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Abstract— Counterfactual examples constitute a popular form
of explanations that are most often generated through the opti-
misation of a cost function that combines different components
of the explanation quality. This paper focuses on the final
aggregation of the objective term, that depends on the considered
machine learning task, and the subjective term, that depends
on the targeted user and more precisely on their knowledge.
It discusses the desired properties of this aggregation operator
and proposes to use two forms of the Gödel integral operator,
highlighting the expressiveness and appropriateness they offer.

Index Terms—XAI, counterfactual examples, aggregation op-
erators, prior knowledge, Gödel integral, Sugeno integral.

I. INTRODUCTION

In order to explain the prediction performed by a given
classifier for a given data instance of interest, numerous so-
called local post-hoc methods have been proposed (see e.g. [1],
[2]), that, among others, vary in the form of explanation they
provide and the information they consider available. Coun-
terfactual examples [3] explain a prediction by identifying
modifications to be applied to the considered instance so as
to change the associated prediction: they answer the user
question ”What do I need to modify to get the prediction I
want?”. A large variety of approaches have been proposed to
address this task (see e.g. [4]–[7]), relying on the definition
of a cost function to optimise. The latter includes different
terms that constitute different components of the quality of
the explanation. A crucial question is then that of their
aggregation.

This paper focuses on a specific step of aggregation, namely
the final one that combines an objective term with a subjective
one. The former refers to the combination of numerical
criteria that only depend on the machine learning task, i.e.
the considered classifier, the data instance about which the
explanation is required and possibly additional information
such as the data density. The subjective term, on the other
hand, is the one that allows for a personalised explanation and
depends on the targeted user, in particular on their knowledge.
This paper discusses the specific properties this aggregation
requires in order to build an explanation that matches the user’s
expectations. It then proposes to use for this step Gödel inte-
grals [8] that constitute a generalisation of the Sugeno integral,
highlighting the expressiveness and appropriateness they offer:
they associate a threshold semantics to the weight attached to
the criteria, above which (resp. below which) the value to be

aggregated is considered equivalent to the maximum (resp.
minimum) value of the scale, allowing for a rich behaviour.
To the best of our knowledge, this paper proposes the first
application of Gödel integrals in the eXplainable Artificial
Intelligence (XAI) domain.

The paper is organised as follows: Section II summarises
the principles of counterfactual examples explanations, pre-
senting the aggregation issue they raise. Section III discusses
the desired characteristics for the aggregation operator and
Section IV introduces the proposed use of Gödel integrals.
Section V illustrates the expressiveness and richness of this
choice on a 2D classical toy data set. Section VI concludes
the paper, discussing some directions for future works.

II. BACKGROUND: ENRICHED COUNTERFACTUAL
EXAMPLES EXPLANATIONS

This section briefly presents the main principles of expla-
nations based on counterfactual examples and the way how
they can be personalised integrating user knowledge. It then
discusses the crucial aggregation step they require to perform.

A. Principles of Counterfactual Example Explanations

Counterfactual examples [3] aim at explaning the prediction
offered by a machine learning model f : X → Y (where X
denotes the data description space and Y the output space,
e.g. Y = {0, 1} for binary classification) for a data instance of
interest x0 ∈ X . As mentioned in the introduction, they answer
the user question ”What minimal modifications, from x0 to x′

0,
allows that f(x′

0) ̸= f(x0)?”. They are basically defined as the
difference between x0 and x′

0, the closest data point associated
to a prediction of the desired class. The proximity constraint
aims at minimising the effort the user needs to provide to get
the desired output.

Numerous variants of this principle have been proposed (see
e.g. [4]–[7]), integrating additional components to measure the
quality of the explanation. Beside the proximity requirement,
that can be measured by the l2 norm [9], [10] or the l1
norm [11], sparsity [10], [12] aims at reducing the number
of features to modify, beyond the global quantity of required
changes, so as to improve the legibility of the provided
explanation. Other criteria, such as plausibility [13], propose
to take into account the considered context, in a paradigm that
gives up the model and data agnostic assumptions, in order to



make the proposed explanations more realistic, e.g. to avoid
out-of-distribution counterfactual examples [14].

