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Stochastic Approximation Beyond Gradient for
Signal Processing and Machine Learning

Aymeric Dieuleveut, Gersende Fort, Eric Moulines, Hoi-To Wai, Member, IEEE

Abstract—Stochastic Approximation (SA) is a classical algo-
rithm that has had since the early days a huge impact on
signal processing, and nowadays on machine learning, due to the
necessity to deal with a large amount of data observed with uncer-
tainties. An exemplar special case of SA pertains to the popular
stochastic (sub)gradient algorithm which is the working horse
behind many important applications. A lesser-known fact is that
the SA scheme also extends to non-stochastic-gradient algorithms
such as compressed stochastic gradient, stochastic expectation-
maximization, and a number of reinforcement learning algo-
rithms. The aim of this article is to overview and introduce the
non-stochastic-gradient perspectives of SA to the signal process-
ing and machine learning audiences through presenting a design
guideline of SA algorithms backed by theories. Our central theme
is to propose a general framework that unifies existing theories
of SA, including its non-asymptotic and asymptotic convergence
results, and demonstrate their applications on popular non-
stochastic-gradient algorithms. We build our analysis framework
based on classes of Lyapunov functions that satisfy a variety of
mild conditions. We draw connections between non-stochastic-
gradient algorithms and scenarios when the Lyapunov function
is smooth, convex, or strongly convex. Using the said framework,
we illustrate the convergence properties of the non-stochastic-
gradient algorithms using concrete examples. Extensions to the
emerging variance reduction techniques for improved sample
complexity will also be discussed.

Index Terms—stochastic approximation, convergence analysis,
compressed stochastic gradient, expectation maximization

I. INTRODUCTION

Stochastic Approximation (SA) is a classical iterative al-
gorithm that has a long history of over 70 years [1], [2]. The
goal of the SA scheme is to determine the roots of a nonlinear
system when the mean field cannot be explicitly computed but
a random oracle exists. The SA scheme has had since the early
days a huge impact in signal processing and automatic control:
the first applications focused on the adaptive identification of
systems [3]–[6]. Recently, the spectrum of use of SA schemes
has widened considerably with the applications to statistical
machine learning; see [7]–[9].

An extensive literature on stochastic optimization is devoted
to the stochastic (sub)gradient (SG) algorithm, which is by far
the most popular application of the SA scheme, see e.g., [10]–
[12] and the references therein. The stochastic gradient al-
gorithms are characterized by having an update recursion
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featuring an unbiased mean field which is the gradient of a
loss function to be minimized. However, a lesser known fact
is that SA scheme also includes non-stochastic-gradient (non-
SG) algorithms whose stochastic oracles are not the gradients
of any function and whose oracles are possibly biased even in
the asymptotic sense. Recently, these non-SG algorithms have
gained attention in many scenarios of Signal Processing (SP)
and Machine Learning (ML). Classical examples include pre-
conditioned least mean square for linear system identification
[13]; other more subtle examples include natural gradient
methods [14], [15], online blind source separation [16]–[19],
straight-through compressed gradient estimator [20], [21] and
randomized coordinate descent algorithm [22].

The SA schemes that are non-stochastic-gradient algorithms
appear quite naturally in modern statistical learning. An ex-
ample is the determination of stationary points appearing in
the stochastic versions of the Majorize-Minimization (MM)
methods [23], [24] such as the SA versions of the Expectation-
Maximization (EM) algorithm [25]–[27]. Another example is
the algorithms used in reinforcement learning, such as TD-
learning and Q-learning, in which the iterative mapping is
deduced from the Bellman operator [27]–[30].

To illustrate the application of the SA scheme as non-
stochastic-gradient algorithms, we may take a closer look at
the family of stochastic EM algorithms introduced in [25].
While EM can be derived by the majorization-minimization
method, a powerful perspective presented in [25] is to view the
expectation step (’E-step’) as fixed-point iterations in sufficient
statistics space (the s-space). This perspective allows us to
build highly efficient stochastic EM algorithms for streaming
data and big data [26], [27], [31]–[33]. The challenge in
their analysis is that this fixed point map in s-space is not
the stochastic gradient map of any function. Therefore, the
stochastic EM algorithms are in fact not SG algorithms. The
convergence analysis of these algorithms to cope with the
maximum likelihood estimation will be analyzed using the
SA scheme, which includes the non-SG algorithms.

