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Abstract: Non-localized impulsive sources are ubiquitous in underwater acoustic applications. However, analytical expres-
sions of their acoustic field are usually not available. In this work, far-field analytical solutions of the non-homogeneous scalar
Helmholtz and wave equations are developed for a class of spatially extended impulsive sources. The derived expressions can
serve as benchmarks to verify the accuracy of numerical solvers. VC 2023 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Analytical solutions of partial differential equations (PDEs) are employed in many scientific disciplines, as they provide a basic
understanding of physical phenomena. Furthermore, in the last few decades, with the rapid development of computational
physics,1,2 they have become an essential tool for evaluating the accuracy of numerical methods. In acoustic propagation models,
explicit analytical solutions are commonly derived for PDEs with point sources3 that are formally defined as Dirac distribu-
tions. However, real sources in physical applications have a natural spatial extent and, consequently, exhibit specific directivity
patterns. In addition, unlike computational approaches based on the integral formulation of a PDE, such as finite elements,2

numerical methods based on a direct discretization of a PDE, for instance, finite-difference (FD) algorithms,1 are intrinsically
unable to handle point sources arbitrarily located within a grid.4–6 When using an FD method, a point source is replaced by a
regularized approximant of the Dirac distribution (a kernel function), and the numerical solution is then sought for the modi-
fied PDE. However, approximating a point source with a continuous function unavoidably introduces a regularization error
that limits the accuracy of the numerical scheme irrespectively of the formal convergence order of the computational algo-
rithm.5 To cope with this issue, spatially extended sources that do not require any regularization may be employed.1

This study focuses on far-field analytical solutions to the non-homogeneous scalar Helmholtz and wave equa-
tions for sources with a finite aperture. Spatially extended forcing terms can be used to model realistic sources, and the
analytical expressions derived in this work can be utilized in problems originally solved with point sources. As an illustra-
tion, the classical problem of acoustic scattering from elastic objects7 can be revisited with incident waves generated by
sources with specific spatial apertures and directivity patterns. In addition, spatially extended sources can be implemented
in FD codes without any regularization, and the subsequent numerical error is only due to the discretization and the prop-
erties of the chosen FD scheme. The remainder of the manuscript is organized as follows. The Helmholtz and wave equa-
tions are briefly presented in Sec. 2. The far-field analytical solution to the Helmholtz equation for spatially extended sour-
ces is described in Sec. 3. The solution to the wave equation is then derived for a particular kind of non-localized source
in Sec. 4. The effects of the source spatial aperture on the acoustic far field and on the accuracy of numerical methods
based on FD schemes are discussed in Sec. 5. Concluding remarks are finally drawn in Sec. 6.

2. Problem statement

The wave equation for the acoustic pressure p(r, t) due to a source sðr; tÞ is3

r2 � 1
c2

@2

@t2

� �
pðr; tÞ ¼ �sðr; tÞ; (1)

where r 2 Rd is the position vector in d 2 f1; 2; 3g spatial dimensions, t 2 R denotes time, and c 2 R>0 is the speed of
sound. Herein, we consider fixed sources and we assume that the function s is separable in space and time,
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sðr; tÞ ¼ bðrÞqðtÞ; (2)

where bðrÞ describes the spatial aperture with support As � Rd centered around the reference location rc 2 As, and q(t) is
the temporal envelope or transmitted waveform. The function bðrÞ is a non-negative integrable function normalized so as

ð

As

bðrÞdr ¼ 1: (3)

As a consequence, when the support As is reduced to the point rc, the aperture bðrÞ tends, in the distributional sense, to
the Dirac generalized function dðr� rcÞ (Ref. 8, Sec. 3.3). After applying the temporal Fourier transform, the acoustic pres-
sure in the frequency domain f, Pðr; f Þ, satisfies the Helmholtz equation

r2 þ k2ð ÞPðr; f Þ ¼ �bðrÞQðf Þ; (4)

where k ¼ 2pf =c is the wave number.

