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In this paper, we extend the concept of ensemble controllability introduced in 2009 by Jr-Shin Li and Navin Khaneja to a class of linear partial dierential equation. More precisely, we consider some abstract parabolic equation, where the system depends on some unknown parameter which is assumed to belong to a compact interval. We investigate the possibility of approximatively reaching (in L 2 -norm) any target state from any initial state, with an open loop control. Here the initial and target states might depend on the unknown parameter, but the control is assumed to be parameter independent.

Introduction

The modeling of physical systems often involves in their dynamics some parameters that are inherent to them. These parameters are generally estimated but not known with precision. For instance, the dynamic of a car depends on its mass, the evolution of the temperature depends on the diusion coecient of the material. . . In the context of classical control theory, it is customary to assume that these parameters are known and xed. Thus, if a system is to be sent from its initial state to a prescribed nal state, the constructed control implicitly depends on the xed parameters. As a consequence, when these parameters are modied, the built control no longer solves the control problems.

Hence, each time a system parameter is modied, a new control has to be Email addresses: bdanhane@laas.fr (Baparou Danhane), jerome.loheac@univ-lorraine.fr (Jérôme Lohéac) Preprint submitted to System & Control Letters November 16, 2023 designed. It therefore seems reasonable to ask whether it is possible to build controls that are independent of the parameters of the system. This is the aim of Ensemble controllability, and this notion is also named (approximate) simultaneous controllability.

The notion of ensemble controllability was rst introduced in [START_REF] Li | Ensemble control of bloch equations[END_REF], where the authors studied the ensemble controllability of Bloch equations with a dispersion in their natural frequencies. A much more elaborate study of the topic discussed in the above reference, using functional analysis approach, was undertaken in [START_REF] Beauchard | Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations[END_REF].

For linear control systems many results exist. From the generic concept of ensemble controllability, many other notions emerged such as Uniform ensemble controllability and L q -ensemble controllability. One can cite for instance [START_REF] Dirr | Uniform and L q -ensemble reachability of parameter-dependent linear systems[END_REF][START_REF] Li | Ensemble control of time-invariant linear systems with linear parameter variation[END_REF][START_REF] Schönlein | Controllability of ensembles of linear dynamical systems[END_REF] where the authors gave necessary and sucient conditions for L q -ensemble controllability and uniform ensemble controllability for linear control systems. In [START_REF] Chen | Controllability issues of linear ensemble systems over multidimensional parameterization spaces[END_REF][START_REF] Danhane | Conditions for uniform ensemble output controllability, and obstruction to uniform ensemble controllability[END_REF], the authors gave some obstructions to L q and uniform ensemble controllability, and in [START_REF] Schönlein | Feedback equivalence and uniform ensemble reachability[END_REF], the author explore how the application of feedback methods enlarges the class of parameter-dependent linear systems that are uniformly ensemble reachable. In [START_REF] Lazar | Control of parameter dependent systems[END_REF][START_REF] Schönlein | Computation of open-loop inputs for uniformly ensemble controllable systems[END_REF], the authors gave some numerical tools to compute optimal controls. We also quote [START_REF] Agrachev | Ensemble controllability by Lie algebraic methods[END_REF],

where the authors investigate ensemble controllability for non-linear systems using the geometrical point of view.

Dealing with feedback stabilization of parameter dependent partial differential equation, we mention the recent papers [START_REF] Guth | Ensemble feedback stabilization of linear systems[END_REF][START_REF] Alleaume | Ensembles of hyperbolic PDEs: Stabilization by backstepping[END_REF]. In [START_REF] Guth | Ensemble feedback stabilization of linear systems[END_REF], the authors investigate the ensemble feedback stabilization of linear systems using a Riccati based feedback mechanism. It should be mentioned that in their paper, the set of parametrization is a nite subset of the real line. More importantly, the feedback control proposed, itself, depends on the parameter but the gain does not. The fact that the gain does not depend on the parameter makes the analysis more delicate. The question of feedback stabilization of parameter dependent system with feedback controls that do not depend on the parameter is still, at our knowledge, an open question, even for linear systems. In [START_REF] Alleaume | Ensembles of hyperbolic PDEs: Stabilization by backstepping[END_REF], the authors use the backstepping method to stabilize an ensemble of hyperbolic partial dierential equations.

To our knowledge, the concept of ensemble controllability has not yet been investigated in the case of partial dierential equations, especially when the set of parametrization is a continuum. It is worth noting, however, that in [START_REF] Guth | Ensemble feedback stabilization of linear systems[END_REF], as an application of their results, the authors considered a Galerkin discretization of a parameterized one dimensional heat equation with inter-nal controls, where the uncertain parameter is the reaction coecient and belongs to a nite subset of the real line. They have shown, under some conditions, that any nite truncation of the discretized system solution is ensemble controllable.

As mentioned above, the ensemble controllability of partial dierential equations when the set of parametrization is a continuum is open, and in this paper, we investigate the L 2 -ensemble controllability of linear parabolic type equations with internal controls.

The paper is organized as follows. In Section 2, we state the controllability problem and give the main result of the paper. This section is followed by Section 3 where we apply our main result to the heat and 2D Grushin equations, and give some relations between ensemble controllability and average controllability. The proof of the main result is given in Section 4.

This section is followed by Section 5 where we made a digression on nite dimensional control systems. Numerical examples are given in Section 6.

Concluding remarks and open problems are provided in Section 7.

The following notations are used.

We set R + the nonnegative real line, N * = N \ {0}, and for κ ∈ N, N κ = {0, 1, . . . , κ}.

Let H be a Hilbert space. The notation •, • H denotes the scalar product of elements of H.

For two Banach spaces X and Y , the space X n 2 n 1

, with n 1 , n 2 ∈ N * , stands for the set of matrices with n 2 rows and n 1 columns with entries in X . The notation • X is used for the norm on X . The space L(X , Y ) stands for the Banach space of linear and continuous map from X into Y , and we set L(X ) = L(X , X ). We identify

L(R n 1 , R n 2 ) to R n 2 n 1
. For G ∈ L(X , Y ), Ran(G) and Ker(G) respectively denote the range and the null space of G, rk(G) is the dimension of Ran(G), and G is the adjoint of G. For X ⊂ X , X is the closure of X in X . For an operator A, D(A) denotes its domain. The matrix A ∈ R n n is said Hurwitz if all its eigenvalues have a negative real part.

