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ABSTRACT

Context. Following particle trajectories in the intense electromagnetic field of a neutron star is prohibited by the large ratio between
the cyclotron frequency ωB and the stellar rotation frequency Ω. No fully kinetic simulations on a macroscopic scale and with realistic
field strengths have been performed so far due to the huge computational cost implied by this enormous scale of separation.
Aims. In this paper, we derive new expressions for the particle velocity subject to strong radiation reaction that are intended to be
more accurate than the current state-of-the-art expression in the radiation reaction limit regime, the so-called Aristotelian regime.
Methods. We shortened the timescale hierarchy by solving the particle equation of motion in the radiation reaction regime, where
the Lorentz force is always and immediately balanced by the radiative drag, and including a friction not necessarily opposite to the
velocity vector, as derived in the Landau-Lifshitz approximation.
Results. Starting from the reduced Landau-Lifshitz equation (i.e., neglecting the field time derivatives), we found expressions for
the velocity depending only on the local electromagnetic field configuration and on a new parameter related to the field strength that
controls the strength of the radiative damping. As an example, we imposed a constant Lorentz factor γ during the particle motion. We
found that for ultra-relativistic velocities satisfying γ & 10, the difference between strong radiation reaction and the radiation reaction
limit becomes negligible.
Conclusions. The new velocity expressions produce results similar in accuracy to the radiation reaction limit approximation. We
therefore do not expect this new method to improve the accuracy of neutron star magnetosphere simulations. The radiation reaction
limit is a simple but accurate, robust, and efficient way to follow ultra-relativistic particles in a strong electromagnetic field.

Key words. magnetic fields – stars: neutron – relativistic processes – methods: numerical – acceleration of particles –
radiation: dynamics

1. Introduction

With the recent increase in computational power, performing full
kinetic simulations of neutron star magnetospheres can now be
envisaged. However, the difference in timescales between gyro
frequency and stellar frequency prevents realistic values from
being applied to these parameters. So far the only way to cir-
cumvent this scaling problem is to downsize these frequencies
while still keeping them well separated by respecting the order-
ing of these frequencies. Although this is helpful for understand-
ing the dynamics of charged particles in extreme environments,
it does not permit estimations of the true efficiency of parti-
cle acceleration and radiation reaction to be made because the
Lorentz factors reached are several orders of magnitude lower
than the ones predicted from observations of very high energy
photons (see the review by Philippov & Kramer 2022). Recently
some attempts have been made to simulate realistic parameters
by Tomczak & Pétri (2020) and Pétri (2022), but the computa-
tional time remains prohibitive, and only test particles have been
investigated while neglecting their back reaction to the field.

It is highly desirable to overcome this limitation by employ-
ing an approximation known as the radiation reaction limit
(RRL) regime, sometimes also called Aristotelian dynamics,
for which the equation of motion with radiative friction is
shortened by use of an algebraic expression for the particle
velocity depending only on the local value of the electric and

magnetic field. This idea was applied by Mestel et al. (1985) and
Finkbeiner et al. (1989). Spectra and light curves in this regime
were extensively studied by Pétri (2019) in a vacuum field. He
found realistic Lorentz factors and photon energies in reasonable
agreement with the spectra observed by Fermi/LAT (Abdo et al.
2013).

Recently, Chang et al. (2022) generalised the RRL velocity
by including the Landau-Lifshitz term proportional to the veloc-
ity (Landau & Lifchitz 1989) and by computing the associated
radiation spectra. They found a complicated formula that unfor-
tunately does not apply to any electromagnetic field configura-
tions. Moreover they introduced some hypotheses that are not
well justified to derive an expression for the velocity. Follow-
ing a different approach, Cai et al. (2022) studied the validity
of the RRL equilibrium by describing the particle motion in a
Frenet frame with a finite Lorentz factor. They introduced the
principal null directions, which are the eigenvectors of the elec-
tromagnetic field tensors. The spatial part is equal to the Aris-
totelian spatial velocity, or stated differently, it is equal to the
RRL velocity. Although their analysis is based on the Landau-
Lifshitz equations, including the time evolution of the Lorentz
factor, at the end of their derivation they had to resort to the com-
putation of the curvature radius in order to estimate this aspect
of the Lorentz factor. In this work, we attempt to estimate the
Lorentz factor by evolving it in time from the initial conditions,
but as we show, the curvature radiation interpretation leads to
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more accurate estimates of the Lorentz factor. Cai et al. (2022)
applied their idea to a rather artificial magnetic field configura-
tion. Our aim is to apply such techniques to realistic fields, such
as a rotating magnetic dipole.

