
HAL Id: hal-04174439
https://hal.science/hal-04174439v1

Preprint submitted on 31 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of a Reversible Distributed Calculus
Clément Aubert, Peter Browning

To cite this version:
Clément Aubert, Peter Browning. Implementation of a Reversible Distributed Calculus. 2023. �hal-
04174439�

https://hal.science/hal-04174439v1
https://hal.archives-ouvertes.fr

Implementation of Reversible Distributed
Calculus (tool demonstration paper)

Clément Aubert[0000−0001−6346−3043] and Peter Browning

School of Computer & Cyber Sciences, Augusta University, Augusta, USA
{caubert, pebrowning}@augusta.edu

Abstract Process calculi (π-calculus, CCS, ambient calculus, etc.) are
an abstraction of concurrent systems useful to study, specify and verify
distributed programs and protocols. This project, IRDC, is concerned
with the implementation of such an abstraction for reversible process
calculi. It is, to the best of our knowledge, the first such publicly available
tool. We briefly present the current state of this tool, some of its features,
and discuss its future developments.

Keywords: Formal semantics · Process algebra and calculi · Reversible
Computation · Concurrency · Tool implementation

1 Implementations of (Reversible) Concurrent Calculi

Implementing a process calculus such as π-calculus, CCS or the ambient calculus
serves four overlapping goals:

– It allows to machine-check theorems and definitions [?,?,?] using proof assis-
tants such as Coq [?], resulting sometimes in simplification [?] or the finding
of regrettable imprecision or errors [?].

– Using it as an actual programming language, it enables the implementation of
toy programs [?] that exemplifies the purpose and expressivity of the calculus.

– It can also be used as a specification language: typically, the Proverif tool [?],
which implements the applied π-calculus [?], has been used to certify and
model security protocols in a variety of areas [?].

– Last but not least, it serves a pedagogical purpose. Fleshing out the abstract
theory lets users and programmers get acquainted with such systems, and
showcases its interest. Simply for CCS, projects from the Sapienza Università
di Roma, the Università di Bologna, the Università di Pisa or the Aalborg
Universitet [?] demonstrate a vivid interest for implementations using a variety
of languages (Standard ML, SWI-Prolog or Typescript) and approaches
(ability to “play the bisimulation game”, focus on program’s correctness, etc.).

Reversible process calculi emerged almost 20 years ago with Reversible CCS
(RCCS) [?] and CCS with keys (CCSK) [?]. Both calculi evolved over the
time, and brought many interesting insights both on reversibility and on con-
currency. However, aside from SimCCSK [?]–which is not publicly available and

https://coq.inria.fr/
https://bblanche.gitlabpages.inria.fr/proverif/
https://github.com/ComputerScience-Projects/Calculus-of-Communicating-Systems
https://github.com/ComputerScience-Projects/Calculus-of-Communicating-Systems
https://github.com/andreasimonetto/muccs
https://github.com/CoffeeStraw/CCS_Prolog
https://caal.cs.aau.dk/
https://caal.cs.aau.dk/

2 Clément Aubert and Peter Browning

not maintained since 2008 to our knowledge–no implementation of concurrent,
reversible calculus exists. This short paper intends to present the current status
of an implementation of CCSK, called Implementation of Reversible Distributed
Calculus (IRDC), we have been working on since February 2022. While it is still a
work-in-progress, we believe that gathering early feedback and showcasing some
of the challenges we faced and solved will be of interest to the community.

2 System Design

We chose to implement CCSK, a variation on CCS that attaches keys to past
action instead of discarding them, and in which every derivation rule has an
inverse. Our syntax is faithful to recent papers on the topic [?]:

0 Nil process a, . . ., z Input channel name
+ Summation operator 'a, . . ., 'z Output channel name
| Parallel operator Tau{'a, a} Silent action on a

\{a, b} Restriction along a, b a[k0], . . ., 'z[k1] Label keys
Details can be found in our readme’s “Syntax and Precedence of Operators”.

The operational semantics is standard, reminded in our documentation, and can
be partially inferred from the following:

(((a+b)|'b)|'a)\{a}

------| Actionable Labels |------
[0] b
[1] 'b
[2] Tau{'b, b}
[3] Tau{'a, a}

After performing e.g., a synchronization on a (action [3]) and performing an
output on 'b (action [1]), this process would become

(((Tau{'a, a}[k1].0+b)|'b[k3].0)|Tau{'a, a}[k1].0)\{a}

from which the actions with keys k1 and k3 could both be undone, in any
order. Note that we decided to omit the nil process when preceded by an
actionable prefix,1 and that we label the Tau silent action with the name of
the complementary channels that synchronized.2