For a family of vectors (e k ) k∈N , the notation Span K {e k , k ∈ N} stands for the set of linear combinations of these vectors over the eld K. For a Borel measure space M = (M, T , ν), the space L 2 (M , X ) which is the space of ν-measurable

functions f satisfying M f (σ) 2 X dν(σ) < ∞ is simply denoted by L 2 (M, X ). Moreover, if X = R k for some k ∈ N * then L 2 (M, R k ) is identied to L 2 (M, R) k ,
and denoted by L 2 (M) k . The space L 2 loc (R + , X ) stands for the one of measurable functions from R + to X that are square integrable on any bounded interval of R + . We similarly dene the sets of continuous function, C(M, X ) and C(M) k . The notation supp(f ) stands for the support of the function f .

Problem statement and main result

Let (Θ, B, µ) be a Borel measure space where Θ is a compact subset of R, and let X, U and Y be three Hilbert spaces. For every θ ∈ Θ, we consider the Cauchy problem

ẏ(t, θ) = α(θ)Ay(t, θ) + B(θ)u(t) (t > 0), (2.1) 
y(0, θ) = y 0 (θ).

In the above equation and what follows, ẏ stands for the derivative of y with respect to the time variable.

We make the following assumptions on the above system.

(hp 1 ) (A, D(A)) generates an analytic exponentially stable semigroup (T t ) t 0 on X;

(hp 2 ) For µ-almost every θ ∈ Θ, B(θ) ∈ L(U, X) and Θ B(θ) 2 L(U,X) dµ(θ) < ∞;
(hp 3 ) There exist L ∈ L(U, Y ) and C ∈ L(X, Y ) and β ∈ L 2 (Θ) such that for every ϕ ∈ L 2 (Θ, X) 

LB (θ)ϕ(θ) = β(θ)Cϕ(θ) (θ ∈ Θ,
T t z ∈ D(A ) (z ∈ X, t > 0).
Remark 2.2. The Assumption (hp 5 ) implies that 

Span R θ ∈ Θ → β(θ) α(θ) k , k ∈ N = L 2 (Θ). ( 2 
Θ = [1, 2], α(θ) = θ and β(θ) = 1, (2.
2) is automatically fullled thanks to the Weierstrass approximation theorem, see for instance [START_REF] Borwein | The full Müntz theorem in C[0, 1] and L 1 [0, 1[END_REF][START_REF] Erdélyi | The full Müntz theorem in L p [0, 1] for 0 < p < ∞[END_REF].

The rst remark to be made is that since (A, D(A)) generate T t which is analytic and exponentially stable, it follows from (hp 5 ) that for every θ ∈ Θ, (α(θ)A, D(A)) also generate T α(θ)t which is analytic and exponentially stable.

Therefore, from [19, Proposition 4.2.5] and (hp 2 ), we deduce that for every u ∈ L 2 loc (R + , U ), every y 0 ∈ L 2 (Θ, X), and almost every θ ∈ Θ, (2.1) admits a unique solution given by

y(t, θ) = T α(θ)t y 0 (θ) + (Φ t u)(θ) (t > 0), (2.3) 
where

(Φ t u)(θ) = t 0 T α(θ)(t-τ ) B(θ)u(τ ) dτ. (2.4) 
Dening y : (t, θ) ∈ R + × Θ → y(t, θ) as a solution of (2.1), we can prove the following lemma.

Lemma 2.3. Under Assumptions (hp 1 ), (hp 2 ) and (hp 5 ), for every T > 0,

the map Φ T dened by (2.4) belongs to L(L 2 (R + , U ), L 2 (Θ, X)), and for every y 0 ∈ L 2 (Θ, X), the solution y dened by (2.3) belongs to C(R + , L 2 (Θ, X)).

Proof. Using the fact that T t is exponentially stable, it follows from [14, Theorem 4.3] that there exist two constants M 1 and δ > 0 such that T t L(X) M e -δt for every t 0. Since α is a positive function of θ, it therefore holds that for every t 0 and every θ ∈ Θ, T α(θ)t L(X)

M e -α(θ)δt . Setting α = min θ∈Θ α(θ), we have

T α(θ)t L(X) M e -αδt (t 0, θ ∈ Θ).
(2.5) Using (2.5), we have for every τ ∈ [0, t]

T α(θ)(t-τ ) B(θ)u(τ ) X M e -αδ(t-τ ) B(θ) L(U,X) u(τ ) U .
From the above inequality, we obtain by integrating with respect to τ on the time interval (0, t) and using Cauchy-Schwarz inequality

t 0 T α(θ)(t-τ ) B(θ)u(τ ) X d(τ ) M √ 2δα B(θ) L(U,X) u L 2 ((0,t),U ) .
From this observation, it follows that the map τ → T α(θ)(t-τ ) B(θ)u(τ ) belongs to L 1 ([0, t], X) and by Bochner integrability, we have for every t 0 and every θ ∈ Θ,

t 0 T α(θ)(t-τ ) B(θ)u(τ ) d(τ ) X M √ 2δα B(θ) L(U,X) u L 2 ((0,t),U ) .
The preceding inequality leads to

Θ t 0 T α(θ)(t-τ ) B(θ)u(τ ) d(τ ) 2 X dµ(θ) M 2 γ 2δα u 2 L 2 ((0,t),U ) . (2.6) 
where γ = Θ B(θ) 2 L(U,X) dµ(θ) < ∞, thanks to Assumption (hp 2 ). For every t 0, the linearity of Φ t being obvious, we deduce from (2.6) that Φ t ∈ L(L 2 (R + , U ), L 2 (Θ, X)). Moreover, using estimations (2.5) and (2.6), it follows that for every t 0,

y(t) L 2 (Θ,X) M e -δαt y 0 L 2 (Θ,X) + M γ 2δα u L 2 ((0,t),U ) .
Therefore, for any u ∈ L 2 loc (R + , U ), y ∈ C(R + , L 2 (Θ, X)).