In this paper, we derive formulas for the velocity in an
arbitrary electromagnetic field configuration starting from the
reduced Landau-Lifshitz equation (LLR; i.e., neglecting the field
time derivatives). In Sect. 2, we derive the algorithm for the new
velocity field according to the LLRs and that we call improved
radiation reaction (IRR). Some explicit expressions of this veloc-
ity are given in Sect. 3. In Sect. 4, we then quantify the improve-
ment brought by the inclusion of the radiative friction term
proportional to the velocity compared to the standard RRL.
Conclusions and perspectives are touched in Sect. 5.

2. Strong radiation reaction regime

Radiation reaction can be thought of as a friction drag opposing
some resistance to the Lorentz force. It acts as a brake and is
appropriately depicted by a force opposite to the velocity vec-
tor. However, in the Landau-Lifshitz approximation, the radia-
tion reaction force is opposite to the velocity only in the limit of
ultra-relativistic particles. For an arbitrary particle speed, there
are additional components along the electric field E, the mag-
netic field B, and the electric drift motion E ∧ B. We aim to
quantify the effect of these additional forces in the particle tra-
jectory by first deriving a new expression for the velocity.

2.1. Equation of motion

As an approximation of the Lorentz-Abraham-Dirac equa-
tion, we employ the Landau-Lifshitz expression according to
Landau & Lifchitz (1989) such that

dui

dτ
=

q
m

F ik uk +
q τm

m
gi, (1a)

gi = u`∂`F ik uk +
q
m

(
F ik Fk` u` + (F`m um) (F`k uk)

ui

c2

)
, (1b)

with the typical timescale related to the particle classical radius
crossing time

τm =
q2

6 π ε0 m c3 , (2)

with τ being the proper time, ui = γ(c, u) as the 4-velocity, q
being the particle charge, m as the mass, c as the speed of light,
E and B as the electric and magnetic field, ε0 as the vacuum per-
mittivity, u as the particle velocity, and F ik as the electromagnetic
tensor.

To derive the velocity vector u and the Lorentz factor γ, it
is judicious to switch to the 3+1 formalism by introducing the
observer time dt = γ dτ. Therefore,
dp
dt

= q FL + γ q τm

[
dE
dt

+ u ∧
dB
dt

]
+

q2 τm

m
[
FL ∧ B + (β · E) E/c

]
+

q2 τm

m c2 γ2 [(β · E)2 − F2
L] u (3a)

dγ
dt

=
q

mc

[
β · E + τm γ β ·

dE
dt

+
q τm

m c

(
FL · E + γ2 [(β · E)2 − F2

L]
)]
,

(3b)

where we define the vector field

FL = E + u ∧ B, (4)

the normalised velocity β = u/c, and the momentum by
p = γm u. In the constant field approximation, we drop the time
derivatives and obtain the fundamental equation of motion for a
particle as follows

dp
dt

= q FL +
q2 τm

m
[
FL ∧ B + (β · E) E/c

]
+

q2 τm

m c2 γ2 [(β · E)2 − F2
L] u (5a)

dγ
dt

=
q

mc

[
β · E +

q τm

m c

(
FL · E + γ2 [(β · E)2 − F2

L]
)]
. (5b)

2.2. Derivation of the velocity: First approach

The derivation of the particle velocity follows the procedure out-
lined by Mestel (1999). Nevertheless, instead of using a friction
of the form −K u with K > 0, we use the three-dimensional ver-
sion of the radiation reaction force, neglecting the space-time
dependence of the electromagnetic field such that the radiative
force reduces to the second and third term in the right-hand side
of Eq. (5a). Writing the radiation reaction force as