We denote Pf,x0
(e) the penalty term that defines the quality

of a candidate counterfactual example e based on these various
components. The output counterfactual example is formally
defined as the solution of the optimisation problem:

e∗ = argmin
e∈X

Pf,x0(e) s.t. f(e) ̸= f(x0) (1)

B. Integration of User Knowledge

Beyond the objective criteria that define the penalty func-
tion, only depending on the considered machine learning task,
a second class of criteria takes into account a more subjective
view on counterfactual candidates and makes their quality
depend on the user who receives them. Such criteria make it
possible to personalise the explanation, increasing its relevance
and benefits for the targeted user.

Existing approaches differ both on the type of user knowl-
edge they consider and on the way the latter is integrated in
the explanation generation. User knowledge can e.g. take the
form of a set of features that make sense to the user [15], [16]
and should be favored in the explanation. They can be enriched
through acceptable value intervals for each feature [17] or the
monotony of acceptable changes [18], e.g. whether the feature
value can be increased or decreased. User knowledge can also
be expressed as links between features [19], e.g. through causal
graphs [18], [20], to ensure that the impact of the modification
of a feature on another one is verified.

In this paper, we denote the user knowledge E, indepen-
dently of its actual form. Candidate counterfactual examples
that are incompatible with this knowledge must then be
penalised. We denote IE,x0

(e) the incompatibility assessment.

C. Aggregation Issue

The generation of a counterfactual example can then be
formulated as an optimisation problem, of which the cost func-
tion to be minimised combines the penalty Pf,x0

(e) and the
incompatibility IE,x0

(e). A crucial question is the aggregation
of these two terms.

Actually, the definition of penalty already raises an aggre-
gation issue, as it combines several components. Still, one
can consider that these components are of the same nature,
as they constitute objective criteria, that only depend on the
considered machine learning task. In that sense, classical
aggregation operators, such as weighted averages, can be
considered as satisfactory, see e.g. [12] or [21]. In some works,
the aggregation is performed in an integrated, and somehow
implicit, manner, within the optimisation process itself: in [10]
for instance, the penalty term depends both on proximity and
sparsity, the latter is taken into account in a projection step
applied to the points that minimise the proximity criterion.

On the other hand, the combination of penalty and incom-
patibility requires aggregating components of different nature
when considering the first one as objective and the second one
as subjective. As a consequence, the aggregation discussion
can be seen as richer, calling for more expressive operators. A

first step towards this discussion is proposed in [16] that argues
that conjunctive operators are too strict, disjunctive operators
too lax and that proposes to use compromise operators as
weighted averages. This paper proposes to conduct a more
systematic discussion on the properties an aggregation operator
should possess or not (Section III). It then proposes to apply
Gödel integrals (see Section IV) to achieve this goal.

More formally, the question addressed in this paper is to
select an aggregation operator agg to define the cost function

costf,E,x0
(e) = agg(Pf,x0

(e), IE,x0
(e)) (2)

to be minimised under the constraint that f(e) ̸= f(x0).
In the following f, x0 and E are considered to be fixed

so the corresponding subscripts are omitted in order to
lighten the notation. Likewise, when there is no ambiguity,
the candidate counterfactual example e can be omitted as
well, and the considered issue is to characterise and select
an operator to perform the aggregation agg(P, I) where P
denotes the penalty value and I the incompatibility value for
the given f, x0, E and e. These two quantities are considered
to be commensurable, e.g. after a normalisation step to [0, 1].

III. DESIRED CHARACTERISTICS FOR PENALTY AND
INCOMPATIBILITY AGGREGATION

There exists a very rich literature on aggregation operators
(see e.g. [22]), both for the definition of functions with
various properties, semantics and expressiveness, and for lists
of conceivable properties. This section discusses some of the
properties an aggregator must verify to meet the requirements
of the XAI context described in the previous section.

A. Discussion on Monotonicity

We first argue the considered aggregation operator must
be non decreasing in both its arguments. Indeed, let us first
consider two candidate counterfactual examples e1 and e2 such
that e1 is closer to the reference instance x0 than e2, but has the
same compatibility to the user knowledge: P (e1) < P (e2) and
I(e1) = I(e2). The global quality of the two candidates should
then favour e1, i.e. it is desired that cost(e1) ≤ cost(e2). In
terms of aggregation, it leads to the constraint that the operator
should be non decreasing in its first argument.

Likewise, considering two candidates e′1 and e′2, such that
P (e′1) = P (e′2) but I(e′1) < I(e′2), again e′1 should be
favoured. The desired aggregation function should thus also
be non decreasing in its second argument.

