

∑
q G(q, ωn). This quantity is useful

for extracting and differentiating between the ωn dependence
of G(q, ωn) in the two phases. Indeed, for small ωn, C(ωn)
behaves as

C(ωn → 0) =
{ Kr

2ωn
, LL

1√
αrωs

n
dissipative

, (26)

where Kr = K√
ν+1

and αr = 4η/K2. We denote the renormal-
ized value of K obtained from the Langevin simulation as
Kr and the numerical variational solution as Kr,var. Figure 4,
middle, shows that indeed for α = 2, ωnC(ωn) saturates to
a constant, whereas for α = 6, ω0.25

n C(ωn) goes to a con-
stant as ωn → 0, indicating that α = 2 is in LL phase and
α = 6 is in the dissipative phase. The variational solution
also shows a renormalization of K , for example, for α = 2
we get Kr,var = 0.968. This result is in fair agreement with
the Langevin simulation, Kr = 0.92. However, at large α

the variational method fails and estimates the transition at
αc = 10. From Fig. 4, middle bottom, for α = 6 the system
is already in the dissipative phase. For our third and final
check, we show the behavior of the order parameter [Eq. (16)].
To extrapolate to the zero-temperature behavior, we compute
〈cos (2(φ − φCoM))〉. Figure 4, left, shows that this quantity
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FIG. 4. Calculation of different quantities for K = 1 that characterizes the LL (α = 2, top row) and dissipative phases (α = 6, bottom
row). Red points correspond to L = β = 128, and blue points correspond to L = β = 320. Green points correspond to ωnC(ωn) calculated
from numerically solving the self-consistent variational Eq. (7). (left) πχ remains unrenormalized for all values of α and q. (middle) For
α = 2, ωnC(ωn) saturates to Kr/2 = 0.46 for small ω, whereas ω0.25

n C(ωn) saturates to 1/
√

αr = 1.072 for α = 6. The variational solution
saturates to Kr,var/2 = 0.486 for α = 2 and fails to correctly predict the dissipative phase for α = 6. (right) For α = 2, 〈cos 2φ〉 decays as a
power law with the exponent Kr = 0.915. However, it saturates to a constant c1 algebraically for α = 6. The fit for the order parameter in the
dissipative phase gives c1 = 0.096, c2 = 0.112, and c3 = 3.37. In the LL phase, 〈cos(2φ)〉 calculated with the variational method decays with
Kr,var = 0.973.

decays as a power law of the system size for α = 2 (top)
and saturates to a constant for α = 6 (bottom). Therefore we
confirm the existence of a phase transition between LL and
a new dissipative phase induced by the bath. This new phase
has unaltered susceptibility, a gapless spectrum, and vanishing
spin stiffness ρs. In Fig. 5 we show the renormalized values of

FIG. 5. Renormalized value of different parameters of the action
for K = 1, s = 0.5. Kr/ur (red square) remains constant and equal to
1 for all values of α. Kr (purple circles calculated from 〈cos 2φ〉 and
blue triangle calculated from C(ωn)) decreases from K = 1 to Kc =
0.75 as α increases and approaches αc. αr (green circle) becomes
relevant in the dissipative phase and increases as a function of α.
This behavior of the parameters helps us locate the critical region
αc ∈ (3, 4).

different parameters as a function of α. Kr decreases as α is
increased; at the critical region αc ∈ (3, 4), Kr = 0.783 � Kc,
which shows that the transition belongs to the BKT univer-
sality class. For α > αc, Kr becomes irrelevant. The system is
now described by Kr/ur and αr , and the latter increases as α is
increased, signifying that the system is now in the dissipative
phase.

VI. CONDUCTIVITY

From linear response theory, the conductivity can be deter-
mined via the analytic continuation of the propagator [27],

σ (ω) = e2

π2h̄
[ωnG(q = 0, ωn)]iωn→ω+iε, (27)

where ε is a small positive number close to zero.
Using our ansatz we find that the DC conductivity
σDC ≡ Re(σ (ω → 0)) = limε→0(e2/π2h̄)ε1−s, which goes
to zero for subohmic (s < 1) baths. This supports our claim
that the system for a subohmic bath in the dissipative phase is
insulating at zero temperature.

