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Abstract  

Manufacturing process modelling (MPM) aims to construct high-fidelity digital predictive models of the concerned properties of products, 
processes or manufacturing systems for the further optimisation and improvement of manufacturing activities. Data-driven modelling methods, 
including machine learning and deep learning, have drawn immense attention to MPM problems because of their powerful representative 
ability. However, the labelled data of concerning properties in the manufacturing process is often insufficient and sparse because of the 
expensive and time-consuming experiments or simulations. The scarcity of labelled data hinders the further development of data-driven models 
in MPM problems. This paper proposes an active transfer learning framework by integrating active generation of labelled data and the 
processing of relevant data to reduce the requirements of labelled data. Firstly, the initial active labelling module introduces the generation of a 
more representative and informative labelled dataset rather than a randomly generated one. Then, the transfer learning model can extract the 
general information from the relevant data to address the information scarcity for the target task. Besides, the iterative active labelling module 
can determine to query promising new labelled data according to the performance of the current model. The effectiveness of the proposed 
framework is verified in a tool wear prediction case. The experimental outcomes demonstrate that the three modules of the framework can 
reduce the labelled data requirements and enhance the performance of the data-drive model under limited labelled data. 
 
© 2022 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 16th CIRP Conference on Intelligent Computation in Manufacturing 
Engineering. 
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1. Introduction 

Since formalised in the mid-2000s, the fourth industrial 
revolution has become the heart of the development of the 
more than ever globalised industry [1]. This revolution is 
above all the advent of information and its dissemination 
through communication at the heart of the so-called industry 
4.0. The deep embedding of modern information technologies 
enables the manufacturing system to generate, transmit and 
analyse variable types of information, then improve and 
optimise the manufacturing activities reversely [2]. The 
integration of intelligent technologies and manufacturing 
technologies brings new changes to all levels of 
manufacturing problems, such as supply chain level, factory 
level, and process modelling level [1][3]. 

 
Manufacturing process modelling (MPM) aims to construct 

a high-fidelity digital predictive model of the concerned 
properties of products, processes or manufacturing systems, 
further enabling the optimisation and improvement of 
manufacturing activities [4]. Due to the complexity of the 
manufacturing process, traditional modelling methods pursue 
the first principle to focus on the primary mechanism 
knowledge while bringing inevitable assumptions, 
simplifications and approximations. Conversely, data-driven 
modelling methods can learn the relationship between 
complex influential factors and the concerned properties from 
the collected labelled data with low demand for domain 
knowledge. Therefore, data-driven MPM is drawn immense 
attention in different application scenarios such as additive 
manufacturing, milling, composites curing, etc. [5]. 

http://www.sciencedirect.com/science/journal/22128271


 Author name / Procedia CIRP 00 (2022) 000–000 

Initial Active labelling Transfer learning

Output
Data-driven 

model

Acceptable

• Representative based

• Value based

Unacceptable Performance 
Assessment

Direct data

Relevant Data
• Parameter transfer

• Feature transfer

Iterative Active labelling
• Uncertainty strategy
• Information entropy
• Bayesian optimization

Manufacturing 
system

Although data-driven modelling methods are powerful 
enough to represent the complex manufacturing process, the 
accuracy and the generalisability of the predictive model 
heavily rely on massive labelled data. However, the labelled 
data of concerning properties in the manufacturing process is 
often sparse and limited because of the expensive and time-
consuming experiments or simulations. Since limited labelled 
data cannot provide sufficient underlying knowledge of the 
manufacturing process, even powerful modelling methods 
cannot compensate for the information scarcity.  

