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Certified Multi-Fidelity Zeroth-order Optimization

Étienne de Montbrun∗ and Sébastien Gerchinovitz†

Abstract. We consider the problem of multi-fidelity zeroth-order optimization, where one can evaluate a func-
tion f at various approximation levels (of varying costs), and the goal is to optimize f with the
cheapest evaluations possible. In this paper, we study certified algorithms, which are additionally
required to output a data-driven upper bound on the optimization error. We first formalize the
problem in terms of a min-max game between an algorithm and an evaluation environment. We
then propose a certified variant of the MFDOO algorithm and derive a bound on its cost complexity
for any Lipschitz function f . We also prove an f -dependent lower bound showing that this algo-
rithm has a near-optimal cost complexity. As a direct example, we close the paper by addressing
the special case of noisy (stochastic) evaluations, which corresponds to ε-best arm identification in
Lipschitz bandits with continuously many arms.1
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1. Introduction. We consider the problem of multi-fidelity zeroth-order optimization,
which unfolds roughly as follows (details are given in Section 1.1). Let f : X ⊂ R

d → R

be a function. Assume that at any x ∈ X , we can query the value f(x) with any desired
accuracy α > 0, at a cost of c(α). Accurate evaluations (small α) come at a high cost. The
goal of multi-fidelity optimization is to maximize f with the cheapest evaluations possible.

A typical example is the optimization of a function f computed with finite element mod-
eling. A case with two fidelity functions (two values of α) appears in [71], for sheet-metal
forming design with the goal of having no defects in the products (automobile inner panel in
that paper). Given three variables x1, x2, x3 modeling strong restraining forces on the metal,
the goal is to set this forces to a good value to avoid both rupture and wrinkling. Two different
finite element solvers were used to approximate f at any point x: incremental finite element
solvers, or a one-step finite element model, which is computationally cheap but provides worse
estimates than the former model. Finding a good design of the forces at a reasonable compu-
tational cost is an example of multi (two) fidelity optimization problem. Many other examples
can be found, e.g., in thermodynamics [17, 47], design of new aircraft [26], or nuclear criticality
safety [57].

Certified optimization. In practice, algorithms that achieve small optimization errors with
small evaluation costs are desirable but may not inform the user when a small optimization
error has been obtained. In the example above, an engineer might require to certify the output
of the algorithm, that is, to get a guaranteed optimization error bound that they can compute
by only using the observed data and some (light) prior knowledge on f , as is done, e.g., in
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[29, 2] in the single-fidelity setting. Such requirement can be important in industrial fields
involving safety-critical systems (e.g., cars, aircraft, health, nuclear engineering).

In this paper, we study the problem of finding a certifiably approximate-maximizer of a
Lipschitz function f in the multi-fidelity setting. We quantify the smallest evaluation cost to
reach this goal, by deriving nearly-matching upper and lower bounds for any such f .

1.1. Setting. We now formally define the setting. Let X ⊂ R
d be a non-empty2 compact

set endowed with a norm ‖·‖, and f : X → R be an L-Lipschitz function, with a maximizer
x⋆ ∈ X .3 Let also c : (0,+∞)→ [0,+∞) be a non-increasing cost function.

The problem, which we describe in the online protocol below, can be seen as an interaction
between two players: the algorithm A whose goal is to maximize f , and an environment E
which returns perturbed values of f . They interact together in the following way: at every
round t ≥ 1, A picks a query point xt ∈ X and an evaluation accuracy αt > 0; it then observes
yt = Et(xt, αt) ∈ [f(xt) − αt, f(xt) + αt] at a cost of c(αt) (Et(·, α) is sometimes called α-
fidelity function); finally A recommends some candidate x∗t ∈ X for a maximizer of f , and
outputs an error certificate ξt ≥ 0 with the constraint that ξt ≥ maxx∈X f(x) − f(x∗t ) (see a
more formal definition below). This way, when using the algorithm, we can not only find an
ε-maximizer x∗t , but we can know when it is ε-optimal by looking at ξt, and thus confidently
stop searching.

Note that the case of the constant cost c(α) = 1 for all α > 0 can be reduced to the
single-fidelity setting, where f is observed perfectly (see Appendix D for details).

Online Protocol: Certified multi-fidelity zeroth-order optimization

Init: The environment secretly observes f and picks E = (Et)t≥1 with Et(x, α) ∈
[
f(x)− α,

f(x) + α
]
for all t ≥ 1, x ∈ X , and α > 0 (we also call E the environment)

1: for t = 1, 2, . . . , do
2: A chooses a query point xt ∈ X and an evaluation accuracy αt > 0
3: A incurs a cost c(αt)
4: E returns yt = Et(xt, αt) ∈ [f(xt)− αt, f(xt) + αt] (inaccurate evaluation of f(xt))
5: A returns a recommendation x∗t for the maximum of f , with an error certificate ξt ≥ 0

Next we introduce key definitions before describing the optimization goal, our contributions,
related works, and useful notation.

Definitions: environments and certified algorithms. For any L-Lipschitz function f : X → R,
we define the set E(f) of all environments associated with f , which are sequences of functions
E = (Et)t≥1 with Et(x, α) ∈

[
f(x)− α, f(x) + α

]
for all t ≥ 1, x ∈ X and α > 0. We assume

for simplicity that the sequence E ∈ E(f) is fixed from the beginning of the online protocol.4

We can now formally define certified algorithms. As can be seen from the online protocol
above, xt and αt are deterministic functions of the past observations y1, . . . , yt−1, while x∗t

2All throughout the paper, X is implictly assumed to be non empty.
3In fact, all results of Section 2 still hold if f is simply L-Lipschitz around x⋆, that is, if f(x) ≥ f(x⋆) −

L ‖x− x⋆‖ for all x ∈ X .
4Since we only consider deterministic algorithms A and work towards guarantees that hold uniformly over

all environments, this is in fact equivalent to playing against adversarial environments.
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and ξt are deterministic functions of y1, . . . , yt. We additionally require that the certificates
ξt satisfy ξt ≥ maxx∈X f(x)− f(x∗t ) for all rounds t ∈ N

∗, all L-Lipschitz functions f : X → R

and all environments E ∈ E(f). We call certified algorithm any such sequence of functions
A =

(
xt(·), αt(·), x

∗
t (·), ξt(·)

)

t≥1
, and let A denote the set of all certified algorithms. With a

slight abuse of notation, we also sometimes write xt(E), αt(E), x∗t (E) and ξt(E) to make the
dependency on E more explicit.

Optimization goal. Recall that x⋆ ∈ X denotes a maximizer of f . A classic goal in multi-
fidelity optimization is to reach a small optimization error f(x⋆)− f(x∗t ) while minimizing the
total cost

∑t
s=1 c(αs) (see, e.g., [61, 62, 20]). In this paper, we address the stronger goal of

finding a recommendation x∗t with an error certificate ξt below ε (and thus an optimization
error known to be bounded by ε), with the smallest cumulative cost

∑t
s=1 c(αs) possible.

More formally, for any environment E ∈ E(f), we define the cost complexity σ(A,E, ε) as
the smallest total cost for which A can output a certificate below ε (when run against E). It
can be expressed as follows (by convention, σ(A,E, ε) = +∞ if no such C exists):

(1.1) σ(A,E, ε) = inf

{

C ∈ R : ∃τ ∈ N
∗,

τ∑

t=1

c(αt(E)) ≤ C and ξτ (E) ≤ ε

}

.

Equivalently, since costs are nonnegative, σ(A,E, ε) is equal to the total cost incurred by A
(when run against E) until its certificate ξt falls below ε for the first time.

In this paper, we are interested in certified algorithms with small cost complexity against
any environment, that is, in algorithms A ∈ A that approximately reach the infimum

inf
A∈A

sup
E∈E(f)

σ(A,E, ε)

for any unknown L-Lipschitz function f . Importantly, the above min-max quantity depends
on f (through the set E(f)), since some functions are easier than others to maximize with
certified algorithms.

1.2. Main contributions and outline of the paper. In this paper, we study the cost com-
plexity of certified algorithms to maximize L-Lipschitz functions in the multi-fidelity setting.
We prove nearly-matching f -dependent upper and lower bounds, which extend the single-
fidelity results of [2]. More precisely, we make the following set of contributions.

• On the modeling side, we formalize the problem of certified multi-fidelity zeroth-order
optimization (see Section 1.1 above).

• In Section 2 we define a certified variant of the MFDOO algorithm [61]. We bound its
cost complexity in terms of the key quantity Sβ,L(f, ε) defined in (1.2) below.

• In Section 3 we derive a nearly-matching f -dependent lower bound that holds for all
certified algorithms (i.e., we derive a lower bound on the min-max quantity above).

• Finally, in Section 4 we address the special case of noisy evaluations of f , which
corresponds to ε-best arm identification in Lipschitz bandits with continuously many
arms. By a simple reduction to the (deterministic) multi-fidelity setting above, we
derive a high-probability sample complexity bound which solves a conjecture by [2].
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In the appendix we collect some properties and examples (Appendix A), technical proofs
(Appendix B), useful simple geometric lemmas (Appendix C), together with a formal intuitive
reduction from the single- to the multi-fidelity setting (Appendix D).

1.3. Related works. This paper has connections with several rich literatures, about single-
or multi-fidelity settings, within deterministic or Bayesian frameworks, with or without cer-
tificates. Next we provide a (non-comprehensive) subset of references to these related works.

In the single-fidelity setting (where the unknown function f can be evaluated perfectly),
the problem reduces to zeroth-order global optimization. Optimization algorithms without cer-
tificates have a very long history, in convex optimization (e.g., [54, 7, 8] for first-order methods
and beyond, or [45] for zeroth-order methods), non-convex optimization (e.g., [29, 30, 33, 45]),
Bayesian optimization (e.g., [25]), stochastic optimization (e.g., [68, 5]), or bandit optimiza-
tion (e.g., [53, 65]). Among the algorithmic techniques that are closest to this paper, we can
mention the Piyavskii-Shubert algorithm [59, 64] for zeroth-order Lipschitz optimization, as
well as discretized variants such as the branch-and-bound algorithm of [56] or the DIRECT
algorithm by [35], to name a few. More recently several variants were also derived in the
bandit community, since zeroth-order optimization can be cast as a bandit problem with con-
tinuously many arms (or X -armed bandits). Examples of such bandit algorithms for perfect
or noisy (stochastic) evaluations of f include DOO [52], HOO [9], (Sto)SOO [52, 72], POO
[27], which are all based on a hierarchical partition of the input domain, as the c.MF-DOO
algorithm of the present paper. Another discretization approach (yet computationally more
challenging) is the Zooming algorithm for general metric spaces [42, 43]. We refer the reader
to [53, 65] for further details and references on bandit algorithms for continuously many arms.

Also close to our work is the Bayesian optimization literature, because of its rich con-
tributions to the multi-fidelity setting. For single-fidelity optimization, we can mention the
seminal work of Kushner [44], the use of the expected improvement function introduced in
[51], and the EGO algorithm of [36], together with convergence rates in [11]. The kriging
community also addressed global optimization with noisy observations [21, 58]. In [69, 70] the
authors design and study a Gaussian Process-based bandit algorithm (GP-UCB) and derive
regret bounds both under Bayesian and deterministic assumptions on the underlying func-
tion f . This algorithm was later adapted in [13] for the case of sequential mini-batch queries
in parallel computing. A detailed review of the Bayesian optimization literature can be found
in [25].

We now focus on two key features of our setting: multi-fidelity and error certificates.
Multi-fidelity optimization. Multiple works in the multi-fidelity setting come from the

Bayesian optimization literature. For instance, Huang [32] designed a multi-fidelity variant of
the EGO algorithm; a multi-fidelity counterpart of GP-UCB (MF-GP-UCB) was studied in
[39, 38], while co-kriging (a multi-fidelity extension of kriging) was studied, e.g., in [22, 60]. A
framework where the (finitely many) fidelity functions may be mutually dependent was intro-
duced in [67], alongside a high probability guarantee. A more complete review on multi-fidelity
Bayesian optimization can be found in [55] and in [25, Section 11.5].

