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for Disjunctive Scheduling

Arthur Bit-Monnot

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

Abstract. Disjunctive scheduling problems such as the job shop
and open shop are at the heart of many real world scheduling in-
stances. In this paper, we frame such problems as disjunctive tem-
poral networks associated with a makespan minimization objective.
For those, we propose a hybrid approach between SAT/SMT and CP
solvers. In particular, we keep from SMT solvers the aggregated con-
straint propagation in decision procedures as well as the explana-
tions and clause learning mechanisms upon conflict. However, like
all CP solvers, we maintain an explicit domain representation of in-
teger variables, tightly integrated with clause learning. Automated
search exploits explanations to derive activity-based heuristics com-
bined with the more classical value-based heuristics of CP solvers.
The resulting solver is shown to be competitive with state-of-the-art
exhaustive search solvers on the classical benchmarks of job shop
and open shop problems.

1 Introduction
Disjunctive scheduling problems such as the Job Shop are some of
most emblematic scheduling problems. In essence, they require find-
ing a schedule of minimal duration (makespan) of a set of operations
where some operations are mutually exclusive: both require access
to a unique resource that prevents any temporal overlapping in their
executions.

Resolution of disjunctive scheduling problems have historically
been the domain of specialized local-search methods such as Tabu
Search for Job Shop scheduling [26] or particle swarm optimization
for Open Shop scheduling [33]. Constraint programming approaches
have however remained competitive by leveraging with strong infer-
ence methods such as edge-finding [8] and search techniques such as
Large-Neighborhood Search (LNS, [34]). Two of the most impactful
constraint programming approaches remain however quite general.
Grimes and Hébrard [15] propose to encode disjunctive schedul-
ing problems as disjunctive temporal networks and achieve state-
of-the-art performance on a number of job shop variants when us-
ing weighted degree heuristic for a straighforward CP model. On the
other hand the introduction of Failure-Directed-Search [39] in CPOp-
timizer allowed to close many instances when combined with strong
propagation methods and LNS [21].

In this paper, we propose a new solver for disjunctive scheduling
problems, that exploits their representations as disjunctive tempo-
ral networks in a constraint programming framework [15]. The pro-
posed solver is designed from the ground up with explanations and
conflict-driven clause-learning (CDCL, [24]) in mind with the aim of
leveraging some key capabilities from SAT solvers. In particular, we
show that a careful integration of literals in the solver avoids some

pitfalls of previous hybrid CP/SAT solvers for scheduling [31, 35].
The solver is completed by a dedicated global propagator for rei-
fied difference constraints and generic search strategies that leverage
the solver’s explanation mechanisms to guide the search. Despite its
simple and generic design, we show the resulting solver to achieve
state-of-the-art performance over the standard benchmarks for the
Job Shop (JSP) and Open Shop (OSP) problems.

2 Simple Model for Disjunctive Scheduling

Disjunctive Scheduling Problems Disjunctive scheduling prob-
lems are characterized by a set of activities A. For each activity
a ∈ A, we are given its duration da and must determine its start
time ta. The schedule is subject to precedence constraints (e.g. ac-
tivity a1 must precede activity a2) and no-overlap constraints (e.g.
activities a1 and a2 must not be executing at the same time).

In JSP and OSP all activities are associated with a machine for
which they require exclusive usage (i.e. they must not overlap with
tasks requiring the same machine). The activities are further grouped
in jobs with two tasks of the same job not being allowed to overlap.
In addition, JSP imposes a predefined total order over the activities
of a job. The objective is to find a valid schedule that minimizes the
makespan, i.e., the end time of the latest finishing task.

Constraint Programming Model To model the problem in CP,
we use a discrete domain variable ta with a finite domain D(ta) ⊂
N for each activity a ∈ A. Precedences are encoded as difference
constraints:

ta1 + da1 ≤ ta2

On the other hand, no-overlap constraints are expressed as disjunc-
tions of difference constraints:

ta1 + da1 ≤ ta2 ∨ ta2 + da2 ≤ ta1

Following the approach of Grimes and Hébrard [15], such no-overlap
expression are further simplified into a pair of reified difference con-
straints with the introduction of a new binary variable ba1,a2 that is
equal to 1 iff a1 comes first and 0 iff a2 comes first:

ba1,a2 = 1⇔ ta1 + da1 ≤ ta2

ba1,a2 = 0⇔ ta2 + da2 ≤ ta1

The makespan can be materialized as an additional integer variable
te such that

∀a ∈ A, ta + da ≤ te.