When the labelled data is insufficient to train an accurate 
model, the most direct solution is to query new labelled data to 
improve the performance of the model, that is what defines the 
active learning technique [6]. Leco et al. proposed an active 
learning algorithm for robotic machining errors modelling that 
makes the online inspection decision based on the prediction 
confidence of the current model [7]. Hughes et al. presented a 
risk-based active learning solution for structural health 
classification, in which the promising class-label information 
is queried by the expected value for each incipient data point 
[8]. Similarly, Arellano et al. built a Bayesian Convolutional 
Neural Networks for online tool condition classification, that 
can determine whether the incoming data should be labelled. 
These applications demonstrate that active learning strategies 
can achieve a satisfactory model performance with a smaller 
training dataset [9]. 

Another solution for data scarcity is transfer learning, 
which aims to improve the predictive function of the target 
task by transferring the knowledge from related source data, 
so that the target task only requires a few target data. Transfer 
learning has been successfully applied in different 
manufacturing process modelling problems, such as composite 
thermal-chemical [10], tolerance estimation for additive 
manufacturing [11], manufacturing system maintenance [12], 
etc.  

By combining active learning and transfer learning, active 
transfer learning (ATL) has also been studied recently. The 
transfer stage and active learning stage can be carried out in 
multiple sequence steps. For example, Ramezankhani et al. 
developed an ATL framework for composites curing, and 
decreased the dependency of the data-driven model on the 
large datasets [10]. However, existing ATL research only 
focuses on how to introduce external information to the 
existing insufficient labelled data without considering the 
generation of the labelled data. The initial labelled data of 

most existing research are generated randomly or treated as 
default given [10]. 

In this research, an active transfer learning framework is 
proposed for both the active generation of labelled data and 
the processing of relevant data for manufacturing process 
modelling problems. The utility of the active generation here 
is two-fold, initial active labelling and subsequent iterative 
active labelling. The former provides the high-quality initial 
target labelled data, while the latter will determine the queried 
labelled data according to the performance assessment. The 
proposed framework is verified in the case study of tool wear 
prediction. The experimental results show that all the three 
modules in the framework, namely initial active labelling, 
iterative active labelling and transfer learning, can improve the 
performance of the model while reducing the requirements of 
labelled data. 

2. The proposed framework 

2.1. Structure 

The proposed active transfer learning framework for 
manufacturing process modelling is shown in Fig . 1. Since it 
is difficult to collect sufficient labelled data, the valuable few 
labelled data deserve to be elaborately designed to carry more 
underlying knowledge. Therefore, the first step in the 
framework is initial active labelling to construct the initially 
labelled dataset. After that, transfer learning is applied to 
extract the valuable knowledge from the relevant data to the 
initially labelled dataset. According to the performance of 
transfer learning results, iterative active labelling will 
determine the querying of further labelled data to improve the 
performance of the model gradually. 

Although all the three modules could reduce the 
requirements of labelled data, it is unnecessary and sometimes 
not feasible to include all these modules for a particular MPM 
problem. For example, iterative active labelling could be 
impractical for some tasks due to the complexity of the 
experimental setup. Besides, the initial label data of some 
tasks are predetermined via historical accumulation, which 
cannot be designed manually. Therefore, the solution of each 
MPM task should be tailored individually according to its 
characteristics. 

2.2. Initial active labelling 

Initial active labelling aims to find a subset 𝑇𝑇  from the 

Fig. 1 Active transfer learning framework for data-driven manufacturing process modelling 



 Author name / Procedia CIRP 00 (2022) 000–000 

potential unlabelled data pool 𝑁𝑁 for labelling, where 𝑇𝑇 ⊆ 𝑁𝑁. 
Therefore, initial active labelling becomes equivalent to 
selecting the initial unlabelled dataset. This problem here can 
be treated as a data sampling problem, which is a statistical 
analysis technique widely used in many fields .[12] The most 
intuitive solution is the representative sampling, which 
samples a coreset that represents the distribution of the total 
data [13]. From the perspective of probability, the objective of 
initial active labelling can be defined as: 

min𝑇𝑇 𝑑𝑑�𝑝𝑝𝑇𝑇, 𝑝𝑝𝑁𝑁�, subject to, |𝑇𝑇| = 𝑛𝑛𝑡𝑡 (1) 

where 𝑛𝑛𝑡𝑡 is the size of the selected subset. 𝑑𝑑(𝑝𝑝𝑇𝑇,𝑝𝑝𝑁𝑁) is the 
distribution distance between the total dataset and the selected 
dataset. Theoretically, the distance function can be Kullback-
Leibler divergence or other statistical distance. 