Frad = K2
[
FL ∧ B + (β · E) E/c

]
− K1 u (6)

and balancing the Lorentz force

Fext = q FL (7)

with this radiation reaction Fext = Frad, we arrive at

q FL = (K1 + K2 B2) u − K2(E ∧ B + (B · u) B + (β · E) E/c). (8)

We note that there is no assumption about particles moving at
the speed of light, their Lorentz factor is arbitrary, and v < c.
This represents a novelty compared to all other radiation reaction
expressions, which are always enforcing v = c. The coefficients
K1 and K2 are deduced from Eq. (5a) and given by

K1 =
q2 τm

m c2 γ2
[
F2

L − (β · E)2
]

(9a)

K2 =
q2 τm

m
. (9b)

We note that these coefficients are algebraic, being positive what-
ever the sign of the charge q. However, K1 depends on the
Lorentz factor γ, and we leave it unconstrained. In order to solve
Eq. (8), the velocity is advantageously decomposed into three
components (σ, δ, η) such that

u = σE + δB + ηE ∧ B. (10)

These components must satisfy a linear system of three equa-
tions of unknowns (σ, δ, η) according to

q (1 − η B2) = [K1 + K2 B2]σ − K2 [σ E2 + δ (E · B)]/c2 (11a)
q η (E · B) = K1 δ − K2 (E · B)σ (11b)

qσ = [K1 + K2 B2] η − K2. (11c)

We recall that K1 is unconstrained. Therefore, in order to fully
solve the system, an additional condition is required for K1.
To this end, we could enforce v = c, but as a generalisation,
we impose an user-defined Lorentz factor γ = (1 − v2/c2)−1/2.
Equations (10) and (11), supplemented with the condition on the
speed v, fully determine the velocity vector u. Solving for δ, we
get

δ =
E · B
K1

[q η + K2 σ], (12)
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reducing the system to a 2 × 2 size. Indeed, the smaller linear
system to be solved readsK1 + K2

(
B2 − E2

c2

)
−

K2
2

K1

(
E·B

c

)2
q

[
B2 −

K2
K1

(
E·B

c

)2
]

−q K1 + K2 B2

 (ση) =

(
q

K2

)
.

(13)

Deviation from the standard RRL arises because of the terms
containing K2, which are usually neglected in the ultra-
relativistic regime. In order to deduce the number of relevant free
parameters in the problem, it is preferable to employ quantities
without dimensions, as explained in the next section.

2.3. Dimensionless system

As generally required for numerical simulations, we introduce
several useful quantities without dimensions relevant for the
computation of the velocity. Following our previous work in
Pétri (2022), the primary fundamental variables are: the speed
of light c; a typical frequency ω involved in the problem; the
particle electric charge q; and the particle rest mass m. From
these quantities we derive a typical time and length scale as
well as electromagnetic field strengths such that the length
scale L = c/ω; the time scale T = 1/ω; the magnetic field
strength Bn = mω/|q|; the electric field strength En = c Bn;
and the typical electromagnetic force strength Fn = |q| En. The
two important parameters defining the family of solutions are
the field strength parameters aB and aE and the radiation reac-
tion efficiency k2 = ωτm according to the following definitions

aB =
B
Bn

=
ωB

ω
(14a)

aE =
E
En

=
ωE

ω
. (14b)

The external force becomes

Fext

Fn
= sign(q) (e + β ∧ b) (15)

with sign(q) = q/|q| and the radiative force

Frad

Fn
= k2

[
e ∧ b + b ∧ (b ∧ β) + (β · e) e

]
− k1 β (16)

with the normalised fields e = E/En, b = B/Bn and

k1 =
K1

|q| Bn
; k2 =

K2 Bn

|q|
= ωτm. (17)

The velocity expansion coefficients are also normalised accord-
ing to

σ̃ = σ Bn; η̃ = η B2
n; δ̃ = δ Bn/c. (18)