Recently bandit algorithms were also extended to the multi-fidelity setting. Starting with
the case of finitely-many arms [40], several algorithms were designed for continuously-many
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arms, which corresponds to multi-fidelity zeroth-order optimization without certificates. An
extension of DOO (called MFDOO) was provided by [61], together with an optimization error
bound (or simple regret bound) for a given overall cost budget. The authors also study
a variant inspired from POO (MFPDOO) to handle the case of unknown smoothness (see a
paragraph below). Similar algorithms based on HOO and POO (called MFHOO and MFPOO)
were later introduced by [62] to cope with additional (stochastic) noise. In [20] the authors
develop the Kometo algorithm (based on StroquOOL) and prove nearly optimal upper bounds
(with matching minimax lower bounds) on the optimization error given an overall cost budget.
Their analysis also covers the cases of unknown smoothness and of possibly unbounded costs
at accuracies α in the neighborhood of α = 0. The case of delayed and noisy feedback was
addressed in [74] with a generalization of HOO.

Error certificates. Though convergence results about the optimization error f(x⋆)−f(x∗t ) in
terms of a total cost budget are now well established in the multi-fidelity setting, the question
of certifying approximate maximizers with minimum total cost has not been addressed, to the
best of our knowledge.

The notion of error certificate appeared in several other settings, such as, e.g., in convex
optimization [7], where the duality gap between primal and dual feasible points plays the role
of an error certificate. In zeroth-order Lipschitz optimization with perfect evaluations of f
(single-fidelity setting), the Piyavskii-Shubert algorithm [59, 64] is naturally endowed with an
error certificate, which is the difference between the maximum value of a guaranteed upper
bounding function of f and the maximum value f(xs) observed so far. For one-dimensional
inputs, a tight analysis of the number of evaluations before which this certificate falls below ε
was given in [28] (see also [14]), with a simple integral expression. This result was generalized
to multi-dimensional inputs by [6, 2], and shown in [2] to be achievable with the tractable5

c.DOO algorithm, with a nearly matching f -dependent lower bound. In this paper we extend
the complexity analysis of [2] to the multi-fidelity setting, using a certified variant of MFDOO
[61] for the upper bound.

Another problem that involves the question of certifying an optimization algorithm’s out-
put is best arm identification in stochastic bandits (e.g., [18, 23, 15] and [46, Chapter 33]).
In this setting, an algorithm sequentially queries points (or arms) and observes stochastic
rewards, until it decides to stop and recommend a point whose expected reward is believed
to be (close to) optimal. In particular, for ε-best arm identification (ε-BAI), algorithms are
required upon stopping to recommend a point (or multiple points) whose expected reward is
ε-optimal with probability at least 1− γ;6 see, e.g., [18, 50, 19, 24]. This so-called (ε, γ)-PAC
condition is a statistical analog of getting a certificate ξt ≤ ε in our setting. Furthermore, the
main goal of ε-BAI is to minimize the sample complexity (i.e., the (expected) total number of
queries before stopping), which is analogous to minimizing the cost complexity in our multi-
fidelity setting. As we will show in Section 4, the connection between the two problems can
be made explicit: our algorithm for certified multi-fidelity Lipschitz optimization can be used
to solve an instance of ε-BAI in Lipschitz bandits. Though this problem has been studied
by [75, Appendix F] for ε = 0 and a finite set of arms X , we are unaware of any earlier

5Tractability refers to a small (logarithmic) number of elementary operations per evaluation of f .
6We write γ for the risk level, since the letter δ will be used for another purpose.
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results for ε-BAI in Lipschitz bandits with a continuous set X ⊂ R
d. The special case of

linear bandits has however received a lot of attention, either with finitely many arms (e.g.,
[66, 16, 34, 41, 75, 37]) or continuously many arms (e.g., [34, 4], or [12] for a related problem).

Adaptivity to smoothness versus error certificates. Another important series of works is
about adaptivity to the unknown smoothness of f , that is, the question of achieving nearly
optimal optimization performances with an algorithm that has (almost) no prior knowledge
on the smoothness of f . Among the many algorithms designed to that end, let us mention the
seminal DIRECT algorithm of [35], the Z(k) algorithm of [31], as well as bandit algorithms
(with simple or cumulative regret guarantees) including (Sto)SOO [52, 72], the two-phase
algorithm of [10], POO and GPO [27, 63], AdaLIPO [49], SequOOL and StroquOOL [3], and
their multi-fidelity variants [61, 62, 20]. See also [48] for a detailed account on possible and
impossible adaptivity results in the single-fidelity setting.

Though adaptivity to unknown smoothness is a key robustness feature of optimization
algorithms, we stress that it is in a way incompatible with the certificate requirement. For
instance, as noted by [2] in the single-fidelity setting, when optimizing a Lipschitz function f
with unknown Lipschitz constant Lip(f), it is impossible to produce a finite certificate ξt after
any number t of evaluations of f , since there could be an arbitrarily steep bump in a yet
unobserved input region. More formally, if f has a maximizer x⋆ within the interior of X , for

small ε > 0, the lower bound of [2, Theorem 2] scales at least as
(
L/Lip(f)

)d
when L→ +∞,

which implies that the minimum number of evaluations that certified algorithms need for the
function f is arbitrarily large, if we require such algorithms to output valid certificates for
all Lipschitz functions g with arbitrarily large Lipschitz constants Lip(g). The same intuitive
remark applies to our multi-fidelity setting, by the lower bound of Theorem 3.1 in Section 3.

1.4. Notation. We collect below some notation that is used all throughout the paper,
including the key quantity Sβ,L(f, ε) defined in (1.2) below.

Standard notation. N = {0, 1, 2, . . .} denotes the set of natural numbers, and N
∗ = N\{0}

denotes the set of positive natural numbers. For any x ∈ R
d and r > 0, we write B(x, r) =

{u ∈ R
d : ‖u− x‖ ≤ r} for the closed ball centered at x with radius r.

Lipschitz functions, ε-optimal points, layers. Let FL denote the set of L-Lipschitz functions
from X to R. Let also diam(X ) = supx,y∈X ‖x− y‖ denote the diameter of X . Since f is L-
Lipschitz, the largest possible optimization error f(x⋆)−f(x∗t ) is bounded by ε0 := L·diam(X ).
In the sequel, we will thus only consider values ε ∈ (0, ε0), and set mε := ⌈log2(ε0/ε)⌉. For
any 1 ≤ k ≤ mε − 1 we define the intermediate target error εk := ε02

−k; we also set εmε := ε.
For any 0 ≤ a < b, we denote the set of a-optimal points by Xa := {x ∈ X : f(x⋆)−f(x) ≤

a}, and we define the layer X(a,b] := {x ∈ X : a < f(x⋆) − f(x) ≤ b}, which is the set of
b-optimal points that are not a-optimal.

Packing number. For any r > 0, the r-packing number N (X ′, r) of a subset X ′ ⊂ X is the

largest number n of r-separated points x′1, . . . , x
′
n ∈ X

′, that is, such that
∥
∥
∥x′i − x′j

∥
∥
∥ > r for

all i 6= j ≤ n. (By convention, N (X ′, r) = 0 if X ′ is empty. Note also that N (X ′, r) < +∞
since X is compact.)
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The complexity quantity Sβ,L(f, ε). For any β > 0, we set

(1.2) Sβ,L(f, ε) := N
(

Xε,
ε

L

)

c (βε) +

mε∑

k=1

N
(

X(εk,εk−1],
εk
L

)

c (βεk) .

This quantity is a multi-fidelity generalization of the quantity SC(f, ε) introduced by [6]
in the single-fidelity setting. In Appendix A we comment on the dependence on β,L, ‖ · ‖,
and discuss two simple examples that will prove useful in interpreting our upper and lower
bounds.

As we will see later, Sβ,L(f, ε) plays a key role in the optimal cost complexity of certified
algorithms. We briefly explain why. Let x ∈ X(εk,εk−1). To realize that x belongs to the layer
X(εk,εk−1), a single call to f at x with (prophetic) evaluation accuracy α ≈ εk would be enough,
yielding a cost roughly of c(εk). By L-Lipschitz continuity of f , this single evaluation also helps
classify nearby points (at distance roughly εk/L) within the same layer. Therefore, the whole
layer could (hopefully) be identified with roughlyN

(
X(εk,εk−1],

εk
L

)
evaluations of f at accuracy

α ≈ εk. Repeating these arguments over all layers and using another (similar) argument over
Xε suggests that the sum Sβ,L(f, ε) above characterizes the optimal cost complexity of certified
algorithms. In the next sections we prove upper and lower bounds supporting this intuition.

2. The Certified MFDOO Algorithm, and its Cost Complexity. In this section we de-
fine a certified version of the MFDOO algorithm [61], and then study its cost complexity
(Theorem 2.4 below), which we will prove to be nearly optimal in Section 3.

Similarly to MFDOO [61] and its ancestors (e.g., the branch-and-bound algorithm of [56],
HOO [9], DOO [52], POO [27] c.DOO [2], etc), our algorithm takes as input a hierarchical
partitioning of X , that is, a tree-based structure X in which each node represents a region of
X and has K children, which correspond to a K-partition of the parent region. More precisely,
X is an infinite sequence of subsets (Xh,i)h∈N,i∈{0,...,Kh−1} of X called cells such that X ⊂ X0,0,

and for any depth h ∈ N and location 0 ≤ i ≤ Kh − 1, the cells Xh+1,Ki, . . . ,Xh+1,K(i+1)−1

form a partition of Xh,i (the nodes (h + 1,Ki), . . . , (h + 1,K(i + 1) − 1) are the children of
node (h, i)). Each cell has a representative xh,i ∈ Xh,i. We assume that xh,i ∈ X whenever
Xh,i ∩ X 6= ∅. (A typical example is the barycenter of the cell, if inside X .)

In all the paper, we make the following two assumptions. The first one is classical (e.g.,
[9, 52]). The second one appeared in [2] and was useful to derive bounds on DOO or c.DOO in
terms of packing numbers of layers X(εk,εk−1]. Both assumptions can always be satisfied when

X is compact. For example, if X = [0, 1]d and ‖ · ‖ is the sup norm, we can take the regular
dyadic partitioning (Xh,i)h∈N,i∈{0,...,2dh−1} consisting of 2dh cubes of size 2−h at depth h ≥ 0,
with centers xh,i. Then, Assumptions 2.1 and 2.2 hold true with R = 1 and δ = ν = 1/2.
If X ⊂ Rd is any other compact set, one way to get valid values for R and ν with δ = 1/2
consists in considering the smallest hypercube containing X . Note that other values of δ,R, ν
might be possible, but this does not affect the rate of our cost complexity bounds as ε → 0,
under a mild assumption on the cost function c (see Appendix A).

Assumption 2.1. There exist two positive constants δ ∈ (0, 1) and R > 0 such that, for all
h ∈ N, i ∈ {0, . . . ,Kh − 1}, and all u, v ∈ Xh,i, we have ‖u− v‖ ≤ Rδh.
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Assumption 2.2. There exists ν > 0 such that, with δ as in Assumption 2.1, for any
h, h′ ∈ N, i ∈ {0, . . . ,Kh−1} and i′ ∈ {0, . . . ,Kh′

−1} with (h, i) 6= (h′, i′), the representatives
xh,i and xh′,i′ defined above satisfy

∥
∥xh,i − xh′,i′

∥
∥ ≥ νδmax{h,h′}.

We now define c.MF-DOO (Certified Multi-Fidelity Deterministic Optimistic Optimiza-
tion). The pseudo-code is given in Algorithm 2.1 below. The algorithm maintains a set
Lt of active nodes (or leaves) whose associated cells cover X . At the end of each iteration
(Line 14), c.MF-DOO picks the most promising leaf (h∗, i∗) by maximizing the surrogate
yh,i + LRδh + αh,i, which is an upper bound on f(x) for any x ∈ Xh,i.