B. Discussion on Commutativity

We argue the considered aggregation operator should not be
commutative. As discussed in Section II, the two considered
criteria, P and I , have different semantics, respectively being
of objective vs subjective nature. They are thus not equivalent
and the commutativity property is not expected: it may be the
case that agg(x, y) ̸= agg(y, x) because y = P (e) does not
have the same meaning as y = I(e).



C. Discussion on Variable Behaviour

We argue the considered aggregation operators should have
different behaviours according to the values of the variables,
e.g. being conjunctive in some regions, disjunctive in others
and offer a trade-off property in others. In XAI, one of the
difficulties of choosing an aggregation function is that it must
be adapted to all types of users, who have different motivations
and needs. We propose the users may express their needs in the
form of constraints on the criteria, for example as limits on the
minimal values of penalty and incompatibility: they may set
thresholds δP , δI ∈ R and impose that P (e) < δP and I(e) <
δI for a candidate to be acceptable. For penalty, the limit can
depend on the reference value obtained by the counterfactual
example that minimizes the penalty as defined in Equation 1,
denoted e∗P : the constraint can be expressed in terms of loss of
quality as compared to e∗P , making the threshold dependent of
the considered instance x0. For incompatibility, it is difficult
to define such a reference value. We thus propose to consider
two constraints:

P (e)− P (e∗P ) < δP (3)
I(e) < δI (4)

Such constraints divide the criteria space, described by
couples (P (e), I(e)), into four different zones, depending on
whether both, only one or none are satisfied. It seems desirable
that the aggregation function offers different behaviours in
these zones, whose interpretation is not the same.

D. Discussion on Priority Behaviour

The difference in semantics of the two considered criteria
may imply a preference, inducing an order relation between
them, that can be interpreted as a desired priority behaviour.
This preference is obviously not the same for all users and
participates to the explanation personalisation step. If a user
e.g. expresses a preference for penalty over incompatibility,
then among two counterfactual candidates with the same norm
in the (P, I) space, the one with minimal P must be favoured.

A second possibility is to integrate the notion of priority
through the choice of thresholds in Equations (3) and (4).
In the case where penalty is preferred to incompatibility, a
stronger condition on the penalty than on incompatibility is
expected: the threshold δP associated with penalty is expected
to be lower than δI associated with the incompatibility.

IV. CHOSEN OPERATOR: GÖDEL INTEGRALS

This section proposes to use the Gödel integrals. It first
reminds their general definition and then discusses their in-
stanciation to the considered XAI framework, i.e. to P and I ,
before commenting and illustrating their semantics.

A. Reminder on Gödel Integral Definition

Gödel integrals [8] are a generalisation of the classi-
cal Sugeno integral [23] which has two equivalent expres-
sions [23]. Generalising them with Gödel conjunction or
implication leads to two different operators.

1) Notations: The set of evaluation criteria is denoted C =
{1, · · · , n}. They are considered to be assessed numerically,
by values in L = [0, 1].

Gödel integrals take into account the fact that the subsets of
criteria have different weights: the latter make it possible to
represent the importance of the individual criteria as well as
their interactions. This importance is modelled by a capacity
(fuzzy measure), µ : 2C → [0, 1], that associates each subset
of criteria A ⊂ C with its weight µ(A). By definition, this
function is non decreasing with respect to set inclusion and
satisfies the boundary conditions µ(∅) = 0 and µ(C) = 1.

2) Conjunction-based Gödel Integral: The so-called Gödel
conjunction is the non commutative conjunction operator de-
fined for all α, β ∈ [0, 1] by:

α⊗G β =

{
0 if β ≤ 1− α
β otherwise.

It is non decreasing in its two arguments and satisfies the
following limit conditions: 1⊗G β = β, α⊗G 1 = 0 if α = 0
and 1 otherwise, and 0⊗G β = α⊗G 0 = 0.

The Gödel integral applies this operator to each subset of
criteria A. The minimum value of x on A is not modified
if it is greater than threshold 1 − µ(A), and it is set to 0
otherwise. This threshold decreases with respect to µ(A): it
is small when µ(A) is high, i.e. when the set A is important.
So a small evaluation on an important set of criteria is kept,
whereas a small one on an non important set of criteria is
modified to 0. Formally, the Gödel integral is defined as

G⊗
µ (x) = max

A⊆C

(
µ(A)⊗G min

i∈A
xi

)
. (5)

3) Implication-based Gödel Integral: The Gödel integral
that relies on implication follows the same principle, replacing
the Gödel conjunction by the Gödel implication, the max by a
min and the use of µ by its conjugate. The Gödel implication
is defined for any α, β ∈ [0, 1] by:

α →G β =

{
1 if α ≤ β
β otherwise.