The normalised system to be solved then reads with ζ = sign(q)(
k1 + k2

(
b2 − e2

)
−

k2
2

k1
(e · b)2 ζ

[
b2 −

k2
k1

(e · b)2
]

−ζ k1 + k2 b2

) (
σ̃
η̃

)
=

(
ζ
k2

)
. (19)

In the above system, k2 is fixed by the nature of the charged
particle (q,m) and the typical frequency ω. There is no freedom
to choose it arbitrarily. However k1 is undetermined and needs to
be fixed by an additional constraint on the velocity. Choosing the
Lorentz factor γ, the coefficient k1 is found from the condition
v2/c2 = 1 − γ−2.

Actually k1 is related to the velocity u by Eq. (9) in the LLR
approximation. But solving for the coefficients σ, δ, η, and u is
only a function of k1. Thus Eq. (9) is a non-linear equation for k1
solely, which connects back to the fact that Eq. (8) is a non-linear
equation for u involving the Lorentz factor. This first approach
has the drawback of implicitly including the Lorentz factor in
the linear system via the parameter K1. In the next sub-section,
we develop a second approach that is quadratic in the velocity
and does not contain the Lorentz factor.

2.4. Derivation of the velocity: Second approach

In a second approach, called velocity radiation reaction (VRR),
instead of cancelling the relativistic momentum time derivative
dp
dt , we decided to cancel the velocity time derivative du

dt given in
the Landau-Lifshitz approximation by

γm
du
dt

= q[E + u ∧ B − (β · E)β]

+
q2 τm

m
[
E ∧ B + (u ∧ B) ∧ B + (β ∧ E) ∧ E/c (20)

+β · (E ∧ B)β
]
. (21)

The advantage of this approach is that it sticks closer to the Aris-
totelian regime. Indeed, if the term involving τm is removed, we
retrieve the RRL and the associated Aristotelian velocity expres-
sion that exactly satisfies

E + u ∧ B − (β · E)β = 0. (22)

Translated into normalised units, we get

ζ k2
[
e ∧ b + (β ∧ b) ∧ b + (β ∧ e) ∧ e + β · (e ∧ b)β

]
+ e + β ∧ b − (β · e)β = 0. (23)

This expression is quadratic in β, and unlike the previous
approach, it does not involve the Lorentz factor. It can thus be
solved by standard root finding techniques for a fixed Lorentz
factor (or equivalently a fixed velocity norm). In a simple pre-
scription, we set the velocity norm to ‖u‖ = c again, but any
Lorentz factor can be imposed. Departure from the RRL arises
due to the term involving ζ k2. In the next section, we discuss the
different approximations to the particle Lorentz factor.

3. Approximations of the particle Lorentz factor

In this section, we explore several approximations to estimate the
particle velocity without resorting to a full time integration of the
equation of motion. We first remind the standard expression for
the velocity, how it compares to our new expression and then
discuss the Lorentz factor estimation.

3.1. Friction opposite to velocity

Starting from the radiation reaction description of Mestel (1999)
where the radiative friction is opposite to the particle velocity
vector u, we write

q (E + u ∧ B) = K u, (24)

where K is a positive parameter related to the power radiated by
the particle. Solving for the velocity, we find(
B2 +

K2

q2

)
u =

K
q

E + E ∧ B +
q
K

(E · B)B. (25)
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Moreover K is the only positive solution of the bi-quadratic
equation

K4 v2 − q2 (E2 − v2 B2) K2 − q4 (E · B)2 = 0. (26)

Thus, it satisfies

K
|q|

=

√
E2 − v2 B2 +

√
(E2 − v2 B2)2 + 4 v2 (E · B)2

2 v2 . (27)

So far there are no constraints on the particle speed v < c. In the
limit of v = c, we retrieve the velocity expression used in the
literature, namely,

u± =
E ∧ B ± (E0 E/c + c B0 B)

E2
0/c

2 + B2
, (28)

assuming particles moving at the speed of light ‖u±‖ = c. In
the equation, u+ represents positively charged particles, whereas
u− represents negatively charged particles. The electromagnetic
field strength E0 and B0 are deduced from the electromagnetic
invariants E2 − c2 B2 = E2