7 This step is an
instance of the so-called optimism principle (or optimism in the face of uncertainty), which
was used multiple times in the past, in the stochastic or deterministic zeroth-order (bandit)
optimization literatures (e.g., [1] for the UCB1 algorithm, as well as earlier or later references
that can be found, e.g., in [56, 52, 53, 43, 46, 65]).

Then, during the next iteration, c.MF-DOO develops the tree by querying one after the
other all the (feasible) children of (h∗, i∗). At Line 9, it picks xt = xh∗+1,j as the next query
point and αt = LRδh

∗+1 for the accuracy. (A much smaller value of αt could be counter-
productive: it could come at a much higher cost, while not improving the optimization process
by much, since the surrogate is an over-approximation of f with a mistake possibly of the
order of LRδh

∗+1 on the cell Xh∗+1,j even if f were observed exactly.) After receiving the
approximate evaluation yt of f(xt), c.MF-DOO returns the recommendation x∗t = xt̃ (see Line
11), which is the point with the currently best guaranteed value of f . Finally, the certificate
ξt at Lines 12 or 15 is the difference between a guaranteed upper bound yh∗,i∗ +LRδh

∗
+αh∗,i∗

on max(f) and a guaranteed lower bound yt̃ − αt̃ on f(x∗t ).
Note that in Algorithm 2.1 and in the rest of the paper, we identify any round t ≥ 1 with

the node (h, i) that is queried at time t.8 Depending on our needs, we index quantities either
by rounds or nodes (writing, e.g., yt or yh,i).

Time and space complexities.. Similarly to earlier algorithms of this type (e.g., DOO [52],
c.DOO [2] and MFDOO [61]), c.MF-DOO is computationally tractable, if we ignore the cost
of evaluating x 7→ f(x).9 Indeed, using a binary max-heap, all the operations at Lines 8, 13
and 14 can be executed in (at most) logarithmic time in the number |Lt| of active nodes, which
is O(t). All the other steps, including computing t̃ in Line 11 (in a sequential fashion), can be
executed in constant time at every round. Therefore, the total running time of c.MF-DOO is
O(t ln t) after t rounds. Likewise, the memory footprint can be seen to be O(t) up to round t.

We now analyze the behavior of c.MF-DOO. Before bounding its cost complexity, we
start by proving that the ξt’s defined at Lines 3, 12 and 15 are valid certificates.

Lemma 2.3. Suppose Assumption 2.1 holds, and that f : X → R is an L-Lipschitz function,
with a maximizer x⋆ ∈ X . Then, for any environment E ∈ E(f) and any t ∈ N

∗, the quantity ξt
defined at Lines 3, 12 and 15 of Algorithm 2.1 is a valid certificate, that is: f(x⋆)−f(x∗t ) ≤ ξt.

7Indeed, yh,i is an αh,i-approximation of f(xh,i), f is L-Lipschitz, and the maximum distance from a point
in Xh,i to xh,i is at most Rδh, so that maxx∈Xh,i

f(x) ≤ f(xh,i) + LRδh ≤ yh,i + LRδh + αh,i.
8By definition of Algorithm 2.1, there is indeed an injection t ∈ N

∗ 7→ (h, i) with h ∈ N, i ∈ {0, . . . ,Kh−1}.
9To be rigorous, we also ignore the cost of evaluating (h, i) 7→ xh,i. This can be done in constant time when

a closed-form or recursive formula (using the previously computed parent node’s representative) is available.
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Algorithm 2.1 c.MF-DOO (Certified Multi-Fidelity Deterministic Optimistic Optimization)

Inputs: X , K, (Xh,i)h∈N,i∈{0,...,Kh−1}, (xh,i)h∈N,i∈{1,...,Kh−1}, δ, R, L
Initialization Let t← 1 and L1 ← {(0, 0)}

1: Pick the first query point x1 ← x0,0, and the first accuracy α1 ← LR
2: Observe the value y1 = E1(x1, α1) ∈ [f(x1)− α1, f(x1) + α1]
3: Output the recommendation x∗1 ← x1 and certificate ξ1 ← LR
4: Pick the first node (h∗, i∗)← (0, 0)
5: for iteration = 1, 2, . . . do
6: for each child (h∗ + 1, j) of (h∗, i∗) do
7: if Xh∗+1,j ∩ X 6= ∅ then

8: Let t← t+ 1 and Lt ← Lt−1 ∪ {(h
∗ + 1, j)}

9: Pick the query point xt ← xh∗+1,j and accuracy αt ← LRδh
∗+1

10: Observe the value yt = Et(xt, αt) ∈ [f(xt)− αt, f(xt) + αt] given by E
11: Output the recommendation x∗t = xt̃, with t̃ ∈ argmax1≤s≤t{ys − αs}
12: Output the certificate ξt = yh∗,i∗ + LRδh

∗
+ αh∗,i∗ − (yt̃ − αt̃)

13: Remove (h∗, i∗) from Lt
14: Let (h∗, i∗) ∈ argmax(h,i)∈Lt

{yh,i + LRδh + αh,i}

15: Update the last certificate ξt = yh∗,i∗ + LRδh
∗
+ αh∗,i∗ − (yt̃ − αt̃)

Proof. Since f is L-Lipschitz and R ≥ diam(X ), note that ξ1 = LR ≥ f(x⋆) − f(x∗1).
We now prove the lemma for any subsequent round. For any t′ ≥ 2, consider the moment
when the algorithm reaches Line 12 with t = t′. Next we show that the certificate ξt =
yh∗,i∗ +LRδh

∗
+αh∗,i∗ −maxs≤t(ys−αs) defined at that time satisfies ξt ≥ f(x⋆)− f(x∗t ) (the

potential update at Line 15 will be addressed at the end of the proof). The associated node
(h∗, i∗) was either defined at Line 4 if the outer for loop is still at iteration 1, or at Line 14
otherwise. In both cases, we have (h∗, i∗) ∈ argmax(h,i)∈Lm

{yh,i +LRδh +αh,i} for a number
m ≤ t− 1 of evaluations of f .

Note that, by induction on the iteration variable, the cells Xh,i associated with the
leaves (h, i) ∈ Lm form a partition of a superset of X . Let (h̄, ī) ∈ Lm be the node of the cell
Xh̄,̄i containing x⋆. By the maximizing property of (h∗, i∗), we have

yh∗,i∗ + LRδh
∗

+ αh∗,i∗ ≥ yh̄,̄i + LRδh̄ + αh̄,̄i

≥ f(xh̄,̄i) + LRδh̄ ≥ f(x⋆) ,(2.1)

where the last line follows from |yh̄,̄i − f(xh̄,̄i)| ≤ αh̄,̄i, Assumption 2.1, and the fact that f
is L-Lipschitz. To conclude, note that ys − αs ≤ f(xs) for all s ≤ t, and therefore yt̃ − αt̃ ≤
f(xt̃) = f(x∗t ). Combining this with (2.1) entails that ξt ≥ f(x⋆) − f(x∗t ). Noting that the
same arguments apply (with m = t) if ξt is redefined at Line 15 concludes the proof.

We just proved that c.MF-DOO is a certified algorithm. We now show that its cost
complexity can be controlled in terms of the quantity Sβ,L(f, ε) defined in (1.2). We recall
that ε0 := L diam(X ), mε := ⌈log2(ε0/ε)⌉, εmε

:= ε, and εk := ε02
−k for all 1 ≤ k ≤ mε − 1.
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Theorem 2.4. Assume that c : R+ → R is non-increasing and that X ⊂ R
d is compact.

Suppose that Assumptions 2.1 and 2.2 hold, and that for some known L > 0, c.MF-DOO is
run with evaluation accuracies αh,i = LRδh (cf. Algorithm 2.1). Then there exists a constant
a > 0 (e.g., a = K if ν ≥ 3R or a = K(1 + 6R/ν)d otherwise) such that, for any L-Lipschitz
function f : X → R, any environment E ∈ E(f), and any ε ∈ (0, ε0),

σ(c.MF-DOO, E, ε) ≤ aS δ
3
,L(f, ε) + c(LR) .

Recall from Section 2 that δ, R and ν are constants that do not depend on f nor ε. In

particular, the bound in Theorem 2.4 is of the order of
(
L
ε

)d
c(δε/3) when f is a constant

function, and of the order of c(δε/3) (up to a log factor) when f(x) = 1− |x| for some norm
| · | on R

d. See Appendix A for details.

We make additional comments before proving the theorem.
Related upper bounds. Similar upper bounds were proved in [6, Theorem 3.6] and [2,

Theorem 1] when f is evaluated perfectly, which corresponds to the special case c(α) = 1
for all α. Theorem 2.4 above generalizes these results (up to constants) to the multi-fidelity
setting.

Other related results are bounds for MFDOO [61] and Kometo [20], which are multi-
fidelity algorithms without certificates. In that setting, the performances are measured dif-
ferently. The cost complexity can be defined as the total cost incurred by the algorithm
before outputting an ε-optimal recommendation (the difference with the certified setting is
that the learner has no observable proof that an ε-maximizer has been found.) With such
performance measure, MFDOO satisfies a complexity bound similar to Sβ,L(f, ε) but without
the first term N

(
Xε,

ε
L

)
c (βε) in (1.2).10 This difference can be negligible for some functions

(e.g., if c1 ‖x− x⋆‖ν ≤ f(x⋆) − f(x) ≤ c2 ‖x− x⋆‖ν for all x ∈ X and some c1, c2 > 0 and
ν ≥ 1, where x⋆ is a maximizer of f) and under a mild condition on c, but it can be dramatic
for other functions. For instance, for constant functions, the term N

(
Xε,

ε
L

)
c (βε) is of the

order of (L/ε)dc(βε). The reason behind this large additional term in the certified setting is
intuitive: a constant function f is perfectly optimized after one evaluation only, but certifying
the result at accuracy ε somehow requires to evaluate the function on a ε/L-cover of X with
accuracies αt ≈ ε, so as to make sure no bumps of size ε were forgotten.

Note also that, contrary to [20], we work with a known bias function but an unknown cost
function. This is because we aim at certifying an ε-maximizer of f , rather than optimally
allocating a total evaluation budget Λ.

Finally, note that the bound of Theorem 2.4 can have a much worse dependency in ε
than what could be obtained under strong structural assumptions on f . For example, if f
is smooth and strongly concave (which corresponds to ν = 2 in the paragraph before last)
and can be evaluated perfectly (c(α) = 1 for all α), the bound of Theorem 2.4 can be of

10This bound can be proved along the same lines as those of Theorem 2.4. See also [61, Theorem 1] and
[20, Theorem 3] for similar bounds under slightly weaker assumptions (relating f directly to the hierarchical
partitioning) but that are expressed in terms of a near-optimality dimension of f , and thus do not reflect the
fact that constant functions are easy to optimize. Roughly speaking, the bound of [61, Theorem 1] for MFDOO
is in spirit close to

∑mε

k=1 N
(

Xεk−1
, εk/L

)

c(βεk), instead of the tighter bound
∑mε

k=1 N
(

X(εk,εk−1], εk/L
)

c(βεk).
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the order of (1/ε)d/2. On the other hand, as recalled in [45, Section 4], some zeroth-order
algorithms achieve a sample complexity of O

(
ln(1/ε)

)
if X = R

d. Beyond the difference
between constrained and unconstrained optimization, a key reason for our worse bound is
that we require the algorithm to output valid certificates for all L-Lipschitz functions (a much
larger function class). This is in the same spirit as the remark about the impossible adaptivity
to smoothness in Section 1.3. However it is likely that we could tailor c.MF-DOO to smooth
and strongly concave functions by using a tweaked exploration bonus, as was done for DOO
with semi-metrics [52] in the single-fidelity setting. We leave this interesting question for
future work.

