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Abstract

In this paper, we extend the concept of ensemble controllability introduced
in 2009 by Jr-Shin Li and Navin Khaneja to a class of linear partial di�eren-
tial equation. More precisely, we consider some abstract parabolic equation,
where the system depends on some unknown parameter which is assumed to
belong to a compact interval. We investigate the possibility of approxima-
tively reaching (in L2-norm) any target state from any initial state, with an
open loop control. Here the initial and target states might depend on the un-
known parameter, but the control is assumed to be parameter independent.

Keywords: Ensemble control, parabolic equations, average control
2020 MSC: 93B05, 93B35, 93C05, 93C20, 93C25, 35K90

1. Introduction

The modeling of physical systems often involves in their dynamics some
parameters that are inherent to them. These parameters are generally es-
timated but not known with precision. For instance, the dynamic of a car
depends on its mass, the evolution of the temperature depends on the di�u-
sion coe�cient of the material. . .
In the context of classical control theory, it is customary to assume that
these parameters are known and �xed. Thus, if a system is to be sent from
its initial state to a prescribed �nal state, the constructed control implicitly
depends on the �xed parameters. As a consequence, when these parame-
ters are modi�ed, the built control no longer solves the control problems.
Hence, each time a system parameter is modi�ed, a new control has to be
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designed. It therefore seems reasonable to ask whether it is possible to build
controls that are independent of the parameters of the system. This is the
aim of Ensemble controllability, and this notion is also named (approximate)
simultaneous controllability.

The notion of ensemble controllability was �rst introduced in [1], where
the authors studied the ensemble controllability of Bloch equations with a
dispersion in their natural frequencies. A much more elaborate study of the
topic discussed in the above reference, using functional analysis approach,
was undertaken in [2].

For linear control systems many results exist. From the generic concept
of ensemble controllability, many other notions emerged such as Uniform
ensemble controllability and Lq-ensemble controllability. One can cite for
instance [3, 4, 5] where the authors gave necessary and su�cient conditions
for Lq-ensemble controllability and uniform ensemble controllability for lin-
ear control systems. In [6, 7], the authors gave some obstructions to Lq

and uniform ensemble controllability, and in [8], the author explore how the
application of feedback methods enlarges the class of parameter-dependent
linear systems that are uniformly ensemble reachable. In [9, 10], the authors
gave some numerical tools to compute optimal controls. We also quote [11],
where the authors investigate ensemble controllability for non-linear systems
using the geometrical point of view.

Dealing with feedback stabilization of parameter dependent partial dif-
ferential equation, we mention the recent papers [12, 13]. In [12], the authors
investigate the ensemble feedback stabilization of linear systems using a Ric-
cati based feedback mechanism. It should be mentioned that in their paper,
the set of parametrization is a �nite subset of the real line. More impor-
tantly, the feedback control proposed, itself, depends on the parameter but
the gain does not. The fact that the gain does not depend on the parameter
makes the analysis more delicate. The question of feedback stabilization of
parameter dependent system with feedback controls that do not depend on
the parameter is still, at our knowledge, an open question, even for linear
systems. In [13], the authors use the backstepping method to stabilize an
ensemble of hyperbolic partial di�erential equations.

To our knowledge, the concept of ensemble controllability has not yet been
investigated in the case of partial di�erential equations, especially when the
set of parametrization is a continuum. It is worth noting, however, that
in [12], as an application of their results, the authors considered a Galerkin
discretization of a parameterized one dimensional heat equation with inter-
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nal controls, where the uncertain parameter is the reaction coe�cient and
belongs to a �nite subset of the real line. They have shown, under some
conditions, that any �nite truncation of the discretized system solution is
ensemble controllable.

As mentioned above, the ensemble controllability of partial di�erential
equations when the set of parametrization is a continuum is open, and in
this paper, we investigate the L2-ensemble controllability of linear parabolic
type equations with internal controls.

The paper is organized as follows. In Section 2, we state the controllabil-
ity problem and give the main result of the paper. This section is followed
by Section 3 where we apply our main result to the heat and 2D Grushin
equations, and give some relations between ensemble controllability and av-
erage controllability. The proof of the main result is given in Section 4.
This section is followed by Section 5 where we made a digression on �nite
dimensional control systems. Numerical examples are given in Section 6.
Concluding remarks and open problems are provided in Section 7.

The following notations are used.
We set R+ the nonnegative real line, N∗ = N \ {0}, and for κ ∈ N, N6κ =
{0, 1, . . . , κ}.
Let H be a Hilbert space. The notation 〈·, ·〉H denotes the scalar product of
elements of H.
For two Banach spaces X and Y , the space X n2

n1
, with n1, n2 ∈ N∗, stands

for the set of matrices with n2 rows and n1 columns with entries in X . The
notation ‖·‖X is used for the norm on X . The space L(X ,Y ) stands for
the Banach space of linear and continuous map from X into Y , and we set
L(X ) = L(X ,X ). We identify L(Rn1 ,Rn2) to Rn2

n1
. For G ∈ L(X ,Y ),

Ran(G) and Ker(G) respectively denote the range and the null space of G,
rk(G) is the dimension of Ran(G), and G? is the adjoint of G. For X ⊂X ,
X is the closure of X in X . For an operator A, D(A) denotes its domain.
The matrix A ∈ Rn

n is said Hurwitz if all its eigenvalues have a negative real
part.
For a family of vectors (ek)k∈N, the notation SpanK{ek, k ∈ N} stands for
the set of linear combinations of these vectors over the �eld K.
For a Borel measure space M = (M, T , ν), the space L2(M ,X ) which is
the space of ν-measurable functions f satisfying

∫
M ‖f(σ)‖2

X dν(σ) < ∞ is
simply denoted by L2(M,X ). Moreover, if X = Rk for some k ∈ N∗ then
L2(M,Rk) is identi�ed to L2(M,R)k, and denoted by L2(M)k. The space
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L2
loc(R+,X ) stands for the one of measurable functions from R+ to X that

are square integrable on any bounded interval of R+. We similarly de�ne the
sets of continuous function, C(M,X ) and C(M)k. The notation supp(f)
stands for the support of the function f .