3. Acoustic pressure in the frequency domain

The solution to the Helmholtz Eq. (4) is provided by the integral3

Pðr; f Þ ¼ Qðf Þ
ð

As

bðrsÞGdDðrjrs; f Þdrs; (5)

where GdDðrjrs; f Þ denotes the d-dimensional Green’s function, i.e., the solution to the Helmholtz Eq. (4) for
bðrÞ ¼ dðr� rsÞ. In the far-field, i.e., for kkr� rsk2 � 1, using the Fraunhofer approximation,3 the Green’s function can
be approximated as

GdDðrjrs; f Þ � GdDðrjrc; f Þe�jk0 �r0s ; (6)

where k0 ¼ kr̂ 0 is the wavenumber vector in the direction of r̂0 ¼ ðr� rcÞ=kr� rck2 and r0s ¼ rs � rc. The expressions of
the Green’s function term GdDðrjrc; f Þ for d 2 f1; 2; 3g are found in Table 1. Therefore, for far-field propagation, Eq. (5)
can be approximated as

Pðr; f Þ ¼ GdDðrjrc; f ÞQðf Þ
ð

As

bðr0sÞe�jk0�r0sdr0s: (7)

In Eq. (7), the integral is the spatial Fourier transform of the aperture in the direction of k0, i.e., the transmitter
beampattern

Bðk0Þ �
ð

As

bðr0sÞe�jk0�r0sdr0s; (8)

while the product GdDðrjrc; f ÞQðf Þ is the sound field induced by a point source with temporal envelope q(t) located at the
center rc of the aperture. Indeed, when the support As is shrunk to rc, the aperture is described by the Dirac distribution
bðr0sÞ ¼ dðr0sÞ, so that Bðk0Þ ¼ 1. Concisely, the far-field pressure Pðr; f Þ at r due to a source centered at rc, with a wave-
form spectrum Q(f) and a beampattern Bðk0Þ, is given by the product

Pðr; f Þ ¼ GdDðrjrc; f ÞQðf ÞBðk0Þ: (9)

Sections 3.1 and 3.2 describe the waveform spectra Q(f) and beampatterns Bðk0Þ for specific source functions typically
employed in underwater acoustics.

Table 1. Green’s function term GdDðrjrc; f Þ for far field-propagation in a one-, two-, or three-dimensional space.

Space dimension GdDðrjrc; f Þ

d¼ 1 jejkkr�rck2

2k
d¼ 2 þ j

4
Hð1Þ

0 ðjkjkr� rck2Þ; k > 0

� j
4
Hð2Þ

0 ðjkjkr� rck2Þ; k < 0

’ sgnðkÞj
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pjkjkr� rck2

s
ejkkr�rck2�sgnðkÞjp=4

d¼ 3 ejkkr�rck2

4pkr� rck2
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3.1 Waveforms

We consider two waveforms, namely the linear frequency modulated pulse (LFMP) and the Gaussian-weighted polynomial
pulse (GWPP), which include the continuous wave and the Ricker wavelet, respectively, as special cases. Hereafter, we
denote the pulse center as tc and the central frequency as fc.

3.1.1 LFMP

An LMFP is here defined as the waveform

qðtÞ ¼ e�ðt�tcÞ2=s2q cos 2pfcðt � tcÞ þ
pDf
sq

ðt � tcÞ2
 !

; (10)

where sq is the pulse duration and Df the frequency bandwidth. A continuous wave is a special case of an LFMP with
Df ¼ 0. The spectrum of the LFMP (10) can be written explicitly as (Ref. 9, integral 3.462.2, p. 365)

Qðf Þ ¼
X2

i¼1

ffiffiffiffiffiffiffi
p
4ri

r
e ð�1Þi2p2fc=riþj2ptc½ �f�p2ðf 2þf 2c Þ=ri ; (11)

where r1 ¼ 1=s2q � jpDf =sq and r2 ¼ r	1 with the asterisk denoting complex conjugation.

3.1.2 GWPP

A GWPP is here defined by the expression

qðtÞ ¼ e�p2f 2c ðt�tcÞ2
Xn

i¼0

biðt � tcÞi; (12)

where n 2 N0 is the degree of the polynomial with coefficients bi 2 R. Note that the GWPP in Eq. (12) can be inter-
preted as a weighted truncated Taylor series and can therefore approximate an infinitely differentiable waveform.

The spectrum of the GWPP is (Ref. 9, integral 3.462.4, p. 365)

Qðf Þ ¼
Xn

i¼0

bie
j2pftc

ðþ1

�1
sie�p2f 2c s

2
ej2pf sds ¼ 2

ffiffiffi
p

p
ej2pftc�ðf =fcÞ2

Xn

i¼0

j�ibið2pfcÞ�ðiþ1ÞHi � f
fc

� �
; (13)

where Hi denotes the Hermite polynomial of order i. The Ricker wavelet q(t) is a special case of GWPP with parameters
n¼ 2, b0 ¼ 1; b1 ¼ 0, and b2 ¼ �ð2pfcÞ2=2, resulting in the frequency spectrum

Qðf Þ ¼ 2f 2ffiffiffi
p

p
f 3c
ej2pftc�ðf =fcÞ2 : (14)

Table 2 summarizes the waveforms considered in this work and the corresponding spectra.