3 Running and Installing IRDC

Downloading the latest release can done by browsing to https://github.com/
CinRC/IRDC-CCSK/releases or by executing this simple one-liner3:
curl -s https ://api.github.com/repos/CinRC/IRDC -CCSK/releases/latest \
| grep browser_download_url | cut -d : -f 2,3 | tr -d \" | wget -qi -

Listing 3.1. Fetching the latest release in one command

1 This behavior can be toggled with the --require-explicit-null option.
2 As discussed at the end of ??, this does not impact our implementation of simulation,

as e.g., Tau{'a, a} and Tau{'b, b} are treated as equivalent.
3 The source code is also archived at https://archive.softwareheritage.org/
browse/origin/directory/?origin_url=https://github.com/CinRC/IRDC-CCSK.

https://github.com/CinRC/IRDC-CCSK#syntax-and-precedence-of-operators
https://raw.githubusercontent.com/CinRC/IRDC-CCSK/docs/lts.md
https://github.com/CinRC/IRDC-CCSK/releases
https://github.com/CinRC/IRDC-CCSK/releases
https://gist.github.com/steinwaywhw/a4cd19cda655b8249d908261a62687f8
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/CinRC/IRDC-CCSK
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/CinRC/IRDC-CCSK

Implementation of Reversible Distributed Calculus 3

The process presented in ?? can then be executed using

java -jar IRDC -*. jar "(((a+b)|'b)|'a)\{a}"
Listing 3.2. Launching the command-line interface with a demo process

The user can then decide on which channel name (for forward transition) or
label key (for backward transition) they want to act by selecting the corresponding
number and hitting . As of now, the program needs to be killed manually (for
instance using ctrl + c on Unix systems) to be exited. Many flags can be used
to tweak the program’s behavior or its output. They can be accessed using the
--help flag or by consulting our readme. We present some of them below.

4 Features

As of now, our tool’s primary goal is pedagogical, to raise interest and train in
distributed, reversible computation. The user can interact with a process to get
a better understanding of the operators’ mechanisms and semantics. They can
for instance try to answer the question

Can the process (a.b.c|('a.'c+'a.'b))\{a,c} synchronize on c,
and if yes, using which reduction sequence?

using a command such as

java -jar IRDC -*. jar --dL "(a.b.c|('a.'c+'a.'b))\{a,c}"
Listing 4.1. Process example to understand restriction and prefixing

where the --dL flag helps by numbering the occurrences of channel names.
It is also possible to check one’s answer using the --enumerate flag, that lists

all possible (forward-only) execution sequences:
java -jar IRDC -*.jar --enumerate "(a.b.c|('a.'c+'a.'b))\{a,c}"
(a.b.c|('a.'c+'a.'b))\{a,c}

Tau{'a, a} (Tau{'a, a}[k0].b.c|(Tau{'a, a}[k0].'c+'a.'b))\{a,c}
b (Tau{'a, a}[k0].b[k2].c|(Tau{'a, a}[k0].'c+'a.'b))\{a,c}
Tau{'c, c} (Tau{'a, a}[k0].b[k2].Tau{'c, c}[k3].0|(Tau{'a, a}[k0].Tau{'c,
↪→ c}[k3].0+'a.'b))\{a,c}

Tau{'a, a} (Tau{'a, a}[k1].b.c|('a.'c+Tau{'a, a}[k1].'b))\{a,c}
b (Tau{'a, a}[k1].b[k5].c|('a.'c+Tau{'a, a}[k1].'b))\{a,c}

'b (Tau{'a, a}[k1].b[k5].c|('a.'c+Tau{'a, a}[k1].'b[k7].0))\{a,c}
'b (Tau{'a, a}[k1].b.c|('a.'c+Tau{'a, a}[k1].'b[k6].0))\{a,c}

b (Tau{'a, a}[k1].b[k8].c|('a.'c+Tau{'a, a}[k1].'b[k6].0))\{a,c}
Tau{'b, b} (Tau{'a, a}[k1].Tau{'b, b}[k4].c|('a.'c+Tau{'a, a}[k1].Tau{'b,
↪→ b}[k4].0))\{a,c}

Listing 4.2. Demonstrating the--enumerate flag

Our program can also be used to exhibit the difference between temporal and
causal orders in reversible systems. For instance, the following execution:
java -jar IRDC -*.jar "a.b | 'b | c"
((a.b|'b)|c) -c-> ((a.b|'b)|c[k0].0)
-a-> ((a[k1].b|'b)|c[k0].0)
-Tau{'b, b}-> ((a[k1].Tau{'b, b}[k3].0| Tau{'b, b}[k3].0)|c[k0].0)
~[k0]~> ((a[k1].Tau{'b, b}[k3].0| Tau{'b, b}[k3].0)|c)

Listing 4.3. Illustrating the difference between temporal and causal orders

https://github.com/CinRC/IRDC-CCSK#command-arguments-flags

4 Clément Aubert and Peter Browning

makes it clear that even if the action on c (to which the key k0 was given) was
triggered first when performing forward transitions, it can be undone first.