0 − c2 B2
0 and E · B = E0 B0 with the

constraint E0 ≥ 0. Therefore, the radiated power is PR = q FL ·

u = |q| c E0 and K = |q| E0/c ≥ 0.
Except for this ultra-relativistic limit for which we assume

v = c, another relation is required to set the particle Lorentz
factor γ. To this end, we equate the radiated power according to
the local curvature radius ρc of the particle trajectory as

PR =
q2

6 π ε0
γ4 c
ρ2

c
= γ4 τm m c4

ρ2
c

= |q| c E0 (29)

from which the Lorentz factor becomes

γ =

(
|q| E0

τm m c3 ρ
2
c

)1/4

=

β · ek2

ρ2
c

r2
L

1/4

. (30)

Moreover, the curvature is found from the acceleration by

κc =
1
ρc
≈

∥∥∥∥∥ dβ
c dt

∥∥∥∥∥ . (31)

As long as γ � 1, the RRL Eq. (28) remains a very good approx-
imation.

In Eq. (24), the strength of the damping K is undetermined
but usually set by the particle velocity v or equivalently by its
Lorentz factor γ. Looking at LLR, we observed that the radia-
tion reaction force term proportional to γ2 is also opposite to the
velocity u. We could therefore identify K1 with K to get

K τm v
2 = m c2. (32)

Hence, K/|q| ≥ m/|q| τm = 9×1011 T for electrons and positrons.
This value is much too high. As a consequence, there are two
equations, Eqs. (27) and (32), for the two unknowns K and v.

In the ultra-relativistic limit K ≈ |q| E0/c and

β2 ≈
m c

|q| E0 τm
=

1
ωE0 τm

. (33)

Keeping the velocity less than the speed of light leads to E0 ≥

2.7 × 1020 V m−1, which is even larger than the critical value
of Ecrit ≈ 1.3 × 1018 V m−1. Therefore, this idea fails and gives
the same value as before for the magnetic equivalent of c E0 =
9 × 1011 T. We must conclude that the only reasonable way to
compute the Lorentz factor is via the curvature radiation power
Eq. (29). Before switching back to the LLR equation, we check
how the new velocity approximation compares to the simple pre-
scription presented in this paragraph.

3.2. Comparison to the radiation reaction limit

In the literature about approximated radiation reaction formulas,
only the force opposite to the velocity is considered. Translated
into our more general approach dealing with the full set of terms
in the LLR equation, we enforce k2 = 0. The system (19) then
simplifies into(

k1 ζ b2

−ζ k1

) (
σ̃
η̃

)
=

(
ζ
0

)
. (34)

The solution is readily found with

η̃ =
1

k2
1 + b2

(35a)

σ̃ = ζ k1 η̃ (35b)

δ̃ = ζ
e · b
k1

η̃. (35c)

This solution is exactly the same as the one presented in Eq. (25)
except that all quantities are now normalised. The speed is not
explicitly imposed to be equal to the speed of light. Therefore,
k1 needs to be deduced, for instance, from the Lorentz factor, as
in the previous discussion about curvature radiation power.

When k2 , 0, k1 is the root of a polynomial of high degree
with no analytical expression. We compute this coefficient by
applying a root finding algorithm via Newton-Raphson method.
A good initial guess for k1 in the system (19) is

k1 ≈
E0

En
=
|q| E0

m cω
= aE0 . (36)

We checked that very few iterations are required to converge to
a highly accurate solution with several digits of precision. Some
simulations are shown in the next section. Finally, in the last
approach, we use the full terms in the original LLR equation and
solve for the velocity while taking into account the term inde-
pendent of γ.