VII. CONCLUSIONS

In this work, by exploiting the bosonization formalism
we have shown via analytical and numerical methods that
an incommensurate XXZ spin chain coupled to local baths
undergoes an LL-dissipative phase transition at T = 0. At
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transition, the chain undergoes a spontaneous symmetry
breaking, with an order parameter 〈cos(2φ)〉, that identifies
with the amplitude of a long-range-ordered spin-density wave.
Remarkably, the spin wave is gapless and the order originates
from the fractional nature of the excitations of the dissipative
phase. Moreover, from the linear response, we observe a sup-
pression of the DC conductivity that vanishes for subohmic
baths. Hence, it is tempting to compare this dissipative tran-
sition with the localization transition observed for quenched
disorder [22,23,39]. There, the localized phase is also gapless
and the fluctuations along the imaginary time direction are
suppressed. However, the order parameter 〈cos(2φ)〉 is zero
(as there is no spontaneous breaking of a continuous sym-
metry) and the spatial spin-spin correlations decay to zero
exponentially above a finite localization length. In the dissipa-
tive phase instead, the spin-spin correlations decay to a finite
value with an s-dependent power law. For slower baths (small
s), the decay becomes faster, and the exponent diverges in the
limit s → 0, signaling that (connected) correlations can decay
exponentially.

In the future we would like to study the properties of
the model at finite temperatures by variational methods
and numerical simulations. This would be very interest-
ing in view of our interpretation of the bath as annealed
disorder, and this study could possibly shed some light
on the ongoing discussion on the many-body localization
transition.

Another direction that we have taken is the study of the
same model at half filling. This was partially done in [40],
and we plan to do it in full generality.
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APPENDIX A: SYSTEM-SIZE DEPENDENCE
OF ORDER PARAMETER

In this section we compute 〈cos 2φ〉L,β =
exp(− 2

βL

∑
q,ωn

q=ωn �=0
Gvar(q, ωn)). This sum can be decomposed

into three terms:

S1 = 2

βL

⎡
⎣∑

q �=0

Gvar(q, 0) +
∑
ωn �=0

Gvar(0, ωn)

+
∑

q �=0,ωn �=0

Gvar(q, ωn)

⎤
⎦. (A1)

The q �= 0, ωn �= 0 contributions can be converted as
1

βL

∑
q �=0,ωn �=0 → 1

π2

∫
1/L dq

∫
1/β

dωn. Using Eq. (8) with

F (ωn) = νω2
n, we see that

2

βL

∑
q �=0

G(q, 0) = 4πK

uβL

∞∑
m=1

1(
2πm

L

)2

= πKL

6uβ
,

2

βL

∑
ωn �=0

G(0, ωn) = 4πKu

(1 + ν)βL

∞∑
n=1

1(
2πn
β

)2

= πuKβ

6(1 + ν)L
,

2

βL

∑
q �=0,ωn �=0

Gvar(q, ωn) = 2K

π

∫ �1

1/L

∫ �2

1/β

dωndq

uq2 + ω2
n

u (1 + ν)

∼ K√
1 + η

ln min(β, L).

Similarly, with F (ωn) = η|ωn|s, we find that the contribution
from the first term is the same. The contribution from the
second term can be written as

2

βL

∑
ωn �=0

G(0, ωn) = 2uK

η

b0(s)

(2π )s−1

βκ (s)

L
, (A2)

where κ (s) = 0 and b0(s) ∼ 1
1−s for a subohmic bath

(0 < s < 1), and κ (s) = s − 1 and b0(s) ∼ ζ (s) for a super-
ohmic bath (1 < s < 2). The ohmic case (s = 1) is special and
b0(s)βκ (s) should be replaced with ln β + γE . The contribution
from the third term is given by

2

βL

∑
q �=0,ωn �=0

G(q, ωn) = 2K

π

∫ ∞

1/L

∫ �

1/β

dωndq

uq2 + ω2
n

u + ηωs
n

u

∼ c0 − c1β
s
2 −1, (A3)

where c0 and c1 are positive constants that depend on
K, u, η, s, and the ultraviolet cutoff �. Putting these terms
together, we find Eqs. (18) and (19).