It satisfies the following limit conditions: 0 →G β = 1 and
α →G 1 = 1.

Similarly to the conjunction based case, evaluation A is
transformed using this operator: µc(A) →G maxi∈A xi,
where µc is the conjugate capacity of µ defined by
µc(A) = 1− µ(A) where A is the complementary set of A.
Thus, the evaluation is not changed if it is lower than
1− µc(A) = µ(A), otherwise it is changed to 1.

Formally the implication-based Gödel integral is

G→
µ (x) = min

A⊆C

(
µc(A) →G max

i∈A
xi

)
. (6)

Examples of these aggregation operators are provided in the
next subsection, when they are applied in the XAI framework.



B. Application to the XAI Counterfactual Example Context

This section discusses the application of the general defi-
nitions reminded above to the aggregation of the penalty and
the incompatibility values, simply denoted P and I in this
section. In addition P and I denote the features these values
are respectively associated with. The formal expression of the
aggregated values, respectively G⊗

µ (P, I) and G→
µ (P, I), are

given below, their level lines are illustrated on Figure 1 and
their interpretation is detailed in the next section.

The set of criteria becomes C = {P, I}, that are normalised
and evaluated on the scale L = [0, 1]. The considered capacity
is then defined on universe 2C whose size equals 4. Two
values are set because of the boundary conditions (µ(∅) = 0
and µ({P, I}) = 1), we denote the two other ones as:
µ({P}) = αP and µ({I}) = βI .

The formal expressions of the P and I aggregation then are

G⊗
µ (P, I) = max(αP ⊗G P, βI ⊗G I, 1⊗G min(P, I))

=


min(P, I) if P ≤ 1− αP and I ≤ 1− βI

max(P, I) if P > 1− αP and I > 1− βI

P if P > 1− αP and I ≤ 1− βI

I if P ≤ 1− αP and I > 1− βI

G→
µ (P, I) = min

(
(1− βI) →G P, (1− αP ) →G I,

1 →G max(P, I)
)

=


min(P, I) if P < 1− βI and I < 1− αP

max(P, I) if P ≥ 1− βI and I ≥ 1− αP

I if P ≥ 1− βI and I < 1− αP

P if P < 1− βI and I ≥ 1− αP

Properties: It is easy to show that both G⊗
µ (P, I) and

G→
µ (P, I) satisfy all the desired properties presented in Sec-

tion III: they are monotonous in each argument, non commuta-
tive, offer a variable behaviour and allow to express a criteria
hierarchy. The variable behaviour can be seen in the formal
expressions as well as on the graphical representation shown
in Figure 1: the criteria is divided into four regions, depending
on the relative position of the considered criteria P and I and
their associated threshold values 1− αP and 1− βI .

C. Interpretation of Gödel Integrals in the XAI Context

1) Threshold Interpretation: The correspondence between
the Gödel parameters αP and βI and the thresholds associ-
ated with the constraints discussed in Section III-C can be
established by comparing the regions they respectively define.
For instance, for G⊗

µ (P, I) and the P criterion, the constraint
is satisfied when P ≤ 1 − αP , whereas for G→

µ (P, I), the
condition is P ≤ 1 − βI . Comparing them to the constraints
expressed in Equation 3 leads to the correspondence between
αP , βI and δP + P (e∗P ).

Applying the same principle to incompatibility leads to, for
G⊗

µ (P, I), to δP + P (e∗P ) = 1 − αP and δI = 1 − βI . For
G→

µ (P, I), it leads to δP +P (e∗P ) = 1−βI and δI = 1−αP .
These differences can be commented as discussed below,

when looking at the difference between the induced regions.

