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Painlevé-Gullstrand coordinates discontinuity
in the quantum Oppenheimer-Snyder model

Francesco Fazzinia, Carlo Rovellibcd and Farshid Soltanie
a Department of Mathematics and Statistics, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada

b Aix-Marseille University, Université de Toulon, CPT-CNRS, F-13288 Marseille, France.
c Department of Philosophy and The Rotman Institute of Philosophy,

1151 Richmond Street N, London, Ontario N6A5B7, Canada
d Perimeter Institute, 31 Caroline Street N, Waterloo, Ontario, N2L2Y5, Canada and

eDepartment of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7, Canada

A metric that describes a collapsing star and the surrounding black hole geometry accounting for
quantum gravity effects has been derived independently by different research groups. There is con-
sensus regarding this metric up until the star reaches its minimum radius, but there is disagreement
about what happens past this event. The discrepancy stems from the appearance of a disconti-
nuity in the Hamiltonian evolution of the metric components in Painlevé-Gullstrand coordinates.
Here we show that the continuous geometry that describes this phenomenon is represented by a
discontinuous metric when written in these coordinates. The discontinuity disappears by changing
coordinates. The discontinuity found in the Hamiltonian approach can therefore be interpreted as
a coordinate effect. The geometry continues regularly into an expanding white hole phase, without
the occurrence of a shock wave caused by a physical discontinuity.

The Einstein equations predict a collapsing star and
the surrounding spacetime to evolve into regions of very
high curvature. Here we expect quantum gravitational
effects to come into play, radically modifying the classi-
cal dynamics. Effective metrics that take these quantum
effects into account have been extensively explored in the
last years. Among the most promising is a quantum mod-
ification of the Oppenheimer-Snyder (OS) model [1]: a
simple description of the gravitational collapse of a ho-
mogeneous and pressureless star. The model has been
derived using physical inputs form Loop Quantum Grav-
ity, both canonical and covariant, and borrowing tech-
niques from Loop Quantum Cosmology [2–5]. In it, the
star reaches a maximum density and a minimum radius,
and then bounces.

There is a remarkable agreement in the literature on
the description of the quantum effects on the collapsing
phase. But there is some disagreement about what hap-
pens when the star reaches its minimum radius. In the
Hamiltonian approach developed in [2, 3], which uses gen-
eralized Painlevé-Gullstrand coordinates, a discontinuity
in the metric coefficients develops at the bounce. This
has been interpreted as indicating the onset of a shock
wave in the dynamics of gravity, absent in the continuous
geometry studied in [4, 5]. Here we show that in this con-
tinuous geometry the Painlevé-Gullstrand coordinates—
and hence the metric written in these coordinates—
become discontinuous at the bounce. This shows that
the discontinuity found in the Hamiltonian approach is a
coordinate effect.

In what follows, we first recall the classical OS model.
Then we describe its quantum-corrected version recently
studied in [4, 5]. We then show explicitly how, at the
moment of the bounce, a discontinuity is formed in the
metric components when it is expressed in generalized
Painlevé-Gullstrand coordinates.

The OS model describes the gravitational collapse of a

homogeneous and pressureless star, and it is the proto-
typical example of black hole formation by gravitational
collapse. In Planck units (c = G = ℏ = 1), and assuming
the star’s boundary to be in free fall and to start at rest
at past infinity, the metric in the interior of the star reads

ds2 = −dT 2 + a2(T )
(
dR2 +R2 dΩ2

)
. (1)

The coordinate T is the proper time of observers moving
at constant radial and angular coordinates, a(T ) is the
scale factor that determines the size of the star at time
T , R ∈ [0, Rstar] is the comoving radial coordinate and
dΩ2 is the line element of a unit two-sphere. The trajec-
tory of the boundary of the star in the interior metric is
given by R = Rstar. The Einstein field equations give the
Friedmann equation for the scale factor:

ȧ2

a2
=

8π

3
ρ , (2)

where the overdot means differentiation with respect to
T and

ρ =
m

4
3π

(
Rstara

)3 (3)

is the uniform density of the star. Eq. (2) can be solved:

a(T ) =

(
9m(T − T0)

2

2R3
star

)1/3

. (4)

Without loss of generality we can take the time at which
the star collapses to zero physical radius to be T = 0.
The exterior of the star is described by the

Schwarzschild metric

ds2 = −f(r) dt2 + f−1(r) dr2 + r2 dΩ2 , (5)

where

f(r) = 1− 2m

r
. (6)
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The worldsheet of the boundary of the star in the exterior
spacetime is given by the trajectory r(T ), where T , the
time coordinate of the interior metric, is also the proper
time on the boundary of the star.

