Ana Flávia 
  
Reis 
  
Glauber Brante 
  
Bruno S Chang 
  
Yahia Medjahdi 
  
Faouzi Bader 
  
Jérémie Sublime 
  
Ensemble Learning for LSTM-based Vehicle Channel Estimation Generalization

Keywords: Vehicular communication, Channel estimation, Ensemble Learning, LSTM

Vehicular communications present several challenges, especially in wireless channel estimation to ensure communications reliability in a highly dynamic environment, where many machine learning (ML) based estimator proposals can be found in the literature. However, few explore the possibility of generalizing methods for variations in vehicular channel models, which is crucial for future applications. It is common to train a model to work in specific channel conditions, such as a particular speed, fading, or modulation order. This can lead to poor performance when the system operates in different scenarios.

To address this problem, this work explores the possibility of generalizing the vehicular channel estimation for different channels employing the Ensemble Learning (EL) technique, applied to a channel estimation method based on the long-term memory network (LSTM). Our results present that a generalized learning architecture can be used to estimate vehicular channels under varying conditions, resulting in an estimator that is robust to changes in Doppler-delay characteristics across different environments and channel models. Moreover, our approach achieves this generalized model without any added online complexity once the algorithm used to combine the model information is performed offline.

I. INTRODUCTION

Accurate channel estimation is essential for efficient and reliable communication in vehicular networks, a topic that has received great attention as one of the main areas of 6G research. However, the vehicular channel is highly dynamic and varies rapidly due to the vehicle's mobility, which makes channel estimation challenging [START_REF] Tang | Comprehensive survey on machine learning in vehicular network: Technology, applications and challenges[END_REF]. Various channel estimation techniques have been proposed in the literature, including pilot-based methods [START_REF] Fernandez | Performance of the 802.11p physical layer in vehicle-to-vehicle environments[END_REF], [START_REF] Kim | Time and frequency domain channel estimation scheme for IEEE 802.11p[END_REF], channel modeling [START_REF] Jiang | A novel estimated wideband geometrybased vehicle-to-vehicle channel model using an aod and aoa estimation algorithm[END_REF] and machine learning (ML)-based approaches [START_REF] Gizzini | A survey on deep learning based channel estimation in doubly dispersive environments[END_REF].

Moreover, because it is based on multi-carrier communication schemes such as the classical Orthogonal Frequency Division Multiplexing (OFDM), Peak-to-Average Power Ratio (PAPR) is a critical problem that arises in vehicular communication systems. The amplitude of the OFDM signal can vary widely due to the constructive and destructive interference of the subcarriers, which can result in high PAPR, leading to signal distortion and reduced system performance, especially in power-limited systems. Various techniques have been proposed to mitigate PAPR, such as clipping, filtering [START_REF] Han | An overview of peak-to-average power ratio reduction techniques for multicarrier transmission[END_REF], and digital pre-distortion (DPD) [START_REF] Katz | The evolution of PA linearization: From classic feedforward and feedback through analog and digital predistortion[END_REF]. These techniques are applied to the transmitted signal and aim to reduce the amplitude fluctuations of the OFDM signal. Alternatively, these nonlinearities can be compensated at the receiver along with the channel estimation, which results in lower power consumption and minimizes the impact on the system performance.

Several schemes have been proposed to estimate the vehicular channel, where deep neural network (DNN)-based techniques have shown to improve vehicular channel estimation compared with classical methods. The work in [START_REF] Gizzini | A survey on deep learning based channel estimation in doubly dispersive environments[END_REF] summarizes some channel estimation techniques based on deep learning (DL), presenting that it is possible to achieve robust receivers to estimate the channel over doubly-dispersive environments. The literature also shows that receivers based on long-term memory network (LSTM), a structure capable of handling sequential information where there is a correlation over time, present gains when estimating the vehicular channel, efficiently learning and tracking channel information [START_REF] Pan | Channel estimation based on deep learning in vehicle-to-everything environments[END_REF], [START_REF] Gizzini | Temporal averaging LSTM-based channel estimation scheme for IEEE 802.11p standard[END_REF]. For instance, our previous work in [START_REF] Reis | Low complexity LSTM-NN-based receiver for vehicular communications in the presence of high-power amplifier distortions[END_REF] considers a classical estimation such as data pilot-aided (DPA) as input to LSTM to improve error compensation and channel estimation. This proposal also exploits the smooth variation of vehicular channels to perform a sampling of the channel information, reducing the complexity compared to previous proposals such as in [START_REF] Pan | Channel estimation based on deep learning in vehicle-to-everything environments[END_REF], [START_REF] Gizzini | Temporal averaging LSTM-based channel estimation scheme for IEEE 802.11p standard[END_REF].