3.2 Beampatterns

We focus on typical aperture shapes encountered in underwater acoustic applications, i.e., the rectangular and the elliptical
aperture, which are generalized in 3D as the parallelepipedal and the ellipsoidal or cylindrical sources, respectively. We
include also the theoretically interesting case of a Gaussian aperture function.

3.2.1 Parallelepipedal aperture

The aperture of a parallelepipedal source is defined as

bðr0sÞ ¼
Yd

l¼1

1
al
rect

r0sl
al

� �
; (15)

where al 2 Rþ; l ¼ 1;…; d are the sides and “rect” is the rectangular function. Its beampattern is given by the expression

Table 2. Pulse waveforms q(t) and corresponding spectra Q(f).

Pulse q(t) Q(f)

LFMP e�ðt�tcÞ2=s2q cos ð2pfcðt � tcÞ þ pDf
sq

ðt � tcÞ2Þ X2

i¼1

ffiffiffiffiffiffiffi
p
4ri

r
e½ð�1Þi2p2 fc=riþj2ptc �f�p2ðf 2þf 2c Þ=ri

GWPP e�p2 f 2c ðt�tcÞ2
Xn

i¼0

biðt � tcÞi
2

ffiffiffi
p

p
ej2pftc�ðf =fcÞ2

Xn

i¼0

j�ibið2pfcÞ�ðiþ1ÞHi � f
fc

� �
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Bðk0Þ ¼
Yd

l¼1

1
al

ðþal=2

�al=2
e�jk0l r

0
sl drsl ¼

Yd

l¼1

sinc
k0lal
2

� �
; (16)

with sinc the unnormalized sine cardinal function.

3.2.2 Ellipsoidal and elliptic cylindrical apertures

The aperture of an ellipsoidal source is defined as

bðr0sÞ ¼ C 1þ d
2

� � Yd

l¼1

1

p1=2al

 !
rect

1
2

Xd

l¼1

r0sl
2

a2l

 !
; d 
 2; (17)

where al 2 Rþ; l ¼ 1;…; d are the semiaxes and C is the Gamma function. Its beampattern is provided by the integral

Bðk0Þ ¼ 1

pd=2
C 1þ d

2

� �ð

As

rect
kzk22
2

� �
e
�j
Pd
l¼1

k0lal zl
dz; (18)

where z is a scaled position vector with components r0sl=al; l ¼ 1;…; d. The term rectðkzk22=2Þ is radial and, according to
Ref. 10 (Sec. B.5), the beampattern (18) is given by the expression

Bðk0Þ ¼ 2d=2C 1þ d
2

� �
J d=2 kk0� ak2

� �

kk0� akd=22

; (19)

where the term k0� a is the element-wise product between k0 and a ¼ ða1;…; adÞ 2 Rd , and J � is the vth-order Bessel
function of the first kind. The aperture of an elliptic cylindrical source is defined as

bðr0sÞ ¼
1
p

Y3

l¼1

1
al

 !
rect

1
2

X2

l¼1

r0sl
2

a2l

 !
rect

r0s3
a3

� �
; (20)

where al 2 Rþ; l ¼ 1;…; 2 are the semiaxes and a3 2 Rþ is the cylinder’s height. Its beampattern is given by

Bðk0Þ ¼ 2
J 1 kk0� ak2

� �

kk0� ak2
sinc

k03a3
2

� �
: (21)

3.2.3 Gaussian aperture

The beampattern of the Gaussian aperture

bðr0sÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞd

q
Yd

l¼1

1
al
e�r0sl

2= 2a2lð Þ; (22)

where al 2 Rþ; l ¼ 1;…; d are the standard deviations, is finally given by the expression (Ref. 9, integral 3.462.2, p. 365)

Bðk0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞd

q
Yd

l¼1

1
al

ðþ1

�1
e�r0sl

2= 2a2lð Þ�jk0l r
0
sl dr0sl ¼

Yd

l¼1

e� k0lalð Þ2=2: (23)

Table 3 summarizes the aperture/beampattern pairs.

3.3 Acoustic far-field in the frequency domain

The far-field sound pressure in the frequency domain Pðr; f Þ is given by Eq. (9). Depending on the application of interest,
the corresponding terms for the Green’s function term GdDðrjrc; f Þ, the waveform Q(f) and the beampattern Bðk0Þ can be
inserted from the Tables 1, 2, and 3, respectively.