2. Problem statement and main result

Let (Θ,B, µ) be a Borel measure space where Θ is a compact subset of R,
and let X, U and Y be three Hilbert spaces. For every θ ∈ Θ, we consider
the Cauchy problem

ẏ(t, θ) = α(θ)Ay(t, θ) +B(θ)u(t) (t > 0), (2.1)

y(0, θ) = y0(θ).

In the above equation and what follows, ẏ stands for the derivative of y with
respect to the time variable.

We make the following assumptions on the above system.
(hp1) (A,D(A)) generates an analytic exponentially stable semigroup (Tt)t>0

on X;
(hp2) For µ-almost every θ ∈ Θ, B(θ) ∈ L(U,X) and∫

Θ

‖B(θ)‖2
L(U,X) dµ(θ) <∞;

(hp3) There exist L ∈ L(U, Y ) and C ∈ L(X, Y ) and β ∈ L2(Θ) such that
for every ϕ ∈ L2(Θ, X)

LB?(θ)ϕ(θ) = β(θ)Cϕ(θ) (θ ∈ Θ, µ− a.e.);

(hp4) A
?(Ker(C) ∩ D(A?)) ⊂ Ker(C);

(hp5) (A?, C) is approximately observable;
(hp6) The function α ∈ C(Θ) is positive, injective and non-vanishing, and

β ∈ L2(Θ) is such that β(θ) 6= 0 for µ-almost every θ ∈ Θ.

Remark 2.1. If Assumption (hp1) is ful�lled, we infer from [14, Theorem 5.2]
that

T?t z ∈ D(A?) (z ∈ X, t > 0).

Remark 2.2. The Assumption (hp5) implies that

SpanR

{
θ ∈ Θ→ β(θ)

α(θ)k
, k ∈ N

}
= L2(Θ). (2.2)
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This can be inferred from [3, Proposition 7] or from [15, Lemma 2.1]. One
can also consult [16, Proposition 2.2] for unitary operators. If for instance,
Θ = [1, 2], α(θ) = θ and β(θ) = 1, (2.2) is automatically ful�lled thanks to
the Weierstrass approximation theorem, see for instance [17, 18].

The �rst remark to be made is that since (A,D(A)) generate Tt which is
analytic and exponentially stable, it follows from (hp5) that for every θ ∈ Θ,
(α(θ)A,D(A)) also generate Tα(θ)t which is analytic and exponentially stable.
Therefore, from [19, Proposition 4.2.5] and (hp2), we deduce that for every
u ∈ L2

loc(R+, U), every y0 ∈ L2(Θ, X), and almost every θ ∈ Θ, (2.1) admits
a unique solution given by

y(t, θ) = Tα(θ)ty
0(θ) + (Φtu)(θ) (t > 0), (2.3)

where

(Φtu)(θ) =

∫ t

0

Tα(θ)(t−τ)B(θ)u(τ) dτ. (2.4)

De�ning y : (t, θ) ∈ R+×Θ 7→ y(t, θ) as a solution of (2.1), we can prove
the following lemma.

Lemma 2.3. Under Assumptions (hp1), (hp2) and (hp5), for every T > 0,
the map ΦT de�ned by (2.4) belongs to L(L2(R+, U), L2(Θ, X)), and for every
y0 ∈ L2(Θ, X), the solution y de�ned by (2.3) belongs to C(R+, L

2(Θ, X)).

Proof. Using the fact that Tt is exponentially stable, it follows from [14,
Theorem 4.3] that there exist two constants M > 1 and δ > 0 such that
‖Tt‖L(X) 6 Me−δt for every t > 0. Since α is a positive function of θ,

it therefore holds that for every t > 0 and every θ ∈ Θ,
∥∥Tα(θ)t

∥∥
L(X)

6

Me−α(θ)δt. Setting α = minθ∈Θ α(θ), we have∥∥Tα(θ)t

∥∥
L(X)

6Me−αδt (t > 0, θ ∈ Θ). (2.5)

Using (2.5), we have for every τ ∈ [0, t]∥∥Tα(θ)(t−τ)B(θ)u(τ)
∥∥
X
6Me−αδ(t−τ)‖B(θ)‖L(U,X)‖u(τ)‖U .

From the above inequality, we obtain by integrating with respect to τ on the
time interval (0, t) and using Cauchy-Schwarz inequality∫ t

0

∥∥Tα(θ)(t−τ)B(θ)u(τ)
∥∥
X

d(τ) 6
M√
2δα
‖B(θ)‖L(U,X)‖u‖L2((0,t),U).
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From this observation, it follows that the map τ 7→ Tα(θ)(t−τ)B(θ)u(τ) belongs
to L1([0, t], X) and by Bochner integrability, we have for every t > 0 and
every θ ∈ Θ,∥∥∥∥∫ t

0

Tα(θ)(t−τ)B(θ)u(τ) d(τ)

∥∥∥∥
X

6
M√
2δα
‖B(θ)‖L(U,X)‖u‖L2((0,t),U).

The preceding inequality leads to∫
Θ

∥∥∥∥∫ t

0

Tα(θ)(t−τ)B(θ)u(τ) d(τ)

∥∥∥∥2

X

dµ(θ) 6
M2γ

2δα
‖u‖2

L2((0,t),U). (2.6)

where γ =
∫

Θ
‖B(θ)‖2

L(U,X) dµ(θ) <∞, thanks to Assumption (hp2).
For every t > 0, the linearity of Φt being obvious, we deduce from (2.6) that
Φt ∈ L(L2(R+, U), L2(Θ, X)). Moreover, using estimations (2.5) and (2.6),
it follows that for every t > 0,

‖y(t)‖L2(Θ,X) 6Me−δαt
∥∥y0
∥∥
L2(Θ,X)

+M

√
γ

2δα
‖u‖L2((0,t),U).

Therefore, for any u ∈ L2
loc(R+, U), y ∈ C(R+, L

2(Θ, X)).

The Lemma 2.3 therefore lends legitimacy to the following de�nition.

