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Abstract

Motivated by different characterizations of planar graphs and the 4-Color The-
orem, several structural results concerning graphs of high chromatic number have
been obtained. Toward strengthening some of these results, we consider the balanced
chromatic number, χb(Ĝ), of a signed graph Ĝ. This is the minimum number of
parts into which the vertices of a signed graph can be partitioned so that none of
the parts induces a negative cycle. This extends the notion of the chromatic number
of a graph since χ(G) = χb(G̃), where G̃ denotes the signed graph obtained from G
by replacing each edge with a pair of (parallel) positive and negative edges. We
introduce a signed version of Hadwiger’s conjecture as follows.

Conjecture. If a signed graph Ĝ has no negative loop and no K̃t-minor, then its
balanced chromatic number is at most t− 1.

We prove that this conjecture is, in fact, equivalent to Hadwiger’s conjecture and
show its relation to the Odd Hadwiger Conjecture.

Motivated by these results, we also consider the relation between subdivisions and
balanced chromatic number. We prove that if (G, σ) has no negative loop and no K̃t-
subdivision, then it admits a balanced 79

2 t2-coloring. This qualitatively generalizes
a result of Kawarabayashi (2013) on totally odd subdivisions.

1 Introduction

The 4-Color Theorem (4CT) has been the driving engine behind many of the develop-
ments in graph theory. The characterization of planar graphs as the class of graphs
with no K5 or K3,3-minor (Wagner [17]), or as the class of graphs with no K5- or K3,3-
subdivision (Kuratowski [11]) has led to various conjectures which generalize the 4CT,
mostly in the form of the following question: Given a graph of high chromatic number,
what sort of structure(s) are we sure to have in G? A stronger version of the 4CT,
obtained through Wagner’s characterization of K5-minor-free graphs [17], tells us that if
the chromatic number of G is at least 5, then G must contain a K5-minor. On the other
hand, the 4CT and Kuratowski’s characterization of planar graphs imply that every 5-
chromatic graph contains either a K5 or a K3,3-subdivision, and it remains open whether
we can always find a K5-subdivision in such a graph. To consider similar problems for
graphs with arbitrary chromatic number we use the following notation.
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Definition 1. Given a positive integer t, let Ct be the class of graphs of chromatic number
at least t. Then M(t) and T (t) are defined to be, respectively, the largest k and ℓ such
that every member of Ct contains Kk as a minor and Kℓ as a subdivision.

Using this terminology, the well-known Hadwiger’s conjecture is reformulated as follows.

Conjecture 2 (Hadwiger [7]). M(t) = t for every positive integer t.

Similarly, Hájos conjectured that T (t) = t. However, Hájos’ conjecture has been shown
to be false for t ≥ 7, remains open for t = 5, 6, and is verified for t = 3, 4. We refer the
reader to [18] and the references therein for more on the open cases of Hájos’ conjecture.

Currently the best general upper bound known on the chromatic number ofKt-minor-free
graphs is that of Delcourt and Postle [5] who prove a O(t log log t) upper bound. The best
known general upper bound for the chromatic number of graphs with no Kt-subdivision
is O(t2) proved independently in [1] and [10].

While these results are among the most famous results on the structure of graphs of
high chromatic number, their strength (and even the strength of the conjectured values,
if proved to be correct) has also been subject to challenge. To best express this let us
first look at the case t = 3 of Hadwiger’s conjecture: the set of K3-minor-free graphs
is that of acyclic graphs. While it is true that they are 2-colorable, we readily have a
much stronger result: a graph is 2-colorable if (and only if) it has no odd cycle. More
generally, given a graph G if even just one edge is blown up to a large complete bipartite
graph, then while the chromatic number of the resulting graph G′ remains the same, the
order of clique-minor or clique-subdivision one can find in G′ increases with the order of
the complete bipartite graph considered.