3.3. Lorentz factor from LLR

The system of equations (19) solves the particle velocity vec-
tor by assuming the coefficient k1 is freely adjustable. Actually,
from the LLR equation, it is not tuneable and must be determined
self-consistently with the expression (9) in which there are no
free parameters once the velocity u is fixed. This approach would
lead to a first algorithm for finding the particle Lorentz factor γ.
We need to solve for γ such that Eq. (9) is verified. However, as
we show in the next section, the IRR algorithm finds very simi-
lar velocities compared to the ‘standard’ algorithm. In this case
Eq. (24) also holds, approximately. Then it can be shown that

γ2 q2
[
(β · E)2 − F2

L

]
≈ −K2

1 v
2, (37)

which gives values of K1 very different from the expectation in
Eq. (9).

In a second alternative algorithm using the LLR equation, we
can try to set dγ/dt = 0 and solve for the value of K1 such that it
satisfies

β · E +
q τm

m c

(
FL · E + γ2 [(β · E)2 − F2

L]
)

= 0. (38)

Here again there are no free parameters once the velocity u
is fixed. This equation constrains the Lorentz factor because it
depends on u, which is fully solved once K1 is fixed. Therefore,
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the procedure consists of finding the root of Eq. (38) depend-
ing only on γ. However, here also, as the solution is close to the
expression (28), we found instead that

FL · E + γ2 [(β · E)2 − F2
L] ≈ 0, (39)

which is not compatible with Eq. (38).
Actually, the second term in Eq. (38) corresponds to the

opposite of the curvature radiation power PR. It is related to the
curvature κc in the case of an ultra-relativistic particle such that

κc =
|q|

γ2 m c2

√
γ2 [F2

L − (β · E)2] − FL · E. (40)

If the term FL ·E is negligible, we retrieve the result (Kelner et al.
2015)

κc ≈
|q|

γm c2

√
F2

L − (β · E)2. (41)

The curvature would vanish in the limiting case investigated in
this section because, by construction, du/dt = 0. Consequently,
as in the previous section, the best procedure to compute the
Lorentz factor is through the curvature radiation powerPR, again
by replacing E0 by β · E in Eqs. (29) and (30).

A final trial consisted of integrating the Lorentz factor dif-
ferential Eq. (5b) in time from the initial conditions. Because
the regime is close to the RRL, the second term expressing the
power radiated almost always vanishes. Contrary to the magnetic
field, only the electric field produces work and is able to acceler-
ate particles. The results are less good compared to the curvature
radius approach. Actually, the curvature radius represents only
an auxiliary variable to compute the Lorentz factor. It could be
derived straightforwardly from the definition of Eq. (31) but at
the expense of computing the Lagrangian time derivatives of the
electric and magnetic fields as

dE
dt

=
∂E
∂t

+ u · ∇E (42)

and with a similar expression for B. These expressions are, how-
ever, unwieldy to implement because they require the comput-
ing of partial time and space derivatives ∂t and ∂r. We prefer to
compute the curvature from a finite difference approximation of
Eq. (31), which is an equivalent description but much simpler
to implement numerically. In the next section, we explore the
efficiency and accuracy of the above mentioned methods for a
rotating magnetic dipole with an electric quadrupole component.

4. Simulations around a rotating dipole

As a typical macroscopic frequency, we used the neutron star
rotation frequency Ω and set ω = Ω. The numerical setup, elec-
tromagnetic field configuration, and initial conditions for parti-
cle position and velocity are exactly the same as in Pétri (2022).
We simulated a sample of test particles evolving in the Deutsch
(1955) electromagnetic field.

4.1. Radiation reaction limit accuracy

The improved version of the radiation reaction regime in the
first approach differs significantly from the standard version only
whenever the ratio k2 b2/k1 becomes comparable or greater than
one. This means that the braking force no longer aligns with
the particle velocity vector and that it also involves friction in

Fig. 1. Ratio of the coefficient k1 and k2 expressed as k2 b2/k1 in log
scale for a sample of eight trajectories starting at several distances from
the surface given by r0/rL ≈ {1, 0.37, 0.14, 0.05}.