Let us refer to X as the set of all variables encoding the start-times
(integer), the order (boolean) and the makespan (integer). The ob-
jective is to find an assignment to all variables in X that satisfies all
constraints and minimizes the value of te. Note the particular homo-
geneity of this encoding where all constraints are (reified) difference
constraints.

3 Anatomy of a solver

Let us first provide a high level overview of the organization of the
solver and of its search mechanism. As in most constraint program-
ming solver, the central component of a solver is a data-structure that
holds the current domain of each variable alongside a complete his-
tory of all changes that were applied to these domains, the trail.

A set of reasoners is in charge of maintaining the consistency of
the domains with respect to a set of constraints. As in the theories of
SMT solvers, a reasoner is typically in charge of a set of homogenous
constraints. In particular the two reasoners we consider for disjunc-
tive scheduling problems are:

• a reasoner for (reified) difference constraints of the form ℓ⇔ x+
d ≤ x′.

• a SAT-like reasoner, in charge of disjunctive constraints of the
form l1 ∨ · · · ∨ ln, where each li is a boolean literal.

The search component is in charge of orchestrating a backtracking
search until an optimal solution is found, or until the entire search
space has been explored. At a high level, search follows the Conflict-
Driven Clause-Learning (CDCL) scheme [24]: every time the search
runs into a conflict, a clause is produced that prevents the search from
running into the same conflict.

3.1 Literals and Signed Variables

A literal represents a lower bound or upper bound on a variable x ∈
X and is typically denoted as Jx ≥ vK and Jx ≤ vK for a constant
integer v.

For each variable xi in X , let us introduce two virtual signed vari-
ables y+

i and y−
i defined such that y+

i = xi and y−
i = −xi. We

call the corresponding set of signed variables Y . This notation trick
allows us to encode the lower bound and upper bound of xi as the up-
per bounds of y−

i and y+
i respectively. Note that, with this notation,

any literal can be expressed in the form Jy ≤ vK with y ∈ Y .

3.2 Domains

The current domain of a variable is represented with its upper and
lower bounds. All domains are stored in a datastructure B that stores
the upper bound of signed variables and provides access to them
through the functions:

• GETUB(y), where y is a signed variable in Y , returns the current
upper-bound of y.

• SETUB(y, v) where y is a signed variable in Y and v is an integer,
enforces the upper bound of y to be at least as tight as v and:

– raises a conflict if applying this change would result in an
empty domain for y,

– returns true if the domain of y was tightened, or

– returns false otherwise (no-op).

The domains structure is associated to a trail T that records
all events affecting B. Each time a domain is modified (i.e.,
SETUB(y, vnew) is called), an event (y, vnew, vprev) is appended
to the trail where vprev is the previous upper bound of y. The trail
serves the purpose of (i) letting independent modules scan through
the changes that affected the domains and (ii) restore a domain to a
previous value.

3.3 Efficiently Handling Literals

Given a literal ℓ = Jy ≤ vK we say that ℓ is entailed (B ⊢ ℓ) if
GETUB(y) ≤ v. We also use the notation SET(ℓ) as a shorthand for
SETUB(y, v).

As it should be obvious from this definition, a literal has no ex-
istence of its own but acts as compact representation for statements
on the underlying variable. This is unlike previous hybrid SAT/CP
approaches where each literal requires the creation of a dedicated
boolean variable and explicit propagation to keep the domains of the
integer variable in sync with the domain of the boolean variables of
its literals [31, 35].

Very concretely, our Jy ≤ vK literal is encoded as the product of
the signed variable’s identifier and of an integer value. On modern
hardware, this can be represented on 64 bits: 32 for the signed vari-
able (31 for variable ID and 1 for the sign) and 32 bits for the integer
value. This has some immediate benefits on the computational cost
of some operations. First, "creating" a literal only requires concate-
nating two values on the stack. Second, the existence of a literal does
not induce any synchronization process among several variables.