The Lemma 2.3 therefore lends legitimacy to the following denition.

Denition 2.4. The system (2.1) is said L 2 (Θ, X)-ensemble controllable in time T > 0 if for every y 0 , y 1 ∈ L 2 (Θ, X) and every ε > 0, there exists a parameter independent open loop control u ∈ L 2 ([0, T ], U ) such that the solution of (2.1) with y 0 as initial state datum and u as input satises

y(T ) -y 1 L 2 (Θ,X)
ε.

(2.7)

In this denition, functions of L 2 ([0, T ], U ) are seen as functions of L 2 (R + , U ) supported on [0, T ].
The main result of this paper is the following. Theorem 2.5. Under the Assumptions (hp 1 ) to (hp 6 ), the system (2.1) is L 2 (Θ, X)-ensemble controllable in any time T > 0.

Let us make the following remarks.

Remark 2.6. Observe that if the system (2.1) is L 2 (Θ, X)-ensemble controllable in time T > 0, then for every λ ∈ R, the system

ż(t, θ) = (α(θ)A -λI)z(t, θ) + B(θ)v(t) (2.8) is also L 2 (Θ, X)-ensemble controllable in time T > 0. Indeed, for every θ ∈ Θ, (α(θ)A, D(A)) generates the semigroup T α(θ)t , then (α(θ)A -λI, D(A)) generates the semigroup e -λt T α(θ)t . Therefore, for every u ∈ L 2 ([0, T ], U ), the solution of (2.8) with initial condition z 0 (θ) is given by z(t, θ) = e -λt (T α(θ)t z 0 (θ) + (Φ t u λ )(θ)) = e -λt y(T )
where u λ (t) = e λt u(t), and where y solves (2.1) with control u λ and initial condition z 0 (θ).

If (2.1) is L 2 (Θ, X)-ensemble controllable in time T > 0, then for every ε > 0 there exists u λ ∈ L 2 ([0, T ], U ) such that, y(T ) -e λT z 1 L 2 (Θ,X) e λT ε, that is to say that z(T ) -z 1 L 2 (Θ,X) ε, i.e., (2.8) is L 2 (Θ, X)-ensemble controllable.
Remark 2.7. As it will be seen in the proof of Theorem 2.5 in Section 4, this theorem is still valid for unbounded operators B(θ) ∈ L(U, X -1 ) provided that we replace Assumption (hp 1 ) by the fact that for µ-almost every θ ∈ Θ, B(θ) is admissible for T t and that the admissibility constant, which depends on θ, belongs to L 2 (Θ). These hypotheses ensure that Lemma 2.3 still holds with an unbounded control operator. In this case, we should have in Assumption (hp 3 ) C ∈ L(X κ 1 , Y ) where X κ 1 is the dual space of X -1 with respect to the pivot space X (see [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]), and C should be required to be admissible for the semigroup T t . It goes without saying that in the proof, one should adjust what should be adjusted. However, we do not have example with unbounded control operator such that Assumption (hp 4 ) is satised. Hence, we do not detail the case of unbounded control operators.

Applications

Application to the heat equation

Let Ω be a smooth domain of R d (d 1), X = U = L 2 (Ω) and consider the system

ẏ(t, x, θ) = α(θ)∆y(t, x, θ) + β(θ)χ ω(θ) (x)u(t, x), (t, x) ∈ R + × Ω, y(t, x, θ) = 0, (t, x) ∈ R + × ∂Ω, y(0, x, θ) = y 0 (x, θ), x ∈ Ω, (3.1) 
where θ ∈ Θ, with Θ a compact interval of R. In this system, the control is acting in a domain ω(θ) ⊂ Ω that might depend on the parameter θ. We also assume that there exists a nonempty open subset ω 0 such that ω 0 ⊂ θ∈Θ ω(θ).

System (3.1) corresponds to (2.1) with A = ∆, D(A) = H 2 (Ω) × H 1 0 (Ω) and B(θ) = β(θ)χ ω(θ) (x).
Obviously, in this context, Assumption (hp 1 ) is satised, and Assump-

tion (hp 2 ) is satised, if β ∈ L 2 (Θ). Also, A = A and for every θ ∈ Θ, B(θ) = B(θ). Choosing Y = L 2 (ω 0 ), L = C = χ ω 0 , Assumptions (hp 3
) and (hp 4 ) are sat- ised. Since the heat equation is approximatively controllable in any time T > 0 from any non-empty open subset of Ω, it follows by duality that (A , C) is also approximately observable in any time, that is to say that Assumption (hp 5 ) is also satised. As a consequence of Theorem 2.5, we have the following result.

Proposition 3.1. If α and β satisfy Assumption (hp 6 ), and if there exists

a non-empty open subset ω 0 such that ω 0 ⊂ ω(θ) for every θ ∈ Θ, then the system (3.1) is L 2 (Θ, L 2 (Ω))-ensemble controllable.

Application to the Grushin equation

Let γ > 0 and Ω = (-1, 1) × (0, 1), we consider the 2D Grushin equation

ẏ(t, x, v, θ) = α(θ) ∂ 2 x y(t, x, v, θ) + |x| 2γ ∂ 2 v y(t, x, v, θ) +β(θ)χ ω(θ) (x, v)u(t, x, v), (t, x, v) ∈ R + × Ω, y(t, x, v, θ) = 0, (t, x, v) ∈ R + × ∂Ω, y(0, x, v, θ) = y 0 (x, v, θ), (x, v) ∈ Ω, (3.2) 
where, as in Section 3.1, θ ∈ Θ, with Θ a compact interval of R. In this system, the control is acting in a domain ω(θ) ⊂ Ω that might depend on the parameter θ. We also assume that there exists a nonempty open subset ω 0 such that ω 0 ⊂ θ∈Θ ω(θ).