This issue has been dealt with in the literature by refining the containment relations
in question in several different ways. The starting point is a result of Catlin [3] who
proved that if G is not 3-colorable then it has a subdivision of K4, the triangles of
which correspond to odd cycles in G. From here, two extensions have been proposed.
On the one hand, Gerards and Seymour, independently, introduced the Odd Hadwiger
Conjecture (presented in Section 2) which, as we will see, is rooted in the idea of minors
in signed graphs. On the other hand, further inspired by a result of Zang [19], various
extensions of results for subdivisions in graphs of high chromatic number have been
obtained.

While these extensions manage to deal with the above-mentioned issues, proving results
towards the corresponding conjectures can be particularly complicated. For instance,
when working towards the Odd Hadwiger Conjecture, induction cannot be easily applied
because the contraction operation, which must be done in combination with a switch,
takes one outside of the desired class of graphs. Working within the more general frame-
work of signed graphs can help in this regard and in this paper we aim to identify notions
of coloring in signed graphs which are most suitable to deal with such problems.

The rest of the paper is organized as follows. In Section 2 we discuss signed graphs, their
minors and their colorings. In Section 3 we present a conjecture on balanced colorings of
signed graphs that trivially generalizes Hadwiger’s conjecture but is, in fact, equivalent
to it. We also study our conjecture’s relation to the odd-Hadwiger’s conjecture. Finally,
in Section 4 we study the presence of subdivisions in signed graphs with high balanced
chromatic number, qualitatively generalizing a result of Kawarabayashi [9].
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2 Signed graphs

Signed graphs offer a more complete model of networks (such as social ones), as compared
to graphs. While a graph model for a network can only capture if two objects of the
network are joined or not, in a signed graph model such a connection can be of two
possible types: positive and negative.

We use (G, σ) to denote a signed graph where σ(e) determines the sign of the edge e in
G. When the signature σ makes no difference, we take Ĝ as a signed graph. The signed
graph on G where all edges are negative is denoted by (G,−). For the purpose of this
work, the most natural interpretation of graphs as a subclass of signed graphs is to see
them as the class of signed graphs with all edges being negative.

Given a graph G, the signed graph G̃ is built from G by replacing each edge with two
(parallel) edges: one positive and one negative. Signed graphs are normally equipped
with the following basic but key mathematical operation: given a vertex v, a switching
at v consists of multiplying the signs of all edges incident to v by a −. The sign of a
substructure (subgraph, minor, etc.) of (G, σ) is the product of the signs of the edges of
such structure (considering multiplicity). A key observation is that signs of cycles and
closed walks are invariant under the switching operation.

Signed graphs in this paper are permitted to have loops and parallel edges, unless oth-
erwise stated. When stating results about coloring however, negative loops will never be
considered.

2.1 Minors of signed graphs

The notion of minors for signed graphs mirrors natural grouping in a social network:
One can be added to a group if one already has a “positive” relation with some member
of the group. Formally, a signed graph (H,π) is said to be a minor of the signed graph
(G, σ) if it is obtained from (G, σ) by a series of vertex or edge deletions, contraction of
positive edges, and switchings. Just as with switching, the contraction operation does
not change the sign of a cycle. Thus, unless a cycle is deleted, its image in (H,π) is a
closed walk of the same sign. Within graphs (noting that sign takes the role of parity
in unsigned graphs) this means that the parity of signs is preserved, and this allows for
graphs excluding K3 as an odd-minor to be precisely the graphs with no odd cycle.

The Odd Hadwiger Conjecture, proposed independently by Gerards and Seymour, is the
following strengthening of Hadwiger’s conjecture.

Conjecture 3 (Odd-Hadwiger). If χ(G) ≥ t, then (G,−) has a (Kt,−)-minor.

As a general signature is not needed in this statement, the conjecture is normally pre-
sented in the language of 2-vertex colored graphs where the colors actually indicate
whether a switching has occurred at a vertex or not. For references and some earlier
work on the conjecture see [6].

We define OCt to be the class of signed graphs (G,−) where χ(G) ≥ t. Let OM(t) be
the largest k such that (Kk,−) is a minor of every element of OCt. In this language, the
Odd Hadwiger Conjecture claims that OM(t) = t.
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2.2 Coloring signed graphs

A signed graph is said to be balanced if it contains no negative cycles. This is equivalent
to finding an edge-cut whose edges are all negative with all other edges positive (see [8]
and [21] for a generalization).