A continuous and differentiable geometry requires the
geometry of the interior and the geometry of the exterior
to match on the boundary of the star. That is, the in-
duced metric and the extrinsic curvature of the boundary
of the star have to match on the two sides. This require-
ment determines the trajectory of the boundary of the
star in the exterior region.

The metric described above takes a particularly simple
form in Painlevé-Gullstrand (PG) coordinates, where the
matching conditions are manifestly satisfied. The full
spacetime metric can be written in a unique coordinate
patch using these coordinates. Let us show this explicitly.
Changing the comoving radial coordinate R in the star
interior to the area (or Schwarzschild) radius

r(T,R) = a(T )R (7)

and changing the exterior Schwarzschild time coordinate
t to the PG time coordinate

T (t, r) = t+ 2
√
2mr + 2m ln

∣∣∣∣
√
r/2m− 1√
r/2m+ 1

∣∣∣∣ (8)

in the exterior region, the full spacetime metric can be
written as

ds2 = −dT 2 +
(
dr +Nr(T, r) dT

)2

+ r2 dΩ2 , (9)

where

Nr(T, r) =

{
−2r/3T r ≤ rstar(T )√
2m/r r > rstar(T )

(10)

and

rstar(T ) =

(
9mT 2

2

)1/3

. (11)

The same result can be obtained from a Hamiltonian
formalism for Lemâıtre-Tolman-Bondi (LTB) spacetimes,
of which the Oppenheimer-Snyder model is a particular
case. The choice of PG coordinates leads to a particularly
simple set of Hamiltonian equations of motion. Assum-
ing initial conditions corresponding to a constant density
dust star and a vacuum exterior, the solution for the
whole spacetime is identical to what is obtained from the
matching procedure described above [2].

Let us next describe the quantum gravitational correc-
tions to this model. Consider first the interior metric in
Eq. (1). Loop quantum gravity modifies the Friedmann
equation [3, 6, 7] for the scale factor in Eq. (2) to

ȧ2

a2
=

8π

3
ρ
(
1− ρ

ρc

)
, (12)

with the critical density ρc being a parameter of Planck-
ian value. This equation can be integrated to give

a(T ) =

(
9mT 2 +Am

2R3
star

)1/3

, (13)

where A = 3/(2πρc) is a parameter of Planckian value
with the dimensions of a squared mass. Eq. (13) gives
the quantum correction to the classical equation (4). It
shows that in the quantum-corrected effective metric, the
physical radius of the star never collapses to zero, but it
rather reaches its minimum size

rM = a(0)Rstar = (Am/2)1/3 (14)

at T = 0, before bouncing and starting to increase.
Let us next address the quantum correction to the ex-

terior metric. This can be derived in two distinct ways,
which remarkably converge. It can be simply derived by
requiring the exterior geometry to have the same sym-
metries as in the classical case, and then imposing the
matching with the quantum-corrected metric of the star
[4]. Equivalently, the quantum corrections to the exterior
metric coming from loop quantum gravity can be stud-
ied separately from the interior region, using an effec-
tive Hamiltonian formalism containing LQG corrections
adapted to spherical symmetry [2, 3, 8], checking then
the matching at the boundary. These two different roads
lead to the same exterior metric. The same Hamiltonian
approach can be performed for LTB spacetimes, and for
the case that there is an exterior vacuum region, the met-
ric in that region is again the same [9].
Let us write this metric explicitly. Consider a generic

spherically symmetric metric having a hypersurface-
orthogonal Killing vector field. Its line element reads

ds2 = −F (r) dt2 +G(r) dr2 + r2 dΩ2 , (15)

where F and G are functions of the radial coordinate
and the hypersurface-orthogonal Killing vector is ∂t. In
order for the matching with the interior metric to be
possible, the exterior parametric trajectory (t(T ), r(T ))
of the boundary of the star needs to be a radial geodesic
of the exterior metric. Such trajectories satisfy