We set X = U = L 2 (Ω). For every θ ∈ Θ, we set B(θ [START_REF] Heler | Spectral theory and its applications[END_REF]Section 4.3], or [21, Section 2.1]) of the operator A, is extended to a selfadjoint operator with dense domain D(A) in L 2 (Ω), and we refer to [START_REF] Morancey | Approximate controllability for a 2d Grushin equation with potential having an internal singularity[END_REF] for a precise description of D(A). Furthermore, this operator (still denoted by A) is the generator of an analytic semi-group on L 2 (Ω), see [21, Section 2.1].

) = β(θ)χ ω(θ) (x, v). If β ∈ L 2 (Θ), then Assumption (hp 2 ) is satised. For every f ∈ C ∞ 0 (Ω), we dene A by Af = ∂ 2 x f + |x| 2γ ∂ 2 v f . Using Friedrichs extension (see
In addition, using Poincaré inequality, we get that the semi-group generated by A is exponentially stable. That is to say that Assumption (hp 1 ) is fullled.

As for Section 3.1, Assumption (hp 3 ) is satised with Y = L 2 (ω 0 ), L = C = χ ω 0 , and Assumption (hp 4 ) is also trivially satised. According to [START_REF] Morancey | Approximate controllability for a 2d Grushin equation with potential having an internal singularity[END_REF], the pair (A * , C) is approximatively observable, i.e., Assumption (hp 5 ) is satised. We also refer to [START_REF] Laurent | Tunneling estimates and approximate controllability for hypoelliptic equations[END_REF] for survey results on approximate controllability for hypoelliptic equations, and let us quote that depending on ω 0 and γ, the pair (A, C * ) might not be null controllable, see [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF][START_REF] Koenig | Non-null-controllability of the Grushin operator in 2d, C. R[END_REF][START_REF] Dardé | Null-controllability properties of the generalized two-dimensional Baouendi-Grushin equation with nonrectangular control sets[END_REF]. In conclusion, Theorem 2.5 leads to the following result. Proposition 3.2. If α and β satisfy Assumption (hp 6 ), and if there exists a non-empty open subset ω 0 such that ω 0 ⊂ ω(θ) for every θ ∈ Θ, then the system (3.2) is L 2 (Θ, L 2 (Ω))-ensemble controllable, for every γ > 0.

Application to average controllability

In this paragraph, we link the concept of ensemble controllability to the one of Average controllability. As far as we know, the concept of average controllability has been introduced in [START_REF] Zuazua | Averaged control[END_REF] with the aim of controlling in average the dynamics of systems that depend on parameters with parameter independent open loop controls. Many results on partial dierential equations have been obtained and can be found for instance in [START_REF] Lü | Averaged controllability for random evolution Partial Dierential Equations[END_REF][START_REF] Avetisyan | Averaged controllability of Euler-Bernoulli beams with random material characteristics: the Green's function approach[END_REF][START_REF] Bárcena-Petisco | Averaged dynamics and control for heat equations with random diusion[END_REF][START_REF] Coulson | On average controllability of random heat equations with arbitrarily distributed diusivity[END_REF][START_REF] Marín | Robust averaged control of vibrations for the Bernoulli-Euler beam equation[END_REF]. Dealing with the numerical aspect of averaged controllability, we refer to [START_REF] Lazar | Control of parameter dependent systems[END_REF][START_REF] Abdelli | Numerical approximation of the averaged controllability for the wave equation with unknown velocity of propagation[END_REF].

In this paper, the following denition borrowed from [START_REF] Zuazua | Averaged control[END_REF] will be considered. Denition 3.3. Let M = (Θ, T , µ) be a probability measure space. The system (2.1) is Approximately controllable in average in time T > 0 if for every y 0 , y 1 ∈ L 2 (Θ, X) and every ε > 0, there exists a parameter independent open loop control u ∈ L 2 ([0, T ], U ) such that the solution of (2.1) with y 0 as initial state datum and u as input satises

Θ y(T, θ) -y 1 (θ) dµ(θ) X ε. (3.3)
The next result follows directly from Theorem 2.5.

Corollary 3.4. Under the Assumptions (hp 1 ) to (hp 6 ), the system (2.1) is approximately controllable in average in any time T > 0.

It is well-known that average controllability does not imply ensemble controllability. Indeed, consider, for instance, the system (2.1) with

M = ([0, 1], T , µ), α(θ) = 1, A = 1, B(θ) = θ.
In this example, we take µ to be the Lebesgue measure and X = U = R. It is easily seen through [26, Theorem 1] that this system is approximatively controllable in average in any time, but, according to [3, Proposition 7], it cannot be L 2 (Θ)-ensemble controllable in any time T > 0.

Proof. We aim to show that for every y 0 , y 1 ∈ L 2 (Θ, X) and every ε > 0, there exists a parameter independent open loop control u ∈ L 2 ([0, T ], U ) such that (3.3) is satised.

Let y 0 , y 1 ∈ L 2 (Θ, X) and take any ε > 0.

According to Theorem 2.5, the system is L 2 (Θ, X)-ensemble controllable in any time T > 0. Hence, writing down Denition 2.4, there exists an open

loop control u ∈ L 2 ([0, T ], U ) such that y(T ) -y 1 L 2 (Θ,X) ε. (3.4)
Using Cauchy-Schwarz inequality (recall that µ(Θ) = 1), we get

Θ y(T, θ) -y 1 (θ) dµ(θ) X Θ y(T, θ) -y 1 (θ) X dµ(θ), Θ y(T, θ) -y 1 (θ) 2 X dµ(θ) 1 2 y(T ) -y 1 L 2 (Θ,X)
ε.

As a consequence of Corollary 3.4, the heat equation considered in (3.1) is approximately controllable in average in any time T > 0. This result can be found in [27, Section 3], see also [START_REF] Bárcena-Petisco | Averaged dynamics and control for heat equations with random diusion[END_REF]. In fact, it has been proved that the system (3.1) is null controllable in average in any time T > 0.

An other consequence is that the Grushin equation considered in (3.2) is also approximately controllable in average in any time T > 0. As far as we know, the averaged controllability for the Grushin equation has never been considered.

Proof of Theorem 2.5

In this section, we provide a proof to our main result.