One of the challenges of LSTM-based vehicular channel estimation is to provide robust solutions against model parameters variations. Concerning the channel model, the works in [START_REF] Gizzini | A survey on deep learning based channel estimation in doubly dispersive environments[END_REF] and [START_REF] Reis | Low complexity LSTM-NN-based receiver for vehicular communications in the presence of high-power amplifier distortions[END_REF] commonly base the training on specific channel conditions, such as power delay profile (PDP), speed, and modulation order. However, these characteristics can vary depending on the location of the vehicles and the environment in which they operate. Since different conditions can impact the accuracy of wireless channel estimates, it is important to have a model that can perform well across various scenarios. Extending the discussion proposed in [START_REF] Reis | Low complexity LSTM-NN-based receiver for vehicular communications in the presence of high-power amplifier distortions[END_REF], the present study is built on practical aspects regarding the training of the LSTM-NN-based model for vehicular channel estimation, proposing a solution robust against changes in the channel model of the same scenario and generalizing the learning architectures to estimate channels under different conditions.

Various techniques, such as regularization, cross-validation, and data augmentation, have been proposed to enhance the generalization capability of ML models. However, when applied to a model trained for a specific pattern, these techniques may not be enough for complex tasks [START_REF] Ganaie | Ensemble deep learning: A review[END_REF]. In tasks such as wireless channel estimation, the data may exhibit diverse patterns, and the relationship between input and output variables may be highly non-linear, making it challenging for a single model to capture all the relevant information and provide an accurate estimation.

Ensemble Learning (EL) [START_REF] Rokach | Pattern classification using ensemble methods[END_REF], [START_REF] Dong | A survey on ensemble learning[END_REF] has shown to be promising for improving model generalization by combining multiple base models to capture diverse patterns in the data. This ML technique can combine multiple models trained on different feature sets or multiple learning algorithms to improve performance and robustness. By doing so, the EL method can leverage the strengths of each individual model and provide a more accurate estimate across a wider range of scenarios. Among the EL techniques, bagging and boosting algorithms have been widely recognized for improving predictive performance by aggregating diverse model predictions [START_REF] González | A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities[END_REF]. As a contribution to vehicular channel estimation, this work aims to present that EL is an effective tool to combine the predictions of multiple models, e.g. each for a different power delay profile and speeds, demonstrating the effectiveness of this approach for providing model generalization in vehicular channel estimation.

The remainder of this paper is organized as follows. The system model, including the main characteristics of the IEEE 802.11p standard, the high power amplifier (HPA) nonlinear distortion (NLD) model and the characterization of the vehicular channel models, are presented in Section II. Section III presents the method used to estimate the vehicular channel. We detailed the proposal of using EL method to improve the performance of the DPA-LSTM-NN estimator [START_REF] Reis | Low complexity LSTM-NN-based receiver for vehicular communications in the presence of high-power amplifier distortions[END_REF] in Subsection III-B. Results and discussions are presented in Section IV and Section V concludes the paper.

II. SYSTEM MODEL

The IEEE 802.11p standard [START_REF]IEEE guide for wireless access in vehicular environments (WAVE)architecture[END_REF] is considered for the deployed vehicular communication scenario, with OFDM modulation being used in the transmission scheme. Each transmitted packet consists in a preamble that includes known short and long training symbols to conduct the synchronization of the channel, a signal field, which carries the physical layer information, and a data field. The data field contains K = 64 subcarriers employed within each OFDM symbol, in which only K on = 52 are active and 12 inactive subcarriers are used as guard band. Moreover, K p = 4 out of the K on subcarriers are allocated as pilots, while the remaining 48 subcarriers carry the data. For each active subcarrier k ∈ K on , with K on being the set containing the K on active subcarriers, the received OFDM symbols are written as

y i [k] = h i [k]u i [k] + n i [k], (1) 
where for all k subcarriers within the i-th OFDM symbol, h i [k] represents the time variant frequency response of the subcarriers, u i [k] denotes the k-th subcarrier in the i-th transmitted OFDM data symbol affected by the HPA-induced distortions and n i [k] is the Gaussian noise.