On the choice of εk. As can be seen from the proof below, the upper bound is actually
true for any decreasing sequence ε0 = L diam(X ) > ε1 > . . . > εm−1 > εm = ε and any
m ≥ 1. The specific sequence εk := ε02

−k however realizes a good trade-off between small
ratios εk−1/εk ≤ 2 and a small number of terms mε = ⌈log2(ε0/ε)⌉. The nearly-matching
lower bound of Section 3 will indeed imply that this sequence is nearly optimal.

Possible improvements or consequences. Note that the constant a was not optimized and
could likely be improved. Furthermore, similarly to [2], under a mild geometric condition on X
recalled in Section 4, the sum Sδ/3,L(f, ε) can be bounded (up to multiplicative constants) in

between two integrals of the form
∫

X c
(
b · (∆x + ε)

)
/(∆x + ε)ddx, where ∆x = f(x⋆) − f(x)

and b ∈
{
δ/3, δ/12

}
(provided ε < ε0/2). This integral form is omitted due to lack of space.

Proof of Theorem 2.4. The proof generalizes that of [2, Theorem 1] to the multi-fidelity
setting, with similar arguments yet a few technical subtleties. In order to bound the total
cost incurred by c.MF-DOO against environment E, we control the index Iε ≥ 1 of the first
iteration (cf Line 5) at the end of which the certificate falls below ε. More precisely, let (h∗ℓ , i

∗
ℓ )

be the node chosen at the end of each iteration ℓ ≥ 1 (Line 14). Then, we define Iε by11

Iε = inf
{

ℓ ∈ N
∗ : yh∗

ℓ
,i∗
ℓ
+ LRδh

∗
ℓ + αh∗

ℓ
,i∗
ℓ
≤ max

s≤Tℓ

{ys − αs}+ ε
}

,

where for any ℓ ≥ 1, the quantity Tℓ denotes the total number of evaluations of f until the
leaf (h∗ℓ , i

∗
ℓ ) is selected at Line 14. Next we focus on τ := TIε . Note that ξτ ≤ ε by definition

of Iε and ξτ (in Line 15). Recalling that σ(c.MF-DOO, E, ε) is the total cost that c.MF-DOO
incurs until outputting a certificate below ε for the first time, this entails

(2.2) σ(c.MF-DOO, E, ε) ≤
τ∑

t=1

c(αt) .

We now split the right-hand side into several terms involving the layers X(εk,εk−1]. We set
(h∗0, i

∗
0) = (0, 0). Note that the points xt queried at times t ∈ {2, . . . , τ} are all associated

with nodes (h, i) that are children of some (h∗ℓ , i
∗
ℓ ), ℓ = 0, . . . , Iε − 1, and that these (h, i) are

queried only once. Therefore,

τ∑

t=1

c(αt) ≤ c(α1) +

Iε−1∑

ℓ=0

K(i∗
ℓ
+1)−1
∑

j=Ki∗
ℓ

c
(
αh∗

ℓ
+1,j

)
= c(LR) +K

∑

xh∗,i∗∈Eε

c
(
LRδh

∗+1
)
,(2.3)

11The rest of the proof implies that the set is never empty, so that Iε < +∞.
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where we set Eε := {xh∗
0,i

∗
0
, . . . , xh∗

Iε−1,i
∗
Iε−1
} (the xh,i are pairwise-distinct by Assumption 2.2).

We now split the sum over Eε above into mε + 1 = ⌈log2(ε0/ε)⌉ + 1 terms. Recall from
Section 1.4 that ε0 = L diam(X ), εk = ε02

−k for 1 ≤ k ≤ mε − 1, and εmε = ε. Since the
sets Xε (all ε-optimal points) and X(εk,εk−1], k = 1, . . . ,mε (all points in between εk and εk−1

optimal) form a partition of X ,

(2.4) Eε = (Eε ∩ Xε) ∪
mε⋃

k=1

(
Eε ∩ X(εk,εk−1]

)
.

LetNε,k be the cardinality of Eε∩X(εk,εk−1] for all 1 ≤ k ≤ mε and Nε,mε+1 be the cardinality of
Eε∩Xε. Moreover, let hε,k be the maximum depth h∗ reached by points xh∗,i∗ in Eε∩X(εk,εk−1]

for 1 ≤ k ≤ mε, and hε,mε+1 be the maximum depth reached by points in Eε ∩ Xε. By (2.3),
(2.4), and the fact that α 7→ c(α) is non-increasing, we have:

(2.5)
τ∑

t=1

c(αt) ≤ c(LR) +K
mε+1∑

k=1

Nε,k c
(
LRδhε,k+1

)
.

We now bound Nε,k from above and LRδhε,k+1 from below (see (2.7), (2.8), (2.9), and (2.10)).
We start by proving (2.6) below. Let x⋆ ∈ X be a maximizer of f . Following the same

arguments as before (2.1) (using f being L-Lipschitz and E ∈ E(f)), we can see that, for any
node (h∗, i∗) selected at Line 14,

yh∗,i∗ + LRδh
∗

+ αh∗,i∗ ≥ f(x⋆) .

This implies that f(xh∗,i∗) + LRδh
∗
+ 2αh∗,i∗ ≥ f(x⋆), and thus 3LRδh

∗
≥ f(x⋆) − f(xh∗,i∗)

(by αh∗,i∗ = LRδh
∗
). Therefore, for any ℓ ∈ {0, . . . , Iε−1} (the case ℓ = 0 is straightforward),

(2.6) xh∗
ℓ
,i∗
ℓ
∈ X

3LRδ
h∗
ℓ
.

Now, let k ∈ {1, . . . ,mε} and xh∗
ℓ
,i∗
ℓ
∈ X(εk,εk−1] ∩ Eε. By (2.6) and the fact that xh∗

ℓ
,i∗
ℓ
∈

X(εk,εk−1] is not εk-optimal, we have 3LRδh
∗
ℓ > εk. This and the definition of hε,k entail

(2.7) 3LRδhε,k > εk .

Also, let xh,j and xh′,j′ be two distinct elements of X(εk,εk−1] ∩Eε. By Assumption 2.2 and

(2.7), we have
∥
∥xh,j − xh′,j′

∥
∥ ≥ νδmax{h,h′} > νεk

3LR . Therefore, and by definition of a packing
number, we get that for all k ∈ {1, . . . ,mε}, the cardinality Nε,k of Eε ∩ X(εk,εk−1] satisfies

Nε,k ≤ N
(

X(εk,εk−1],
νεk
3LR

)

≤

(

1

ν
3R

≥1 + 1

ν
3R

<1

(

1 +
6R

ν

)d
)

︸ ︷︷ ︸

=:b

N
(

X(εk,εk−1],
εk
L

)

(2.8)

from Lemma C.2 in Appendix C.
Now, let xh∗

ℓ
,i∗
ℓ
∈ Xε ∩ Eε, with ℓ ∈ {0, . . . , Iε − 1}. If ℓ ≥ 1, we have, by definition of Iε,

yh∗
ℓ
,i∗
ℓ
+ LRδh

∗
ℓ + αh∗

ℓ
,i∗
ℓ
> max

s≤Tℓ

{ys − αs}+ ε ≥ yh∗
ℓ
,i∗
ℓ
− αh∗

ℓ
,i∗
ℓ
+ ε .
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Again, replacing αh∗
ℓ
,i∗
ℓ
with LRδh

∗
ℓ , we get 3LRδh

∗
ℓ > ε, which is also true if ℓ = 0. Therefore,

(2.9) 3LRδhε,mε+1 > ε .

Combining this inequality with Assumption 2.2, we get that
∥
∥xh,j − xh′,j′

∥
∥ > νε

3LR for any two
distinct elements xh,j, xh′,j′ of Xε ∩ Eε. Therefore, and by definition of a packing number,

(2.10) Nε,mε+1 ≤ N
(

Xε,
νε

3LR

)

≤ b · N
(

Xε,
ε

L

)

,

by Lemma C.2 again. Putting (2.2), (2.5), (2.8), (2.10) together and setting a := Kb, we get

σ(c.MF-DOO, E, ε)

≤ c(LR) + aN
(

Xε,
ε

L

)

c
(

LRδhε,mε+1+1
)

+ a

mε∑

k=1

N
(

X(εk,εk−1],
εk
L

)

c
(

LRδhε,k+1
)

≤ c(LR) + aN
(

Xε,
ε

L

)

c

(
δε

3

)

+ a

mε∑

k=1

N
(

X(εk,εk−1],
εk
L

)

c

(
δεk
3

)

,

where we used (2.7), (2.9), and the fact that c is non-increasing. This concludes the proof.

3. Lower Bound. In this section, for any fixed L-Lipschitz function f : X → R, we derive
a lower bound on the worst-environment cost complexity supE∈E(f) σ(A,E, ε) (see (1.1)) of any
certified algorithm A. Our main result below, which depends on f through the key quantity
Sβ,L(f, ε) defined in (1.2), generalizes [2, Theorem 2] from perfect evaluations of f to the
multi-fidelity setting. We recall that ε0 = L diam(X ) and mε = ⌈log2(ε0/ε)⌉.

Theorem 3.1. Assume that c : R+ → R+ is a non-increasing function and that X ⊂ R
d

is a compact and connected set. Then, for some constant ad > 0 (e.g., ad = 1/65d), the cost
complexity of any certified algorithm A satisfies, for any L-Lipschitz function f : X → R and
any target optimization error ε ∈ (0, ε0/2),

sup
E∈E(f)

σ(A,E, ε) ≥
ad
(
1− Lip(f)/L

)d

1 +mε
S16,L(f, ε) .

Importantly, the lower bound holds for certified algorithms, which by definition are required
to output valid certificates for any L-Lipschitz function f : X → R and any environment
E ∈ E(f) (see Section 1.1).

We make three comments before proving the theorem.
On the optimality of the bound. First note that ad depends exponentially on the di-

mension d. While removing such exponential dependence completely is challenging without
stronger assumptions on f (if not impossible), the constant 65 was not optimized and could

be improved. Besides, the quantity
(
1−Lip(f)/L

)d
vanishes as L approaches Lip(f). Impor-

tantly, the case L = Lip(f) is not really relevant in practice, because it scarcely happens that
one knows exactly the best Lipschitz constant Lip(f) without knowing the function itself. In
the more realistic case when one only knows a strict upper bound L on Lip(f), and under the
mild assumption supα>0 c(α)/c(2α) < +∞ (which holds, e.g., if c(α) is polynomial in 1/α),
Theorems 2.4 and 3.1 imply that c.MF-DOO is nearly optimal (among all certified algorithms)
in terms of cost complexity, up to logarithmic and dimension-dependent multiplicative factors.
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Earlier lower bounds. Similarly to Section 2, Theorem 3.1 can be compared to (at least)
two types of existing lower bounds. First, our lower bound generalizes that of [2, Theorem 2]
(where f can be evaluated perfectly at the same cost as coarse evaluations) to the multi-fidelity
setting, where costs play a crucial role. Note that a study of the boundary case L = Lip(f)
was provided by [2, Section 4], with different phenomena appearing in dimensions d = 1 or
d ≥ 2. Though out of the scope of this paper and with limited practical consequences, it would
be interesting to investigate whether similar phenomena occur in our multi-fidelity setting.

A second type of lower bound (of a minimax form) was proved in [20, Theorem 1] for
non-certified algorithms, under several assumptions on the cost function (more precisely, on
a so-called cost-to-bias function) and a near-optimality dimension of f . Unlike the minimax
approach, our lower bound is f -dependent. This is possible since we work with certified
algorithms, whose data-driven certificates must be robust to yet unobserved values of f .

Note however that, since we require certified algorithms to output valid certificates for all
L-Lipschitz functions f , Theorem 3.1 does not imply minimax lower bounds for non-certified
algorithms over smaller function classes.12 The two types of lower bounds can be compared on
the set FL of all L-Lipschitz functions, or on any other subset F if we relax the certification
requirement. We briefly explain why. Let F ⊂ FL, and define F-certified algorithms similarly
to Section 1.1, but by only requiring certificates ξt to be valid for all functions f ∈ F (instead
of f ∈ FL). Assume also that infα>0 c(α) > 0 (which is the case if, e.g., c(ε0) > 0 and
c(α) = c(ε0) for all α ≥ ε0). We claim that

sup
f∈F

inf
A

sup
E∈E(f)

σ(A,E, ε) ≤ inf
A′

sup
f∈F

sup
E∈E(f)

σ′(A′, E, ε) ,

where A ranges over F-certified algorithms, A′ over algorithms without certificates, and

σ′(A′, E, ε) = inf

{

C ∈ R : ∃τ ∈ N
∗,

τ∑

t=1

c(αt(E)) ≤ C and ∀t ≥ τ,max(f)− f(x∗t (E)) ≤ ε

}

.