When the potential dataset is defined by the ranges of 
feature space, we can replace the representativeness of the 
probability density with the spatial representativeness. For 
example, Latin hypercube sampling (LHS) can generate 
representative samples with strict guarantees, especially when 
the input dimension is relatively low. 

In practice, most potential datasets exist in the form of a 
finite amount of unlabelled data without predefined 
distribution information. Therefore, clustering becomes the 
most simple but reasonable strategy to select the 
representative initial unlabelled dataset [13]. Take k-means 
clustering as an example, suppose the potential dataset 𝑁𝑁 is 
partitioned into 𝑛𝑛𝑇𝑇  observation groups as {𝑁𝑁1, … ,𝑁𝑁𝑛𝑛𝑡𝑡}. The 
objective function is then defined as minimising the within-
cluster sum of distances: 

min
𝑇𝑇
 �  

𝑛𝑛𝑡𝑡

𝑖𝑖=1

�  
𝐱𝐱∈𝑁𝑁𝑖𝑖

∥∥𝐱𝐱 − 𝜇𝜇𝑖𝑖∥∥
2 (2) 

where 𝑇𝑇 = �𝜇𝜇1, … , 𝜇𝜇𝑛𝑛𝑖𝑖�  is the optimised representative 
unlabeled dataset, and 𝜇𝜇𝑖𝑖  is the sample that represent the 
group 𝑁𝑁𝑖𝑖. Therefore, the dataset 𝑇𝑇 can be actively labelled to 
construct the initial labelled dataset 𝒟𝒟𝑇𝑇. 

2.3. Transfer learning 

For most MPM problems, there always exists auxiliary 
data which are less valuable but still can provide helpful 
information for the modelling of the target model. By 
transferring the knowledge from the auxiliary data, the data 
requirements of the target model can be reduced. Define the 
auxiliary data as the source data 𝒟𝒟𝑆𝑆 . From the probabilistic 
point of view, the transfer learning technique aims to adapt 
the distribution difference between the source data 𝒟𝒟𝑆𝑆 and the 
target data 𝒟𝒟𝑇𝑇. The distribution adaptation solution should be 
designed according to the distribution difference assumptions 
of the problem [14]. Covariance shift and conditional shift are 
two widely studied scenarios for MPM problems. 

2.3.1 Covariance shift problems 

Covariance shift means that the source data and target data 
have the different marginal distribution while sharing the 
same conditional distribution, that is 𝑝𝑝(𝐲𝐲𝑠𝑠 ∣ 𝐗𝐗𝑠𝑠) = 𝑝𝑝(𝐲𝐲𝑡𝑡 ∣ 𝐗𝐗𝑙𝑙), 
whereas 𝑝𝑝(𝐗𝐗𝑠𝑠) ≠ 𝑝𝑝(𝐗𝐗𝑡𝑡).𝐗𝐗𝑠𝑠 and 𝐲𝐲𝑠𝑠 are the features and labels 

of the source data, namely 𝒟𝒟𝑆𝑆 = {𝐗𝐗𝑠𝑠,𝐲𝐲𝑠𝑠}.𝐗𝐗𝑡𝑡  and 𝐲𝐲𝑡𝑡  are the 
features and labels of the target data, and 𝒟𝒟𝑇𝑇 = {𝐗𝐗𝐿𝐿,𝐲𝐲𝑡𝑡}. 
Bearing fault classification or structural health classification 
are classical covariance shift problems. The solution is to 
learn a new representation space to adapt the distribution 
difference of the feature space. For example, Maximum Mean 
Discrepancy (MMD) based methods try to find a mapping 𝜙𝜙 
to minimise the distance: 