De�nition 2.4. The system (2.1) is said L2(Θ, X)-ensemble controllable in
time T > 0 if for every y0, y1 ∈ L2(Θ, X) and every ε > 0, there exists
a parameter independent open loop control u ∈ L2([0, T ], U) such that the
solution of (2.1) with y0 as initial state datum and u as input satis�es∥∥y(T )− y1

∥∥
L2(Θ,X)

6 ε. (2.7)

In this de�nition, functions of L2([0, T ], U) are seen as functions of
L2(R+, U) supported on [0, T ].

The main result of this paper is the following.

Theorem 2.5. Under the Assumptions (hp1) to (hp6), the system (2.1) is
L2(Θ, X)-ensemble controllable in any time T > 0.

Let us make the following remarks.
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Remark 2.6. Observe that if the system (2.1) is L2(Θ, X)-ensemble control-
lable in time T > 0, then for every λ ∈ R, the system

ż(t, θ) = (α(θ)A− λI)z(t, θ) +B(θ)v(t) (2.8)

is also L2(Θ, X)-ensemble controllable in time T > 0.
Indeed, for every θ ∈ Θ, (α(θ)A,D(A)) generates the semigroup Tα(θ)t, then
(α(θ)A− λI,D(A)) generates the semigroup e−λtTα(θ)t. Therefore, for every
u ∈ L2([0, T ], U), the solution of (2.8) with initial condition z0(θ) is given by

z(t, θ) = e−λt(Tα(θ)tz
0(θ) + (Φtuλ)(θ)) = e−λty(T )

where uλ(t) = eλtu(t), and where y solves (2.1) with control uλ and initial
condition z0(θ). If (2.1) is L2(Θ, X)-ensemble controllable in time T > 0,
then for every ε > 0 there exists uλ ∈ L2([0, T ], U) such that,∥∥y(T )− eλT z1

∥∥
L2(Θ,X)

6 eλT ε,

that is to say that ∥∥z(T )− z1
∥∥
L2(Θ,X)

6 ε,

i.e., (2.8) is L2(Θ, X)-ensemble controllable.

Remark 2.7. As it will be seen in the proof of Theorem 2.5 in Section 4, this
theorem is still valid for unbounded operators B(θ) ∈ L(U,X−1) provided
that we replace Assumption (hp1) by the fact that for µ-almost every θ ∈ Θ,
B(θ) is admissible for Tt and that the admissibility constant, which depends
on θ, belongs to L2(Θ). These hypotheses ensure that Lemma 2.3 still holds
with an unbounded control operator. In this case, we should have in Assump-
tion (hp3) C ∈ L(Xκ

1 , Y ) where Xκ
1 is the dual space of X−1 with respect

to the pivot space X (see [19]), and C should be required to be admissible
for the semigroup T?t . It goes without saying that in the proof, one should
adjust what should be adjusted.
However, we do not have example with unbounded control operator such that
Assumption (hp4) is satis�ed. Hence, we do not detail the case of unbounded
control operators.
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3. Applications

3.1. Application to the heat equation

Let Ω be a smooth domain of Rd (d > 1), X = U = L2(Ω) and consider
the system

ẏ(t, x, θ) = α(θ)∆y(t, x, θ) + β(θ)χω(θ)(x)u(t, x), (t, x) ∈ R+ × Ω,
y(t, x, θ) = 0, (t, x) ∈ R+ × ∂Ω,
y(0, x, θ) = y0(x, θ), x ∈ Ω,

(3.1)
where θ ∈ Θ, with Θ a compact interval of R. In this system, the control
is acting in a domain ω(θ) ⊂ Ω that might depend on the parameter θ. We
also assume that there exists a nonempty open subset ω0 such that ω0 ⊂⋂
θ∈Θ ω(θ).

System (3.1) corresponds to (2.1) with

A = ∆, D(A) = H2(Ω)×H1
0 (Ω) and B(θ) = β(θ)χω(θ)(x).

Obviously, in this context, Assumption (hp1) is satis�ed, and Assump-
tion (hp2) is satis�ed, if β ∈ L2(Θ). Also, A? = A and for every θ ∈ Θ,
B(θ)? = B(θ).
Choosing Y = L2(ω0), L = C = χω0 , Assumptions (hp3) and (hp4) are sat-
is�ed. Since the heat equation is approximatively controllable in any time
T > 0 from any non-empty open subset of Ω, it follows by duality that
(A?, C) is also approximately observable in any time, that is to say that As-
sumption (hp5) is also satis�ed. As a consequence of Theorem 2.5, we have
the following result.

Proposition 3.1. If α and β satisfy Assumption (hp6), and if there exists
a non-empty open subset ω0 such that ω0 ⊂ ω(θ) for every θ ∈ Θ, then the
system (3.1) is L2(Θ, L2(Ω))-ensemble controllable.

3.2. Application to the Grushin equation

Let γ > 0 and Ω = (−1, 1)× (0, 1), we consider the 2D Grushin equation

ẏ(t, x, v, θ) = α(θ)
(
∂2
xy(t, x, v, θ) + |x|2γ∂2

vy(t, x, v, θ)
)

+β(θ)χω(θ)(x, v)u(t, x, v), (t, x, v) ∈ R+ × Ω,
y(t, x, v, θ) = 0, (t, x, v) ∈ R+ × ∂Ω,
y(0, x, v, θ) = y0(x, v, θ), (x, v) ∈ Ω,

(3.2)
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where, as in Section 3.1, θ ∈ Θ, with Θ a compact interval of R. In this
system, the control is acting in a domain ω(θ) ⊂ Ω that might depend on the
parameter θ. We also assume that there exists a nonempty open subset ω0

such that ω0 ⊂
⋂
θ∈Θ ω(θ).

We set X = U = L2(Ω). For every θ ∈ Θ, we set B(θ) = β(θ)χω(θ)(x, v).
If β ∈ L2(Θ), then Assumption (hp2) is satis�ed. For every f ∈ C∞0 (Ω),
we de�ne A by Af = ∂2

xf + |x|2γ∂2
vf . Using Friedrichs extension (see [20,

Section 4.3], or [21, Section 2.1]) of the operator A, is extended to a self-
adjoint operator with dense domain D(A) in L2(Ω), and we refer to [22] for a
precise description of D(A). Furthermore, this operator (still denoted by A)
is the generator of an analytic semi-group on L2(Ω), see [21, Section 2.1].
In addition, using Poincaré inequality, we get that the semi-group generated
by A is exponentially stable. That is to say that Assumption (hp1) is ful�lled.