The frequency response of the channel coefficients h i [k] is modeled by a Rayleigh fading channel model, which incorporates Jakes' Doppler spectrum. The Doppler frequency is given by

f D = v c f c , (2) 
where v is the speed of the vehicle in m/s, c is the speed of light in m/s and f c is the carrier frequency.

A. High Power Amplifier

The HPA-induced distortions are modeled in the timedomain, where we denote the signal at the input of the HPA as x(t) being obtained by means of the inverse fast fourier transform (iFFT) of the transmitted QAM data symbols for all k subcarriers within each i-th symbol, expressed as X i,k . In order to reduce the effects of the nonlinearities, we consider that the HPA operates at a given input back-off (IBO) from the 1 dB compression point, which refers to the input power level where the characteristics of the amplifier have dropped by 1 dB from the ideal linear characteristics [START_REF] Colantonio | High efficiency RF and microwave solid state power amplifiers[END_REF]. Therefore, the input signal x(t) is scaled by the gain ϱ before being amplified by the HPA to ensure the desired IBO, given by

ϱ = τ 1dB 10 IBO 10 τ x , (3) 
where τ 1dB is the input power at 1 dB compression point, τ xi[k] is the mean power of the input signal, and the IBO is given in dB.

Then, we have the output of the HPA given by [START_REF] Shaiek | Analytical analysis of SER for beyond 5G post-OFDM waveforms in presence of high power amplifiers[END_REF] 

ũ(t) = γ 0 x(t) + δ(t), (4) 
where δ(t) is a NLD with zero mean and variance σ δ 2 , that is uncorrelated with the input x(t), while γ 0 describes a complex gain. The relationship between ũ(t) and x(t) is expressed as

ũ(t) = ϕ a (ρ(t)) exp [j(ϕ p (ρ(t)) + φ(t))] = ς (ρ(t)) exp (jφ(t)), (5) 
where ρ(t) is the input signal modulus, φ(t) is the input signal phase, ϕ a (ρ(t)) and ϕ p (ρ(t)) represent the AM/AM and AM/PM characteristics of the HPA respectively, while ς (ρ(t)) = ϕ a (ρ(t)) exp [jϕ p (ρ(t))] is the complex soft envelope of the amplified output signal. Then, following the polynomial model approximation in [START_REF] Shaiek | Analytical analysis of SER for beyond 5G post-OFDM waveforms in presence of high power amplifiers[END_REF], we can write

ς (ρ(t)) ≈ P l=1 a l ρ(t) l , (6) 
in which a l denotes the coefficients of the polynomial with order P = 9, obtained by the least square (LS) method.

Finally, following the Bussgang theorem [START_REF] Bussgang | Crosscorrelation functions of amplitude-distorted gaussian signals[END_REF] we assume perfect estimation and compensation of γ 0 and we can write the output of the HPA as

u(t) = x(t) + δ(t), (7) 
where δ(t) = δ(t)/γ 0 is the remaining NLD of the HPA. Figure 1 illustrates the transmission system modeled in the presence of the nonlinear HPA, where Y i,k represents the received QAM data symbols for all k subcarriers within each i-th symbol.

B. Vehicular Channel Model

The present work considers different PDPs to model roadside-to-vehicle (R2V) and vehicle-to-vehicle (V2V) communication scenarios. These models are based on the Dopplerdelay characteristics described by [START_REF] Acosta-Marum | Six time-and frequency-selective empirical channel models for vehicular wireless lans[END_REF], which are obtained from real measurements of the communication between a transmitting antenna and a vehicle or two vehicles moving at a certain speed v. The channel models are represented as tapped-delay lines, where each tap is characterized by a Rayleigh fading distribution with a statistically defined Doppler power spectral density. Table I provides the PDP for the different channel models we selected for our analysis. Specifically, we consider the R2V-UC case, where the vehicle in communication with a fixed antenna moves at an urban intersection, and the V2V-EX case, where two vehicles move along an expressway.