By Denition 2.4, system (2.1) is L 2 (Θ, X)-ensemble controllable in a time T > 0 if and only if Ran(Φ T ) = L 2 (Θ, X), (4.1) 
relation which is equivalent to

Ker(Φ T ) = {0}. (4.2) 
We now compute the adjoint of Φ T . Since Φ T is a linear and bounded operator from L 2 (R + , U ) into L 2 (Θ, X), Φ T is a linear and bounded operator from L 2 (Θ, X) into L 2 (R + , U ). Therefore, for every ϕ 1 ∈ L 2 (Θ, X) and every u ∈ L 2 (R + , U ), we have, by denition

Φ T ϕ 1 , u L 2 (R + ,U ) = Θ ϕ 1 (θ), (Φ T u)(θ) X dµ(θ) = Θ ϕ 1 (θ), T 0 T α(θ)(T -τ ) B(θ)u(τ ) dτ X dµ(θ) = T 0 Θ B(θ) T α(θ)(T -τ ) ϕ 1 (θ) dµ(θ), u(τ ) U dτ.
It therefore follows that for every ϕ 1 ∈ L 2 (Θ, X),

Φ T ϕ 1 (t) =    Θ B(θ) T α(θ)(T -t) ϕ 1 (θ) dµ(θ), if t ∈ (0, T ), 0, if t T. (4.3) 
Due to (4.2), we now aim to show the following unique continuation property,

Θ B(θ) T α(θ)(T -t) ϕ 1 (θ) dµ(θ) = 0, ∀t ∈ [0, T ] ⇒ ϕ 1 = 0. (UCP) Let ϕ 1 ∈ L 2 (Θ, X) such that for every t ∈ [0, T ], Θ B(θ) T α(θ)(T -t) ϕ 1 (θ) dµ(θ) = 0. (4.4) Setting ϕ(t, θ) = T α(θ)(T -t) ϕ 1 (θ), ϕ solves φ(t, θ) = -α(θ)A ϕ(t, θ) (t ∈ (0, T )), ϕ(T, θ) = ϕ 1 (θ). (4.5) Setting again φ(t, θ) = ϕ(T -t, θ), it follows that φ solves φ(t, θ) = α(θ)A φ(t, θ) (t ∈ (0, T )), φ(0, θ) = ϕ 1 (θ). (4.6) Equation (4.6) shows that φ(t, θ) = T α(θ)t ϕ 1 (θ). Since T t is an analytic semigroup, (UCP) is equivalent to Θ B(θ) φ(t, θ) dµ(θ) = 0, ∀t 0 ⇒ ϕ 1 = 0, (UCP')
where φ solves (4.6). Using (hp 1 ) and applying the operator L dened in (hp 3 ) to the above equation, we get Θ LB(θ) φ(t, θ) dµ(θ) = 0 (t 0).

Assumption (hp 3 ) ensures that L(B ϕ)(θ) = β(θ)Cϕ(θ) for every ϕ ∈ L 2 (Θ, X). Hence, it follows that C Θ β(θ) φ(t, θ) dµ(θ) = 0 (t 0), (4.7) 
that is to say,

Θ β(θ) φ(t, θ) dµ(θ) ∈ Ker(C) (t 0).
Therefore, using (hp 1 ), we have, according to Remark 2.1,

Θ β(θ) φ(t, θ) dµ(θ) ∈ Ker(C) ∩ D(A ) (t > 0).
and Assumption (hp 4 ) leads to

C Θ β(θ)A φ(t, θ) dµ(θ) = 0 (t > 0). (4.8)
But φ is solution of (4.6), hence, we have

A φ(t, θ) = 1 α(θ) φ(t, θ) (t > 0),
this combined with (4.8) gives us

C Θ β(θ) α(θ) φ(t, θ) dµ(θ) = 0 (t > 0).
For every t > 0, let us now integrate the above equation on [t, +∞), to obtain

C Θ β(θ) α(θ) +∞ t φ(τ, θ) dτ dµ(θ) = 0 (t > 0). (4.9) 
Using the fact that for every θ ∈ Θ, T α(θ)t is exponentially stable, we deduce that +∞ t φ(τ, θ) dτ = -φ(t, θ) (t > 0, θ ∈ Θ).

Equation (4.9) therefore reads

Θ β(θ) α(θ) C φ(t, θ) dµ(θ) = 0 (t > 0). (4.10) 
Applying the above process k times, we end up with

Θ β(θ) α(θ) k C φ(t, θ) dµ(θ) = 0 (t > 0, k ∈ N).
Using Assumption (hp 6 ) and Remark 2.2, we deduce that for µ-almost every θ C φ(t, θ) = 0, ∀t > 0.

Finally, we use Assumption (hp 5 ) to deduce that for µ-almost every θ, ϕ 1 (θ) = 0.

This proves (UCP), and hence (2.1) is L 2 (Θ, X)-ensemble controllable in time T .

Digression on ordinary dierential equations

In this section we consider the case where X = R n , U = R m and Y = R q , with n, m and q three integers. In this framework (2.1) is just an ordinary dierential equation and the Assumptions (hp 1 ) to (hp 6 ) read:

(as 1 ) The matrix A belonging to R n n is Hurwitz;

(as 2 ) The control operator B belongs to L 2 (Θ) n m ;

(as 3 ) There exist L ∈ R q m , C ∈ R q n and β ∈ L 2 (Θ) such that for every ϕ ∈ L 2 (Θ) n , LB (θ)ϕ(θ) = β(θ)Cϕ(θ);

(as 4 ) Ker(C) is stable by A ; (as 5 ) (A , C) is observable;

(as 6 ) The function α ∈ C(Θ) is positive, injective and non-vanishing, and β ∈ L 2 (Θ) is such that β(θ) = 0 for µ-almost every θ ∈ Θ.

In this case, the proof of Theorem 2.5 can be given by classical arguments.

Since this classical arguments reveal that certain assumptions are not necessary for controllability we give the main lines. Indeed, thank to (UCP), let

ϕ 1 ∈ L 2 (Θ) n such that Θ B(θ) e α(θ)(T -t)A ϕ 1 (θ) dµ(θ) = 0 (t ∈ [0, T ]).
(5.1)

Using Assumption (as 3 ), we have C Θ β(θ)e α(θ)(T -t)A ϕ 1 (θ) dµ(θ) = 0 (t ∈ [0, T ]).