This literal representation does have some drawbacks. In particu-
lar, this is a pervasive change that impacts most aspects of a clause-
learning solver and is certainly hard to retrofit in an existing code
base. Very pragmatically, it also increases the size of a literal (typ-
ically from 32 bits in most SAT solvers to 64 bits) which might in
turn negatively impact memory consumption and cache usage.

3.4 Conflict-Driven Clause-Learning Search

The solver adopts a common backtracking search mechanism with
clause learning (Algorithm 1). This approach corresponds to the
CDCL algorithm [24] of which we give a high-level overview.

In a nutshell, the solver iteratively propagates all constraints until
a fixed point is reached. This process will typically tighten the do-
mains of the variables and might fail (i.e. result in a contradiction).
If the propagation failed, the conflict is analyzed to produce a clause
which is recorded in order to avoid the search to run into the same
conflict. The search then backtracks to the asserting level at which
the clause is not violated and proceeds with a new round of propa-
gations. Once a propagation round succeeds, the solver checks if the
current assignment is complete, and if not branches by setting an ar-
bitrary literal to true. The process is repeated until either a complete
assignment is found, or the search space is exhausted.

4 Difference Logic Reasoner

Let us now focus on the reasoner that is dedicated to handling the set
of reified difference constraints, each of the form:

ℓ⇔ xi + δ ≤ xj

where l is a literal, xi and xj are variables in X and δ is an integer
constant.



Algorithm 1 Search procedure overview (CDCL)
1: procedure SEARCH(B, T )
2: while true do
3: res← PROPAGATE()
4: if res is conflict then
5: clause← EXPLAIN(res)
6: if clause is empty then
7: return UNSAT
8: else
9: lvl← ASSERTINGLEVEL(clause)

10: BACTRACK(lvl)
11: ADDASSERTINGCLAUSE(clause)

12: else if all variables are bound then
13: return solution(B)
14: else
15: ℓ← NEXTDECISION()
16: SAVESTATE()
17: SET(ℓ)

4.1 Elementary Propagators

We start by decomposing this constraint into four elementary propa-
gators. Let us first state the relations that should be enforced in order
to maintain bound consistency in the positive case (B ⊢ l) and the
negative case (B ⊢ ¬l):

l

{
xi ≥ v → xj ≥ v + δ

xj ≤ v → xi ≤ v − δ

¬l

{
xj ≥ v → xi ≥ v − δ + 1

xi ≤ v → xj ≤ v + δ − 1

(1)

where v is universally quantified (the above and below expression
should hold for any value of v). These rules can be reformulated in
terms of signed variables, obtaining:

l

{
y−
i ≤ −v → y−

j ≤ −v − δ

y+
j ≤ v → y+

i ≤ v − δ

¬l

{
y−
j ≤ −v → y−

i ≤ −v + δ − 1

y+
i ≤ v → y+

j ≤ v + δ − 1

(2)

The direct benefit of this reformulation is that all four rules are now
expressed in a homogenous form, where an upper bound change on
a signed variable induces a restriction on another signed-variable’s
upper bound:

ℓ : y ≤ v → y′ ≤ v + d. (3)

where ℓ is a literal, y and y′ and signed variables in Y and d is an in-
teger constant; We call a rule of this form an elementary propagator,
noted as:

ℓ : y
d−→ y′

Such a propagator needs to be triggered anytime ℓ becomes true
or the upper bound of y changes. When this occurs, the propagator
will either update the uppper bound of y′ or deactivate the edge (i.e.
enforcing ¬ℓ) according to the rules of Table 1.

4.2 Organized propagation

In the previous subsection, we have shown how a reified difference
constraint can be broken down into four elementary propagators to

Watched Condition Enforced literal
Jy ≤ vK ℓ Jy′ ≤ v + dK

ℓ Jy ≤ vK Jy′ ≤ v + dK
Jy ≤ vK ¬Jy′ ≤ v + dK ¬ℓ

Table 1. Propagation rules for an elementary propagator ℓ : y d−→ y′. Prop-
agation is triggered when the watched literal becomes true if the condition
literal is entailed by the current domains.