Fig. 1: Level lines of Gödel integrals with αP = 0.8 and
βI = 0.4: (top) G⊗

µ (P, I), (bottom) G→
µ (P, I)

2) Region Interpretation: To comment the region interpre-
tation, we focus on the graphical representation given in Fig-
ure 1. It can be observed that G⊗

µ (P, I) and G→
µ (P, I) share

two similar regions, the lower left and the upper right ones.
The lower left one corresponds to counterfactual candidates
that satisfy both constraints and can thus be considered as
satisfying. Their evaluation then depends only on the best
criterion, i.e. the minimum between P and I (remind that the
overall cost must be minimised). On the contrary, in the top
right region, the candidates satisfy none of the constraints, in
order to penalise them, their score is defined as the maximum
between P and I .

On the two remaining areas, the two integrals do not offer
the same aggregation, because they are based on different
principles. To ease the discussion, let us consider the case
where the penalty constraint is satisfied, but not the incompat-
ibility one, which corresponds to the top left region. G⊗

µ (P, I)
adopts a punishment behaviour, penalising the candidates in
this region up to their unsatisfied criterion, I , independently
of their penalty value. On the contrary, G→

µ (P, I) considers
they are all as bad regarding the incompatibility and does not
distinguish them with respect to that criterion, viewing them as
equally lost causes regarding it. G→

µ (P, I) then favours these
candidates up to their penalty value. This constitutes a major
semantic difference that underlines the richness and relevance
of Gödel integrals as aggregation operator in the XAI domain.

We finally comment the influence of the Gödel parameters
on the relative sizes of the four regions, showing they play the
same role for G⊗

µ (P, I) and G→
µ (P, I) despite the difference



of their region interpretation: they are based on the same
principle according to which if the capacity weight associated
with a criterion is high, then the area that minimizes only this
criterion, ignoring the other criterion, is large, indeed giving
it more importance. For instance, if αP is high, the threshold
1−αP is low. Both integrals increase the area that minimizes
the penalty: for G⊗

µ (P, I), it corresponds to the lower right
area while it is the upper left area for G→

µ (P, I). Actually, in
both cases, the area of this region equals αP (1−βI), showing
they globally give the same importance to penalty for given
values of the parameters. They differ in the position of this
region, but not its importance.

V. ILLUSTRATIVE EXAMPLES

This section illustrates counterfactual examples obtained
with the proposed Gödel-based aggregation, visualising them
for a toy 2D dataset, both for baseline and generic cases.

A. Considered Data

The experiments are conducted with the Half-Moons dataset
whose two dimensions are denoted X0 and X1. On Figures 2
and 3, the blue and red regions represent the predicted classes,
points the training examples; the decision boundary of the
trained SVM classifier is shown in white (test accuracy: 0.99).
The considered user knowledge is the singleton E = {X1}.
To allow visual comparisons, all experiments use the same
instance x0, represented by a black cross. Penalty P is
defined as normalised Euclidean distance P = ∥x0 − e∥,
incompatibility I as normalised Euclidean distance on the
feature outside E, I = ∥x0−e∥X0

. The optimization problem
does not have a unique solution, the whole set of solutions is
represented, by green points.

B. Baseline Cases

We first examine four baseline aggregation functions, that
also correspond to extreme cases of the Gödel integrals. We
give below their expressions and the αP and βI parameter
values that make them instanciations of G⊗

µ (P, I) (we omit,
for brevity, the parameter values for G→

µ (P, I)):

agg(P, I) = P αP = 1 βI = 0 (7)
agg(P, I) = I αP = 0 βI = 1 (8)
agg(P, I) = min(P, I) αP = 0 βI = 0 (9)
agg(P, I) = max(P, I) αP = 1 βI = 1 (10)

Eq. (7) corresponds to the classical case where only the penalty
is considered, Eq. (8) is rare as it considers only the user, fully
ignoring penalty; Eq. (9) and (10) respectively represent the
conjunction and disjunction of the two criteria.

Figure 2 shows the counterfactual examples obtained in each
case, illustrating their expected diversity. Figure 2a constitutes
the reference explanation. Figure 2b shows the explanations
that minimize incompatibility. For the considered x0, it is
possible to find counterfactual examples totally compatible
with the user knowledge: the generated explanations are thus
points located at the vertical of x0 that belong to the blue class,

(a) P (e) (b) I(e)

(c) min(P (e), I(e)) (d) max(P (e), I(e))

Fig. 2: Counterfactuals explanations generated for the baseline
cases defined in Eq. (7), (8), (9) and (10)

with incompatibility equals 0. Figure 2c is similar to Figure 2b:
in the considered case, I can equal 0, whereas P cannot; the
minimum thus leads to the same results as incompatibility.
Finally, Figure 2d is associated with the maximum function;
the generated explanations are located at positions where the
incompatibility outweighs the penalty.