Dist(𝐗𝐗𝑠𝑠,𝐗𝐗𝑡𝑡) =
∥∥
∥∥
∥ 1
𝑛𝑛𝑠𝑠
�  

𝑛𝑛𝑠𝑠

𝑖𝑖=1

 𝜙𝜙�𝐗𝐗𝑠𝑠𝑖𝑖� −
1
𝑛𝑛𝑡𝑡
�  

𝑛𝑛𝑖𝑖

𝑖𝑖=1

 𝜙𝜙�𝐗𝐗𝑙𝑙𝑖𝑖�
∥∥
∥∥
∥

ℋ

2

(3) 

where the mapping 𝜙𝜙  can be a transformation matrix or a 
neural network. After distribution adaptation, the new features 
of the source task and the target task can be trained together to 
establish the target model. 

2.3.2 Conditional shift problems 

Another widespread transfer learning configuration in 
MPM is conditional distribution shift regression problem, 
namely 𝑝𝑝(𝐲𝐲𝑠𝑠 ∣ 𝐗𝐗𝑠𝑠) ≠ 𝑝𝑝(𝐲𝐲𝑡𝑡 ∣ 𝐗𝐗𝑡𝑡) , such as robot forward 
dynamics transfer, tool wear monitoring model transfer, etc. 
The conditional distribution difference can be adapted by 
minimising the Conditional Embedding Operator Discrepancy 
(CEOD) as [15]: 

𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝒟𝒟𝑠𝑠,𝒟𝒟𝑡𝑡) = ∥∥𝐶̂𝐶𝐲𝐲𝑠𝑠∣𝐗𝐗𝑠𝑠 − 𝐶̂𝐶𝐲𝐲𝑠𝑠∣𝐗𝐗𝑡𝑡∥
∥
𝐻𝐻𝐻𝐻

2 (4)   

where 𝐶̂𝐶𝐲𝐲∣𝐗𝐗 is the conditional embedding operator. 
In practice, we can pre-train the source model, reuse the 

parameters of the beginning layers, and fine-tune the last 
several layers by minimising the distribution difference. 

2.4. Iterative active labelling 

Since the initial labelled data is insufficient to train a 
satisfactory model, active learning can query new labelled 
data according to the predefined acquisition function [6]. The 
general representation of the iterative active labelling is: 

max
𝑥𝑥∈𝑁𝑁∖𝑇𝑇

 Δ𝒜𝒜(𝑥𝑥 ∣ 𝑇𝑇) (5)   

where Δ𝒜𝒜(𝑥𝑥 ∣ 𝑇𝑇) means the marginal gain of the sample 𝑥𝑥 for 
the given subset 𝑇𝑇 and data-driven algorithm 𝒜𝒜. 

The marginal gain can be the increment of the 
representativeness criteria or the information criteria. 
Representativebased query strategies focus on the exploration 
of the structure of the unlabelled dataset. Informative-based 
query strategies determine the promising samples based on 
the performance of the model on the current labelled dataset. 
The famous active learning methods under the two categories 
of strategies are summarised as follows:  

Representative-based query strategies: 

• Density-based approach 
• Diversity-based approach 
• Exploration graph structure 

 Informative-based query strategies: 
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• Uncertainty sampling 
• Variance reduction 
• Query by committee 
• Support vector based approach 

 

3. Case study 

In this section, the proposed framework is applied in a tool 
wear prediction problem to verify the effectiveness of initial 
active labelling, iterative active labelling and transfer learning 
modules. 