There are many excellent overview articles or books on SA
scheme. We note that classical books such as [5], [13], [34]
focused on asymptotic convergence for unbiased SA under a
set of restrictive stepsize conditions. Along the line of applica-
tions on adaptive filtering, [35] presents finite-time analysis on
the family of adaptive filtering algorithms such as least mean
squares, recursive least squares, etc. The recent articles [10]–
[12] are devoted to the gradient-based SA schemes. While
they provide a modern treatment on the convergence of SA
schemes, the discussions are limited to stochastic gradient
algorithms. The recent book [36] includes results that are
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applicable to non-SG algorithms, but is otherwise focused on
SA schemes matched to find the roots of the gradient of a
strongly convex objective function.

Most of the existing overviews on the convergence for SA
schemes are not comprehensive when it comes to discussing
the results for non-stochastic-gradient algorithms, or they are
limited to asymptotic convergence for algorithms with decreas-
ing step sizes sometimes accompanied by limit distributions
(in favorable cases). A possible reason behind this is the lack
of a proper Lyapunov function to set the convergence analysis
framework, and the potential bias may destabilize the SA
recursion. To this end, there are no convergence results (or
only in certain cases) for the beyond-gradient-SA scheme in
the literature at the level of generality of SG algorithms such
as [12]. Also missing is a principled guide to designing or
improving algorithms for SP and ML that do not originate
from Stochastic Gradient.

This article fills a gap in the literature by proposing a general
framework that summarizes recent advances in the theories of
the SA scheme, with emphasis on the recent applications to SP
and ML. Our aim is to provide an up-to-date overview of the
classical SA scheme for researchers working in the fields of
SP and/or ML. We shall cover results from the basic insights
behind the SA scheme, to standard analysis on convergence
in expectation, to the advanced analysis with almost-sure
convergence. Our results will handle the challenging settings
of generic non-SG (possibly biased) algorithms.

In the first part of this paper, the SA scheme is intro-
duced as a root-finding algorithm using a stochastic oracle,
designed through Euler discretization of an ordinary differen-
tial equation flow (see Section II-A). Then, in Section II-B,
examples of SA schemes will be presented with a focus
on non-SG algorithms such as compressed SG algorithms,
stochastic expectation maximization, and policy evaluation
via temporal difference learning. Section III-A discusses the
general assumptions required for the convergence of the SA
scheme, where we formalize a set of conditions for a proper
Lyapunov function design with respect to the SA scheme
that can be potentially biased. Section III-B shows how these
conditions are satisfied in the applications listed. Readers are
recommended to read this part first to get themselves familiar
with the basics of SA scheme.

We next present the general convergence theories for SA
in two different favors. The second part is devoted to non-
asymptotic convergence bounds of the SA scheme that focuses
on the expected convergence towards the root(s) of a nonlinear
system in a finite number of iterations. Section IV-A describes
a unified result on finite-time bounds and sample complexity.
One of the features of our study is to investigate the effects of
the presence of bias in the stochastic oracle, a situation that of-
ten arises in applications, e.g., when the stochastic oracle uses
compression or quantization, or uses Monte Carlo methods -
importance sampling or Markov chain Monte Carlo that are
inherently biased - see [27], [37], [38]. In Section IV-B, we
illustrate the application of these results using the examples
introduced in Section II-B and we discuss the obtained results
with the state of the art.

The third part is devoted to the almost-sure convergence of

the sequence of iterates generated by the SA scheme towards
the root(s) of a nonlinear system when the number of iterations
goes to infinity. Section V-A gives a brief overview of the
theory of Stochastic Approximation with decreasing step size.
In Section V-B we consider the case where the approximation
bias vanishes asymptotically. We use the Ordinary Differential
Equation (ODE) method, which relates the almost sure limit
sets of the stochastic approximation process to the limit sets of
the flow of an ODE. We also establish almost-sure convergence
results under the same assumptions as for the non-asymptotic
approaches. In Section V-C, we extend these results to the
case where the bias in the approximation does not vanish
asymptotically. This is a case that has been much less studied
in the literature. While we use [39], [40], which deals with
stochastic-gradient-type SA schemes, the results presented in
this section are original.