Definition 4. The balanced-chromatic number of a signed graph Ĝ, denoted χb(Ĝ), is
defined to be the minimum number of parts into which V (Ĝ) can be partitioned so that
each part induces a balanced subgraph.

It is obvious from the definition that Ĝ admits a balanced coloring for some k (k ≤
|V (Ĝ)|) if and only if it has no negative loops. If it has a negative loop then we may
write χb(Ĝ) = ∞. The notion of balanced coloring generalizes the notion of proper
coloring of graphs by the observation that χ(G) = χb(G̃).

One easily observes that a signed graph (G, σ) admits a balanced k-coloring if and only
if the signed graph (G,−σ) admits a 0-free k-coloring in the sense of [20]. Thus some
results on 0-free colorings apply to balanced colorings as well. For example it follows
from the result of [12] that every 2k-degenerate signed simple graph admits a balanced
k-coloring.

A refinement of balanced coloring is the notion of circular coloring of signed graphs, first
given in [14]. As in the case of 0-free coloring, the definition is slightly modified here to
better suit the relation with minor theory. A circular r-coloring (r ≥ 2) of a signed graph
Ĝ is an assignment ϕ of the vertices of Ĝ to the points of a circle O of circumference r
such that for each negative edge xy, ϕ(x) and ϕ(y) are at distance at least 1, and that
for each positive edge zt, ϕ(z) and ϕ(t) are at distance at most r

2 − 1 (equivalently, the

distance of ϕ(z) from the antipodal of ϕ(t) is at least 1). Given a signed graph Ĝ with
no negative loops, the smallest r for which Ĝ admits an r-coloring is called the circular
chromatic number of Ĝ, denoted χc(Ĝ).

It follows from the above definitions and from basic results in [14] that:

χb(Ĝ) =
⌈χc(Ĝ) + 1

2

⌉
.

3 Signed Hadwiger Conjecture

Based on the notion of balanced coloring defined above, we now propose a conjecture
that, as we will prove, captures Hadwiger’s conjecture and is strongly related to the Odd
Hadwiger Conjecture, playing an intermediary role between these well-known conjectures.

Conjecture 5 (Signed-Hadwiger). Every signed graph Ĝ with χb(Ĝ) ≥ t has a K̃t-minor.

In this section discuss the relations between the three different versions of Hadwiger’s
conjecture. For this we define SCt to be the class of signed graphs Ĝ with no negative loop
where χb(Ĝ) ≥ t. Let SM(t) be the largest k such that K̃k is a minor of every element
of SCt. In this language, the Signed Hadwiger Conjecture claims that SM(t) = t.
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3.1 Relating different versions of Hadwiger’s conjecture

The following theorem can be regarded as a strengthening of a recent result of Steiner [15],
obtained through the notion of balanced coloring.

Theorem 6. For every t, M(t) = SM(t) and M(t)
2 ≤ OM(t) ≤ M(t).

Proof. That M(t) ≥ SM(t) follows from the fact that K̃k is a minor of G̃ if and only
if Kk is a minor of G. Similarly, OM(t) ≤ M(t) follows from the fact that if G has no
Kk-minor, then (G,−) has no (Kk,−)-minor.

To see that M(t) ≤ SM(t), let Ĝ be a signed graph with no K̃k-minor. Let V1 be a
maximal set of vertices that induces a connected balanced subgraph. Since it induces a
balanced subgraph, V1 can be taken as a color class. Also, since it induces a connected
subgraph, after necessary switchings we may assume that all edges induced by V1 are
positive. Then V1 can be contracted to one vertex, say v1, without creating a negative
loop; let Ĝ1 be the graph obtained by this contraction. On the one hand Ĝ1 is a ho-
momorphic image of Ĝ, preserving balanced-coloring (see [13] for definitions and more
on homomorphisms). On the other hand, Ĝ1 is minor of Ĝ. In Ĝ1, based on the fact
that V1 was maximal, each vertex is either not adjacent to v1 or adjacent to it with both
a positive edge and a negative edge. Applying the same process on Ĝ1 and repeating
it until all maximal connected balanced sets consist of singletons, we obtain a signed
graph Ĝ∗ which is both a homomorphic image and a minor of Ĝ. But, moreover, each
connection consists of both a positive and a negative edge. Thus Ĝ∗ has a K̃k-minor if
and only if G has a Kk-minor. The claim now follows from the fact that χb(Ĝ

∗) is the
same as the chromatic number of the underlying graph of Ĝ∗.