3.1. Experimental settings  

The healthy condition of cutting tools has a direct 
influence on the machining process stability and the final 
quality of the product. Due to the complexity of the cutting 
process, is it difficult to predict the tool wear accurately using 
mechanism models. Since the tool wear will result in 
inconsistent cutting width, further leading to the fluctuation in 
the cutting force, building data-driven models from the 
monitoring cutting force to the corresponding tool wear 
becomes a potential solution. There has been much research 
focusing on deep-learning-based tool wear prediction, while 
this research will investigate the potential of active labelling 
and transfer learning. The tool wear dataset from the PHM 
society conference data challenge consists of the monitoring 
signal and tool wear value for three blades of two cutting tools 
(C4 and C6). The experiments were conducted to answer the 
following questions: 

 
• Whether the active initial labelled dataset performs better 

than the random initial labelled dataset? 
• Whether transfer learning can improve the performance of 

the model? 
• Whether the distribution of the target data will influence 

the performance of transfer learning? 
• Whether active learning can improve the performance of 

the model effectively? 

 Tool C6B3 and C4B2 are selected as the source tool and 
the target tool, respectively. As shown in Fig. 2, the deep 
learning structures of the two tasks are the same. Four 1-D 
convolution modules are introduced to extract features from 
the input monitoring signal series. Each convolution module 
consists of a convolution layer, a batch normalisation layer 
and a max-pooling layer. After the pre-training model of the 
source tool, the parameters of the feature extraction layers are 
frozen and reused for the target tool. Three full connected 
layers that map the features to the output tool wear values are 
fine-tuned to adapt the distribution difference between the two 
datasets. The configurations of the neural network are listed in 
Table 1. 

3.2. Results of initial active labelling 

We first investigate the influence of the distribution of the 
labelled data on the source tool. An initially labelled dataset, 
marked as the coreset, is first generated by K-means datasets 

Table 1. The configurations of the neural network. 
Item of the neural network Column A (t) 

Convolution modules Cov(1,64,5, stride =5)+BN+ Relu 

Cov(64,64,5, stride =5)+BN+ Relu 

Cov(64,64,5, stride =5)+BN+ Relu 

Cov(64,64,3, stride =5)+BN+ Relu + flatten 

Linear layer 384→64→16→1 

Optimiser Adam 

Learning rale 1c-3 

Epoch 100 

are generated for comparison. The rest labelled data are 
defined as test data to evaluate the Mean Absolute Error 
(MAE): 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
∑𝑖𝑖=1
𝑛𝑛  �𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖� (6) 

where 𝑦𝑦𝑖𝑖 and 𝑦̂𝑦𝑖𝑖 are the real tool wear and the predicted result 

respectively. 

As shown in Fig. 3a, the blue curve is the predicted tool 
wear result of coreset, while the multiple purple curves refer 
to the predicted results of 100 groups of random labelled 
dataset. It is clear that the coreset result shows a satisfactory 
consistency with the ground truth while the random results are 
particularly. 

The statistical result of MSEs for all random datasets is 
shown in Fig. 3b. Most of MSEs lie between 5 𝑢𝑢𝑢𝑢 to 10𝑢𝑢𝑢𝑢, 
whereas the minimum is around 3𝑢𝑢𝑢𝑢, and the maximum can 
be larger than 35 𝑢𝑢𝑢𝑢 . This figure demonstrates that the 
distribution of labelled data has a significant influence on the 
performance of the data-driven model. The red line in Fig. 3b 
refers to the coreset result with MAE = 4.31 𝑢𝑢𝑢𝑢. Although 
the coreset cannot achieve the best result of random datasets, 
it can provide a relatively stable result better than 90% of 
random datasets. 

3.3. Results of iterative active labelling 
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The uncertainty based method is used as the iterative query 
strategy in this case study. For classification problems, the 
soft-max activation function of the output layer can be treated 
as probabilistic information of the corresponding layers. 
However, for regression problems, normal deep neural 
networks can only give a predicted variable as the output 
without any uncertainty information. Bayesian neural network 
or Gaussian Process Regression (GPR) are widely used 
probabilistic models which can provide uncertainty for 
iterative active labelling. 