As for Section 3.1, Assumption (hp3) is satis�ed with Y = L2(ω0),
L = C = χω0 , and Assumption (hp4) is also trivially satis�ed. According
to [22], the pair (A∗, C) is approximatively observable, i.e., Assumption (hp5)
is satis�ed. We also refer to [23] for survey results on approximate control-
lability for hypoelliptic equations, and let us quote that depending on ω0

and γ, the pair (A,C∗) might not be null controllable, see [21, 24, 25]. In
conclusion, Theorem 2.5 leads to the following result.

Proposition 3.2. If α and β satisfy Assumption (hp6), and if there exists
a non-empty open subset ω0 such that ω0 ⊂ ω(θ) for every θ ∈ Θ, then the
system (3.2) is L2(Θ, L2(Ω))-ensemble controllable, for every γ > 0.

3.3. Application to average controllability

In this paragraph, we link the concept of ensemble controllability to the
one of Average controllability. As far as we know, the concept of average con-
trollability has been introduced in [26] with the aim of controlling in average
the dynamics of systems that depend on parameters with parameter indepen-
dent open loop controls. Many results on partial di�erential equations have
been obtained and can be found for instance in [27, 28, 29, 30, 31]. Dealing
with the numerical aspect of averaged controllability, we refer to [9, 32].
In this paper, the following de�nition borrowed from [26] will be considered.

De�nition 3.3. Let M = (Θ, T , µ) be a probability measure space. The
system (2.1) is Approximately controllable in average in time T > 0 if for ev-
ery y0, y1 ∈ L2(Θ, X) and every ε > 0, there exists a parameter independent
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open loop control u ∈ L2([0, T ], U) such that the solution of (2.1) with y0 as
initial state datum and u as input satis�es∥∥∥∥∫

Θ

(
y(T, θ)− y1(θ)

)
dµ(θ)

∥∥∥∥
X

6 ε. (3.3)

The next result follows directly from Theorem 2.5.

Corollary 3.4. Under the Assumptions (hp1) to (hp6), the system (2.1) is
approximately controllable in average in any time T > 0.

It is well-known that average controllability does not imply ensemble
controllability. Indeed, consider, for instance, the system (2.1) with

M = ([0, 1], T , µ), α(θ) = 1, A = 1, B(θ) = θ.

In this example, we take µ to be the Lebesgue measure and X = U = R. It
is easily seen through [26, Theorem 1] that this system is approximatively
controllable in average in any time, but, according to [3, Proposition 7], it
cannot be L2(Θ)-ensemble controllable in any time T > 0.

Proof. We aim to show that for every y0, y1 ∈ L2(Θ, X) and every ε > 0,
there exists a parameter independent open loop control u ∈ L2([0, T ], U) such
that (3.3) is satis�ed.
Let y0, y1 ∈ L2(Θ, X) and take any ε > 0.
According to Theorem 2.5, the system is L2(Θ, X)-ensemble controllable in
any time T > 0. Hence, writing down De�nition 2.4, there exists an open
loop control u ∈ L2([0, T ], U) such that∥∥y(T )− y1

∥∥
L2(Θ,X)

6 ε. (3.4)

Using Cauchy-Schwarz inequality (recall that µ(Θ) = 1), we get∥∥∥∥∫
Θ

(
y(T, θ)− y1(θ)

)
dµ(θ)

∥∥∥∥
X

6
∫

Θ

∥∥y(T, θ)− y1(θ)
∥∥
X

dµ(θ),

6

(∫
Θ

∥∥y(T, θ)− y1(θ)
∥∥2

X
dµ(θ)

) 1
2

6 ‖y(T )− y1‖L2(Θ,X) 6 ε.

10



As a consequence of Corollary 3.4, the heat equation considered in (3.1)
is approximately controllable in average in any time T > 0. This result can
be found in [27, Section 3], see also [29]. In fact, it has been proved that the
system (3.1) is null controllable in average in any time T > 0.
An other consequence is that the Grushin equation considered in (3.2) is
also approximately controllable in average in any time T > 0. As far as we
know, the averaged controllability for the Grushin equation has never been
considered.

4. Proof of Theorem 2.5

In this section, we provide a proof to our main result.
By De�nition 2.4, system (2.1) is L2(Θ, X)-ensemble controllable in a time
T > 0 if and only if

Ran(ΦT ) = L2(Θ, X), (4.1)

relation which is equivalent to

Ker(Φ?
T ) = {0}. (4.2)

We now compute the adjoint of ΦT .
Since ΦT is a linear and bounded operator from L2(R+, U) into L2(Θ, X), Φ?

T

is a linear and bounded operator from L2(Θ, X) into L2(R+, U). Therefore,
for every ϕ1 ∈ L2(Θ, X) and every u ∈ L2(R+, U), we have, by de�nition

〈Φ?
Tϕ

1, u〉L2(R+,U) =

∫
Θ

〈
ϕ1(θ), (ΦTu)(θ)

〉
X

dµ(θ)

=

∫
Θ

〈
ϕ1(θ),

∫ T

0

Tα(θ)(T−τ)B(θ)u(τ) dτ

〉
X

dµ(θ)

=

∫ T

0

〈∫
Θ

B(θ)?T?α(θ)(T−τ)ϕ
1(θ) dµ(θ), u(τ)

〉
U

dτ.