(5.2)

Computing the derivatives of the above equation with respect to t, and evaluating the obtained equation at time t = T , we deduce

CA k Θ β(θ)α(θ) k ϕ 1 (θ) dµ(θ) = 0 (k ∈ N).
(5.3)

We now observe that Assumptions (as 4 ) and (as 5 ) imply Ker(C) = {0}. Indeed, Assumption (as 5 ) (i.e., the pair (A , C) is observable) is equivalent to the pair (A, C ) is controllable. Therefore, the space N = {x ∈ R n | ∀k ∈ N, (A ) k x ∈ Ker(C)} is reduced to the null subspace of R n . But Assumption (as 4 ) (i.e., Ker(C) is stable by A ) ensures that N = Ker(C), and hence, Ker(C) = {0}. Consequently, (5.3) implies

A k Θ β(θ)α(θ) k ϕ 1 (θ) dµ(θ) = 0 (k ∈ N).
(5.4)

Thanks to Assumption (as 1 ), A is invertible, hence, Θ β(θ)α(θ) k ϕ 1 (θ) dµ(θ) = 0 (k ∈ N).

(5.5)

Assumption (as 6 ) together with Remark 2.2 leads to

Span{θ ∈ Θ → β(θ)α(θ) k , k ∈ N} = L 2 (Θ),
and it follows that ϕ 1 = 0 µ-almost everywhere on Θ. This ends the proof of Theorem 2.5 in the case X = R n , U = R m and Y = R q .

We now give some comments on these lines.

Remark 5.1. We have seen in the above lines that Assumption (as 1 ) is not necessary in the case of ordinary dierential equations. In fact, we only need

A to be invertible. One can see from the proof we provided in Section 4 that the exponential stability character of the semigroup was used to pass from (4.9) to (4.10). Therefore, this constraint was imposed by our proof.

Theorem 2.5 might hold without the exponential stability character of the operator (A, D(A)). However, this has resisted to several attempts of proof.

Remark 5.2. Observe that since Ker(C) = {0}, it follows that q n. Moreover, from this condition, it follows from (as 1 ) that for µ-almost every θ ∈ Θ, rk(B(θ)) = n. In particular, we have m n. Note that unlike the state controllability of linear time invariant systems where it is natural to consider m n, it makes fully sense here to consider systems with m n since the state space is an innite dimensional space, here L 2 (Θ) n .

Remark 5.3. Assumption (as 3 ) can be useful in practice when the control operator does not look nice. For instance, if one wants to check the L 2 (Θ) 2ensemble controllability of system (2.1) with

Θ = [0, 1], α(θ) = θ 2 , A = 0 -1 1 0 , B(θ) = 0 2 √ θ + 1 1 1 + θ √ θ + 1 0 1 + θ 3 θ 2 , (5.6)
this assumption tells us that it is not necessary to use ve sources (inputs or controls) in system (5.6) since only two sources are sucient. Indeed, taking in Assumption (as 3 )

L = 1 0 0 0 0 1 0 0 , C = 0 1 2 0 and β(θ) = √ θ + 1,
one can infer from [START_REF] Schönlein | Controllability of ensembles of linear dynamical systems[END_REF]Theorem 5] (or [4, Theorem 1]) that system (5.6) is L 2 (Θ) 2 -ensemble controllable. One should rst note that the multiplication operator

A β : L 2 (Θ) → L 2 (Θ) dened for every f ∈ L 2 (Θ) by (A β f )(θ) = β(θ)f (θ) is an isomorphism of L 2 (Θ), when β ∈ L ∞ (Θ) sat-
ises Assumption (as 6 ). Using therefore the fact that the system (2.1) with

Θ = [0, 1], α(θ) = θ 2 , A = 0 -1 1 0 , B(θ) = C = 0 2 1 0 , is C(Θ) 2 -
ensemble controllable, here comes [5, Theorem 5], we deduce from the density of continuous functions in L 2 (Θ) that the system given by (5.6) is L 2 (Θ) 2 -ensemble controllable.

Numerical aspects

The aim of this paragraph is to illustrate numerically the L 2 (Θ, X)ensemble controllability of system (3.1) in one dimensional case. More precisely, we take Θ a compact interval of R * + , µ the Lebesgue measure,

Ω = (0, π), ω(θ) = ω = [ω, ω] ⊂ (0, π) independent of θ, X = L 2 (0, π), U = L 2 (ω)
, and consider the system ẏ(t, x, θ) = α(θ)∂ x y(t, x, θ) + β(θ)χ ω (x)u(t, x), (t, x) ∈ R + × (0, π), y(t, x, θ) = 0, (t, x) ∈ R + × {0, π}, y(0, x, θ) = y 0 (x, θ),

x ∈ (0, π), (6.1) where α and β satisfy Assumption (hp 6 ). We recall that there exist an increasing sequence

(λ k ) k 1 ∈ (R + ) N * such that λ k → ∞ when k → ∞ and a Hilbert basis (φ k ) k 1 of L 2 (0, π) such that (φ k ) k 1 ⊂ H 1 0 (0, π) and -∂ 2 x φ k = λ k φ k .
In the present case, we have

λ k = k 2 and φ k (x) = 2 π sin(kx) (k ∈ N * , x ∈ (0, π)).