C. General Gödel Integrals

Figure 3 shows representative explanations generated when
using G⊗

µ (P, I) for other, less extreme, values of the parame-
ters αP and βI , chosen to illustrate the variety of results they
lead to. Six cases can be distinguished, illustrating the interest
and expressiveness of this aggregation operator.

On Fig. 3a, that is identical to Fig. 2b and 2c, the set of
generated counterfactual examples is the set of totally com-
patible points of the other class, i.e. those for which I(e) = 0.
For the considered instance x0, it can be obtained whenever
αP < 0.5. When αP increases beyond that threshold, the
number of generated explanations decreases, as illustrated for
Fig. 3b and 3c (αP = 0.65 and 0.74 respectively). This shows
the impact of the α threshold in Gödel integrals: even if the
explanations are completely compatible, if they do not satisfy
the constraint imposed by the the penalty, they are discarded.

On Fig. 3f, that is identical to Fig. 2a, a single counterfactual
example is generated, that corresponds to the closest point of
the other class, i.e. the one with the lowest penalty. This case
is obtained whenever the constraint imposed by penalty is too
strong, i.e. αP is too high as compared to incompatibility. In
this case, it is impossible to find a compatible explanation, the
optimisation process thus focuses on minimising the penalty.

Figures 3d and 3e represent a compromise between the
extreme cases of Fig. 3c and 3f, i.e. trade-offs between P



(a) α = 0, β = 0.2 (b) α = 0.65, β = 0.2 (c) α = 0.74, β = 0.2

(d) α = 0.8, β = 0.98 (e) α = 0.83, β = 0.9 (f) α = 0.9, β = 0.2

Fig. 3: Counterfactual examples obtained by minimizing
G⊗

µ (P, I) for different values of αP and βI

and I. We illustrate these cases with a high threshold for
penalty, the generated counterfactual examples are the most
compatible instances that satisfy the penalty constraint. In
the figures represented here, at least one of the constraints
is satisfied. Fig. 2d represents the maximum function if none
of the constraints is verified (αP > 0.9 and βI > 0.95). These
values are associated with very strong constraints. Fig. 3e is
a variant thereof, with more tolerance on the penalty value.

The G→
µ results, omitted for brevity, show similar be-

haviours, for other values of the parameters, due to their
semantic difference (see Section IV-C). However, when the
penalty constraint is not satisfied, G→

µ focuses on incompat-
ibility (see Section IV-C). As for the considered illustrative
example there exist totally compatible explanations, for all
αP < 1, they are the generated ones. This case corresponds
to the one illustrated in Fig. 3a. As a consequence, for this
specific x0, G→

µ leads to less diverse cases than G⊗
µ . On the

other hand, two cases appear when αP = 1, that respec-
tively correspond to Fig. 3b associated with the maximum,
if βI > 0.93, and Fig. 3d associated with penalty otherwise.

VI. CONCLUSION

This paper proposed to apply the aggregation operator
family of Gödel integrals to combine a subjective assessment
of the quality of candidate explanations, related to user knowl-
edge, with an objective assessment, that only depends on the
considered machine learning task. It discussed the required
properties of an aggregation function in this specific setting
and interpreted the advantages of the Gödel integrals, leading
to their innovative application in the XAI domain. Thus, we
present a new tool that allows us to propose a more adapted
explanation to the user.

The discussion focused on the case of counterfactual ex-
amples for the definition of penalty and incompatibility, but
its principle can be applied whenever these two quantities can
be defined. This for instance applies to explanations as local

feature importance weights, which constitutes a direction for
future works. Another one will aim at conducting experiments
with real users, in a human-in-the-loop setting which is crucial
for all XAI studies. They will in particular study their assess-
ment of the generated explanations, the preferred behaviours
or the elicitation of the appropriate threshold parameters.

REFERENCES

[1] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A Survey of Methods for Explaining Black Box Models,”
ACM Comput. Surv., vol. 51, no. 5, pp. 1–42, 2018.

[2] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable
AI: A Review of Machine Learning Interpretability Methods,” Entropy,
vol. 23, no. 1, 2021.