Finally, in the fourth part we review a recent advance in
SA: we discuss in particular the Stochastic Path-Integrated
Differential EstimatoR method (SPIDER) originally intro-
duced for stochastic gradient algorithms [41], [42] and then
extended to EM [33], [43]. We provide here an algorithmic
description and a non-asymptotic convergence analysis for a
general SA scheme (see also [38]).

We refer the readers to Fig. 1 for a guide to navigate through
this overview article.

Notations. N is the set of the non-negative integers, R is the
set of the real numbers, R+ is the set of the non-negative
real numbers, and R̄+ := R+ ∪ {+∞} is its completed
version. When necessary, we use the convention 0−1 = ∞
and ∞ × 0 = 0. The set of the minimizers and maximizers
of a function F is denoted by arg min (resp. arg max) when
it is a singleton, and Argmin (resp. Argmax) otherwise. For
two real numbers x and y, x ∧ y (resp. x ∨ y) denotes the
minimum (resp. maximum) of x and y. bxc is the floor of x.

For a vector or matrix D, D> is the transpose of D.
Vectors are column-vectors. For two vectors w,w′ in Rd,
〈w |w′〉 := w>w′ is the dot product of w and w′. We
set ‖w‖ :=

√
〈w |w〉. For a positive-definite matrix D, we

denote by ‖w‖D :=
√
w>Dw the norm associated to the

scalar product induced by D.

For a differentiable function h, its gradient is denoted by
∇h. When H is a function of two variables (w,x) 7→
H(w,x), we will write DijH(w,x) for the i-th derivative
w.r.t. the variable w and the j-th derivative w.r.t. the variable
x of the function H , evaluated at (w,x).

All the random variables are defined on a probability space
(Ω,A,P). E is the expectation associated to the probability
P. When F is a filtration, EF

[
X
]

is the expectation of the
random variable X conditionally to F . When F is equal to
σ(U), the σ-field generated by the random variable U, we
will write EU

[
X
]
. The limit set of a sequence is denoted

by Lim({wk, k ∈ N}): w? ∈ Lim({wk, k ∈ N}) if
limk→∞wnk = w? for some subsequence {nk, k ∈ N} such
that limk→∞ nk = +∞.
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Section II: Stochastic Approximation Scheme

A. Stochastic approximation B. Motivating examples

1. SGD 2. Compres. 3. EM 4. TD
Algorithm: SA – Eq. (4)

EM1-2 TD1-3

Section III: Assumptions

A. On the SA scheme B. Verifying assumptions on the examples

H1: on the stochastic oracle CVX1-2 CSA1-4 EM3-6 TD4

H2: on the mean field Cor. 1-2, Lem. 1-4 Lem. 5-8 Lem. 8-12

Section IV: Non-asymptotic convergence bounds

A. Finite-time bounds for SA B. Application to the examples

NA 1-2

Lem. 13, Th. 1-2, Cor. 3-5 Prop. 1 Prop. 2-5 Prop. 6-8 Prop. 9, Cor. 6-7

Section V: Almost-sure convergence

SA 1-4 → Cor. 8, Prop. 10-13, Th. 4-6

Section VI: Variance Reduction

Algorithm 1: SA-SPIDER

VR 1 → Lem. 14-16, Th. 7, Cor. 10

Table II

Table III

Table IV

Table I

Fig. 1: Guide for navigating through the content in this overview article. Outline: Section II introduces the central SA algorithm
and its derivation on four motivating examples, and Section III the two main assumptions on the oracle and the field for the
analysis to hold, with corresponding derivation on examples. Theoretical results are given in Section IV, Section V, and
Section VI. Dependencies and reading guide: Gray background indicates generic results on the SA scheme, and colored
backgrounds indicate their application to the four examples. In Sections II to IV, subsection A deals with the generic scheme
and subsection B.1 to B.4 with the four examples. Black font indicates the sections, blue font indicates assumptions that are
made for the analysis; green font corresponds to the results (lemmas, propositions, corollaries and theorems), and red font to
algorithms. Arrows indicate dependencies: readers may choose to read only the generic results on the SA scheme, together
with some of the examples.