4. Acoustic pressure in the time domain

The pressure signal pðr; tÞ induced in the far-field of a spatially extended source is obtained through the inverse temporal
Fourier transform of Eq. (9),

pðr; tÞ ¼
ðþ1

�1
GdDðrjrc; f ÞQðf ÞBðk0Þe�j2pftdf : (24)

While closed-form expressions for the wavefield induced by realistic sources are generally unavailable, an explicit formula
for the sound pressure in the time domain can be derived for the theoretical case of a Gaussian aperture with a Ricker
waveform. Introduce the retarded time tr,
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tr ¼ t � tc �
kr� rck2

c
;

and the characteristic frequency ~fc,

1

~f
2
c

¼ 1
f 2c

þ
Xd

l¼1

2p2 r̂ l 02a2l
c2

; d ¼ 1; 2; 3;

where r̂ 0l is the lth component of the unit vector r̂ 0.
For d¼ 1, inserting G1D, Q, and B from Tables 1, 2, and 3 into Eq. (24) yields (Ref. 9, integral 3.462.2, p. 365)

pðr; tÞ ¼ jc
2p

ffiffiffi
p

p
f 3c

ðþ1

�1
fe�f 2=~f

2
c�j2pftr df ¼ 1

2

~f
3
c

f 3c
ctr e

�p2~f
2
c t

2
r : (25)

For d¼ 2, the sound pressure in the time domain is (Ref. 9, integral 3.462.1, p. 365)

pðr; tÞ ¼ < C
5
2

� �
je�jp=4

p
ffiffiffi
p

p
f 3c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

kr� rck2

r ~f
2
c

2

 !5=4

W j21=2p~f ctr
� �

8
<
:

9
=
;; (26)

where < indicates the real part and

WðzÞ ¼ 4

3p1=2
z
2

� �5=2

2KðeÞ
1=4

z2

4

� �
� 3KðeÞ

3=4

z2

4

� �
þKðeÞ

5=4

z2

4

� �	 

; (27)

with KðeÞ
� the vth-order exponentially scaled modified Bessel function of the second kind. Finally, for d¼ 3, the sound

pressure in the time domain is (Ref. 9, integral 3.462.2, p. 365)

pðr; tÞ ¼ 1
4pkr� rck2

~f
3
c

f 3c
1� 2p2~f

2
c t

2
r

h i
e�p2~f

2
c t

2
r : (28)

5. Applications

5.1 Influence of the source spatial aperture on the far-field acoustic pressure

By virtue of Eq. (3), the beampattern Bðk0Þ tends to 1 in the limit f ! 0. Furthermore, since bðrÞ is a non-negative inte-
grable function, Bðk0Þ goes to 0 as jf j ! 1 according to the Riemann-Lebesgue lemma (Ref. 10, proposition 2.2.17).
Therefore, since Pðr; f Þ ¼ Prcðr; f ÞBðk0Þ, the beampattern Bðk0Þ behaves as a low-pass frequency filter of the ponctual
response Prcðr; f Þ ¼ GdDðrjrc; f ÞQðf Þ. In particular, as a result of the scaling property of the Fourier transform, the broader
is the source aperture, the narrower is the beampattern, and consequently the wider is the range of suppressed frequencies.
This low-pass filtering effect is exemplified in Fig. 1 for a 1D Gaussian aperture with standard deviation a1.

5.2 Source representation in FD algorithms

The analytical expressions for the far-field acoustic pressure due to spatially extended sources, as derived in this study, can
serve as benchmarks for evaluating the accuracy of numerical algorithms. As an illustration, we consider a one-
dimensional problem with a point source located at rc ¼ 0:11mm, and transmitting a Ricker temporal waveform with

Table 3. Source aperture functions bðr0sÞ and corresponding beampatterns Bðk0Þ. The term k0� a is the element-wise product between k0 and
a ¼ ða1;…; adÞ 2 Rd .