System discretization

Given any y 0 ∈ L 2 (Θ, X) and every u ∈ L 2 ([0, T ], L 2 (0, π)), we write the solution y(t, θ) = ∞ k=1 y k (t, θ)φ k where y k (t, θ) = y(t, θ), φ k L 2 (0,π) solves, for every k 1,

ẏk (t, θ) = -α(θ)λ k y k (t, θ) + β(θ)u k (t) (t > 0), y k (0, θ) = y 0 k (θ). (6.2)
where we have set u k (t) = χ ω u(t), φ k L 2 (0,π) and y 0 k (θ) = y 0 (θ), φ k L 2 (0,π) . We now use nite element method by subdividing the interval ω in M+2 points (x k ) k∈N M+1 where x k = ω + kh with h = (ω -ω)/(M + 1), to approximate the control u by

u M (t, x) = M =1 v (t)ψ (x), (6.3) where ψ (x) =      x-x -1 x -x -1 , if x ∈ [x -1 , x ], x +1 -x x +1 -x , if x ∈ [x , x +1 ], 0 otherwise ( ∈ N * M ), Since by construction u M is supported in ω, we have, by setting u M k (t) = χ ω u M (t), φ k L 2 (0,π) , u M k (t) = χ ω u M (t), φ k L 2 (0,π) = M =1 Γ k, v (t), with Γ k, = φ k , ψ L 2 (0,π) . A direct computation leads to Γ k, = -1 hk 2 (φ k (x -1 ) -2φ k (x ) + φ k (x +1 )) (k ∈ N * N , ∈ N * M ).
Setting Y(t, θ) = (y 1 (t, θ), . . . , y N (t, θ)) , U(t) = (v 1 (t), . . . , v M (t)) , we deduce from (6.2) that

Ẏ(t, θ) = α(θ)AY(t, θ) + β(θ)BU(t), (6.4) 
where

A =    -λ 1 . . . -λ N    ∈ R N N and B =    Γ 1,1 . . . Γ 1,M . . . . . . Γ N,1 . . . Γ N,M    ∈ R N M . (6.5)
From the above, each solution y(t, θ) = ∞ k=1 y k (t, θ)φ k can be found as a limit of y N (t, θ) = N k=1 y k (t, θ)φ k when N tends to innity, where (y 1 (t, θ), . . . , y N (t, θ))

= Y(t, θ) solves (6.4) with Y(0, θ) = (y 0 1 (θ), . . . , y 0 N (t, θ)) . Let us observe that the system (6.4) is L 2 (Θ) N -ensemble controllable.

More precisely, we have the following proposition. Proposition 6.1. Assume that (hp 6 ) holds. For every N ∈ N * and every M 3N -1, the system (6.4) is L 2 (Θ) N -ensemble controllable, where A and B are given by (6.5).

Proof. Let us show that Assumptions (as 1 ) to (as 5 ) are satised. We clearly have that Assumptions (as 1 ) and (as 2 ) are satised. Assumption (as 3 ) is also satised with C = B * and L = I M .

We then aim to prove that for M large enough, we have rk(B) = N. This will ensure Assumptions (as 4 ) and (as 5 ), and the proof will be concluded using Theorem 2.5 (see also Section 5).

Let us assume by contradiction that rk(B) < N, then there exists α 1 , . . . , α N ∈ R, which are not all trivial, such that

0 = N k=1 α k φ k , ψ L 2 (0,π) ( ∈ N * M ). (6.6) 
Let us then dene f (x) = N k=1 α k φ k , there exists a polynomial P of degree at most N -

1 such that f (x) = sin(x)P (cos(x)) for every x ∈ [0, π]. More precisely, P = N k=1 α k U k-1
, where U k is the second kind Tchebychev polynomial of degree k. This ensures that f admits at most N -1 zeros on (0, π). Consequently, there exist an interval I ⊂ ω of length greater than (ω -ω)/N where f is of constant sign. But, for M 3N -1 (i.e., 3 ω-ω M+1 ω-ω N ), there exists ∈ N * M such that x -1 , x , x +1 ∈ I, that is to say that supp ψ ⊂ I. This leads to a contradiction with (6.6), since ψ and f have a constant sign on supp ψ , and do not vanish in the interior of supp ψ .

Minimal L 2 -norm control

Given T > 0, y 0 , y 1 ∈ L 2 (Θ, L 2 (0, π)) and ε > 0, we aim to minimize the following problem

min 1 2 T 0 ω |u(t, x)| 2 dx dt s.t. θ π 0 |y(T, θ, x) -y 1 (θ, x)| 2 dx dθ ε, (6.7) 
where y is the solution of (6.1) with control u and initial condition y 0 . Using Fenchel-Rockafellar duality, see e.g. [START_REF] Borwein | Techniques of variational analysis[END_REF][START_REF] Ekeland | Convex analysis and variational problems[END_REF], we obtain that the minimizer of the above problem is given by

u(t, x) = Θ β(θ)ϕ(t, θ, x) dθ (t ∈ (0, T ), x ∈ ω),
where ϕ solves the adjoint problem

-φ(t, θ, x) = α(θ)∂ 2 x ϕ(t, θ, x) (t ∈ (0, T ), x ∈ (0, π), θ ∈ Θ), ϕ(T, θ, x) = ϕ 1 (θ, x) (x ∈ (0, π), θ ∈ Θ). with ϕ 1 ∈ L 2 (Θ, L 2 (0, π)) the minimizer of J(ϕ 1 ) = 1 2 T 0 ω Θ β(θ)ϕ(t, θ, x) dθ 2 dx dt - Θ π 0 y 1 (θ, x)ϕ 1 (θ, x) dx dθ + Θ π 0 y 0 (θ, x)ϕ(T, θ, x) dx dθ + ε Θ π 0 |ϕ 1 (θ, x)| 2 dx dθ.
Considering the discretization proposed in Section 6.1, the minimization problem (6.7) becomes

min 1 2 T 0 v(t) Mv(t) dt s.t. θ |Y(T, θ) -Y 1 (θ)| 2 dθ ε, (6.8) 
where Y is solution of (6.4), with initial condition Y 0 (θ), and where for ı ∈ {0, 1}, Y ı (θ) = y ı (θ), φ 1 L 2 (0,π) , . . . , y ı (θ), φ N L 2 (0,π) , and where M ∈ R M M is given by M k, = ψ k , ψ L 2 (0,π) . Note that one can also choose M = hI M .