Then iterative active labelling procedure is shown in Fig. 
4. We use the signal features extracted from the pre-trained 
convolution modules, represented by 𝜓𝜓(𝐗𝐗), as the input to the 
GPR. For a give signal feature 𝑥𝑥∗ , the predicted tool wear 
value 𝑦𝑦𝑥𝑥 can be represented as a conditional distribution: 

 𝑝𝑝�𝑦𝑦∗ ∣ 𝐱𝐱∗,𝐗𝐗, 𝐲𝐲� = 𝒩𝒩�𝜇𝜇∗, Σ∗� (7)   

The standard solution of GRP consists of the predicted 
mean and variance of the sample 𝑥𝑥∗ ⋅ g 

𝜇𝜇𝑥𝑥 = 𝐊𝐊𝑥𝑥T𝐊𝐊−1𝐲𝐲𝐊𝐊𝑥𝑥 (8)   

Σ𝑥𝑥 = 𝐊𝐊𝑥𝑥𝑥𝑥 − 𝐊𝐊𝑥𝑥T𝐊𝐊−1𝐊𝐊𝑥𝑥 (9)   

Then the model can query the sample with the maximum 
variance and add the sample to the new labelled dataset. 

 
An implementation of the iterative active labelling for tool 

C6B3 is shown in Fig. 5. Starting with only two training 
samples, the initial MAE is very large (MAE = 55.45 𝑢𝑢𝑢𝑢 in 
Fig. 5a). Then the next sample could be determined by the 
uncertainty of the current prediction result. After adding the 
new samples, the maximum uncertainty would be reduced 
directly. The uncertainty function fluctuates wildly because of 
the noise of the input signal and the error from feature 
extraction. But the underlying trend of the uncertainty 
function does describe which samples in the feature space are 
more desirable. For example, Fig. 5b shows that exiting 
samples located in the region with fewer milling times, so the 
trained model shows great uncertainty for samples with larger 
milling time. Note that, the information 'milling time' is 
inaccessible during training. The query strategy determines 
the target based on the features of the monitoring signals. 
After querying five times, the distribution of the selected 
samples could cover the primary range of the feature space, 
and then the MAE is reduced significantly to only 6.13 𝑢𝑢𝑢𝑢 
(Fig. 5e).  

The results show that iterative active labelling can query 
desirable samples, which can potentially reduce the labelling 
efforts. An active learning solution to the tool wear prediction 
problem can work as an online monitoring system, predict the 
incoming data and determine whether it should be manually 
labelled. 

3.4. Results of transfer learning 

Fig. 3 The results of initial active labelling 

Fig. 5 The uncertainty-based active learning method in the case study 

（a） （b）

Feature
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Fig. 4 The results of iterative active labelling 
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Fig. 6 reports the results of transfer learning from the tool 
C6B3 to the tool C4B2. The feature extraction layers were 
first trained on the source tool C6B3, and then reused in the 
target tool C4B2. Fig. 6a shows the prediction result of the 
model trained by a random group of target data without 
transfer learning. The uncertainty is relatively large because 
the insufficient training data cannot provide prior information 
for all the feature space. After transferring the knowledge 
from source data, Fig. 6b shows a much better prediction 
result with MAE = 6.18 𝑢𝑢𝑢𝑢 . Besides, the initial active 
labelled coreset is defined as the target dataset to evaluate the 
influence of the target data distribution on the performance of 
transfer learning. The prediction results in Fig. 6c show that 
the coreset can improve the performance of transfer learning 
compared to the random target dataset. 

4. Conclusion 

Although data-driven models have significant potential in 
modelling the complex manufacturing process, the scarcity of 
labelled data hinders its practicability and further 
development. An active transfer learning framework is 
proposed for the data scarcity scenarios by integrating the 
active generation of labelled data and the processing of 
relevant data. The contribution of this paper can be 
summarised as follow: 

(1) The proposed framework can provide a general 
introduction for a wide range of data scarcity MPMs problems 
from three aspects: initial active labelling, iterative active 
labelling and transfer learning.  