APPENDIX B: ROUGHNESS OF φ(x, τ )
IN THE DISSIPATIVE PHASE

At zero temperature, in the Luttinger liquid phase the field
φ(x, τ ) grows logarithmically in both directions x and τ .
Here we characterize the roughness of the field φ(x, τ ) in
the dissipative phase. In particular, we compute the following
correlation functions:

B(τ ) ≡ 〈[φ(x, 0) − φ(x, τ )]2〉, (B1)

B(x) ≡ 〈[φ(x, τ ) − φ(0, τ )]2〉. (B2)

In the dissipative phase, using Eq. (8) with F (ωn) = ν|ωn|s,
Eq. (B1) can be written in the Fourier space as

B(τ ) = 2

βL

∑
q,ωn

(1 − cos ωnτ )Gvar(q, ωn). (B3)
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The ωn = 0 terms vanish due to the presence of the cosine
term in the numerator. Hence, we write the contributions from
the terms q = 0, ωn �= 0 and q �= 0, ωn �= 0 separately:

B(τ ) = 2

βL

∑
ωn �=0

(1 − cos ωnτ )Gvar(0, ωn)

+ 2

βL

∑
q �=0,ω �=0

(1 − cos ωnτ )Gvar(q, ωn). (B4)

The summation of the first term on the right-hand side of
Eq. (B4) gives

2

βL

∑
ωn �=0

(1 − cos ωnτ )Gvar(0, ωn)

= 4πKu

βL

∞∑
n=1

1 − cos ωnτ

ω2
n + ηωs

n

∼ Ku

η

τ f (s)

L
, (B5)

where f (s) = 0 for subohmic bath (0 < s < 1), and f (s) =
1 − s for superohmic bath (1 < s < 2). For the ohmic case
(s = 1), τ f (s) should be replaced by ln τ . For the second
term on the right-hand side of Eq. (B4), we convert the sum

1
βL

∑
q �=0,ωn �=0 → 1

π2

∫
dqdωn to find

2

βL

∑
q �=0,ω �=0

(1 − cos ωnτ )Gvar(0, ωn)

= 2K

π

∫ �

0
dωn

∫ ∞

0
dq

(1 − cos ωnτ )

uq2 + ω2
n

u + ηωs
n

u

. (B6)

The integral over 1 in Eq. (B6) gives us the same constant
c0 from Eq. (A3). The integral over cos ωnτ gives us the τ

dependence of B(τ ), and we see that for large τ ,

B(τ ) ∼ Ku

η

τ f (s)

L
+ c0 − a1τ

s
2 −1, (B7)

where a1 = K
η

�(1 − s
2 ) sin( πs

4 ).
Similarly, Eq. (B2) can be written in the Fourier space and

calculated

B(x) = 2

βL

∑
q �=0

(1 − cos qx)Gvar(q, 0)

+ 2

βL

∑
q,ωn

(1 − cos qx)Gvar(q, ωn). (B8)

Like B(τ ), we compute B(x) termwise:

2

βL

∑
q �=0

(1 − cos qx)Gvar(q, 0)

= 4πχ

βL

∞∑
n=1

1 − cos qx

q2
∼ π2χx

β
, (B9)

2

βL

∑
q,ωn

(1 − cos qx)Gvar(q, ωn)

= 2K

π

∫ ∞

0
dωn

∫ �

0
dq

(1 − cos qx)

uq2 + ω2
n

u + ηωs
n

u

∼ c0 − a2x1− 2
s , (B10)

where a2 = 2Ku
2
s −1η− 1

s �( 2
s −1)

s . Putting all the terms together, we
obtain that for large x,

B(x) ≈ π2χx

β
+ c0 − a2x1− 2

s . (B11)

In conclusion, in the thermodynamic limit where L → ∞,
the field φ(x, τ ) is flat in the τ direction. Along the x direction,
it is rough at finite temperature and becomes flat at zero
temperature. In this limit both B(x) and B(τ ) algebraically
saturate to the same constant but with different power laws,
showing that there is long-range order in this phase.