Note that σ′(A′, E, ε) differs from (1.1) in that the optimization error supt≥τ f(x
⋆)−f(x∗t (E))

replaces the certificate ξτ (E). It corresponds to the smallest total cost needed for A′ (when
run against E) to output ε-optimal recommendations from some time onwards. The claimed
inequality follows from two main arguments. First, supf∈F infA φ(f,A) ≤ infA supf∈F φ(f,A).
Second, for any non-certified algorithm A′, we can define F-valid certificates ξt as follows. Let
C = supf∈F supE∈E(f) σ

′(A′, E, ε) + ρ for some ρ > 0. Then, for any round t, we set ξt = ε

if
∑t+1

s=1 c(αs(E)) > C (which is known at the end of round t), or ξt = ε0 otherwise. We can
check that ξt(E) ≥ f(x⋆)− f(x∗t (E)) for all t ≥ 1, f ∈ F and E ∈ E(f). Furthermore, the F-
certified algorithm A obtained by endowing A′ with the ξt’s is such that supf,E σ(A,E, ε) ≤ C.
Taking infima over A and A′, and letting ρ→ 0 concludes the proof of the inequality.

12This is similar in spirit to the remark on impossible adaptivity to smoothness in Section 1.3. A simple
counter-example is given by the set F of all constant functions on X , with a cost c(α) = 1 for all α. In this case,
non-certified algorithms need only 1 evaluation of f to output a maximizer in the worst case, while the lower
bound of Theorem 3.1 is of the order of (L/ε)d/ ln(1/ε) for small ε > 0 (see Appendix A). Interestingly though,
function classes indexed by some near-optimality dimension as in [20] may not be a good counter-example
(since in that case the cost of certification N

(

Xε,
ε
L

)

c (βε) can be comparable to the other terms in Sβ,L(f, ε)).



CERTIFIED MULTI-FIDELITY ZEROTH-ORDER OPTIMIZATION 15

On more collaborative environments. The lower bound of Theorem 3.1 holds for the worst
case among all environments. However, the cost complexity can be improved for some specific
environments. Indeed one could think of the following collaborative environment: when asked
two times for an approximation of f(x) with two accuracies α and α′ at the same x ∈ X ,
it first returns f(x) − α and then f(x) + α′. Then even with α = α′ = ε0, the algorithm
has an exact knowledge of f(x) after only two queries at the same x. Against such an en-
vironment, we would thus be in the same setting as in [2] (perfect evaluations of f) with
only twice as many queries, and could therefore achieve a cost complexity of the order of
c(ε0)·

(
N
(
Xε,

ε
L

)
+
∑mε

k=1N
(
X(εk,εk−1],

εk
L

) )
. Since c(ε0) can be much smaller than c(ε) in

practice, this would greatly improve over the upper bound of Thm 2.4, which (by Thm 3.1)
is nearly optimal when considering worst-case environments E ∈ E(f). In practice we could
expect the environment to lie between the collaborative and worst-case extremes. The ques-
tion of deriving environment-dependent lower and upper bounds is left for future work.

The proof of Theorem 3.1 is inspired from that of [2, Theorem 2] who addressed the case
of perfect evaluations of f . Our generalization to the multi-fidelity setting however requires
additional technicalities. Before the proof, we introduce several useful quantities and lemmas.
Recall that FL denotes the set of all L-Lipschitz functions from X to R. We first define the
quantity errτ (A,E) for any τ ≥ 1, as the best certificate ξτ that algorithm A could output
given the sequence (xt, αt, yt)t≤τ and given x∗τ (note that we consider all L-Lipschitz functions
g : X → R that are compatible with the observations (yt)t≤τ ):

errτ (A,E) = sup
{

max(g)− g(x∗τ ) : g ∈ FL and ∀t ≤ τ, g(xt) ∈ [yt − αt, yt + αt]
}

.

As can be seen from the next lemma, for any certified algorithm A, its certificate ξτ at any
time τ ≥ 1 is bounded from below by errτ (A,E). The proof is postponed to Appendix B.

Lemma 3.2. Let f : X → R be an L-Lipschitz function, E ∈ E(f) be an environment and
A be a certified13 algorithm with certificates

(
ξt(E)

)

t≥1
when run against E.14 Then for all

τ ∈ N
∗, ξτ (E) ≥ errτ (A,E).

Denoting the set of all certified algorithms by A, we can now define15

Cinf(f, ε) = inf

{

C ∈ R : ∃A ∈ A,∀E ∈ E(f),∃τ ∈ N
∗,

τ∑

t=1

c(αt(E)) ≤ C and errτ (A,E) ≤ ε

}

which represents the minimum cost that certified algorithms must incur to maximize f with
an error certifiably below ε against any environment. This intuitive fact is formalized in the
following lemma, which is proved in Appendix B.

Lemma 3.3. Let A be a certified algorithm, f : X → R be an L-Lipschitz function, and
ε ∈ (0, ε0/2). Then, supE∈E(f) σ(A,E, ε) ≥ Cinf(f, ε).

13See the comment at the end of the statement of Theorem 3.1.
14As mentioned in the introduction, ξt is a function of all values y1, . . . , yt observed so far. We stress the

(implicit) dependency on E since it is key in the proof.
15To see that the set of C’s is never empty, take A = c.MF-DOO and apply Theorem 2.4 and Lemma 3.2.
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Another intuitive result is that an algorithm cannot output a certificate ξt ≤ ε unless it has
already requested some value of f with an evaluation accuracy αt ≤ ε. This implies that the
total cost needed to certify an error at level ε must be at least of c(ε). This is stated formally
below and proved in Appendix B. Interestingly, this result would not hold if we worked with
specific, possibly collaborative, environments (see a remark above).

Lemma 3.4. Assume X ⊂ R
d is compact and connected, and c : R+ → R+ non-increasing.

Then Cinf(f, ε) ≥ c(ε) for any L-Lipschitz function f : X → R and any ε ∈ (0, ε0/2).

We can now prove Theorem 3.1.

Proof of Theorem 3.1. We assume without loss of generality that Lip(f) < L and set

Ωf =
(1−Lip(f)/L

65

)d
. We want to show that

sup
E∈E(f)

σ(A,E, ε) ≥
Ωf

1 +mε
S16,L(f, ε) .

Since supE∈E(f) σ(A,E, ε) ≥ Cinf(f, ε) (by Lemma 3.3), it is sufficient to show that

Cinf(f, ε) ≥
Ωf

1+mε
S16,L(f, ε). We set K = 16L

L−Lip(f) and note that Ωf ≤
1

(1+4K)d
. We can

distinguish between two cases:

First case: Assume first that
S16,L(f,ε)
1+mε

≤ (1 + 4K)dc(ε). Then

Ωf

1 +mε
S16,L(f, ε) ≤ c(ε) ≤ Cinf(f, ε) ,

where the last inequality follows from Lemma 3.4. In this case, the theorem is proved.

Second case: We now assume that
S16,L(f,ε)
1+mε

> (1 + 4K)dc(ε). The idea is to upper bound the
average of the (1 +mε) terms that define S16,L(f, ε) by the largest one.

Let ε̃ be the scale with maximum contribution in (1.2) with β = 16, that is:

ε̃ =

{
ε if N

(
Xε,

ε
L

)
c(16ε) ≥ max1≤k≤mε

N
(
X(εk,εk−1],

εk
L

)
c(16εk)

εk∗−1 otherwise, where k∗ ∈ argmax1≤k≤mε
N
(
X(εk,εk−1],

εk
L

)
c(16εk)

Since N
(
Xε,

ε
L

)
≤ N

(
Xε,

ε
2L

)
and N

(
X(εk,εk−1],

εk
L

)
≤ N

(
Xεk−1

,
εk−1

2L

)
for all 1 ≤ k ≤ mε,

and since c is non-increasing, we then have S16,L(f, ε) ≤ (1 +mε)N
(
Xε̃,

ε̃
2L

)
c(8ε̃).

Then, using Lemma C.2, the previous result, and the assumption of the second case, we have:

N

(

Xε̃,
Kε̃

L

)

c(8ε̃) ≥

(
1

1 + 4K

)d

N

(

Xε̃,
ε̃

2L

)

c(8ε̃)

≥

(
1

1 + 4K

)d S16,L(f, ε)

(1 +mε)
> c(ε) .(3.1)

To prove our result, we assume for a moment that Cinf(f, ε) <
Ωf

1+mε
S16,L(f, ε) and will

show that it raises a contradiction. Combining with (3.1) and Ωf ≤
1

(1+4K)d
, this indeed yields

Cinf(f, ε) < Ωf (1 + 4K)dN

(

Xε̃,
Kε̃

L

)

c(8ε̃) ≤ N

(

Xε̃,
Kε̃

L

)

c(8ε̃) .
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Then, by definition of Cinf(f, ε), there exists an algorithm A ∈ A such that for all environments
E ∈ E(f), there exists τ ∈ N

∗ such that

(3.2)

τ∑

t=1

c(αt(E)) < N

(

Xε̃,
Kε̃

L

)

c(8ε̃) and errτ (A,E) ≤ ε .

We now consider the “noiseless” environment E = (Et)t≥1 ∈ E(f) defined by Et(x, α) =
f(x) for all t ≥ 1, x ∈ X , and α > 0. Let τ ∈ N

∗ be such that (3.2) holds. LetM = N
(
Xε̃,

Kε̃
L

)
,

and let {x̃1, . . . , x̃M} be a (Kε̃/L)-packing of Xε̃. Note that the closed balls B(x̃m, Kε̃
2L ) with

centers x̃1, . . . , x̃M and radius Kε̃/2L are pairwise disjoint. Note also that M ≥ 2 from

N
(
Xε̃,

Kε̃
L

)
> c(ε)

c(8ε̃) ≥ 1 by (3.1), 8ε̃ ≥ ε, and c being non-increasing (c(8ε̃) > 0 by (3.1)).
For any 1 ≤ m ≤ M , let cm be the maximum cost spent at any round on the m-th ball,

that is cm = max{c(αt) : t ∈ Tm} if the set Tm := {t = 1, . . . , τ : ‖xt(E)− x̃m‖ ≤ Kε̃/2L}
is non-empty, and cm = 0 otherwise. We know from (3.2) that the total cost up to round τ
is smaller than Mc(8ε̃). By the pigeonhole principle, there is at least one m ≤ M for which
cm < c(8ε̃). Assume without loss of generality that this is true for m = 1. Then for any
t ∈ T1 (if such t exists), the cost c (αt(E)) is smaller than c(8ε̃). Therefore, either αt(E) > 8ε̃
whenever the ball B

(
x̃1,

Kε̃
2L

)
is visited (since c is non-increasing) or this ball is never visited.

We just showed that, on the ball B(x̃1,
Kε̃
2L ), algorithm A never queried f with an evaluation

accuracy αt ≤ 8ε̃. Next we show the following consequence: that the inequality errτ (A,E) ≤ ε
in (3.2) cannot be true, by exhibiting an L-Lipschitz function g ∈ FL compatible with the
observations yt = Et

(
xt(E), αt(E)

)
= f(xt(E)) and such that max(g) − g(x∗τ (E)) > ε. This

will raise a contradiction in (3.2) and conclude the proof. To that end, we consider the two
functions g = f ± hε̃, with hε̃ : X → R defined by

(3.3) hε̃(x) = max

{

8ε̃− 16
L

K
‖x− x̃1‖ , 0

}

.