Fig. 2. Time evolution of the ratio c K1/|q| E0 in log scale for a sample
of eight representative trajectories. Both numbers are identical to eight
digits of precision.

the E, B, and E ∧ B directions. To check if this situation hap-
pens for electrons in the rotating magnetic dipole, we plotted
this ratio in a log scale (see Fig. 1) for a sample of eight tra-
jectories starting at different locations r0 within the light cylin-
der. The radial distances are given in the legend of the figure
and were normalised to the light cylinder radius rL such that
r0/rL ≈ {1, 0.37, 0.14, 0.05}. As can be seen in this plot, this
ratio is mostly much lower than one, meaning that the improved
version of radiation reaction does not significantly differ from
the straightforward RRL, except for sparse events of very few
trajectories. Moreover, as we later show, even in these cases, the
trajectories are not drastically affected by the corrections brought
through the IRR expression.

Figure 2 shows the deviation of K1 from |q| E0/c in the IRR
version for the same sample shown in Fig. 1. The ratio equals one
to very high accuracy. Both parameters are identical up to eight
digits of precision. This supports the fact that the improvement is
marginal. Finally, in Fig. 3, we compare the parallel electric field
E‖ = β · E to the value E0 corresponding to the parallel electric
field in the strict radiation reaction regime. Because E‖ < 0 for
negatively charged particles, we plotted ζ E‖/E0 to keep positive
numbers. Both values of the parallel electric field are identical to
more that 12 digits of precision.
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Fig. 3. Time evolution of the true parallel electric field E‖ compared to
the estimated parallel electric field E0 for a sample of eight trajectories.
Because E‖ < 0 is negative for electrons, we plot ζ E‖/E0.

Based on all the above observations, we did not expect to
observe a drastic change in the particle dynamics between the
RRL and IRR regime. For a more quantitative analysis, we plot-
ted the Lorentz factor evolution in time for the same sample
of electrons. No difference in the Lorentz factor evaluation was
observed between both approximations. We therefore concluded
that there is no advantage in including the correction brought
by the Landau-Lifshitz equation with a friction term not anti-
aligned with the velocity vector.

4.2. Comparison between IRR, VRR, and LLR

We have checked that the IRR does not bring significant
improvements compared to radiation reaction. To complete the
analysis of accuracy and efficiency of the IRR approximation,
we compared it to the more reliable LLR equation of motion.

Figure 4 shows the evolution of the Lorentz factor for the
three descriptions of the particle motion, RRL, IRR, and LLR.
The curves only differ by their initial condition. The RRL and its
improved version show Lorentz factor estimates agreeing with
the LLR computations to reasonably good accuracy. We note that
the time evolution of the Lorentz factor is reproduced with the
associated fluctuations for one of the trajectories. For the RRL
and IRR case, the Lorentz factors were computed according to
expression (30). The curvature κc in Eq. (31) was estimated with
a finite difference approximation

κc =

∥∥∥∥∥∥un+1/2 − un−1/2

c2 dt

∥∥∥∥∥∥ . (43)

It only involved the value of the electromagnetic field at two
neighbouring times: tn+1/2 and tn−1/2.

If we integrate the time evolution of the Lorentz factor
instead, we get less accurate estimates of the Lorentz factor, as
shown in Fig. 5 in green dashed lines for the VRR approach and
indicated as VRR2. The blue dashed lines show the Lorentz fac-
tor computed via the curvature and give similar results to IRR in
Fig. 4, indicated as VRR1.

Representing another check of the efficiency of the IRR and
radiation reaction approximation, Fig. 6 overlaps the LLR tra-
jectories shown in black solid lines onto the IRR trajectories
shown in coloured, thick solid lines for a sample of particles
starting at r0/rL ≈ {1, 0.37, 0.14, 0.05} from the top to the bot-
tom row, respectively see the legend in the right-column pan-
els). For the trajectories starting well above the stellar surface,

Fig. 4. Evolution of the Lorentz factor for the three approximations of
the equation of motion of an electron. Colours are as follows: RRL in
dashed blue, IRR in dashed green, and LLR in solid red lines.