II. STOCHASTIC APPROXIMATION SCHEME

A. Stochastic Approximation

Stochastic Approximation (SA) is a class of stochastic
algorithms aiming at a solution to the root-finding problem:

find w? ∈ Rd such that h(w?) = 0 , (1)

where h : Rd → Rd, d ∈ N, is known as the mean field
function. Problem (1) is motivated by many tasks in SP
and ML, such as convex or non-convex optimization [12],
statistical estimation [31], policy evaluation [29], etc., some
of them will be described later in Section II-B.

Solving (1) is challenging when only stochastic estimates of
the map h(·) are available. We follow the ordinary differential
equation (ODE) approach introduced in [3], [4]. This approach
consists in identifying the limit points of the SA sequence with
a sub-class of invariant sets of the ODE flow (see Section V
for precise definitions)

dw/dt = h(w(t)) . (2)

In particular, the equilibrium points of the ODE (i.e., the points
w? satisfying h(w?) = 0) are the solutions of (1).

To obtain a discrete-time algorithm, the common trick is
to discretize the continuous time algorithm (2) through the

Euler’s scheme. Set wk ≡ w(kγ), with a sufficiently small
discretization parameter γ > 0, the time-derivative of w(t)
can be approximated by the finite difference

dw/dt ≈ (wk+1 −wk)/γ . (3)

Substituting into (2) yields the algorithm wk+1 = wk +
γh(wk). Further replacing h(w) by a stochastic oracle leads
to the stochastic approximation recursion.

SA Recursion: let w0 ∈ Rd be the initialization,

wk+1 = wk + γk+1H(wk,Xk+1), k ∈ N , (4)

where γk+1 > 0 is the step size, Xk+1 is a X-valued
random variable, and H : Rd × X → Rd is a vector field
that describes stochastic oracles of h(·).

Before delving further into the SA scheme (4), we remark
that alternatives to (2) can be used to derive other (stochastic)
algorithms for solving (1). For instance, the second order ODE

d2w/dt2 + (3/t) dw/dt = h(w(t)) (5)

with the Taylor approximation formulas

wk+1 −wk
γ

≈ dw

dt
+
γ

2

d2w

dt2
,
wk −wk−1

γ
≈ dw

dt
− γ

2

d2w

dt2
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lead to the Nesterov’s accelerated method [44], and admit the
same fixed points as (2). Notice that an active area of research
is to understand different momentum methods from an ODE
perspective [45]. However, in the stochastic setting, there are
limited results even in the stochastic gradient case, see [46].

Our focus is on the behavior of the SA scheme (4) derived
from (2). To give some insights, it is useful to write the
stochastic oracle as H(wk,Xk+1) = h(wk) + uk+1 where
uk+1 is a perturbation vector that distorts the mean field
update direction h(wk). In the simplest setting, the conditional
expectation given the past history of the algorithm evaluates
to EFk

[
H(wk,Xk+1)

]
= h(wk) for any wk ∈ Rd; the past

history Fk is the filtration σ(w0,X`, ` ≤ k) up to the k-th
iteration. For this case, the conditional expectation

EFk
[
wk+1

]
= wk + γk+1h(wk) (6)

coincides with the deterministic algorithm obtained by dis-
cretizing (2) with (3). As such, intuitively (4) may have similar
behavior as the ODE flow in (2). Furthermore, {uk+1, k+1 ∈
N} is a martingale difference sequence with respect to (w.r.t.)
the filtration {Fk, k ∈ N}. Then, (4) is a Cauchy-Euler
approximation for solving (2) with the stepsize sequence
{γk, k ∈ N}.

Eq. (4) gives a prototype stochastic algorithm for tackling
many ML and SP problems. A general algorithm design
procedure is to find a desired h(·) and embed the problem
at hand into (1). Subsequently, we design the stochastic field
H(·) to approximate h(·) and apply the SA recursion (4).
Note that the design of the stochastic field shall also respect
practical constraints such as limited computation complexity,
hardware limitation on arithmetic, and the availability of
stochastic samples, to list a few.