First note that both f − hε̃ and f + hε̃ are L-Lipschitz, since hε̃ is (L− Lip(f))-Lipschitz (by
16L
K = L− Lip(f)). Moreover, since hε̃ is supported on X ∩B(x̃1,Kε̃/2L) and ‖hε̃‖∞ ≤ 8ε̃ ≤
αt(E) for all t ∈ T1, the two functions f − hε̃ and f + hε̃ belong by construction to the set

G :=
{

g ∈ FL : ∀t = 1, . . . , τ, g(xt(E)) ∈
[
f(xt(E))− αt(E), f(xt(E)) + αt(E)

]}

.

We now show that max(g) − g(x∗τ (E)) > ε for g = f − hε̃ or g = f + hε̃, by distinguishing
two subcases. If x∗τ (E) ∈ B(x̃1,Kε̃/4L), we perturb f “downwards” around x̃1 and consider
g = f − hε̃. In this case, since hε̃(x

∗
τ (E)) ≥ 4ε̃ and hε̃(x̃2) = 0, we have max(g)− g

(
x∗τ (E)

)
≥

f(x̃2) − hε̃(x̃2) − (f(x∗τ (E)) − hε̃(x
∗
τ (E))) ≥ −ε̃ + 4ε̃ = 3ε̃.16 In the other case, if x∗τ (E) /∈

B(x̃1,Kε̃/4L), we consider g = f + hε̃: since hε̃(x
∗
τ (E)) ≤ 4ε̃ and hε̃(x̃1) = 8ε̃, we have

max(g) − g
(
x∗τ (E)

)
≥ f(x̃1) + hε̃(x̃1)− (f(x∗τ (E)) + hε̃(x

∗
τ (E))) ≥ −ε̃+ 8ε̃− 4ε̃ = 3ε̃.

In both subcases above, we proved max(g)−g
(
x∗τ (E)

)
≥ 3ε̃ > ε for some g ∈ {f−hε̃, f+hε̃} ⊂

G, which entails errτ (A,E) > ε (by definition of errτ ). This raises a contradiction in (3.2), so

that we must have Cinf(f, ε) ≥
Ωf

1+mε
S16,L(f, ε). This concludes the proof.

16We used the fact that f(x̃m)− f(x∗
τ (E)) ≥ f(x̃m)−max(f) ≥ −ε̃ for all 1 ≤ m ≤ M (since x̃m ∈ Xε̃).
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4. Special Case: Noisy Evaluations of f (a.k.a. Stochastic Setting). Previously all the
environments E that we considered were deterministic. We now assume that the algorithm
receives noisy (stochastic and unbiased) evaluations of f , but that for all t ∈ N

∗ it can observe
several independent noisy evaluations of f(xt) and decide the number mt of them.

More formally, we consider the following variant of the online protocol described in Sec-
tion 1.1. Let (ζt,u)t,u∈N∗ be a sequence of independent v-subGaussian random variables.17 The
ζt,u’s are unknown, but the constant v > 0 is assumed to be known to the learner. At each
round t ∈ N

∗, the algorithm A chooses a query point xt ∈ X , as well as a number mt ≥ 1
of noisy evaluations (instead of αt). The algorithm incurs a cost equal to mt. In return, the
environment outputs a mini-batch (yt,1, . . . , yt,mt) with mt components (instead of a single
inaccurate evaluation yt), where yt,u = f(xt) + ζt,u for any 1 ≤ u ≤ mt. Then, just as before,
A outputs a recommendation x∗t ∈ X for the maximum of f , together with a (tentative) error
certificate ξt ≥ 0. In this setting, the goal is (with high probability) to maximize f with an
error certifiably below ε, while minimizing the total number of evaluations of f . This problem
corresponds to ε-best arm identification in Lipschitz bandits with a continuous set X of arms
(see details in Section 1.3).

Algorithm. We reduce this problem to the deterministic setting of Section 2. We consider
c.MF-StoOO (Certified Multi-Fidelity Stochastic Optimistic Optimization), which is a mini-
batch version of c.MF-DOO and whose pseudo-code is given in Algorithm 4.1 below. In the
sequel, we use the same identification between nodes and rounds as before (see Footnote 8).

The intuition behind c.MF-StoOO is the following: for a mini-batch of size mt, the av-
erage yt :=

1
mt

∑mt

u=1 yt,u is an unbiased estimate of f(xt) with a variance bounded by v/mt.
Therefore (see later for more details), with high probability, the absolute difference |yt−f(xt)|
is at most roughly of the order of the standard deviation

√

v/mt. To be in a special case
of Section 2, Algorithm 4.1 makes

√

v/mt comparable to the evaluation accuracy αt that
c.MF-DOO would request, by choosing mt ≈ v/α2

t . This will allow us to apply Theorem 2.4
with a cost c(α) ≈ v/α2.

To make the above intuition more rigorous (multiple high probability bounds will be used
simultaneously), we use a careful weighted union bound on the nodes of the hierarchical
partitioning tree. For some desired risk level γ ∈ (0, 1), writing (ht, it) for the node evaluated
at time t ≥ 1 (Line 9 if t ≥ 2), we take
(4.1)

mt =

⌈
2v

α2
t

ln

(
2

γht,it

)⌉

, with γh,i =
γ

(h+ 1)(h + 2)Kh
for h ∈ N and i ∈ {0, . . . ,Kh − 1}.

Note that the weights sum up to
∑+∞

h=0

∑Kh−1
i=0 γh,i = γ.

Sample complexity. Define the stopping time

τ(f, ε) := inf{t ≥ 1 : ξt ≤ ε} .

We now bound the total number
∑τ(f,ε)

t=1 mt of evaluations of f that c.MF-StoOO requests
before certifying an ε-maximizer of f . The next high-probability bound (Proposition 4.1) is

17A real-valued random variable X is v-subGaussian if E[exp(λX)] ≤ exp(λ2v/2) for all λ ∈ R. In particular,
E[X] = 0 and Var[X] ≤ v. Two examples are the Gaussian distribution N (0, v) and the uniform distribution
Unif

(

[−√
v,
√
v]
)

.
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Algorithm 4.1 c.MF-StoOO (Certified Multi-Fidelity Stochastic Optimistic Optimization)

Inputs: X , K, (Xh,i)h∈N,i∈{0,...,Kh−1}, (xh,i)h∈N,i∈{1,...,Kh−1}, δ, R, L, v, and γ
Initialization Let t← 1, (h1, i1)← (0, 0), and L1 ← {(0, 0)}

1: Pick the first query point x1 ← x0,0, accuracy α1 ← LR, prior value γ0,0 ← γ/2, and

evaluation number m1 ←
⌈

2v
(LR)2

ln
(

4
γ

)⌉

2: Observe the noisy evaluations (y1,u)1≤u≤m1 = (f(x1) + ζ1,u)1≤u≤m1

3: Compute y1 =
1
m1

∑m1
u=1 y1,u

4: Output the recommendation x∗1 ← x1 and certificate ξ1 ← LR
5: Pick the first node (h∗, i∗)← (0, 0)
6: for iteration = 1, 2, . . . do
7: for each child (h∗ + 1, j) of (h∗, i∗) do
8: if Xh∗+1,j ∩ X 6= ∅ then

9: Let t← t+ 1, (ht, it)← (h∗ + 1, j) and Lt ← Lt−1 ∪ {(ht, it)}
10: Pick the next query point xt ← xht,it and accuracy αt ← LRδht

11: Compute the prior value γht,it = γ/((ht + 1)(ht + 2)Kht)

12: Pick the number of evaluations mt ←
⌈
2v
α2
t
ln
(

2
γht,it

)⌉

13: Observe the noisy evaluations (yt,u)1≤u≤mt = (f(xt) + ζt,u)1≤u≤mt

14: Compute yt =
1
mt

∑mt

u=1 yt,u
15: Output the recommendation x∗t = xt̃, with t̃ ∈ argmax1≤s≤t{ys − αs}
16: Output the certificate ξt = yh∗,i∗ + LRδh

∗
+ αh∗,i∗ − (yt̃ − αt̃)

17: Remove (h∗, i∗) from Lt
18: Let (h∗, i∗) ∈ argmax(h,i)∈Lt

{yh,i + LRδh + αh,i}

19: Update the last certificate ξt = yh∗,i∗ + LRδh
∗
+ αh∗,i∗ − (yt̃ − αt̃)

in terms of the quantity Sβ,L(f, ε) defined in (1.2) with the cost function c = cγ given by

(4.2) cγ(α) =

⌈

2v

α2
ln

(

2(h(α) + 1)(h(α) + 2)Kh(α)

γ

)⌉

, where h(α) =
ln(LR/α)

ln(1/δ)
.

We recall that ε0 = L diam(X ), mε = ⌈log2(ε0/ε)⌉, εmε = ε and εk = ε02
−k for 1 ≤ k ≤ mε−1.

Proposition 4.1. Suppose that X ⊂ R
d is compact, that Assumptions 2.1 and 2.2 hold,

and denote by a > 0 the same constant as in Theorem 2.4. Then, in the stochastic setting
described above, for any known constants L, v > 0 and γ ∈ (0, 1), for any L-Lipschitz function
f : X → R with maximizer x⋆ ∈ X , and any ε ∈ (0, ε0), c.MF-StoOO (Algorithm 4.1) satisfies

P





[

∀t ≥ 1, f(x⋆)− f(x∗t ) ≤ ξt

]

and

τ(f,ε)
∑

t=1

mt ≤ aS δ
3
,L(f, ε) +

⌈
2v

(LR)2
ln

(
4

γ

)⌉


 ≥ 1− γ ,

where the probability is taken over the noise sequence (ζt,u)t,u∈N∗, and where Sδ/3,L(f, ε) is the
quantity defined in (1.2) with β = δ/3 and c = cγ (see (4.2) above).
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The proof appears below; we start with two comments. First, Proposition 4.1 implies that,
with high probability, the ξt’s are valid certificates and the total number of evaluations of f that
c.MF-StoOO requests before certifying an ε-maximizer of f is bounded roughly by (combining
(1.2) with (4.2), and omitting log factors and some dimension-dependent constants)

vN
(
Xε,

ε
L

)

ε2
+

mε∑

k=1

vN
(
X(εk,εk−1],

εk
L

)

ε2k
≈ v Ld

∫

X

dx

(f(x⋆)− f(x) + ε)d+2
,

where the sum-integral approximation (which omits multiplicative constants) holds under the
following mild geometric condition on X : there exist constants r0 > diam(X )/2, ρ ∈ (0, 1] such
that for all x ∈ X and r ∈ (0, r0], vol(B(x, r) ∩ X ) ≥ ρ vol(B(x, r)). This condition roughly
states that X has a non-negligible volume locally everywhere (e.g., we can take r0 = 1 and
ρ = 2−d if X = [0, 1]d and ‖·‖ is the sup norm). The proof of this sum-integral approximation
follows essentially from [2, Theorem 1], with a direct extension to non-increasing costs.

Therefore, a consequence of Proposition 4.1 is that, under a mild condition on X , the cost
complexity in the stochastic setting is roughly proportional to

∫

X dx/(f(x⋆) − f(x) + ε)d+2,
as conjectured by [2].

Second, to the best of our knowledge, Proposition 4.1 provides the first sample complexity
bound for an (ε, γ)-PAC algorithm in continuum-armed Lipschitz bandits. The case in which
ε = 0 and X is finite was addressed by [75, Appendix F]. Note however that we bound a
(1 − γ)-quantile of the total number of evaluations of f , instead of its expectation (a more
classical quantity in the best arm identification literature). This alternative result, together
with the question of deriving an instance-dependent lower bound in the stochastic setting
(multiplicative constants will most likely differ from the upper bound), are left for future work.

To prove Proposition 4.1, we use the following classical lemma, which helps reduce the
stochastic setting with mini-batches to the deterministic setting with inaccurate evaluations.
(We will later combine this lemma with yt − f(xt) =

1
mt

∑mt

u=1(yt,u − f(xt)) =
1
mt

∑mt

u=1 ζt,u.)