F ṫ = E , (16)

where E is the conserved energy associated to ∂t, and

G ṙ2 = E/F − 1 . (17)

The matching of the induced metric and of the extrinsic
curvature of the boundary of the star on the two sides
uniquely fixes the functions F and G to [4]

F (r) = G−1(r) = 1− 2m

r
+

Am2

r4
(18)

for all r > rM .
The maximal extension of this exterior geometry in the

absence of the star has been extensively studied in [4, 11]
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Figure 1. Section of the conformal diagram of the spacetime
defined by Eqs. (15) and (18) plotted using global Kruskal
coordinates defined in [10] and m = 1, A = 0.99 (Planck
units). The trajectories of three different radially free-falling
observers are plotted in green and the constant T surfaces at
the time of their turning point are plotted in blue.

and its conformal diagram is reported in Fig. 1. It is
very similar to the Reissner-Nordström geometry. A ra-
dially free-falling geodesic, e.g. the wordline of the star’s
boundary, bounces in an interior region which is neither
trapped nor antitrapped, and that separates a trapped
(black hole) and an antitrapped (while hole) region. The
conformal diagram of the quantum-corrected OS space-
time is shown in Fig. 2. This completes the construction
of the quantum-corrected OS model. A further quantum
correction of this metric that gets rid of the residual cur-
vature singularity and of the Cauchy horizon, and that
has a single asymptotic region, is constructed in [5].

Now we come to our main observation. Given the sim-
plicity of the classical OS metric in PG coordinates, it
is natural to study also the quantum-corrected geometry
in the PG coordinates. Let us see what happens. The
interior metric can be easily written in PG coordinates
by performing the coordinate transformation in Eq. (7),
where a(T ) is now the quantum-corrected scale factor.
For the exterior metric, the differential of the PG coor-
dinate time T satisfies the relation

dT = dt−
√
1− F

F
dr . (19)

The full spacetime metric can then be written as

ds2 = − dT 2 +
(
dr +Nr(T, r) dT

)2

+ r2 dΩ2 , (20)

where

Nr(T, r) =

− 6rT
9T 2+A r ≤ rstar(T )√
1− F (r) r > rstar(T )

(21)

and

rstar(T ) =

(
9mT 2 +Am

2

)1/3

. (22)

The metric in Eqs. (20) and (21) is exactly the metric
found in [2, 3] by separately studying the quantum cor-
rections to the interior and the exterior metric in PG co-
ordinates. This proves the equivalence of the two differ-
ent constructions for the exterior metric and the overall
consistency of the quantum-corrected OS model.
There is a problem however. The function Nr(T, r) in

Eq. (21) becomes discontinuous for T > 0. This is imme-
diately seen from the fact that the expression valid in the
interior of the star changes sign after the bounce while
the expression valid outside the star does not. In [3, 9]
this discontinuity was tentatively interpreted as a physi-
cal discontinuity of the gravitational field and it was ar-
gued that a shock wave must form as a consequence of
it.
We have however now all the ingredients to clarify

the reason for the discontinuity of the function Nr(T, r).

rstar

T=-2.5

T=-2

T=-1

T=0

T=1

T=2

T=3

Figure 2. Conformal diagram of the quantum-corrected OS
spacetime with m = 1 and A = 0.99 (Planck units).
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Consider in fact the interior geometry of the star. The
coordinate T is the proper time of observers moving at
constant comoving radial coordinate R, which in the area
coordinate r [see Eq. (7)] means

r(T ) ∝ a(T ) . (23)

This means that the time coordinate T in the inte-
rior region is well adapted to bouncing observers, with
T = const. surfaces adapted to infalling observers for
T < 0 and to outgoing observers for T > 0. In the
exterior region however, as extensively discussed in Ap-
pendix A and shown in Fig. 1, the PG time coordinate T
is only adapted to infalling observers, thus creating the
discontinuity at the star’s surface for T > 0. This dis-
continuity in the PG time coordinate can be clearly seen
from Fig. 2, where T = const. surfaces for the complete
quantum-corrected OS spacetime are plotted.