Algorithm 2 Propagation of the difference constraints.
1: procedure PROPAGATEALL(T )
2: i← index of next unprocessed event in trail
3: ActivationQueue← {}
4: while i < |T | or ActivationQueue ̸= ∅ do
5: while i < |T | do
6: // extract next event in trail
7: Jy ≤ vK← T [i] ; i← i+ 1
8: l = Jy ≤ vK
9: for each propagator p activated by l do

10: push(ActivationQueue, p)

11: for each inactive propagator l′ : y δ−→ y′ do
12: // activating would enforce y′ ≤ v + δ
13: if B ⊢ ¬Jy′ ≤ v + δK then
14: SET(¬l′)
15: PROPAGATEBOUNDS(y)
16:
17: // no bound changes left, activate pending edges
18: while ActivationQueue ̸= ∅ do
19: y

δ−→ y′ ← pop(ActivationQueue)

20: MARKACTIVE(y δ−→ y′)
21: if SETUB(y′, GETUB(y) + δ) then
22: PROPAGATEBOUNDS(y′)
23:
24: procedure PROPAGATEBOUNDS(ystart)
25: Queue← {ystart}
26: while Queue ̸= ∅ do
27: y ← pop(Queue)

28: for each active propagator y δ−→ y′ do
29: updated← SETUB(y′, ub(y) + δ)
30: if updated ∧ y′ = ystart then
31: raise Err(cycle)
32: else if updated then
33: push(Queue, y′)

enforce consistency. Instead of considering all elementary propaga-
tors independently, we propose to orchestrate their propagation. The
idea of organized propagation has been previously proposed in the
context of SMT [32] and CP [12, 20] solvers, without our notion of
elementary propagators.

The detailed procedure for propagation is presented in Algo-
rithm 2. The PROPAGATEBOUNDS(y) function runs an incremental
Bellman-Ford algorithm over the active edges. The algorithm is an
adaptation of the incremental propagation algorithm for Simple Tem-
poral Networks (STN) of Cesta and Oddi [9]. The algorithm is sub-
stantially simplified as a result of our unified handling of upper and
lower bounds with signed variables. Compared to independent prop-
agation of difference constraints as often done in CP solvers (e.g.
[15]) a particularly interesting feature of the algorithm is its early
detection of negative cycles (line 31).

The PROPAGATEALL(T ) algorithm organizes the propagation by



processing each pending event ℓ in the trail and:

• marking activated propagators for later processing (line 10),
• setting as impossible the propagators that could not be activated

after the event (line 14),
• propagating the variable whose bound is updated by ℓ by running

the incremental bellman-ford algorithm (line 15).

Once all events have been processed, the edges marked for activation
are activated one-by-one to maintain the condition of validity of the
incremental Bellman-Ford algorithm.

Note that the case where an inconsistency is detected as a result of
a domain update is not explicitly covered in Algorithm 2. Instead, we
assume that an inconsistency raised by SETUB/SET would be im-
mediately returned by both algorithms together with sufficient infor-
mation to lazily derive an explanation (covered in the next section).

5 Explanation and Clause Learning

5.1 Background

When facing a conflict during search, CDCL solvers will derive a
new clause (i.e. a disjunction of literal) whose primary objective is
to avoid running into the same conflict later into the search [24]. The
clause is derived through an explanation process for which we here
give the essential steps.

Explanation occurs when a propagator deduces that a literal ℓ must
hold (i.e. it invokes SET(ℓ)) while¬ℓ is already entailed at the current
decision level. From this contradiction, the objective is to learn an
asserting clause of the form

c1 ∧ · · · ∧ cn =⇒ lass

such that there is a decision level where all ci literals are entailed and
¬lass is not.

The key mechanism for building explanations is the following.
Provided a contradiction of the form

c1 ∧ · · · ∧ cn =⇒ ⊥

which is initially the last contradiction we faced (ℓ ∧ ¬ℓ =⇒ ⊥):

1. Select the conjunct ci that was asserted last.
2. Demand an explanation for ci, of the form

c1i ∧ · · · ∧ cni =⇒ ci

3. Apply the resolution rule: substitute ci in the conflict, obtaining

c1 ∧ · · · ∧ (c1i ∧ · · · ∧ cni ) ∧ · · · ∧ cn =⇒ ⊥

The process is repeated until a single literal cj from the current
decision level remains in the conflict: the first unique implication
point (1UIP). We thus obtain the asserting clause:

c1 ∧ · · · ∧ cj−1 ∧ cj+1 · · · ∧ cn =⇒ ¬cj

At this point, the search algorithm would backtrack to the asserting
level of the clause and record the clause in a clause database. At the
following propagation, the clause would be unit and the literal ¬cj
would be set.