Finally for M(t)
2 ≤ OM(t), observe that if Ĝ has no (Kk,−)-minor, then it certainly

has no K̃t-minor. Moreover, given a balanced t-coloring of (G,−), each color class,
being balanced in (G,−), induces a bipartite subgraph. The inequality then follows
immediately.

3.2 Restriction to (unsigned) graphs

Here, following most of the literature on the Odd Hadwiger Conjecture, we avoid signed
graphs and define an odd-Kt minor in a graph G as: a 2-coloring of vertices together
with a collection T1, T2, ..., Tt of vertex disjoint trees in G such that: (i) each edge of
any Ti is properly colored, and; (ii) between any pair Ti, Tj of trees (i ̸= j) there is a
monochromatic edge.

Let f(t) be the smallest integer such that everyKt-minor-free graph is f(t)-colorable. Let
fo(t) be the smallest integer such that every odd-Kt-minor-free graph is fo(t)-colorable.
Then we can restate Hadwiger’s conjecture and the Odd-Hadwiger Conjecture equiva-
lently as follows.

Conjecture 7 (Hadwiger’s conjecture, restated). f(t) = t− 1.

Conjecture 8 (Odd Hadwiger Conjecture, restated). fo(t) = t− 1.

The afore-mentioned theorem of Steiner can be stated as follows.

Theorem 9 (Steiner, [15]). fo(t) ≤ 2f(t).
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We now introduce the following notion to strengthen Theorem 9.

Definition 10. An Even-Odd-Kt-minor of a given graph G is a 2-coloring of vertices
together with a collection T1, T2, ..., Tt of vertex disjoint trees in G such that: (i) each
edge of any Ti is properly colored, and; (ii) between any pair Ti, Tj of trees (i ̸= j) there
is at least one monochromatic edge and at least one properly colored edge.

Let feo(t) be the smallest integer such that every even-odd-Kt-minor-free graph is feo(t)-
colorable. One may observe that K2t−2 has no even-odd-Kt-minor, because otherwise
two of the trees each have at most 1 vertex and hence the second condition cannot be
satisfied between these two trees. Thus feo(t) ≥ 2t − 2. However, from Theorem 6 we
get the following.

Theorem 11. For every t ≥ 2 we have fo(t) ≤ feo(t) ≤ 2f(t).

4 Topological minors in signed graphs

In order to consider subdivisions in signed graphs, we now introduce two definitions
which extend the notions of odd-K4 and totally odd-K4, respectively.

Definition 12. A signed graph (H,π) is said to be a topological minor of a signed graph
(G, σ) if: (i) a subdivision of H is isomorphic to a subgraph G1 of G, and; (ii) given any
cycle C of (H,π) the image of it in G1 has the same sign in (G, σ) as the sign of C in
(H,π).

Definition 13. A signed graph (H,π) is said to be a total topological minor of a signed
graph (G, σ) if: (i) a subdivision of H is isomorphic to a subgraph G1 of G, and; (ii)
given any edge e of (H,π), the path Pe representing e in G1 is of the sign π(e).

It follows from the definition that the notion of topological minor is independent of
switching. In contrast, the notion of total topological minor is usually based on the
choice of the signature. However, there are exceptions and in particular we have the
following.

Observation 14. Given a graph H, the signed graph H̃ is a topological minor of a signed
graph (G, σ) if and only if it is a total topological minor of (G, σ).

Proof. Note that given adjacent vertices x and y, in H, we have both a negative edge
e− = xy and a positive edge e+ = xy in H̃. As {e−, e+} induces a negative 2-cycle in
H̃, the paths Pe− and Pe+ should be of different signs in (G, σ). For each connected pair
xy we then associate e− with the negative one of these two and e+ with the positive
one.