It therefore follows that for every ϕ1 ∈ L2(Θ, X),

(
Φ?
Tϕ

1
)

(t) =


∫

Θ

B(θ)?T?α(θ)(T−t)ϕ
1(θ) dµ(θ), if t ∈ (0, T ),

0, if t > T.
(4.3)

Due to (4.2), we now aim to show the following unique continuation property,(∫
Θ

B(θ)?T?α(θ)(T−t)ϕ
1(θ) dµ(θ) = 0, ∀t ∈ [0, T ]

)
⇒ ϕ1 = 0. (UCP)
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Let ϕ1 ∈ L2(Θ, X) such that for every t ∈ [0, T ],∫
Θ

B(θ)?T?α(θ)(T−t)ϕ
1(θ) dµ(θ) = 0. (4.4)

Setting ϕ(t, θ) = T?α(θ)(T−t)ϕ
1(θ), ϕ solves{

ϕ̇(t, θ) = −α(θ)A?ϕ(t, θ) (t ∈ (0, T )),
ϕ(T, θ) = ϕ1(θ).

(4.5)

Setting again ϕ̃(t, θ) = ϕ(T − t, θ), it follows that ϕ̃ solves{
˙̃ϕ(t, θ) = α(θ)A?ϕ̃(t, θ) (t ∈ (0, T )),
ϕ̃(0, θ) = ϕ1(θ).

(4.6)

Equation (4.6) shows that ϕ̃(t, θ) = T?α(θ)tϕ
1(θ). Since Tt is an analytic

semigroup, (UCP) is equivalent to(∫
Θ

B(θ)?ϕ̃(t, θ) dµ(θ) = 0, ∀t > 0

)
⇒ ϕ1 = 0, (UCP')

where ϕ̃ solves (4.6).
Using (hp1) and applying the operator L de�ned in (hp3) to the above

equation, we get ∫
Θ

LB(θ)?ϕ̃(t, θ) dµ(θ) = 0 (t > 0).

Assumption (hp3) ensures that L(B?ϕ)(θ) = β(θ)Cϕ(θ) for every ϕ ∈
L2(Θ, X). Hence, it follows that

C

∫
Θ

β(θ)ϕ̃(t, θ) dµ(θ) = 0 (t > 0), (4.7)

that is to say, ∫
Θ

β(θ)ϕ̃(t, θ) dµ(θ) ∈ Ker(C) (t > 0).

Therefore, using (hp1), we have, according to Remark 2.1,∫
Θ

β(θ)ϕ̃(t, θ) dµ(θ) ∈ Ker(C) ∩ D(A?) (t > 0).
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and Assumption (hp4) leads to

C

∫
Θ

β(θ)A?ϕ̃(t, θ) dµ(θ) = 0 (t > 0). (4.8)

But ϕ̃ is solution of (4.6), hence, we have

A?ϕ̃(t, θ) =
1

α(θ)
˙̃ϕ(t, θ) (t > 0),

this combined with (4.8) gives us

C

∫
Θ

β(θ)

α(θ)
˙̃ϕ(t, θ) dµ(θ) = 0 (t > 0).

For every t > 0, let us now integrate the above equation on [t,+∞), to obtain

C

∫
Θ

β(θ)

α(θ)

(∫ +∞

t

˙̃ϕ(τ, θ) dτ

)
dµ(θ) = 0 (t > 0). (4.9)

Using the fact that for every θ ∈ Θ, T?α(θ)t is exponentially stable, we deduce
that ∫ +∞

t

˙̃ϕ(τ, θ) dτ = −ϕ̃(t, θ) (t > 0, θ ∈ Θ).

Equation (4.9) therefore reads∫
Θ

β(θ)

α(θ)
Cϕ̃(t, θ) dµ(θ) = 0 (t > 0). (4.10)

Applying the above process k times, we end up with∫
Θ

β(θ)

α(θ)k
Cϕ̃(t, θ) dµ(θ) = 0 (t > 0, k ∈ N).

Using Assumption (hp6) and Remark 2.2, we deduce that for µ-almost every θ

Cϕ̃(t, θ) = 0, ∀t > 0.

Finally, we use Assumption (hp5) to deduce that for µ-almost every θ,

ϕ1(θ) = 0.

This proves (UCP), and hence (2.1) is L2(Θ, X)-ensemble controllable in
time T .
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5. Digression on ordinary di�erential equations

In this section we consider the case where X = Rn, U = Rm and Y = Rq,
with n, m and q three integers. In this framework (2.1) is just an ordinary
di�erential equation and the Assumptions (hp1) to (hp6) read:
(as1) The matrix A belonging to Rn

n is Hurwitz;
(as2) The control operator B belongs to L2(Θ)nm;
(as3) There exist L ∈ Rq

m, C ∈ Rq
n and β ∈ L2(Θ) such that for every

ϕ ∈ L2(Θ)n,
LB?(θ)ϕ(θ) = β(θ)Cϕ(θ);

(as4) Ker(C) is stable by A?;
(as5) (A?, C) is observable;
(as6) The function α ∈ C(Θ) is positive, injective and non-vanishing, and

β ∈ L2(Θ) is such that β(θ) 6= 0 for µ-almost every θ ∈ Θ.

In this case, the proof of Theorem 2.5 can be given by classical arguments.
Since this classical arguments reveal that certain assumptions are not nec-
essary for controllability we give the main lines. Indeed, thank to (UCP), let
ϕ1 ∈ L2(Θ)n such that∫

Θ

B(θ)?eα(θ)(T−t)A?

ϕ1(θ) dµ(θ) = 0 (t ∈ [0, T ]). (5.1)

Using Assumption (as3), we have

C

∫
Θ

β(θ)eα(θ)(T−t)A?

ϕ1(θ) dµ(θ) = 0 (t ∈ [0, T ]). (5.2)

Computing the derivatives of the above equation with respect to t, and eval-
uating the obtained equation at time t = T , we deduce

CA?k
∫

Θ

β(θ)α(θ)kϕ1(θ) dµ(θ) = 0 (k ∈ N). (5.3)

We now observe that Assumptions (as4) and (as5) imply Ker(C) = {0}.
Indeed, Assumption (as5) (i.e., the pair (A?, C) is observable) is equivalent
to the pair (A,C?) is controllable. Therefore, the space N = {x ∈ Rn |
∀k ∈ N, (A?)kx ∈ Ker(C)} is reduced to the null subspace of Rn. But
Assumption (as4) (i.e., Ker(C) is stable by A?) ensures that N = Ker(C),
and hence, Ker(C) = {0}. Consequently, (5.3) implies

A?k
∫

Θ

β(θ)α(θ)kϕ1(θ) dµ(θ) = 0 (k ∈ N). (5.4)
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Thanks to Assumption (as1), A is invertible, hence,∫
Θ

β(θ)α(θ)kϕ1(θ) dµ(θ) = 0 (k ∈ N). (5.5)

Assumption (as6) together with Remark 2.2 leads to

Span{θ ∈ Θ→ β(θ)α(θ)k, k ∈ N} = L2(Θ),

and it follows that ϕ1 = 0 µ-almost everywhere on Θ. This ends the proof of
Theorem 2.5 in the case X = Rn, U = Rm and Y = Rq.