Traditional (e.g., forward-only) simulation was also implemented, but cannot
be accessed interactively. Our SimulationTest class, however, asserts, e.g.,

– that a.(b+c) can simulate a.b + a.c but cannot be simulated by it,
– that (a|'a)\{a} and (b|'b)\{b} are equivalent,
– that a|b can simulate a.b but cannot be simulated by it, etc.

5 Inner Flow

Our program works in three stages. The CCSParser class initially traverses the
input and tokenizes each node (i.e., operand) of a process. Each node is then
instantiated as an object internally. Then, the program recursively links the nodes
together using the appropriate order of binding power of the operators. After the
nodes are all linked, only one process is expected to remain: this process is the
“ancestor” that can then be acted on.

Internally, the program does not de-allocate keys when they are freed, so
that a process going constantly back-and-forth will always receive different keys.
However, our NodeIDGenerator class and its .nextAvailableKey() method are
modular enough that alternative formalisms could be easily implemented.

6 Software Engineering Best Practices

Our implementation strives to use state-of-the-art technologies and to promote
best practices. We decided to use to use the Java Development Kit (17.0.2) for its
flexibility, portability and popularity.4 We use the software project management
and comprehension tool Maven (3.6.3) to ease adoption and dependency manage-
ment, but also to enforce stylistic constraints: our implementation enforces the
google_checks.xml checkstyle guideline for uniformity and best practises. Our
code is versioned using git, publicly available, open source and uses semantic
versioning to ease collaboration and adoption.

We also leveraged github’s Continuous integration (CI) / Continuous de-
ployment (CD) to remotely compile our source code and automatically offer
pre-compiled releases that can be executed directly. Last but not least, our ex-
tensive testing suite makes sure that our implementations of action, enumeration
(that lists all possible actions) and restriction, but also our parser and simulation
implementations, behave as expected.

7 Road Map

Our list of issues highlights some of our challenges and goals. Among them,
developing a graphical user interface is the focus of a capstone project currently
taking place at Augusta University.
4 It should be noted that most existing implementations uses declarative programming

languages, and that with that respect our implementation is quite original.

https://github.com/CinRC/IRDC-CCSK/blob/master/src/test/java/tests/SimulationTest.java
https://github.com/CinRC/IRDC-CCSK/blob/834396d54b8fbe22753729e39b426972d93fa58a/src/main/java/org/cinrc/parser/CCSParser.java
https://maven.apache.org/
https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.xml
https://checkstyle.org/
https://github.com/CinRC/IRDC-CCSK
https://github.com/CinRC/IRDC-CCSK/blob/master/LICENSE.txt
https://semver.org/
https://semver.org/
https://resources.github.com/ci-cd/
https://resources.github.com/ci-cd/
https://github.com/CinRC/IRDC-CCSK/releases
https://github.com/CinRC/IRDC-CCSK/tree/master/src/test/java/tests
https://github.com/CinRC/IRDC-CCSK/issues
https://spots.augusta.edu/caubert/projects/Capstone_Project_IRDC-CCSK.pdf

Implementation of Reversible Distributed Calculus 5

Some of the other milestones include:

– Accepting processes that already started their execution, so that one could
use as an input process e.g., ((a.b|'b)|c[k4].0),

– as a follow-up, our implementation could decide if a process that already
started their execution is “reachable”, that is, can be accessed using forward-
only transitions,

– and, of course, performing additional tests.

Our most exciting, but also longer-term, challenges, would be to implement
one of the “reversible” bisimulation [?,?], a mechanism to distribute the generation
of keys [?], or to formally verify the correctness of our definition of concurrency [?].

8 Conclusion

The creation of this tool highlighted some interesting components of CCSK as a
whole. Acting much like a calculator, our tool had to create multiple algorithms
for manipulating and equivocating different processes. One of the most interesting
problems raised by the construction of this tool–and that is not solved yet–is to
design, for the first time to our knowledge, an algorithm to determine whether
two reversible processes are in an history-preserving bisimulation [?,?,?].

Acknowledgments

The authors would like to thank Brett Williams and John Yalch for their contri-
bution to this project, and Jason Orlosky for his comments on this submission.
This material is based upon work supported by the National Science Foundation
under Grant No. 2242786 (SHF:Small:Concurrency In Reversible Computations).

https://github.com/CinRC/IRDC-CCSK/issues/26
https://github.com/CinRC/IRDC-CCSK/issues/22
https://github.com/CinRC/IRDC-CCSK/issues/8
https://github.com/CinRC/IRDC-CCSK/issues/13
https://github.com/CinRC/IRDC-CCSK/issues/13
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2242786