Recall that Ct, OCt, and SCt are, respectively: the class of graphs having chromatic
number at least t; signed graphs of the form (G,−) with χ(G) ≥ t, and; signed graphs
having balanced chromatic number at least t. Based on these notions, we have the
following variations of T (t).

Definition 15. Given a positive integer t we define OT (t) to be the largest k such that
(Kk,−) is a topological minor of every member of OCt. Similarly, TT (t) is the largest k
such that K̃k is a topological minor of every member of SCt.
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Observation 16. We have TT (t) ≤ OT (t) ≤ T (t).

Proof. If Kk is not a topological minor of G, then (Kk,−) is certainly not a topological
minor of (G,−). And, similarly, if (Kk,−) is not a topological minor of (G,−) then
neither is K̃k.

In light of Observation 16 the following theorem is a strengthening of the result of
Kawarabayashi [9] concerning the existence of large totally odd subdivisions of cliques
in graphs having large chromatic number.

Theorem 17. For any positive integer t we have TT (t) ≥
√

2t
79 .

4.1 Topological minors and balanced coloring

Here we show the connection between the absence of a large topological minor and bal-
anced coloring in signed graphs by proving the following stronger version of Theorem 17.

Theorem 18. Let G = (V,E) be a signed graph with no K̃t-subdivision. For any vertex
set Z ⊆ V with |Z| ≤ 2t2 any precoloring of the subgraph of G induced by Z can be
extended to a 79

2 t
2-coloring of G.

The proof given below is an adaptation of the proof by Kawarabayashi for the existence
of large totally odd subdivisions in graphs of high chromatic number [9]. We first state
some key results from the literature that are needed for the proof. The first one is the
following folklore observation.

Observation 19. Let Ĝ be a signed graph and assume Ĥ is a balanced subgraph of
Ĝ with the maximum possible number of edges. Then for each vertex v of G we have
dH(v) ≥ dG(v)

2 . In particular δ(H) ≥ δ(G)
2 .

The next statement is obtained from [4] by taking signed graphs as symmetric group
labeled digraphs, with the group being (additive) Z2 where 0 plays the role of + and 1
plays the role of −.

Theorem 20. Let G be a signed graph and H be a balanced, connected subgraph so that
all edges of H are positive. For any fixed k one of the following holds.

1. There are k mutually disjoint negative H paths, i.e., k mutually disjoint paths
P1, . . . , Pk such that each Pi is a negative path whose end vertices are in H, or

2. There is a set X ⊆ V (G) of at most 2k − 2 vertices, such that every negative path
with both end vertices in H contains a vertex in X.

A graph is ℓ-linked if it has at least 2ℓ vertices, and for any choice of distinct vertices
u1, u2, . . . , uℓ, v1, v2, . . . , vℓ there are ℓ mutually disjoint paths P1, P2, . . . Pℓ so that Pi has
ends ui, vi (1 ≤ i ≤ ℓ). The following statement is from [16].

Theorem 21. Every 2ℓ-connected graph G with at least 5ℓ|V (G)| edges is ℓ-linked.

This theorem will be used in combination with the following result from [2].
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Theorem 22. Let G be a graph and k an integer such that

|V (G)| ≥ 5

2
k and |E(G)| ≥ 25

4
k|V (G)| − 25

2
k2.

Then |V (G)| ≥ 10k+2 and G contains a 2k-connected subgraph H with at least 5k|V (H)|
edges.

Proof of Theorem 18. Let Ĝ be a minimum counterexample with respect to the number
of vertices. That is, Ĝ does not have a K̃t-subdivision and there exists Z ⊆ V with
|Z| ≤ 2t2 and a precoloring of Z that cannot be extended to a 79

2 t
2-coloring of G. Then

Ĝ must have at least 79
2 t

2 + 1 vertices. We prove several claims about Ĝ before getting

to a contradiction by providing a K̃t-subdivision.

(1) We may assume Ĝ has no parallel edges of the same sign.

This is because such parallel edges do not affect any coloring, and if Ĝ already has no
K̃t-subdivision, then it certainly does not have one after deleting an edge.