We now give some comments on these lines.

Remark 5.1. We have seen in the above lines that Assumption (as1) is not
necessary in the case of ordinary di�erential equations. In fact, we only need
A to be invertible. One can see from the proof we provided in Section 4
that the exponential stability character of the semigroup was used to pass
from (4.9) to (4.10). Therefore, this constraint was imposed by our proof.
Theorem 2.5 might hold without the exponential stability character of the
operator (A,D(A)). However, this has resisted to several attempts of proof.

Remark 5.2. Observe that since Ker(C) = {0}, it follows that q > n. More-
over, from this condition, it follows from (as1) that for µ-almost every θ ∈ Θ,
rk(B(θ)) = n. In particular, we have m > n. Note that unlike the state con-
trollability of linear time invariant systems where it is natural to consider
m 6 n, it makes fully sense here to consider systems with m > n since the
state space is an in�nite dimensional space, here L2(Θ)n.

Remark 5.3. Assumption (as3) can be useful in practice when �the control
operator does not look nice�. For instance, if one wants to check the L2(Θ)2-
ensemble controllability of system (2.1) with

Θ = [0, 1], α(θ) = θ2, A =

(
0 −1
1 0

)
,

B(θ) =

(
0 2

√
θ + 1 1 1 + θ√

θ + 1 0 1 + θ3 θ2

)
, (5.6)

this assumption tells us that it is not necessary to use �ve sources (inputs or
controls) in system (5.6) since only two sources are su�cient. Indeed, taking
in Assumption (as3)

L =

(
1 0 0 0
0 1 0 0

)
, C =

(
0 1
2 0

)
and β(θ) =

√
θ + 1,
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one can infer from [5, Theorem 5] (or [4, Theorem 1]) that system (5.6)
is L2(Θ)2-ensemble controllable. One should �rst note that the multipli-
cation operator Aβ : L2(Θ) → L2(Θ) de�ned for every f ∈ L2(Θ) by
(Aβf)(θ) = β(θ)f(θ) is an isomorphism of L2(Θ), when β ∈ L∞(Θ) sat-
is�es Assumption (as6). Using therefore the fact that the system (2.1) with

Θ = [0, 1], α(θ) = θ2, A =

(
0 −1
1 0

)
, B(θ) = C? =

(
0 2
1 0

)
,

is C(Θ)2-ensemble controllable, here comes [5, Theorem 5], we deduce from
the density of continuous functions in L2(Θ) that the system given by (5.6)
is L2(Θ)2-ensemble controllable.

6. Numerical aspects

The aim of this paragraph is to illustrate numerically the L2(Θ, X)-
ensemble controllability of system (3.1) in one dimensional case. More
precisely, we take Θ a compact interval of R∗+, µ the Lebesgue measure,
Ω = (0, π), ω(θ) = ω = [ω, ω] ⊂ (0, π) independent of θ, X = L2(0, π),
U = L2(ω), and consider the system

ẏ(t, x, θ) = α(θ)∂xy(t, x, θ) + β(θ)χω(x)u(t, x), (t, x) ∈ R+ × (0, π),
y(t, x, θ) = 0, (t, x) ∈ R+ × {0, π},
y(0, x, θ) = y0(x, θ), x ∈ (0, π),

(6.1)
where α and β satisfy Assumption (hp6).

We recall that there exist an increasing sequence (λk)k>1 ∈ (R+)N
∗
such

that λk →∞ when k →∞ and a Hilbert basis (φk)k>1 of L2(0, π) such that
(φk)k>1 ⊂ H1

0 (0, π) and −∂2
xφk = λkφk. In the present case, we have

λk = k2 and φk(x) =
√

2
π

sin(kx) (k ∈ N∗, x ∈ (0, π)).

6.1. System discretization

Given any y0 ∈ L2(Θ, X) and every u ∈ L2([0, T ], L2(0, π)), we write the
solution y(t, θ) =

∑∞
k=1 yk(t, θ)φk where yk(t, θ) = 〈y(t, θ), φk〉L2(0,π) solves,

for every k > 1,{
ẏk(t, θ) = −α(θ)λkyk(t, θ) + β(θ)uk(t) (t > 0),

yk(0, θ) = y0
k(θ).

(6.2)
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where we have set uk(t) = 〈χωu(t), φk〉L2(0,π) and y
0
k(θ) = 〈y0(θ), φk〉L2(0,π).

We now use �nite element method by subdividing the interval ω in M+2 points
(xk)k∈N6M+1

where xk = ω+ kh with h = (ω−ω)/(M+ 1), to approximate the
control u by

uM(t, x) =
M∑
`=1

v`(t)ψ`(x), (6.3)

where

ψ`(x) =


x−x`−1

x`−x`−1
, if x ∈ [x`−1, x`],

x`+1−x
x`+1−x`

, if x ∈ [x`, x`+1],

0 otherwise

(` ∈ N∗6M),

Since by construction uM is supported in ω, we have, by setting uMk(t) =
〈χωuM(t), φk〉L2(0,π),

uMk(t) =
〈
χωu

M(t), φk
〉
L2(0,π)

=
M∑
`=1

Γk,`v`(t),

with Γk,` = 〈φk, ψ`〉L2(0,π). A direct computation leads to

Γk,` =
−1

hk2
(φk(x`−1)− 2φk(x`) + φk(x`+1)) (k ∈ N∗6N, ` ∈ N∗6M).