5.2 Clause Learning Details

Incorporating explanations and clause learning in our solver is fairly
straightforward, as a result of the first-hand support for bound literals
and of the very homogenous nature of the difference constraints. Fol-
lowing a lazy explanation schema [14], clause learning requires three
elements: (i) identification for each entailed literal of the propaga-
tor that enforced it, (ii) the capability for each propagator to explain
the inferences made and (iii) a module for storing and propagating
clauses.

Point (i) is made possible by storing, alongside the upper-bounds
in B and the events in T , the source of the inference (e.g. the iden-
tifier of the difference logic propagator from which the update was
made). This metadata is provided as an additional parameter in the
SETUB and SET functions.

Generating explanations When an explanation is needed (step
2), the propagator that asserted the literal is queried for the imply-
ing conjuncts. The explanation process is unique for each constraint
and global constraints in particular may have elaborate explanation
techniques [30] but is immediate for difference logic in general [35].
For our elementary propagators in particular, Table 1 gives suffi-
cient information to explain any inference made by Algorithm 2.
For instance, if the literal Jy′ ≤ 10K was asserted by the propagator
ℓ : y

6−→ y′, the explanation would be the conjunction ℓ ∧ Jy ≤ 4K.
A literal that is always true (entailed at the first decision level) is

not added to the conflict set. As a result, the learned clause might be
empty which implies that the problem is UNSAT.

Clause Learning While several clause learning variants ex-
ists, SAT solvers typically favor First Unique Implication Point
(1UIP [24]) which corresponds to the one described in the previous
background section. It is possible to further refine the clause beyond
the first UIP but, at least in SAT solvers, doing so appear to deterio-
rate the quality of the learned clauses [3].

Note that, regardless of the branching strategy, this clause learning
approach will produce clauses that mix literals involving the binary
precedence variables as well imposing lower and upper bounds on
the start-time numeric variables.

In SMT solvers, the difference logic theory would be required to
provide a clause only involving the boolean variables, which is a con-
sequence of the design of SMT solvers where the SAT solver is iso-
lated from the details of the theory and in particular of the domains of
numeric variables [25]. A similar choice is made is the context of hy-
brid CP/SAT solvers to restrict learning to boolean variables [35, 28].
In that case, the choice appeared to be driven by efficiency considera-
tions as including non-boolean variables required them to create and
manage bound-literals, which came at very high runtime cost [35].
On the other hand, our design with first-hand support for numeric do-
mains and bound literals allows us to stick to a 1UIP learning scheme
without any artificial overhead.

5.3 Disjunctive Reasoner and Clause Database

Once a clause is learned, it needs to be stored and propagated. The
disjunctive reasoner is a module in charge of maintaining the consis-
tency of a set of (learned) clauses, each of the form

l1 ∨ l2 ∨ · · · ∨ ln

where each li is a literal of the form Jy±
j ≤ vK.



The disjunctive reasoner acts as a SAT solver: it maintains a
database of clauses and performs unit propagation. In essence, for
each clause cl in the database, we look for distinct literals that are
not falsified by the current domains:

• if all literals are false, the clause is violated and a conflict is re-
ported, which will cause the search to backtrack;

• if all but one literal ℓ are false, then the clause is unit and ℓ is
enforced (SET(ℓ));

• otherwise, two non-false literals are selected and added to a watch-
list. Once one of these literal is set, the clause will be reevaluated.