III. VEHICULAR CHANNEL ESTIMATION

A. DPA-LSTM-NN

We take advantage of the characteristics of symbol-bysymbol estimation, i.e., where the channel estimation is performed for each received symbol separately using only the previous and current received pilots and, thus, without increasing the latency of the application [START_REF] Gizzini | A survey on deep learning based channel estimation in doubly dispersive environments[END_REF]. In this context, the recently proposed DPA-LSTM-NN [START_REF] Reis | Low complexity LSTM-NN-based receiver for vehicular communications in the presence of high-power amplifier distortions[END_REF] considers the DPA estimation prior to an LSTM layer followed by a shallow neural network (NN). This is designed in order to consider a coarse estimation performed by the DPA as the initial point, which is used by the LSTM to learn the time and frequency characteristics of the channel, thus tracking its variations and reconstructing it as close as possible to the ideal channel response, finally employing the NN as an additional noise compensation step. Moreover, this estimator also samples the subcarrier information provided as the input of the LSTM layer in order to reduce complexity. As a result, DPA-LSTM-NN presents the lowest complexity among the schemes compared in [START_REF] Reis | Low complexity LSTM-NN-based receiver for vehicular communications in the presence of high-power amplifier distortions[END_REF], at the same time improving performance when compared to [START_REF] Pan | Channel estimation based on deep learning in vehicle-to-everything environments[END_REF], [START_REF] Gizzini | Temporal averaging LSTM-based channel estimation scheme for IEEE 802.11p standard[END_REF].

B. Ensemble Learning

The DPA-LSTM-NN [START_REF] Reis | Low complexity LSTM-NN-based receiver for vehicular communications in the presence of high-power amplifier distortions[END_REF] Initialize empty list of predictions, P ← [] 3:

for i = 1 to M do 4:
Make prediction using m i : p i ← m i .predict(X)

5:

Append p i to P : P ← P + p i 6:

end for 7:

Average the predictions in

P : EL ← 1 M M i=1 p i 8:
return EL 9: end function the channel PDP, the vehicle speed, and the modulation order used in communication. Consequently, fixing the training for a given channel will significantly degrade performance when the vehicle communicates under a different channel scenario, limiting its practical deployment.

Our proposal uses the EL technique to improve the overall performance by combining the predictions from multiple models trained with datasets considering different velocities, maximum Doppler shifts, and path delays. Figure 2 presents the block diagram of the DPA-LSTM-NN channel estimator [START_REF] Reis | Low complexity LSTM-NN-based receiver for vehicular communications in the presence of high-power amplifier distortions[END_REF] with EL, where the principle of this proposal for generalization is described by the Algorithm 1. Here, we highlight the use of the Bagging method, in which the base models are trained independently and on different subsets of data using the same algorithm configuration, and the predictions of the base models are combined using averaging with equal weight in the final prediction [START_REF] González | A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities[END_REF]. This choice was given the potential of the Bagging algorithm to decrease the variance of the estimate by combining multiple predictions, thus avoiding overfitting [START_REF] Collell | A simple plug-in bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data[END_REF]. In the EL algorithm, the function "Bagging" takes M LSTM-NN models {m 1 , m 2 , • • • , m M } as input, that have been trained on different subsets with the same architecture and hyperparameters. Then, the function returns an ensemble prediction (EL), that averages predictions of the M LSTM-NN models.

The function initializes P to be an empty list of predictions. It then loops through the prediction of each input model m i , from i = 1 to M . Each prediction p i is appended to a list P and then averaged to obtain the ensemble prediction EL, which is the final output of the algorithm. By using this method, the final EL prediction is able to integrate the different offline trained models, combining the strengths of multiple LSTM-NN models trained on different datasets to achieve generalized prediction performance, increasing the flexibility and robustness of the receiver against changes in the wireless channel conditions. 
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Fig. 2: Block diagram of the DPA-LSTM-NN channel estimator [START_REF] Reis | Low complexity LSTM-NN-based receiver for vehicular communications in the presence of high-power amplifier distortions[END_REF] with EL.

IV. SIMULATION RESULTS

In this section, we analyze the performance impact of employing the EL technique on the DPA-LSTM-NN estimator [START_REF] Reis | Low complexity LSTM-NN-based receiver for vehicular communications in the presence of high-power amplifier distortions[END_REF]. We consider single-antenna nodes, with a transmitted OFDM frame size of L = 50 symbols in the scenario based on the IEEE 802.11p standard.