(2) A series of experiments are carried out on the tool wear 
prediction problem. The results on the tool wear demonstrate 
that the three modules of the framework can reduce the 
labelled data requirements and enhance the performance of 
the data-drive model under limited labelled data. 

Acknowledgements 

This work was supported by the National Key R&D 
Programs of China (Grant No. 2020YFA0713704). 

References 

[1] Tan Jianrong, Liu Daxin, Liu Zhenyu, and Cheng Jin. Research on key 
technical approaches for the transition from digital manufacturing to 
intelligent manufacturing. Strategic Study of Chinese Academy of 
Engineering, 19(3):34–44, 2017. 

[2] Fei Tao, Nabil Anwer, Ang Liu, Lihui Wang, Andrew YC Nee, Liming 
Li, and Meng Zhang. Digital twin towards smart manufacturing and 
industry 4.0. Journal of manufacturing systems, 58:1–2, 2021. 

[3] Zuowei Zhu, Yassir Arezki, Na Cai, Charyar Mehdi-Souzani, Nabil 
Anwer, and Hichem Nouira. Data fusion-based method for the 
assessment of minimum zone for aspheric optics. Computer-Aided 
Design and Applications, 18(2):309–327, 2020. 

[4] Andrew Kusiak. Smart manufacturing. International Journal of 
Production Research, 56(1-2):508–517, 2018. 

[5] Zuowei Zhu, Nabil Anwer, Qiang Huang, and Luc Mathieu. Machine 
learning in tolerancing for additive manufacturing. CIRP Annals, 
67(1):157–160, 2018. 

[6] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, 
Brij B Gupta, Xiaojiang Chen, and Xin Wang. A survey of deep active 
learning. ACM Computing Surveys (CSUR), 54(9):1–40, 2021. 

[7] Mateo Leco, Thomas McLeay, and Visakan Kadirkamanathan. A two-
step machining and active learning approach for right-first-time robotic 
counter-sinking through in-process error compensation and prediction 
of depth of cuts. Robotics and Computer-Integrated Manufacturing, 
77:102345, 2022. 

[8] AJ Hughes, Lawrence A Bull, P Gardner, Robert James Barthorpe, 
Niko-laos Dervilis, and Keith Worden. On risk-based active learning for 
structural health monitoring. Mechanical Systems and Signal 
Processing, 167:108569, 2022. 

[9] Giovanna Martinez Arellano and Svetan Ratchev. Towards an active 
learning approach to tool condition monitoring with bayesian deep 
learning, 2019. 

[10] Milad Ramezankhani, Apurva Narayan, Rudolf Seethaler, and Abbas S 
Milani. An active transfer learning (atl) framework for smart 
manufacturing with limited data: case study on material transfer in 
composites processing. In 2021 4th IEEE International Conference on 
Industrial Cyber-Physical Systems (ICPS), pages 277–282. IEEE, 2021. 

[11] Ansi Zhang, Honglei Wang, Shaobo Li, Yuxin Cui, Zhonghao Liu, 
Guanci Yang, and Jianjun Hu. Transfer learning with deep recurrent 
neural networks for remaining useful life estimation. Applied Sciences, 
8(12):2416, 2018 

[12] Sif Eddine Sadaoui, Charyar Mehdi-Souzani, and Claire Lartigue. 
Multisensor data processing in dimensional metrology for collaborative 
measurement of a laser plane sensor combined to a touch probe. 
Measurement, 188:110395, 2022. 

[13] Punit Kumar and Atul Gupta. Active learning query strategies for 
classification, regression, and clustering: a survey. Journal of Computer 
Science and Technology, 35(4):913–945, 2020. 

[14] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of 
transfer learning. Journal of Big data, 3(1):1–40, 2016. 

[15] Xu Liu, Yingguang Li, Qinglu Meng, and Gengxiang Chen. Deep 
transfer learning for conditional shift in regression. Knowledge-Based 
Systems, 227:107216, 2021. 

 
 

Fig. 6 The results of transfer learning 