Aperture bðr0sÞ Bðk0Þ

Parallelepipedal Yd

l¼1

1
al
rect

r0sl
al

� � Yd

l¼1

sinc
k0lal
2

� �

Ellipsoidal
C 1þ d

2

� � Yd

l¼1

1

p1=2al

 !
rect

1
2

Xd

l¼1

r0sl
2

a2l

 !
2d=2C 1þ d

2

� �
J d=2ðkk0� ak2Þ
kk0� akd=22

Cylindrical 1
p

Y3

l¼1

1
al

 !
rect

1
2

X2

l¼1

r0sl
2

a2l

 !
rect

r0s3
a3

� �
2
J 1ðkk0� ak2Þ
kk0� ak2

sinc
k03a3
2

� �

Gaussian 1ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞd

q
Yd

l¼1

1
al
e�r0sl

2=ð2a2l Þ
Yd

l¼1

e�ðk0lalÞ
2=2
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parameters c ¼ 1500m/s, tc ¼ 0:2ms, and fc ¼ 15 kHz. The analytical solution p(r, t) is given by Eq. (25) with a1 ¼ 0.
The numerical solution pDðr; tÞ is calculated as follows: the wave equation is first reformulated as a first-order hyperbolic
system and is discretized on an N-node grid with uniform spacing D: for i ¼ 1;…;N; ri 2 ½rmin; rmaxÞ; ri ¼ rmin

þði� 1ÞD; N ¼ b1þ ðrmax � rminÞ=Dc; then, the spatial derivative is computed by the standard fourth-order FD scheme
and time integration is performed via the classical fourth-order Runge-Kutta method; the point source is finally imple-
mented via the continuous approximant4

dDðr � rcÞ ¼
1
D

1� jr � rcj
D

� �
; jr � rcj < D

0 otherwise;

8
><
>:

(29)

which does not vanish only at the end-nodes of the cell containing rc. The L1-norm error E1ðtÞ at instant t is used to
quantify the accuracy of the algorithm

E1ðtÞ ¼
1
N

XN

i¼1

jpðri; tÞ� pDðri; tÞj: (30)

In Fig. 2(a), the numerical waveform calculated at t ¼ tmax ¼ 2:5ms with D ¼ c=ð20fcÞ is compared to the analytical solu-
tion. Spurious oscillations clearly contaminate the numerical result. Figure 2(b) illustrates the behaviour of E1ðtmaxÞ for dif-
ferent values of c=ðfcDÞ. The blue curve is obtained by including all the computational nodes in the sum in Eq. (30),
whereas only points ri in the range ri 2 ð3; 4Þ m are employed for the red curve. In this second case, the error due to the
spurious oscillations is not accounted for in E1ðtmaxÞ. Nevertheless, although the algorithm is formally fourth-order accu-
rate in both space and time, E1 goes to zero as D2 at best. This result can be explained by noting that dDðr � rcÞ is only a
second-order accurate approximation of dðr � rcÞ. More specifically, as highlighted by6

Fig. 1. Beampattern of a 1D source with Gaussian aperture (a) as a function of k01a1 and (b) as a function of frequency for different aperture
sizes in dB re max.

Fig. 2. One-dimensional wave equation with a point source with Ricker waveform: (a) comparison between numerical and analytical solu-
tions; (b) L1-norm error E1ðtmaxÞ (blue squares) and L1-norm error E1ðtmaxÞ calculated by including only computational nodes ri in the range
ri 2 ð3; 4Þ m (red diamonds).
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ðþ1

�1
/ðrÞdDðr � rcÞdr ¼

ðþ1

�1
/ðrÞdðr � rcÞdr þO D2ð Þ ¼ /ðrcÞ þ O D2ð Þ; (31)

for any infinitely differentiable compactly supported test function /. As a consequence, the main contribution to E1 is not
due to the FD discretization but instead to the approximation dD of the Dirac distribution d. To solve this issue, higher-
order discretizations of d have been proposed,4–6 with the works on particle methods leading the research field.11 The pre-
sent work provides an alternative approach for validating numerical schemes. Spatially extended Gaussian sources can
indeed be implemented in FD-based methods without any regularization. To clarify this point, the one-dimensional wave
equation is reconsidered with an extended source centered at rc and with Gaussian aperture of width a1 ¼ c=ð5fcÞ. The
analytical expression of p(r, t) is given by Eq. (25). Two numerical solutions are computed: in both simulations, the classi-
cal fourth-order Runge-Kutta method is again employed for time integration; the spatial derivative is now calculated with
the standard second- and fourth-order centered FD schemes. Figure 3 depicts the error E1 for different values of D and
clearly demonstrates that E1 behaves as desired according to the formal order of the FD scheme.

6. Concluding remarks

Explicit analytical expressions for the acoustic far-field induced by spatially extended sources have been derived. In partic-
ular, a general far-field solution to the non-homogeneous Helmholtz equation has been developed; far field solutions to
the wave equation have been provided for the theoretical case of sources with Gaussian spatial aperture and Ricker tempo-
ral envelope. These formulas can be useful in numerous acoustic applications as well as in computational physics, espe-
cially for evaluating the accuracy of numerical methods based on a direct discretization of the Helmholtz and wave
equations.
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