In Figure 3, a fixed SNR = 30 dB is considered to analyze the Normalized Mean Squared Error (NMSE) performance of DPA-LSTM-NN models trained with different speeds for the same considered PDP, deployed as the R2V-UC scenario. The results show that models trained at higher speeds than those considered in the tested scenario exhibit certain robustness, with minimized estimation error. However, it is important to note that this robustness does not hold when different PDPs are considered during testing, requiring a model that can handle this variation. Therefore, in the subsequent analysis, we focus on the bit error rate (BER) performance of the EL model, where M = 4 models are trained and combined using Algorithm 1. Specifically, our EL approach considers m 1 = {R2V-UC, v = 50 km/h}, m 2 = {R2V-UC, v = 200 km/h}, m 3 = {V2V-EX, v = 50 km/h}, and m 4 = {V2V-EX, v = 200 km/h}, given the PDP in Table I. Then, we compare the performance of the EL model with other models trained specifically for a given PDP/speed, in different scenarios.

Figure 4 presents the BER performance of the different models tested with a dataset deployed as the R2V-UC channel with v = 50 km/h. Notice that the legend of each curve indicates the scenario for which each model was trained. First, we note that the model trained with the same PDP/speed as the scenario under test is the one to achieve the best performance, while the model trained with the same PDP, but with a higher speed (v = 200 km/h) has almost negligible loss compared to this best-performing case. Furthermore, the EL model also exhibits very good performance, with almost negligible loss compared to the best-performing case. However, the same cannot be said when testing the models trained with a different Fig. 3: NMSE for models trained with different speeds v = {0, 50, 100, 150, 200} km/h on the R2V-UC. PDP, i.e., the V2V-EX channel in this case. In these cases, from 2 dB to 4 dB of performance loss is observed at the BER of 10 -4 .

The R2V-UC channel with v = 200 km/h is considered in Figure 5. As illustrated, there is a much more significant loss when moving to the high-speed scenario during the test of the models trained for a specific channel condition. In this case, it is observed that apart from the PDP considered when training the DNN model, training a model with a dataset with speed lower than the one considered in the test phase is a crucial factor for performance loss. Also, we observe that the EL model presents a slight performance gain in this scenario, while the models trained with the same PDP and lower speed v = 50 km/h or different PDP show a considerable performance loss.

Figure 6 shows the performance of the ensemble method for the case where the V2V-EX scenario is considered during the test phase of the models. Again, it can be noticed that for the models trained with v = 50 km/h, the one trained with a different PDP has a higher performance loss, which justifies the need for a combined model that generalizes the solution. Moreover, the performance loss of the EL model compared to the models trained with same PDP can be understood by analyzing the path gains of the R2V-UC and V2V-EX channel models in Table I. The fact that the V2V-EX channel model has lower average path gains compared to the R2V-UC entailed in a small performance loss for the low-speed scenario. Still, we emphasize that this loss is smaller than that presented by the models trained with different PDP, evidencing the ability of the EL model to adapt to extreme conditions.

Finally, Figure 7 shows that the models trained with v = 50 km/h are not adapted to estimate the channel with v = 200 km/h during the testing phase in the V2V-EX channel, presenting a loss higher than 10 dB in comparison to the EL model. This substantial loss is crucial to support that models trained for specific scenarios are insufficient to generalize the DNN-based solution for vehicular channel estimation, presenting several constraints for practical deployment. On the other hand, the EL model presents an interesting alternative by offering an estimation with considerably lower losses for different channels. Additionally, it is important to emphasize that these gains are achieved without adding computational complexity to the channel estimation, as the process of obtaining the combined EL model is done offline. Another relevant factor is related to the advantage of storage of a single model capable of estimating the channel in different scenarios, resulting in a gain compared to the storage and management of multiple models, which can be computationally expensive and can result in high storage costs, particularly when dealing with large datasets.

V. CONCLUSION

In this paper, we show that using a model trained for a specific dataset in a given new scenario, e.g., with different aspects of mobility and/or channel profile, can result in sig-nificant performance loss and reduced reliability in vehicular communication scenarios. Still, our proposed approach of using a combined model using the EL technique overcomes these limitations and offers several advantages. Specifically, it provides robustness to variations in PDP and speed, resulting in improved performance compared to the channel estimation when considering a model trained for another specific channel condition. Furthermore, this technique is applied without high computational costs, as the combined model is acquired offline, and the storage expenses associated with maintaining multiple models can be reduced. These factors emphasize the feasibility of the EL technique as a practical option for generalizing models and obtaining accurate vehicular channel estimation in future real-world vehicular communication systems.
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