Setting Y(t, θ) = (y1(t, θ), . . . , yN(t, θ))
>, U(t) = (v1(t), . . . , vM(t))

>, we
deduce from (6.2) that

Ẏ(t, θ) = α(θ)AY(t, θ) + β(θ)BU(t), (6.4)

where

A =

−λ1

. . .

−λN

 ∈ RN
N and B =

Γ1,1 . . . Γ1,M
...

...
ΓN,1 . . . ΓN,M

 ∈ RN
M. (6.5)

From the above, each solution y(t, θ) =
∑∞

k=1 yk(t, θ)φk can be found
as a limit of yN(t, θ) =

∑N

k=1 yk(t, θ)φk when N tends to in�nity,
where (y1(t, θ), . . . , yN(t, θ))

> = Y(t, θ) solves (6.4) with Y(0, θ) =
(y0

1(θ), . . . , y0
N(t, θ))>.

Let us observe that the system (6.4) is L2(Θ)N-ensemble controllable.
More precisely, we have the following proposition.
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Proposition 6.1. Assume that (hp6) holds. For every N ∈ N∗ and every
M > 3N− 1, the system (6.4) is L2(Θ)N-ensemble controllable, where A and B
are given by (6.5).

Proof. Let us show that Assumptions (as1) to (as5) are satis�ed. We clearly
have that Assumptions (as1) and (as2) are satis�ed. Assumption (as3) is
also satis�ed with C = B∗ and L = IM.

We then aim to prove that for M large enough, we have rk(B) = N. This
will ensure Assumptions (as4) and (as5), and the proof will be concluded
using Theorem 2.5 (see also Section 5).

Let us assume by contradiction that rk(B) < N, then there exists
α1, . . . , αN ∈ R, which are not all trivial, such that

0 =

〈
N∑

k=1

αkφk, ψ`

〉
L2(0,π)

(` ∈ N∗6M). (6.6)

Let us then de�ne f(x) =
∑N

k=1 αkφk, there exists a polynomial P of degree
at most N − 1 such that f(x) = sin(x)P (cos(x)) for every x ∈ [0, π]. More
precisely, P =

∑N

k=1 αkUk−1, where Uk is the second kind Tchebychev poly-
nomial of degree k. This ensures that f admits at most N− 1 zeros on (0, π).
Consequently, there exist an interval I ⊂ ω of length greater than (ω−ω)/N
where f is of constant sign. But, for M > 3N − 1 (i.e., 3ω−ω

M+1
6 ω−ω

N
), there

exists ` ∈ N∗6M such that x`−1, x`, x`+1 ∈ I, that is to say that suppψ` ⊂ I.
This leads to a contradiction with (6.6), since ψ` and f have a constant sign
on suppψ`, and do not vanish in the interior of suppψ`.

6.2. Minimal L2-norm control

Given T > 0, y0, y1 ∈ L2(Θ, L2(0, π)) and ε > 0, we aim to minimize the
following problem

min 1
2

∫ T
0

∫
ω
|u(t, x)|2 dx dt

s.t.
√∫

θ

∫ π
0
|y(T, θ, x)− y1(θ, x)|2 dx dθ 6 ε,

(6.7)

where y is the solution of (6.1) with control u and initial condition y0. Using
Fenchel-Rockafellar duality, see e.g. [33, 34], we obtain that the minimizer of
the above problem is given by

u(t, x) =

∫
Θ

β(θ)ϕ(t, θ, x) dθ (t ∈ (0, T ), x ∈ ω),
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where ϕ solves the adjoint problem

−ϕ̇(t, θ, x) = α(θ)∂2
xϕ(t, θ, x) (t ∈ (0, T ), x ∈ (0, π), θ ∈ Θ),

ϕ(T, θ, x) = ϕ1(θ, x) (x ∈ (0, π), θ ∈ Θ).

with ϕ1 ∈ L2(Θ, L2(0, π)) the minimizer of

J(ϕ1) =
1

2

∫ T

0

∫
ω

∣∣∣∣∫
Θ

β(θ)ϕ(t, θ, x) dθ

∣∣∣∣2 dx dt

−
∫

Θ

∫ π

0

y1(θ, x)ϕ1(θ, x) dx dθ +

∫
Θ

∫ π

0

y0(θ, x)ϕ(T, θ, x) dx dθ

+ ε

√∫
Θ

∫ π

0

|ϕ1(θ, x)|2 dx dθ.

Considering the discretization proposed in Section 6.1, the minimization
problem (6.7) becomes

min 1
2

∫ T
0
v(t)>Mv(t) dt

s.t.
√∫

θ
|Y(T, θ)− Y1(θ)|2 dθ 6 ε,

(6.8)

where Y is solution of (6.4), with initial condition Y0(θ), and where for ı ∈
{0, 1}, Yı(θ) =

(
〈yı(θ), φ1〉L2(0,π), . . . , 〈yı(θ), φN〉L2(0,π)

)>
, and where M ∈ RM

M

is given by Mk,` = 〈ψk, ψ`〉L2(0,π). Note that one can also choose M = hIM.
The minimizer is obtained through the adjoint system, i.e.,

v(t) = M−1B>
∫

Θ

β(θ)p(t, θ) dθ (t ∈ (0, T )),

with p solution of

−ṗ(t, θ) = α(θ)A?p(t, θ) (t ∈ (0, T ), θ ∈ Θ),

p(T, θ) = p1(θ) (θ ∈ Θ),

with p1 ∈ L2(Θ)N the minimizer of

J(p1) =
1

2

∫ T

0

(
B>
∫

Θ

β(θ)p(t, θ) dθ

)>
M−1

(
B>
∫

Θ

β(θ)p(t, θ) dθ

)
dt

−
∫

Θ

〈
Y1(θ), p1(θ)

〉
dθ +

∫
Θ

〈
Y0(θ), p(T, θ)

〉
dθ + ε

√∫
Θ

|p1(θ)|2 dθ.