(2) Every vertex v ∈ V − Z has degree at least 79
2 t

2 in Ĝ.

Otherwise, by minimality, for some v with degree at most 79
2 t

2 − 1, the signed graph

Ĝ − v has a 79
2 t

2-coloring which is an extension of the precoloring of Z. But because v

has low degree, this coloring of Ĝ− v can be extended to Ĝ, a contradiction.

An ℓ-separation of Ĝ is a pair (Ĝ1, Ĝ2) of subgraphs so that Ĝ1 ∪ Ĝ2 = Ĝ, and |V (Ĝ1)∩
V (Ĝ2)| = ℓ. Following Kawarabayashi, we say that an ℓ-separation (Ĝ1, Ĝ2) is Z-
essential if each Ĝi (i = 1, 2) has at least one vertex which is not in Ĝj ∪ Z for j ̸= i.

(3) For ℓ ≤ t2, Ĝ admits no Z-essential ℓ-separation.

Suppose for a contradiction that such a separation (Ĝ1, Ĝ2) exists. Since |Z| ≤ 2t2, the
number of elements of Z in either V (Ĝ1) \ V (Ĝ2) or V (Ĝ2) \ V (Ĝ1) is at most t2. By
symmetry, we may assume that |V (Ĝ1) \ V (Ĝ2)| ≤ t2.

By the minimality of Ĝ and since there is at least one vertex of Ĝ not in V (Ĝ2) ∪ Z,
the precoloring φ of Z can be extended to a coloring φ′ of Ĝ2 ∪ Z. Now consider the
restriction φ′ of φ on the vertices of Ĝ1 that are colored. Observe that there are at
most 2t2 such vertices and that Ĝ1 has at least one less vertex than Ĝ. Thus, by the
assumption on the minimality of Ĝ, the coloring φ′ can be extended to the rest of Ĝ1,
resulting a coloring of Ĝ, a contradiction.

(4) There is a spanning balanced subgraph Ĥ of Ĝ−Z whose minimum degree is at least
75
4 t

2.

It follows from (2) that δ(Ĝ − Z) ≥ 79
2 t

2 − 2t2 = 75
2 t

2. The claim then follows by
Observation 19.

In the rest of the proof we will assume the signature of Ĝ is switched, if needed, so that
all edges of H are positive.

(5) There is a subgraph L ⊆ H which is 3
2 t

2-linked, t2-connected, and, in particular, has
at least 3t2 vertices.

From (1), and because it is balanced, H has no parallel edges or digons. From (4), H has
minimum degree at least 75

4 t
2, and because these neighbors are distinct, H has at least

these many vertices and at least 75t2

8 |V (H)| edges. We may then apply Theorem 22 with
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k = 3t2

2 to get a subgraph L of H which is 3t2-connected and with at least 15t2|V (L)|
edges. Now, taking ℓ = 3

2 t
2, Theorem 21 ensures that L is 3

2 t
2-linked.

Recall that, being a subgraph of H, all edges of L are positive in the signature of Ĝ that
we are working with.

(6) There are 1
2 t

2 ≥
(
t
2

)
disjoint negative L-paths in G.

Suppose for a contradiction that such paths do not exist. Then by Lemma 20, there is
a subset X ⊆ V (G) with |X| ≤ t2 − 2 so that G − X has no negative L-path. From
(5), L −X is 2-connected, and it is, therefore, contained in some 2-connected block L′

of G−X. We now prove two claims in order to prove (6).

(6a) L′ is balanced. If not, then there is a negative cycle C ⊆ L′. Then due to the
2-connectivity of L′, there exist two disjoint paths (possibly trivial ones) in L′, joining
C and L. However, this structure contains a negative L-path, a contradiction.

If L′ = G−X, then we can extend a precoloring of Z to a 3t2-coloring of G as follows:
the precoloring of Z uses at most 2t2 colors, then at most a set of t2 − 2 colors are used
for coloring vertices in X − Z. Finally one new color is needed for all vertices in L′ due
to (6a). This is a contradiction as 3t2 < 79

2 t
2.