[3] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual Explanations
without Opening the Black Box: Automated Decisions and the GDPR,”
Harvard journal of law & technology, vol. 31, pp. 841–887, 2018.

[4] S. Verma, J. Dickerson, and K. Hines, “Counterfactual explanations for
machine learning: A review,” arXiv preprint arXiv:2010.10596, 2020.

[5] R. Mazzine and D. Martens, “A framework and benchmarking study for
counterfactual generating methods on tabular data,” Applied Sciences,
vol. 11, no. 16, p. 7274, 2021.

[6] A.-H. Karimi, G. Barthe, B. Schölkopf, and I. Valera, “A survey of
algorithmic recourse: contrastive explanations and consequential recom-
mendations,” ACM Computing Surveys (CSUR), 2022.

[7] R. Guidotti, “Counterfactual explanations and how to find them: litera-
ture review and benchmarking,” Data Mining and Knowledge Discovery,
pp. 1–55, 2022.

[8] D. Dubois, H. Prade, A. Rico, and B. Teheux, “Generalized qualitative
Sugeno integrals,” Information Scie,ces, vol. 415, pp. 429–445, 2017.

[9] M. T. Lash, Q. Lin, N. Street, J. G. Robinson, and J. Ohlmann,
“Generalized Inverse Classification,” in SIAM Int. Conf. on Data Mining,
2017, p. 162–170.

[10] T. Laugel, M.-J. Lesot, C. Marsala, X. Renard, and M. Detyniecki,
“Comparison-based Inverse Classification for Interpretability in Machine
Learning,” in IPMU. Springer, 2018, pp. 100–111.

[11] A. Artelt and B. Hammer, “Convex Density Constraints for Computing
Plausible Counterfactual Explanations,” in Artificial Neural Networks
and Machine Learning, 2020, pp. 353–365.

[12] S. Dandl, C. Molnar, M. Binder, and B. Bischl, “Multi-objective coun-
terfactual explanations,” in Proc. of the Int. Conf. on Parallel Problem
Solving from Nature. Springer, 2020.

[13] R. Poyiadzi, K. Sokol, R. Santos-Rodriguez, T. De Bie, and P. Flach,
“FACE: Feasible and Actionable Counterfactual Explanations,” in Proc.
of the AAAI/ACM Conf. on AI, Ethics, and Society, AIES, 2020.

[14] T. Laugel, M.-J. Lesot, C. Marsala, X. Renard, and M. Detyniecki,
“The dangers of post-hoc interpretability: Unjustified counterfactual
explanations,” in Proc. of the 28th IJCAI Conf., 2019, pp. 2801–2807.

[15] B. Ustun, A. Spangher, and Y. Liu, “Actionable Recourse in Linear
Classification,” in ACM FAccT. ACM, 2019, p. 10–19.

[16] A. Jeyasothy, T. Laugel, M.-J. Lesot, C. Marsala, and M. Detyniecki,
“Integrating prior knowledge in post-hoc explanations,” in IPMU, 2022.

[17] G. Navas-Palencia, “Optimal counterfactual explanations for scorecard
modelling,” arXiv preprint arXiv:2104.08619, 2021.

[18] D. Mahajan, C. Tan, and A. Sharma, “Preserving Causal Constraints
in Counterfactual Explanations for Machine Learning Classifiers,”
CausalML NeurIPS workshop, 2019.

[19] M. Drescher, A. H. Perera, C. J. Johnson, L. J. Buse, C. A. Drew, and
M. A. Burgman, “Toward rigorous use of expert knowledge in ecological
research,” Ecosphere, vol. 4, no. 7, 2013.

[20] C. Frye, C. Rowat, and I. Feige, “Asymmetric Shapley values: incorpo-
rating causal knowledge into model-agnostic explainability,” in Proc. of
NeurIPS, vol. 33, 2020.

[21] P. Rasouli and I. Chieh Yu, “Care: Coherent Actionable Recourse based
on Sound Counterfactual Explanations,” International Journal of Data
Science and Analytics, pp. 1–26, 2022.

[22] M. Grabisch, J. Marichal, R. Mesiar, and E. Pap, Aggregation Functions,
ser. Encyclopedia of Mathematics and its Applications. Cambridge
Univ. Press, 2009, no. 127.

[23] M. Sugeno, “Theory of fuzzy integrals and its applications,” Ph.D.
dissertation, Tokyo Institute of Technology, 1974.