Fig. 5. Evolution of the Lorentz factor for the VRR approximation in
dashed green and dashed blue lines compared to LLR in solid red lines.
VRR2 stands for evaluation by integration in time of the Lorentz fac-
tor, whereas VRR1 stands for evaluation of the Lorentz factor by the
curvature radius.

corresponding to the first row with r0/rL ≈ 1 and to the sec-
ond row with r0/rL ≈ 0.37, all trajectories agree and overlap.
Only some trajectories starting from the stellar surface, corre-
sponding to the fourth row with r0/rL ≈ 0.05, do not match,
though the behaviour remains the same. For particles starting at
r0/rL ≈ 0.14, third row, the agreement is also excellent.

Finally, we stress that all the above results rely on the
assumption that dE/dt = dB/dt = 0 are valid. This is correct
as long as the terms involving dE/dt and dB/dt remain small
compared to the other terms in Eq. (3). We checked this a poste-
riori by computing the time derivatives d ln E/dt and d ln B/dt, in
normalised units, during a full simulation span. The time evolu-
tion of these derivatives is shown in Fig. 7. They remain of order
unity, with a maximal value of about ten. If multiplied by the
correct factors given in the Landau-Lifshitz equation, we noticed
that these terms in the radiation reaction force indeed stay at a
negligible level, even when multiplied by a factor γ. A simple
criterion for dropping these terms is γ k2 � 1. Thus, we can
confidently ignore these time derivatives even outside the light
cylinder.

A72, page 6 of 8



Pétri, J.: A&A 677, A72 (2023)

Fig. 6. Comparison of IRR and LLR trajectories of a relevant sample of electrons. The solid black lines depict the LLR trajectories, and the coloured
symbols show the IRR approximation. In each horizontal panel, particles start at a fixed spherical radius given by r0/rL ≈ {1, 0.37, 0.14, 0.05},
from top to bottom.

5. Conclusions

Tracking a charged particle motion in an ultra-strong elec-
tromagnetic field is computationally a very demanding task.
However, finding accurate approximations able to follow these

ultra-relativistic trajectories with radiative friction is a central
problem in modelling realistic neutron star magnetospheres. In
this paper, we extended the velocity vector expression in the
RRL by including a radiative force linear in velocity as derived
from the Landau-Lifshitz equation. We showed that integrating
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Fig. 7. Time evolution of the electric field derivative d ln E/dt (blue)
and magnetic field derivative d ln B/dt (red), in normalised units, along
a sample of three particle trajectories depicted by solid lines, dashed
lines, and dotted lines.

the particle trajectories with this new expression gives very sim-
ilar results to the ‘standard’ radiation reaction expression of the
Aristotelian dynamics. The Lorentz factors are identical in both
cases. A new parameter was introduced to control the strength
of this force linear in velocity compared to the ultra-relativistic
term proportional to γ2. It almost always remains negligible com-
pared to the γ2 term anti-aligned with the velocity vector. Includ-
ing such a refinement in the radiation reaction regime to obtain
more accurate solutions is therefore not recommended because it
also requires more computational time for no benefit.

Nevertheless, we observed some discrepancy between the
Landau-Lifshitz solution and the IRR solution for some parti-
cles starting from regions close to the surface where the field
strength is maximal. In such cases, the Landau-Lifshitz inte-
gration scheme is recommended if accuracy becomes an issue
in obtaining reliable results. An alternative approach therefore

would be to evolve the velocity vector in time and the Lorentz
factor using the ultra-relativistic equation of motion approxima-
tion for a charged particle while assuming that the speed is and
remains very close to the speed of light.

Another possible application beyond neutron stars but
not explored in this work is using lasers in the extreme
light regime to investigate high energy physics in ultra-
strong electromagnetic fields in the laboratory. Indeed cur-
rent technology pushes the laser nominal intensity above I0 &
1022 W cm−2 (Gonoskov et al. 2022), corresponding to magnetic
field strengths on the order of B & 107 T, which are similar to
field strengths met around compact objects in high energy astro-
physics. At such laser intensities, the field strength is expected to
reach the radiation dominated regime and even the strong field
quantum electrodynamics domain where electron-positron pair
cascades are triggered.
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