The minimizer is obtained through the adjoint system, i.e.,

v(t) = M -1 B Θ β(θ)p(t, θ) dθ (t ∈ (0, T )), with p solution of -ṗ(t, θ) = α(θ)A p(t, θ) (t ∈ (0, T ), θ ∈ Θ), p(T, θ) = p 1 (θ) (θ ∈ Θ), with p 1 ∈ L 2 (Θ) N the minimizer of J(p 1 ) = 1 2 T 0 B Θ β(θ)p(t, θ) dθ M -1 B Θ β(θ)p(t, θ) dθ dt - Θ Y 1 (θ), p 1 (θ) dθ + Θ Y 0 (θ), p(T, θ) dθ + ε Θ |p 1 (θ)| 2 dθ.
Remark 6.2. It is expected (but not proved yet) that ϕ 1,N , dened by ϕ 1,N (θ, x) = N k=1 p 1 (θ) sin(kx), goes to ϕ 1 as N and M goes to ∞.

Numerical examples

To numerically approximate a control, we nally consider a discretization of Θ and numerically compute the integral over Θ, similarly, we use a numerical scheme to approximate the solutions of (6.4) and of the adjoint system.

In practice, we have used the mid point rule on a uniform discretization of Θ to compute the integrals over Θ, and the Crank-Nicolson method, with a uniform discretization of [0, T ] to compute the solutions of the direct and adjoint systems.

For the numerical simulation below, we have considered Θ = [1, 2], α(θ) = θ, β(θ) = 1 and ω = (0.5, 0.8). We have also considered N = 21, M = 200, and the discretization step is 5.10 -3 for Θ and 5.10 -4 for the time interval [0, T ]. The nal time is set to T = 1, and we have set ε = 10 -1 . We will consider two dierent initial and target states:

(i) y 0 (θ, x) = 2θx(π -x)(x -θ) and y 1 (θ, x) = 0; (ii) y 0 (θ, x) = θ if x < θ, -θ if x > θ
and y 1 (θ, x) = (2 -θ) sin(3x). On Figures 1 and5, we display the obtained controls. On Figures 2 and6, we show the L 2 -norms of y(t) -y 1 with respect to time, at the nal time T , they are equal to ε (up to a numerical tolerance which as been set to 10 -4 ), and for the two examples, the functions (θ, x) → y(T, θ, x) are plotted on Figures 3 and7. Finally, we have shown on Figures 4 and9 the time evolution of the N Fourier coecients used for the simulations.

Concluding remarks

In this paper, we have studied the L 2 (Θ, X)-ensemble controllability of some class of parabolic equations. But there still exist many practical questions to be addressed. Out of the one raised in Remark 5.1, we list below some of them.

• In Assumption (hp 3 ) we have assumed a kind of decoupling condition on the control operator, mainly the separation between the space variable and the parameter one. What if this splitting is not possible? For instance, in (3.1), one might think of the control operator of the form • Can we consider α depending on the space variable in (2.1)? Similarly, can we consider an operator A that depend on θ? For instance the ensemble controllability of (3. 1) is open if we replace θ∆ by div (M (θ)∇), with M (θ) a positive matrix (which is not of the form α(θ)I).

B(θ, x) = χ ω (x)ρ(θ, x) instead of B(θ, x) = χ ω (x)ρ(θ).
• The question of C(Θ, X)-ensemble controllability, that is uniform ensemble controllability of system (2.1) is open. 8: Error to the target, i.e., plot of (θ, x) → y(T, θ, x) -y 1 (θ, x). See Section 6.3 for the parameters used for this simulation, initial and target states are given by (ii).

ensemble controllability is also impossible. However, this is not clear in higher space dimension. In fact, we cannot end up with a contradiction with the Hautus test, as it is done in [START_REF] Dirr | Uniform and L q -ensemble reachability of parameter-dependent linear systems[END_REF].

• Dealing with the numerical approach: what are the required relations between N, M and the discretization of [0, T ] and Θ, to ensure that the discrete control u M and the discrete adjoint ϕ 1,N goes to u and ϕ 1 as N → ∞?

In addition, we chose here to approach y with a nite combination of eigenfunctions of the Dirichlet-Laplace operator. This was to ensure the ensemble controllability of the discretized system (see Proposition 6.1).

Even if other discretization are possible, it is not clear that the discretized system will be ensemble controllable. For instance, if we use classical nite dierences, we will necessarily have M < N when ω is strictly included in Ω, and hence rk(B) < N. Thus, the controllability of the discretized system is no more a direct application of Theorem 2.5.
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 4 Figures 1 to 4 (respectively Figures 5 to 9) tackle the case where the initial and target state are given by (i) (respectively (ii)).
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 1 Figure 1: Control (L 2 -norm: 4.230773 × 10 2). See Section 6.3 for the parameters used for this simulation, initial and target states are given by (i).

  ) L 2 (Θ,L 2 (0,π))
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 2 Figure 2: Time evolution of the L 2 -norm of the solution. See Section 6.3 for the parameters used for this simulation, initial and target states are given by (i).
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 3 Figure 3: Parameter dependent state at final time. See Section 6.3 for the parameters used for this simulation, initial and target states are given by (i).
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 4 Figure 4: Time evolution of the 21 Fourier coefficients used in the simulation. See Section 6.3 the parameters used for this simulation, initial and target states are given by (i).
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 512 Figure 5: Control (L 2 -norm: 1.945471 × 10 3 ). See Section 6.3 for the parameters used for this simulation, initial and target states are given by (ii).
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 6 Figure 6: Time evolution of the L 2 -norm of the solution. See Section 6.3 for the parameters used for this simulation, initial and target states are given by (ii).

Figure 7 :

 7 Figure 7: Parameter dependent state at final time. See Section 6.3 for the parameters used for this simulation, initial and target states are given by (ii). See also Figure 8 for a visualization of the distance to the target state.

Figure

  Figure8: Error to the target, i.e., plot of (θ, x) → y(T, θ, x) -y 1 (θ, x). See Section 6.3 for the parameters used for this simulation, initial and target states are given by (ii).

Figure 9 :

 9 Figure 9: Time evolution of the 21 Fourier coefficients used in the simulation. See Section 6.3 for the parameters used for this simulation, initial and target states are given by (ii).

•

  Last but not least, in this paper we have considered the problem of internal controllability. The case of boundary controllability is open.
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