Lemma 4.2. Let (ζt,u)t,u∈N∗ be a sequence of independent v-subGaussian random variables
for some v > 0. Let γ ∈ (0, 1), and let (αt)t≥1 and (ht, it)t≥1 be two predictable18 sequences
such that, almost surely, αt > 0, ht ∈ N and it ∈ {0, . . . ,K

ht − 1} for all t ≥ 1, and
t ≥ 1 7→ (ht, it) being injective. Then, for mt and γh,i defined as in (4.1), we have

P

(

∀t ∈ N
∗,

∣
∣
∣
∣
∣

1

mt

mt∑

u=1

ζt,u

∣
∣
∣
∣
∣
< αt

)

≥ 1− γ .

Proof. Let Ft denote the σ-field generated by the random variables ζs,u, s ∈ {1, . . . , t},
u ∈ N

∗. (By convention, F0 is the trivial σ-field.) Let t ≥ 1. Since αt and mt are Ft−1

measurable, and the ζt,u, u ∈ N
∗, are independent and v-subGaussian conditionally on Ft−1,

P

(∣
∣
∣
∣
∣

1

mt

mt∑

u=1

ζt,u

∣
∣
∣
∣
∣
≥ αt

)

= E

[

P

(∣
∣
∣
∣
∣

1

mt

mt∑

u=1

ζt,u

∣
∣
∣
∣
∣
≥ αt

∣
∣
∣Ft−1

)]

≤ E

[

2e−
mtα

2
t

2v

]

≤ E [γht,it] .

18That is, we assume αt, ht and it to be measurable w.r.t. the subsequence (ζs,u)1≤s≤t−1,u∈N∗ .
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By a union bound, this yields

P

(

∃t ∈ N
∗,

∣
∣
∣
∣
∣

1

mt

mt∑

u=1

ζt,u

∣
∣
∣
∣
∣
≥ αt

)

≤
+∞∑

t=1

P

(∣
∣
∣
∣
∣

1

mt

mt∑

u=1

ζt,u

∣
∣
∣
∣
∣
≥ αt

)

≤ E

[
+∞∑

t=1

γht,it

]

≤ γ ,

where the last inequality follows by injectivity of t ≥ 1 7→ (ht, it) and
∑+∞

h=0

∑Kh−1
i=0 γh,i = γ.

Taking the complementary event concludes the proof.

Proof of Proposition 4.1. We now explain how to treat the problem as a special case of
Section 2 (deterministic yet inaccurate evaluations), with the cost function cγ defined in (4.2)
and a well-chosen random environment.

First note that the assumptions of Lemma 4.2 are met, so that with high probability
the yt’s are αt-close to f(xt) simultaneously for all t ≥ 1. More formally, they can be seen
as generated by a random environment (Eω

t )t≥1 defined as follows. Let (Ω,F ,P) be the
probability space on which the random variables (ζt,u)t,u are defined. For any fixed element
ω ∈ Ω and any t ≥ 1, we define the function Eω

t : X × R
∗
+ → R by

Eω
t (x, α) =

{

f(x) + 1
mt(ω)

∑mt(ω)
u=1 ζt,u(ω) if

∣
∣
∣

1
mt(ω)

∑mt(ω)
u=1 ζt,u(ω)

∣
∣
∣ ≤ α

f(x) otherwise.

Note that the environment (Eω
t )t≥1 lies in E(f) for each ω ∈ Ω. Now, denoting by Ω̃ =

{

ω ∈ Ω : ∀t ∈ N
∗,
∣
∣
∣

1
mt(ω)

∑mt(ω)
u=1 ζt,u(ω)

∣
∣
∣ < αt

}

the event considered in Lemma 4.2, we can see

that, for any ω ∈ Ω̃,19 the value Eω
t (xt, αt) = f(xt) +

1
mt

∑mt

u=1 ζt,u = 1
mt

∑mt

u=1

(
f(xt) + ζt,u

)

coincides with yt =
1
mt

∑mt

u=1 yt,u for all t ≥ 1. We can thus apply Lemma 2.3: for any ω ∈ Ω̃,
we have f(x⋆)− f(x∗t ) ≤ ξt for all t ≥ 1 (ξt is a valid certificate).

Furthermore, a call to Eω
t (xt, αt) requires mt =

⌈
2v
α2
t
ln
(

2
γht,it

)⌉

= cγ(αt) noisy evaluations

of f , with cγ defined in (4.2). Putting everything together, for any ω ∈ Ω̃, the behavior of
c.MF-StoOO coincides with the behavior of c.MF-DOO against the environment Eω ∈ E(f).

In particular the total cost
∑τ(f,ε)

t=1 mt =
∑τ(f,ε)

t=1 cγ(αt) coincides with the cost complexity
of c.MF-DOO against Eω, with the non-increasing cost function cγ . We can thus use Theo-
rem 2.4: for any ω ∈ Ω̃,

τ(f,ε)
∑

t=1

mt = σ(c.MF-DOO, Eω , ε) ≤ aS δ
3
,L(f, ε) + cγ(LR) .

Recalling that P(Ω̃) ≥ 1− γ concludes the proof.
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Appendix A. Some properties of Sβ,L(f, ε), and two simple examples.
Our upper and lower bounds all involve the quantity

Sβ,L(f, ε) = N
(

Xε,
ε

L

)

c (βε) +

mε∑

k=1

N
(

X(εk,εk−1],
εk
L

)

c (βεk) .

Let us make a few comments to help interpret these bounds. We start by explaining how
Sβ,L(f, ε) depends on the scaling factor β, the Lipschitz bound L, and the ambient norm ‖ · ‖.

• Scaling factor β: note that β only appears within the costs c(βε) and c(βεk). If the non-
increasing cost function c satisfies the mild assumption supα>0 c(α)/c(2α) < +∞ (which
holds, e.g., if c(α) is polynomial in 1/α), then multiplying β by a constant factor can only
change Sβ,L(f, ε) by at most a multiplicative constant.

• Lipschitz bound L: the bound in Theorem 2.4 holds as long as L ≥ Lip(f), where Lip(f)
denotes the best Lipschitz constant of f . Note that Sβ,L(f, ε) depends on L in two different
ways: (i) within the packing numbers and (ii) in the definitions of ε0 := L · diam(X ) and
thus mε := ⌈log2(ε0/ε)⌉ and εk := ε02

−k. The effect (ii) is mostly negligible, since for a
fixed f , replacing L with L′ = 2L only creates a new layer X(ε0,2ε0], which is empty. As for
the effect (i), by Lemma C.2 in the appendix, Sβ,L(f, ε) cannot deteriorate by more than
a factor of the order of (L′/L)d if L is replaced with L′ > L.

• Ambient norm ‖ · ‖: the effect is very similar to that of L, since the norm ‖ · ‖ appears
both in the definition of the packing numbers and in the value of L (and thus ε0, εk and
mε).

21 By the equivalence of norms in R
d and by Lemma C.2 in the appendix, the same

conclusions apply as in the previous item.

We now informally compute Sβ,L(f, ε) on two simple (extreme) examples.

Example 1. Consider a constant function f1 on any compact set X ⊂ R
d with nonempty

interior. Let L > 0 be fixed. Then, Sβ,L(f1, ε) = N (X , ε/L)c(βε) which is of the order of
(
L
ε

)d
c(βε) for small ε > 0.

Example 2. Let X = B‖·‖p
(0, 1) be the unit closed ℓp-ball in R

d, with 1 ≤ p ≤ +∞. Consider

the function f2 defined for all x ∈ X by f2(x) = 1−|x|, where | · | is any norm in R
d. Note that

f2 is L-Lipschitz w.r.t. ‖·‖p for L > 0 large enough. Next we informally write ≈ to mean that
both sides are equal up to constants that only depend on d, p, | · |, L, and c(·). First note that
Xε = B|·|(0, ε)∩X , so that N (Xε, ε/L) ≈ 1 for small ε > 0 (by [73, Lemma 5.7] and the equiv-

alence of norms in R
d; see also Lemma C.2 in the appendix). Similarly, N

(
X(εk,εk−1],

εk
L

)
≈ 1

as soon as the set X(εk,εk−1] = {x ∈ X : εk < |x| ≤ εk−1} is nonempty, which is the case for

20https://www.deel.ai/
21Note that two effects can cancel out: for instance, rescaling the norm ‖ · ‖ by a factor of 2k (and L by a

factor of 2−k) leaves Sβ,L(f, ε) unchanged.

https://www.deel.ai/
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at least k = 1, . . . , ⌈mε/2⌉ if ε is small enough (by equivalence of norms). Overall, using the
fact that c is non-increasing, we get c(βε) . Sβ,L(f2, ε) . ln(1/ε)c(βε) for small ε.

Remark. In practice we could face a function f that lies in between the two extremes f1 and
f2, such as f(x) = 1−|x|ν with ν > 1 (f1 corresponds locally to ν = +∞). In this case, and if
the origin lies in the interior of X , similar computations yield Sβ,L(f, ε) ≈ (1/ε)d(1−1/ν) c(βε)
for small ε. Furthermore, as noted by [6] in the single-fidelity setting, a Lipschitz function f
can feature different shapes at different scales. For example, f(x) = 1 − max{|x| − 1, 0} is
constant in a neighborhood of the origin but equal to f2 (up to an affine transformation to
preserve continuity) outside of this neighborhood, with a non-unique maximizer at the origin.
In this case, Sβ,L(f, ε) behaves as c(βε) (up to a log factor) for “moderate” values of ε, but as
(
L
ε

)d
c(βε) for smaller values of ε. Many other examples admit such a multi-scale complexity

behavior.

Appendix B. Missing proofs in Section 3.

Proof of Lemma 3.2. Let τ ∈ N
∗. For the sake of clarity, we explicitly write the dependen-

cies of the iterates xt(E), αt(E), yt(E), x∗t (E), ξt(E) w.r.t. the environment E ∈ E(f). Recall
that FL denotes the set of all L-Lipschitz functions from X to R. Let g ∈ FL be such that

(B.1) ∀t ≤ τ, g(xt(E)) ∈ [yt(E) − αt(E), yt(E) + αt(E)] .

Then there exists an environment Eg ∈ E(g) whose interactions with algorithm A yield the
same decisions xt, αt, x

∗
t , ξt and observations yt as those generated with environment E, up

to time t = τ . More formally, we define Eg = (Eg
t )t≥1 by Eg

t (x, α) = yt(E) if t ≤ τ , x = xt(E)
and α = αt(E), but Eg

t (x, α) = g(x) otherwise. Note that Eg ∈ E(g) by (B.1).
First note that x1(E

g) = x1(E) and α1(E
g) = α1(E) since both terms are independent of

the environment. From our definition of Eg, this implies that the approximation y1(E
g) =

Eg
1(x1(E

g), α1(E
g)) returned by Eg is equal to y1(E). Because the observation y1 that A

receives is the same as before, A outputs the same values for x∗1, ξ1, x2 and α2, which again
implies that y2(E

g) = y2(E). By a simple induction argument, we then have that, for all
t = 1, . . . , τ , xt(E

g) = xt(E), αt(E
g) = αt(E), yt(E

g) = yt(E), x∗t (E
g) = x∗t (E) and ξt(E

g) =
ξt(E). In particular,

ξτ (E) = ξτ (Eg) ≥ max(g)− g(x∗τ (Eg)) = max(g)− g(x∗τ (E)) ,

where the inequality follows from the definition of a certificate. Since the above lower bound
on ξτ (E) is true for all g ∈ FL satisfying condition (B.1), it is also true for their supremum,
which proves that ξτ (E) ≥ errτ (A,E).