APPENDIX C: RG CALCULATION

In this section we systematically derive the RG flow equa-
tions of the LL parameter K and the coupling strength α.
To analyze the RG flow of the parameters, we calculate the
following correlation function:

R(r1 − r2) = 〈eiaφ(r1 )e−iaφ(r2 )〉, r = (x, uτ ). (C1)

We know that for the quadratic LL action, R(r1 − r2) ∼
( r1−r2

b )−a2K/2, where b is some short-scale length cutoff.
We perturbatively expand the correlation function with re-
spect to Sdiss. The perturbative series up to first order of α

is given by 〈eiaφ(r1 )e−iaφ(r2 )〉S0 + 〈eiaφ(r1 )e−iaφ(r2 )〉S0〈Sint 〉S0 −
〈eiaφ(r1 )e−iaφ(r2 )Sint 〉S0 . The zeroth-order term can be eas-
ily computed and is given by exp ( −a2K

2 F (r1 − r2)), F (r) =
1
2 log[ x2+(u|τ |+b)2

b2 ]. After computing the first-order contribu-
tion, we obtain

R(r1 − r2) = e
−a2K

2 F (r1−r2 )

[
1 + α

8π2b2u2

∫
d2r′d2r′′e−2KF (x′−x′,τ ′−τ ′′ )B

∑
ε=+−

[eaKε(F (r1−r′ )−F (r1−r′′ )−F (r2−r′ )+F (r2−r′′ )) − 1]

]
,

(C2)

where B = δ(x′ − x′′)D(τ ′ − τ ′′). After transforming the equation into center of mass (CoM) R = r′+r′′
2 and relative coordinates

r = r′ − r′′ and Taylor expanding F for small r, we expand the exponential for small values of r:

R(r1 − r2) = e
−a2K

2 F (r1−r2 )

[
1 + αa2K2

8π2b2u2

∫
d2rd2Re−2KF (r)B(r · ∇R[F (r1 − R) − F (r2 − R)])2

]
. (C3)

The term inside the square produces terms like rir j (∇Ri [F (r1 − R) − F (r2 − R)])(∇Rj [F (r1 − R) − F (r2 − R)]), where i, j
denotes the two possible coordinates x, y = uτ . For the integral over d2r and by symmetry x → −x, y → −y, only the diagonal
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i = j terms survive. The action is anisotropic, whose effect can be included with an additional term in F of the form d cos(2θ ),
where θ is the angle between vector (x, uτ ) and the x axis, and d is the measure of anisotropy. After expanding the gradient terms
and integrating by parts over R, we obtain two terms I± = ∫

d2R[F (r1 − R) − F (r2 − R)](∂2
X ± ∂2

Y )[F (r1 − R) − F (r2 − R)].
The I+ term renormalizes K and α, whereas the other term renormalizes the anisotropy, which we are not interested in. Hence,

R(r1 −, r2) = e
−a2K

2 F (r1 − r2 )

[
1 − αa2K2

16π2b2u2

∫
d2rd2Re−2KF (r)r2B[F (r1 − R) − F (r2 − R)]

(∇2
X + ∇2

Y

)
[F (r1 − R) − F (r2 − R)]

]
.

(C4)

As F is a logarithmic function, we know that (∇2
X + ∇2

Y )
F (R) = 2πδ(R). After reexponentiating the term inside the
bracket, we obtain

Keff = K − αK2

2πb2u2

∫
r>b

d2rr2 exp ( − 2KF (r))B. (C5)

To understand the scaling of K and α, we express
d2r and r2 in terms of x, uτ and compute the integral
over δ(x):

Keff = K − αK2

π

∫ ∞

b

dy

b

(
y

b

)1−s−2K

, y = uτ. (C6)

Sending b to b′ = b + db, we find

Keff = K − αK2

π

db

b
− αK2

π

∫ ∞

b′

dy

b

(
y

b

)−2K

⇒ K (b) = K (b) − α(b)K2(b)

π

db

b
. (C7)

Similarly,

α(b′) = α(b)

(
b′

b

)2−s−2K

. (C8)

If we parametrize b = b0el , we obtain the following flow
equations:

dK

dl
= −αK2

π

dα

dl
= (2 − s − 2K )α.

(C9)

These equations indicate the existence of a critical point Kc =
1 − s

2 , as in [36].
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