For each second of CDCL search, the solver will typically learn
thousands of clauses. Keeping all learnt clause would thus quickly
overload the database and dramatically slow down unit propagation.
We adopt the database management of MINISAT [11]: the solver is
given an initial limit of learned clauses. When this limit is reached,
half the learned clauses are removed. The maximum size of the
database is regularly scaled up during search, resulting in an expo-
nential growth of the database over time. As in MINISAT, the clauses
to keep are selected based on their recent participation in conflicts.1

6 Search Strategy
Our objective in this section is to define a general purpose search
strategy that (i) is not overly tight to the peculiarities of disjunctive
scheduling problems and (ii) is capable of quickly converging to high
quality solutions and (iii) is capable of proving the unsatifiability
or optimality of a solution. On the other hand, the state-of-the-art
approach for jobshop scheduling, relies on a combination of Large-
Neighborhood-Search (LNS) whose primary role is to provide high
quality solutions and of Failure-Directed-Search (FDS) whose role
is to quickly exhaust the search space to prove optimality or run into
hard to find solutions [39].

Decision Variables Like other CP approaches that rely on differ-
ence constraints to encode disjunctive scheduling problems, we se-
lect as decision variables the boolean variables that impose an order
between two activities [15, 35]. Intuitively, branching on ordering
variables will construct a partial order schedule. It should be noted
that, once all ordering variables have been set, the remaining con-
straints form a Simple Temporal Network [10]. If successfully prop-
agated by Algorithm 2, all remaining numeric variable can then be
assigned their lower bound (defining the earliest starting time sched-
ule of the associated STN).

Learning Rate Branching For variable selection, we rely on the
Learning Rate Branching (LRB) approach from SAT solvers that
aims at maximizing the number conflicts (and thus learned clauses)
per decision [23]. The core idea is the following. Once a decision
variable is set, either from a direct decision or as a result of propaga-
tion, it can participate in conflicts. Following the definition of LRB,
we consider that a decision variable participates in a conflict if it (1)
appears in the learned clause, or (2) appears in an explanation that
was used to produce the learned clause, or (3) appears in the expla-
nation of a literal of the learned clause.

When a decision variable x is unset (i.e. the solver backtracks to a
lower decision level) we estimate its local learning rate has the ratio

1 We also experimented with Literals Block Distance (LBD [3]) as a metric
to select which clauses to retain. Despite its success in pure SAT solvers,
in our implementation LBD appeared to negatively impact the performance
on jobshop and openshop problems.

of the number of conflicts it was involved in and of the total number
of conflicts that occurred since it was set. This measure is used to
update its learning rate estimation lrx with an exponentially moving
average update:

lrx ← (1− α)× lrx + α× Num conflicts involved
Num conflicts

At each search step, the decision variable with the highest learning
rate is selected.

Solution Guidance For value selection, we adopt a solution
guided-approach: for any decision variable selected by LRB, we pre-
fer the value it had in the best solution found so far. This strategy
notably builds on the insight that JSP scheduling benefits from inten-
sification of the search around the incumbent solution [4].

Restart Strategy We use a geometric restart strategy with a hun-
dred conflict initially allowed. At each restart, the number of conflicts
is increased by a factor 1.2. It is worth noting that, with solution guid-
ance, the solver will attempt exactly the same assignment before or
after the restart but will be deviated from it by the learned clauses,
that persist across restarts.

Search Initialization Both our variable and value selection strate-
gies rely on information that is not initially available to the solver.
In order to bootstrap the search, we thus adopt a greedy strategy that
is applied until the first conflict is encountered, with the objective of
finding a solution of reasonable quality.

In this setting, the branching variable is selected among start-time
variables that are not assigned yet. The selected variable is the one
with the smallest lower bound (i.e. earliest start time), with the small-
est domain size for tie breaking. As a decision, the variable is as-
signed its lower bound. This corresponds to common priority rules
of greedy methods for the jobshop scheduling problem (First-Come-
First-Served with Least-Remaining-Slack as tie breaking [6]).

7 Experiments
We compare the performance of the solver with three state-of-the-art
approaches on a number of OSP and JSP instances.

Openshop There are three sets of OSP instances which are widely
studied in the literature, 60 instances of [38]; 52 instances of [7]; and
80 instances of [16]. All instances involve “square” problems, with
the same number of jobs and machines. The instances range in size
from 3x3 to 20x20.

Jobshop There is a large number of JSP benchmarks, stretching
back to the 3 instances proposed by [13]. The other benchmarks we
consider here are: 40 instances of [22], 5 instances proposed by [1],
10 instances proposed by [2], 4 instances proposed by [40], 20 in-
stances proposed by [36], and finally 70 instances of [38]. Instances
range in size from 6x6 to 50x20.