Remark 6.2. It is expected (but not proved yet) that ϕ1,N, de�ned by
ϕ1,N(θ, x) =

∑N

k=1 p
1(θ) sin(kx), goes to ϕ1 as N and M goes to ∞.
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6.3. Numerical examples

To numerically approximate a control, we �nally consider a discretization
of Θ and numerically compute the integral over Θ, similarly, we use a numer-
ical scheme to approximate the solutions of (6.4) and of the adjoint system.
In practice, we have used the mid point rule on a uniform discretization of Θ
to compute the integrals over Θ, and the Crank-Nicolson method, with a
uniform discretization of [0, T ] to compute the solutions of the direct and
adjoint systems.

For the numerical simulation below, we have considered Θ = [1, 2],
α(θ) = θ, β(θ) = 1 and ω = (0.5, 0.8). We have also considered N = 21,
M = 200, and the discretization step is 5.10−3 for Θ and 5.10−4 for the time
interval [0, T ]. The �nal time is set to T = 1, and we have set ε = 10−1. We
will consider two di�erent initial and target states:
(i) y0(θ, x) = 2θx(π − x)(x− θ) and y1(θ, x) = 0;

(ii) y0(θ, x) =

{
θ if x < θ,

−θ if x > θ
and y1(θ, x) = (2− θ) sin(3x).

Figures 1 to 4 (respectively Figures 5 to 9) tackle the case where the initial
and target state are given by (i) (respectively (ii)).

On Figures 1 and 5, we display the obtained controls. On Figures 2
and 6, we show the L2-norms of y(t) − y1 with respect to time, at the �nal
time T , they are equal to ε (up to a numerical tolerance which as been set
to 10−4), and for the two examples, the functions (θ, x) 7→ y(T, θ, x) are
plotted on Figures 3 and 7. Finally, we have shown on Figures 4 and 9 the
time evolution of the N Fourier coe�cients used for the simulations.

7. Concluding remarks

In this paper, we have studied the L2(Θ, X)-ensemble controllability of
some class of parabolic equations. But there still exist many practical ques-
tions to be addressed. Out of the one raised in Remark 5.1, we list below
some of them.

• In Assumption (hp3) we have assumed a kind of decoupling condition on
the control operator, mainly the separation between the space variable
and the parameter one. What if this splitting is not possible? For
instance, in (3.1), one might think of the control operator of the form
B(θ, x) = χω(x)ρ(θ, x) instead of B(θ, x) = χω(x)ρ(θ).
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Figure 1: Control (L2-norm: 4.230773× 102). See Section 6.3 for the parameters used for
this simulation, initial and target states are given by (i).

0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

t

‖y(t)‖L2(Θ,L2(0,π))

Figure 2: Time evolution of the L2-norm of the solution. See Section 6.3 for the parameters
used for this simulation, initial and target states are given by (i).
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Figure 3: Parameter dependent state at final time. See Section 6.3 for the parameters
used for this simulation, initial and target states are given by (i).

• Another question that is already suggested implicitly in Section 3, for
the ensemble controllability of (3.1), is: what happen if we do not have
the assumption that

⋂
θ∈Θ ω(θ) contained a nontrivial open subset of Ω?

• Can we consider α depending on the space variable in (2.1)? Similarly,
can we consider an operator A that depend on θ? For instance the en-
semble controllability of (3.1) is open if we replace θ∆ by div (M(θ)∇),
with M(θ) a positive matrix (which is not of the form α(θ)I).

• The question of C(Θ, X)-ensemble controllability, that is uniform en-
semble controllability of system (2.1) is open.

• Last but not least, in this paper we have considered the problem of
internal controllability. The case of boundary controllability is open.
In fact, even if, as stated in Remark 2.7, the results are still valid with
unbounded control operators, the veri�cation of Assumption (hp4) is
not easy, and we do not have examples of unbounded control operators
where Assumption (hp4) is ful�lled.
For a one dimensional heat equation as considered in (3.1) but this
time with boundary controls, we can prove using [3] that the C(Θ, X)-
ensemble controllability cannot hold, and we believe that the L2(Θ, X)-
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Figure 4: Time evolution of the 21 Fourier coefficients used in the simulation. See Sec-
tion 6.3 for the parameters used for this simulation, initial and target states are given
by (i).
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0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

t

‖y(t)− y1‖L2(Θ,L2(0,π))

Figure 6: Time evolution of the L2-norm of the solution. See Section 6.3 for the parameters
used for this simulation, initial and target states are given by (ii).

24



1 1.2 1.4 1.6 1.8 2
θ

0
0.5

1
1.5

2
2.5

3

x

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Figure 7: Parameter dependent state at final time. See Section 6.3 for the parameters
used for this simulation, initial and target states are given by (ii). See also Figure 8 for a
visualization of the distance to the target state.

1 1.2 1.4 1.6 1.8 2
θ

0
0.5

1
1.5

2
2.5

3

x
−0.25
−0.2
−0.15
−0.1
−0.05

0
0.05
0.1

0.15
0.2

−0.25
−0.2
−0.15
−0.1
−0.05
0
0.05
0.1
0.15
0.2

Figure 8: Error to the target, i.e., plot of (θ, x) 7→ y(T, θ, x)− y1(θ, x). See Section 6.3 for
the parameters used for this simulation, initial and target states are given by (ii).

ensemble controllability is also impossible. However, this is not clear in
higher space dimension. In fact, we cannot end up with a contradiction
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Figure 9: Time evolution of the 21 Fourier coefficients used in the simulation. See Sec-
tion 6.3 for the parameters used for this simulation, initial and target states are given
by (ii).

26



with the Hautus test, as it is done in [3].

• Dealing with the numerical approach: what are the required relations
between N, M and the discretization of [0, T ] and Θ, to ensure that
the discrete control uM and the discrete adjoint ϕ1,N goes to u and ϕ1

as N→∞?
In addition, we chose here to approach y with a �nite combination of
eigenfunctions of the Dirichlet-Laplace operator. This was to ensure the
ensemble controllability of the discretized system (see Proposition 6.1).
Even if other discretization are possible, it is not clear that the dis-
cretized system will be ensemble controllable. For instance, if we use
classical �nite di�erences, we will necessarily have M < N when ω is
strictly included in Ω, and hence rk(B) < N. Thus, the controllability
of the discretized system is no more a direct application of Theorem 2.5.
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