Let W1,W2, . . .Wr be the remaining 2-connected blocks in G−X for r ≥ 1. Denote by
vi, the cut-vertex in V (L′) ∩ V (Wi), if one exists.

(6b) Wi−vi ⊆ Z for 1 ≤ i ≤ r. Observe that, |L′| ≥ |L−X| ≥ |Z|+2, where the second
inequality follows from (5) because |X| ≤ t2−2 and |Z| ≤ 2t2. So if there is a v ∈ Wi−vi
such that v /∈ Z, then there is a Z-essential separation of order at most |X|+1 ≤ t2 − 1,
contradicting (3).

Now we can extend the precoloring of Z to a 79
2 t

2-coloring of G as before: use at most
2t2 colors in the precoloring of Z, observe that G−Z ⊆ L′∪X by (6b), then use at most
t2 − 2 additional colors to color the remainder of X because |X| ≤ t2 − 2, and use one
additional color to color the remainder of L′ by (6a).

This coloring uses at most 3t2 colors, which contradicts that G is a counterexample to
the theorem. This completes the proof of (6).

Now we will demonstrate that there is a K̃t-subdivision in G. We will construct this
subdivision using L and negative L-paths. From (6), there exist 1

2 t
2 ≥

(
t
2

)
disjoint

negative L-paths in G. Choose
(
t
2

)
such paths and let W denote their endpoints. We

have |W | = t(t − 1) < t2. By (5), L has at least 3t2 vertices, and so we may choose
t distinct vertices u1, . . . , ut in L − W . These will serve as the terminals of the K̃t-
subdivision.

For each pair of distinct terminals ui, uj , (there are exactly
(
t
2

)
such pairs), we associate

exactly one negative L-path, Pij . Refer to the ends of Pij as pij and p′ij . Furthermore,
for each vertex ui choose a set of neighbours Ni in L−W of size 2(t− 1), say

Ni = {wi,1, . . . , wi,i−1, wi,i+1, . . . wi,t, vi,1, . . . , vi,i−1, vi,i+1, . . . vi,t}

such that {Ni ∪ ui} ∩ {Nj ∪ uj} = ∅ for each j ̸= i. It is possible to do so since by (5),
L is 3t2-connected, and hence, the minimum degree of L is at least 3t2 which is bigger
than

2t(t− 1) + 2

(
t

2

)
+ t.
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Now, we find the following disjoint paths in L.

1. For each pair i, j in
(
[t]
2

)
, a path with ends wi,jwj,i. This will serve as the positive

paths in the K̃t-subdivision.

2. For each pair i, j in
(
[t]
2

)
, two paths, one with ends vi,j , pij and one with ends vj,i, p

′
ij ,

for i < j. These paths together with Pij will serve as the negative paths in the
K̃t-subdivision.

This is a total of 3
(
t
2

)
disjoint paths in L. Since, by (5), L is 3

2 t
2-linked, and 3

(
t
2

)
≤ 3

2 t
2,

we will be able to do so.

This means there is a K̃t-subdivision in G, which contradicts our choice of G and com-
pletes the proof.

5 Concluding remarks

In this work we introduced a signed version of Hadwiger’s conjecture and showed that
while it helps to bound the chromatic number of dense families of (signed) graphs it is
still equivalent to the Hadwiger’s conjecture which only bounds the chromatic number
of sparse families of graphs. Our conjecture in turn helps to better understand the
connection between Hadwiger’s conjecture and the Odd Hadwiger Conjecture.

A natural line of work to improve on the existing bounds would be to consider signed
simple graphs, or more generally signed graphs of given girth. For signed planar simple
graphs the best upper bound for the circular chromatic number is 6, while a construction
for a simple planar graph of circular chromatic number 14

3 is given in [14]. The exact
value remains open. There are no specific improvements on the corresponding bounds
for other classes of signed graphs such as singed Kt-minor-free simple graphs.

We also showed the existence of relatively large subdivisions in signed graphs of high
balanced chromatic number. When restricted on graphs this shows the existence of a
subdivision where between any pair of vertices there are disjoint odd and even paths.
We expect that bounds given here can improved. It is also not known how assumptions
such as high girth would affect this bound.
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