7.1 Compared systems

ARIES refers to our own system. It is an open source (MIT-
licensed) constraint programming library targeting planning and
scheduling problems2.

2 Available at https://github.com/plaans/aries

https://github.com/plaans/aries


CPOPTIMIZER is a state-of-the-art commercial solver for schedul-
ing [21]. It features a highly performant automatic search that notably
exploits on a combination Large Neighborhood Search (LNS, [34])
and Failure-Directed Search [39]. In our experiments, we use CPOP-
TIMIZER version 22.1 and rely on the JSP and OSP models provided
in the distribution. The solver is configured to run a single worker.

MISTRAL refers to a solver specifically targetting disjunctive
scheduling [15] based on the Mistral constraint programming library
[17]. It relies on CP models analogous to ours, where all constraints
are (potentially reified) difference constraints. Search exploits two
phases: at first, a dichotomic search is used to quickly provide a
reasonable initial solution. After some maximum time, a standard
branch and bound approach is used, with a variant of the weighted-
degree heuristic. We use the implementation provided by the authors
in our experiments.3

CPSAT is a state-of-the-art CP solver bundled in Google’s OR-
TOOLS package [28]. It relies on Lazy Clause Generation (LCG [27])
and has been the best contender of the latest MINIZINC challenge
[37]. We use the JSP model provided in the distribution of CPSAT,
with minor adaptations for OSP.

We do not directly compare with other solvers beside constraint
programming as we are not aware of any competitive approach or en-
coding. The disjunctive encoding has been notably experimented in
SMT and MILP solvers [29] but despite being an improvement, re-
mains far from the performance of, e.g., CPOPTIMIZER. SAT solvers
have seen some success in proving lower bound in hard JSP instances
but so far remain limited to small instances and with very high run-
times that make them unsuitable in an optimization context [18, 19].

7.2 Results

All benchmarks are run on an Intel® Xeon® E-2146G processor with
a timeout of 900 seconds and restricted to use a single CPU core. We
use the following metrics to evaluate the results:

• Solved: number of solved instances, for which the returned solu-
tion was proved optimal.

• APRD: Averaged Percentage Relative Deviation. The PRD of a
solver s for an instance is measured as cs−c∗

c∗ × 100 where cs is
the cost of the solution found by s and c∗ is cost of the best found
solution by any of the compared solvers. The APRD is the average
PRD over all considered instances.

• VBS: Virtual Best Solver. Measures the number of times a solver
is the virtual best solver that returned the best quality solution with
ties broken by minimal runtime. If a tie remains between n solvers
on an instance, the contribution of the instance to the VBS score
is split between tied solvers (increasing their score by 1

n
)

• VBSQUAL: Same as VBS but only considers the solution quality to
determine the best solver.

Open Shop Results As it can be seen in Table 2 and Figure 1,
on the OSP instances, ARIES and MISTRAL largely dominate. Both
solvers prove optimally of their solutions in all instances, the whole

3 Despite our efforts, we were not able to run the clause-learning variant of
mistral [35]. The authors indicated that that performance should be compa-
rable with the one of the baseline mistral. Short experiments also showed
that we were able to easily improve on each lower bound they reported.

Table 2. Results for the 195 openshop problems.
Solved Total APRD VBS VBSQUAL

runtime (s)
ARIES 195 634 0 72.5 49.2
CPOPTIMIZER 193 3290 0.005 4.0 48.4
CPSAT 188 7939 0.005 3.0 48.1
MISTRAL 195 1624 0 115.5 49.2

Figure 1. Openshop: Runtime necessary to find proven optimal solutions.

Figure 2. Openshop: Runtime comparison between ARIES and MISTRAL.
Dashed lines materialize powers of two runtime differences.

process requiring 634 seconds for ARIES and 1624 seconds for MIS-
TRAL. It can be observed in Figure 2 that MISTRAL performs ex-
tremely well on simple instances but is notably slower for all in-
stances requiring more than 300 milliseconds to solve.

CPOPTIMIZER fails to solve two instances (J8-PER10-0 and J8-
PER10-2) but overall performs drastically better than in the compar-
ison of [15], before the introduction of Failure-Directed-Search.