Proof of Lemma 3.3. Let A be a certified algorithm. We can assume without loss of
generality that supE∈E(f) σ(A,E, ε) < +∞. Let C > supE∈E(f) σ(A,E, ε). Then, for any
E ∈ E(f), by definition of σ(A,E, ε), there exists τ ∈ N

∗ such that
∑τ

t=1 c(αt(E)) ≤ C and
ξτ (E) ≤ ε. By Lemma 3.2 and since A is a certified algorithm, this entails

τ∑

t=1

c(αt(E)) ≤ C and errτ (A,E) ≤ ε.
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By definition of Cinf(f, ε), this immediately yields Cinf(f, ε) ≤ C. We conclude the proof by
letting C go to supE∈E(f) σ(A,E, ε).

In order to prove Lemma 3.4, we first need the following intuitive lemma.

Lemma B.1. Let f be any L-Lipschitz function, τ ∈ N
∗, and let E∗ be the “noiseless”

environment E∗ = ((x, α) 7→ f(x))t≥1 ∈ E(f). Then, for any certified algorithm A, the best
possible certificate errτ (A,E

∗) against E∗ is bounded from below by min {mint≤τ αt(E
∗), ε0/2}.

Proof. Within this proof, we only work with the environment E∗, so we skip all depen-
dencies of xt, αt, yt, x

∗
t , ξt on E∗. We set ε̃ = min {mint≤τ αt, ε0/2} and define g : X → R by

g(x) = min{f(x) + ε̃, f(x∗τ ) − ε̃ + L ‖x− x∗τ‖}. We will now show that g is compatible with
the observations (yt)t≤τ and the accuracies (αt)t≤τ , and that max(g) − g(x∗τ ) ≥ ε̃.

Since g is the minimum of two L-Lipschitz functions, it is also L-Lipschitz. Moreover, for
any t ≤ τ , on the one hand, g(xt) ≤ f(xt) + ε̃ ≤ yt +αt, by definition of g and ε̃, and the fact
that yt = f(xt) (recall that we work with the “noiseless” environment E∗).

On the other hand, by L-Lipschitz continuity of f , for all x ∈ X , L ‖x− x∗τ‖+f(x∗τ )− ε̃ ≥
f(x) − ε̃. This implies that for all x ∈ X , g(x) ≥ min{f(x) + ε̃, f(x) − ε̃} = f(x) − ε̃. In
particular, for all t ≤ τ ,

g(xt) ≥ f(xt)− ε̃ ≥ yt − αt .

To sum up, g is an L-Lipschitz function such that |g(xt)− yt| ≤ αt for all 1 ≤ t ≤ τ : the
algorithm A cannot make the difference between the functions f and g.

Now, let us bound max(g)− g(x∗τ ) from below to derive a lower bound on errτ (A,E
∗).

First, g(x∗τ ) = min{f(x∗τ )+ ε̃, f(x∗τ )− ε̃} = f(x∗τ )− ε̃. Second, let v ∈ R
d be such that ‖v‖2 = 1

and x∗τ +
ε̃v
L ∈ X . Such a v exists by Lemma C.1 and the facts that ε̃ ≤ ε0/2 = L · diam(X )/2

and X is compact and connected. Then,

f

(

x∗τ +
ε̃v

L

)

+ ε̃ ≥ f(x∗τ )− L

∥
∥
∥
∥

ε̃v

L

∥
∥
∥
∥
+ ε̃ = f(x∗τ )

and

f(x∗τ )− ε̃+ L

∥
∥
∥
∥
x∗τ +

ε̃v

L
− x∗τ

∥
∥
∥
∥
= f(x∗τ )− ε̃+ L

∥
∥
∥
∥

ε̃v

L

∥
∥
∥
∥
= f(x∗τ ) .

By definition of g, this entails

f(x∗τ ) ≤ g

(

x∗τ +
ε̃v

L

)

≤ max(g)

Putting everything together, we get

errτ (A,E
∗) ≥ max(g)− g(x∗τ ) ≥ f(x∗τ )− (f(x∗τ )− ε̃) = ε̃ = min

{

min
t≤τ

αt, ε0/2

}

,

which concludes the proof.

Proof of Lemma 3.4. Recall the definition of Cinf(f, ε), and let C ∈ R and A′ ∈ A
be such that for all E ∈ E(f), there exists τ ∈ N

∗ such that
∑τ

t=1 c(αt(E)) ≤ C and
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errτ (A
′, E) ≤ ε. In particular, for the “noiseless” environment E∗ = ((x, α) 7→ f(x))t≥1,

there exists τ such that
∑τ

t=1 c(αt(E
∗)) ≤ C and errτ (A,E

∗) ≤ ε. Using Lemma B.1, we get
that min {mint≤τ αt(E

∗), ε0/2} ≤ errτ (A,E
∗) ≤ ε, which implies mint≤τ αt(E

∗) ≤ ε (since
ε0/2 > ε by assumption). Because c is non-negative and non-increasing, we have:

C ≥
τ∑

t=1

c(αt(E
∗)) ≥ c

(

min
t≤τ

αt(E
∗)

)

≥ c(ε) .

By definition of Cinf(f, ε), this entails that Cinf(f, ε) ≥ c(ε).

Appendix C. Useful lemmas.
We recall two rather classical lemmas, and provide proofs for the convenience of the reader.

Lemma C.1. Let X ⊂ R
d be a compact connected set with diameter ρ. Then for any x ∈ X

and ε ≤ ρ
2 , there exists v ∈ R

d with ‖v‖ = 1 such that x+ εv ∈ X .

Proof. Let x ∈ X and 0 < ε ≤ ρ
2 (the result is straightforward if ε = 0). Since ρ is the

diameter of X and the latter is compact, there exist y, z ∈ X such that ‖y − z‖ = ρ.
Let us show by contradiction that there exists a point x′ ∈ X for which ‖x− x′‖ ≥ ε. Assume
for a moment that for all x′ ∈ X , ‖x− x′‖ < ε. In that case, we would have ‖y − z‖ ≤
‖y − x‖+ ‖x− z‖ < 2ε ≤ ρ, which is in contradiction with ‖y − z‖ = ρ.

Now that we know that it exists, let x′ ∈ X be such that ‖x− x′‖ ≥ ε. Because X is
connected, there exists a continuous path γ : t ∈ [0, 1] 7→ γ(t) ∈ X such that γ(0) = x and
γ(1) = x′. Let g be the function g : t ∈ [0, 1] 7→ ‖γ(t)− x‖ ∈ R. g is a continuous function
from [0, 1] to R, with g(0) = 0 and g(1) ≥ ε > 0, so according to the intermediate value
theorem, there exists t∗ ∈ [0, 1] such that g(t∗) = ε. Taking x′′ = γ(t∗) and v = x′′−x

‖x−x′′‖ solves

the problem, because x+ εv = x′′ ∈ X .

Lemma C.2. For any bounded set E ⊂ R
d, and all 0 < r1 < r2, we have

N (E, r1) ≤

(

1 + 2
r2
r1

)d

N (E, r2).

The above lemma is well known and can be found, e.g., in [2, Appendix A] with a slightly
weaker statement. We recall the proof for the convenience of the reader. For any x ∈ R

d and
r > 0, we set B(x, r) = {u ∈ R

d : ‖u− x‖ ≤ r}.

Proof. Fix any bounded set E ⊂ R
d and 0 < r1 < r2. Consider an r1-packing F =

{x1, . . . , xN1} of E, with cardinality N1 := N (E, r1).
Let F0 = F . We define a sequence F0, F1, . . . , Fkend−1

of subsets of F by induction, as follows.
For k ≥ 1 let x̂k be any element of Fk−1, and define Bk = Fk−1∩B(x̂k, r2) and Fk = Fk−1\Bk.
Repeating this procedure, we get an index kend ≤ N1 such that Fkend−1 is non-empty while
Fkend is empty.
Then, the set {x̂1, . . . , x̂kend} is an r2-packing of E, so that kend ≤ N (E, r2). Let us now upper
bound N1 using kend. By construction, the union of the Bk’s contains F , so for all i ≤ N1,
there exists k ≤ kend such that xi ∈ Bk, and thus B(xi, r1/2) ⊂ B(x̂k, r2 + r1/2). Therefore,

⋃

1≤i≤N1

B(xi, r1/2) ⊂
⋃

1≤k≤kend

B(x̂k, r2 + r1/2) .
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Moreover, the N1 balls B(xi, r1/2) are pairwise disjoint, because F is an r1-packing of E. By a
volumetric argument, we thus get that (r1/2)

d N1 ≤ (r2 + r1/2)
d kend ≤ (r2 + r1/2)

dN (E, r2).
Rearranging terms concludes the proof.

Appendix D. The special case of constant costs.
In this short section we focus on the case of a constant cost c(α) = 1. We formalize and

prove the following very intuitive fact: when more accurate evaluations come at no additional
cost, choosing the best accuracy available is always optimal. To avoid boundary effects, we
slightly extend the setting by allowing the learner to choose αt identically equal to zero.

Lemma D.1. Let f : X → R be an L-Lipschitz function, and assume c : R+ → R+ is the
constant function given by c(α) = 1 for all α ≥ 0. Then,

• σ(A,E, ε) = inf{t ∈ N
∗ : ξt(E) ≤ ε};

• the smallest cost complexity (against the worst environment) is achieved by certified
algorithms that choose αt = 0 for all t ∈ N

∗.

Proof of Lemma D.1. Let f be an L-Lipschitz function, and ε > 0. Since c(α) = 1 for all
α ≥ 0, the definition of σ(A,E, ε) directly yields σ(A,E, ε) = inf{t ∈ N

∗ : ξt(E) ≤ ε}.
Recall that A denotes the set of all certified algorithms, and that E(f) is the set of all en-

vironments associated with the function f . As discussed in the introduction, αt depends on E
only via the inaccurate approximations y1, . . . , yt−1 of f . We write αt(y1, . . . , yt−1) instead of
αt to clarify this dependency when needed. We denote by A0 the set of all certified algorithms
such that αt(y1, . . . , yt−1) = 0 for all t ∈ N

∗ against all possible realizations of y1, . . . , yt−1.

Formally, what we want to prove is

inf
A′∈A0

sup
E∈E(f)

σ(A′, E, ε) ≤ inf
A∈A

sup
E∈E(f)

σ(A,E, ε) .

Let A be an algorithm in A, and let E∗ ∈ E(f) be the environment for which E∗
t (x, α) =

f(x) for all t ∈ N
∗, all x ∈ X and all α ≥ 0. Note that

(D.1) sup
E∈E(f)

σ(A,E, ε) ≥ σ(A,E∗, ε)

Now, let Ã be the same algorithm as A, with one difference: whatever the situation and
the environment E, for all t ∈ N, α̃t(y1, . . . , yt−1) = 0. Then Ã ∈ A0. Moreover, because of
the particularity of E∗, A and Ã will behave the same way against E∗: the sequences of query
points (xt)t∈N∗ , recommendations (x∗t )t∈N∗ and certificates (ξt)t∈N∗ are the same for A and for
Ã. From this, we get that σ(A,E∗, ε) = σ(Ã, E∗, ε). Combining with (D.1) yields

(D.2) inf
A∈A

sup
E∈E(f)

σ(A,E, ε) ≥ inf
A∈A

σ(A,E∗, ε) ≥ inf
Ã∈A0

σ(Ã, E∗, ε)

Let us now show that

(D.3) inf
A′∈A0

σ(A′, E∗, ε) = inf
A′∈A0

sup
E∈E(f)

σ(A′, E, ε),
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which, combined with (D.2), will conclude the proof.
To see why (D.3) holds, let A′ be any certified algorithm with αt = 0 for all t ∈ N

∗,
whatever the past observations y1, . . . , yt−1, and let E, and E′ be two environments in
E(f). Then, for all x ∈ X , Et(x, 0) = E′

t(x, 0) = f(x), because environments should sat-
isfy |Et(x, α) − f(x)| ≤ α for all x ∈ X and α ≥ 0. Therefore, the behavior of A′ against any
E ∈ E(f) is the same as against E∗ which proves (D.3).
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process bandit optimisation, Journal of Artificial Intelligence Research, 66 (2019), pp. 151–196.
[39] K. Kandasamy, G. Dasarathy, J. B. Oliva, J. Schneider, and B. Póczos, Gaussian process bandit
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