In [3, 9] a dust field was used as a relational clock to
gauge fix the Hamiltonian constraint. The time Painlevé-
Gullstrand coordinate T has then a physical interpreta-
tion as a clock time. The chrono-geometry measured by
this dust field taken as a clock is indeed discontinuous.
That is, if one uses surfaces of constant dust-time to re-
construct the 4-dimensional geometry, then a disconti-
nuity in the metric is unavoidable. The above analysis
shows that it is possible to interpret this discontinuity as
a discontinuity of the clock field, evolving in a continuous
geometry. The geometry in this spacetime is continuous
and the discontinuity in the metric comes only from us-
ing the dust field as a relational clock. No shock wave is
formed.

An interesting feature of the model studied in [2, 3]
was that the star bounces out in the same asymptotic
region where it collapsed, with a predicted lifetime of the
order of m2. As shown in [5], it is still possible to have a
single asymptotic region also when the geometry is con-
tinuous during and after the bounce by gluing together
different spacetime patches and breaking the local Killing
symmetry also around the horizon.1 In this case the life-
time is a free parameter of the spacetime, ultimately to
be determined by a quantum gravity calculation.

Confusing coordinate artifacts are common in general
relativity. A famous example is the r = 2m singular-
ity in the Schwarzschild metric, that prompted Einstein
and many others to believe that spacetime ends at the
horizon.
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Appendix A: Incompleteness of the PG coordinates
in the exterior vacuum region

Consider the exterior vacuum region defined by
Eqs. (15) and (18) in the absence of the star. The con-
formal diagram of this spacetime for r > rM is given in
Fig. 1. The PG coordinate time T is the proper time of
radially free-falling observers that start at rest at infin-
ity. In Schwarzschild spacetime such observers all hit the
singularity inside the black hole. But this is no longer
the case in the metric in Eqs. (15) and (18). In the latter
the trajectories of free-falling observers starting at rest
at infinity satisfy

ṙ2 = 1− F . (A1)

All these trajectories have a turning point at ṙ =√
1− F = 0, which is solved by r = rM . This means

that instead of hitting the singularity in the interior of
the black hole, radially free-falling observers reach a min-
imum distance from it at r = rM and then bounce back
out of it in a second future asymptotic region. A few of
these trajectories, together with the constant T surfaces
at the time of their turning point, are plotted in Fig. 1
From this discussion it is clear that the PG coor-

dinates do not cover the vacuum spacetime region at
r < rM . The PG coordinate time T is the proper time
of the radially free-falling observers and none of these
observers penetrates inside the r = rM surface: there is
no PG coordinate time T inside the region at r < rM .
This is consistent with the expression of the metric in
PG coordinates given in Eqs. (20-21). In fact, since

Nr(T, r) =
√

1− F (r), the metric is well defined only
for 1− F (r) > 0, which is

r > rM . (A2)

https://www.templeton.org/grant/the-quantuminformation-structure-ofspacetime-qiss-second-phase
https://www.templeton.org/grant/the-quantuminformation-structure-ofspacetime-qiss-second-phase
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This same constraint was found in [2] during the con-
struction of the quantum-corrected vacuum exterior re-
gion from loop quantum gravity first principles. This
constraint was interpreted as a physical property of
the quantum-corrected spacetime. The discussion above
shows that it is an artifact of the specific coordinate sys-
tem employed.

In fact, this is a general phenomenon. As pointed out
in [12], the PG coordinates fail wherever the Misner-
Sharp mass is negative, as is precisely the case in the

metric defined by Eqs. (15) and (18) for r < rM .
Furthermore, Fig. 1 clearly shows that the PG coor-

dinates do not cover the full spacetime region traversed
by the radially free-falling observers, and hence also by
the boundary of the star in the quantum-corrected OS
model, but only the spacetime region they cover before
their turning point. There is then no hope for the PG
coordinates to provide a global coordinate patch for the
quantum-corrected OS model, as instead they do in the
classical case.
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