Job Shop Results On the JSP instances, CPOPTIMIZER achieves
an impressive number of 102 solved instances and strictly dominates
in that area: no other solver closed an instance that CPOPTIMIZER

didn’t. The results are more balanced in terms of solution quality
where the results of ARIES and CPOPTIMIZER are very close with
both an APRD below 0.5%. The plot of the PRD over individual
instances in Figure 4 indicates that there is no strict dominance in this



Table 3. Results for 162 jobshop instances.
Solved Total APRD VBS VBSQUAL

runtime (s)
ARIES 77 78 214 0.459 92.3 61.4
CPOPTIMIZER 102 62 441 0.230 60.8 63.9
CPSAT 65 93 208 3.529 2.3 19.2
MISTRAL 63 92 760 2.951 6.5 17.4

Figure 3. Jobshop: Runtime necessary to find proven optimal solutions.

Figure 4. Solution quality variation on jobshop instances. The gap is com-
puted as (m1−m2)×100

min(m1,m2)
where m1 is the makespan of the solution found

by ARIES and m2 is the makespan of the solution found by CPOPTIMIZER

(resp. MISTRAL). A negative value indicates that ARIES returned a strictly
better solution.

Figure 5. Jobshop: Runtime comparison between ARIES and CPOPTI-
MIZER. Dashed lines materialize powers of two runtime differences.

matter with both solvers contributing the best solution on a number
of instances. This results in comparable VBSQUAL scores.

In terms of runtime, the results are split between instances where
ARIES times-out and the instances where both solvers prove opti-
mality. As it can be seen in Figure 5, for the latter, ARIES generally
outperforms CPOPTIMIZER. The combination of high quality solu-
tions with excellent runtime on most instances leads ARIES to win
on the virtual best solver score by a substantial margin.

7.3 Ablation Study

To identify the contribution of the various features described in the
paper, we perform an ablation study based on the 40 Lawrence JSP
instances and a timeout of 60 seconds. We highlight below the most
striking contributions of each feature, compared to a solver configu-
ration without them.

• Clause learning: storing the learned clause in the database is
impactful on harder instances (requiring more than 10 seconds).
Overall beneficial (average 1.42 speed-up) but detrimental on
some problems. Impact increases with runtime.

• Search initialization: consistently improves runtime, by up to 8
seconds. Benefits shrink on hard instances.

• LRB: switching to the more common VSIDS [24] decreases
the decisions/conflict ratio and is highly detrimental on hard in-
stances: on average 2.2 times slower on instances that require
more than 10 seconds to solve. Impact increases with runtime.

• Extended conflicting variables: ignoring the category (3) of vari-
ables from the conflict in LRB makes the solver 1.4 times slower,
almost regardless of instance hardness.

• Solution guidance: removal is very detrimental, resulting in only
28 problems solved (vs 36 with solution guidance)

• implicit literals: cannot be removed from our implementation.
In a similar setting, Siala et al. [35] suggest that creating bound
literals explicitly would slow down their solver by a factor 10.
This lead them to choose a strategy that would not require bound-
literals in the learned clause. We do not observe any such impact
in our implementation.

8 Conclusion
In this paper, we showed how a carefully designed solver, leveraging
advancements in the CP and SAT fields, can be made to compete with
the established state-of-the-art on perhaps the most fundamental of
scheduling problems (CPOptimizer, since FDS in 2015 [39]).

Novel and critical in this integration are the implicit representa-
tion of literals and the exploitation of signed variables for uniform
representation. As literals (or boolean variables in CP) are such a
fundamental part of solvers, these representations cannot be easily
retrofitted in an existing codebase. It allows us to greatly simplify
the integration of SAT and CP solvers, removing the need to (1) cre-
ate boolean variables for bound-literals, (2) having dedicated prop-
agators to synchronize their domains with the one of the original
variable, and (3) managing their lifetime. All while reducing their
overhead and streamlining implementation.

As it is built from the ground up with a CP-SAT integration in
mind, the resulting solver remains extremely simple in its concep-
tion and implementation. Despite its simplicity and excellent perfor-
mance, very little is actually specific to disjunctive scheduling in the
solver which opens up its application to more challenging use-cases.
We notably wish to pursue development towards the needs of tempo-
ral planning, where we have already seen promising results [5].
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