The stepsize sequence (γk)k≥1 plays a critical role on the
behavior of the SA scheme, and is thus one of the most
important hyper-parameters. One motivation of the theoretical
analysis is to propose theoretically grounded rules to tune this
sequence, and possibly to ensure that a given choice results
in a (worst case) optimal behavior. In the SA case, from
a high-level standpoint, there exists a tradeoff between the
average process wk+1 = wk+γk+1h(wk), which necessitates
sufficiently large steps to converge towards a critical point
(e.g.,

∑
k≥1 γk = ∞), and the bias and randomness of the

oracle H(wk,Xk+1), which typically requires limiting the
magnitude of the learning rate (e.g.,

∑
k≥1 γ

2
k <∞).

One example is the stochastic optimization problem
minw∈Rd F (w) where F (w) := E [`(w,X)]. We can set
the mean field h(w) := −∇F (w) as the gradient. Under
regularity conditions, the stochastic oracle H(wk,Xk+1)
satisfying EFk

[
H(wk,Xk+1)

]
= h(wk) is a stochastic

gradient defined by H(wk,Xk+1) := −D10`(wk,Xk+1) at
the (k + 1)th iteration, and Xk+1 is an i.i.d. random sample
following the same law of X in E [F (w,X)]. In this case, the
SA recursion (4) yields the popular stochastic gradient (SG)
algorithm [12]. However, the SA recursion (4) is not limited
to the SG algorithms: it can cover more general scenarios,
e.g., the function h(wk) is not necessarily the gradient for
any objective function in an optimization problem, or the
expectation EFk

[
H(wk,Xk+1)

]
is not a gradient map.

TABLE I: Summary of notations used in the general analysis
of SA, in Sections II-A, III-A and IV-A.

Notation Object Def. in

In Section II-A

h Mean field eq. (1)
d Problem dimensionality eq. (1)
(wk) Seq. of iterates eq. (4)
(γk) Seq. of step-size eq. (4)
(H(wk,Xk+1)) Stochastic oracle on the field eq. (4)
uk+1 Noise perturbation
Xk+1 X-valued random variable eq. (4)
Fk = σ(w0, (X`)`≤k) filtration adap. to (wk) eq. (4)

In Section III-A

W : Rd → R+ non-negative Borel function
ch,0, ch,1 ∈ R+ Constants controlling the mean field h H 1
τ0,k, τ1,k ∈ R+ Seq. of constants controlling the expected oracle field H 1
σ2

0 , σ
2
1 ∈ R+ Constants controlling the variance of the oracle field H 1

V smooth Lyapunov function H 2
LV smoothness of V H 2
% link between W and V H 2
cV upper bound on ∇V w.r.t. W eq. (46)
ΛV set of points where 〈∇V(w) |h(w)〉 = 0 eq. (47)
EQ(h) set of equilibrium points of the vector field h eq. (48)
ε > 0 target precision
R (random) stopping time
T total number of iterations
RT stopping rule strategy after T steps

Section IV-A

(b`, η`)`∈{0,1}, γmax, ωk Constants function of (σ2
` , τ`, ch,`)`∈{0,1}, LV, cV eqs. (73) to (76)

w̄T weighted average of the parameters Remark 3
V Initial condition term eq. (83)
B Non vanishing bias eq. (83)
λk, bk Time dependent constants in Theorem 2 eqs. (91), (92)
Λj:k Shortcut for

∏k
i=j λi

β ∈ (0, 1] Step-size decrease rate (96)

For readability, Table I aggregates all notations that are used
for the generic analysis of the SA scheme, specifically in
Sections II-A, III-A, IV-A, V and VI.

B. Motivating Examples

1) Stochastic Gradient Descent: As a warm-up, we be-
gin our exposition on SA schemes with stochastic gradient
algorithms, the simplest yet most popular setting. Stochas-
tic gradient algorithm is the workhorse of modern machine
learning and data-driven optimization [7], [10], [47]. Much of
the success is due to its broad applicability – the stochastic
gradient algorithm generally works for any problem for which
there is an unbiased gradient estimator. For convex problems, a
long line of work [11], [48]–[54] sheds lights on convergence
properties of SG, and they are by now well-understood; while
non-convex problems are discussed in [10], [55].

To describe the general setting, the mean field h(w) of
stochastic gradient algorithm as an SA scheme corresponds
to the gradient of an objective function that we aim at
minimizing. We consider a differentiable objective function
F : Rd → R. A necessary condition on a model w to be
a minimizer of F is to satisfy ∇F (w) = 0. We consider
h(w) := −∇F (w) and look for pointsw such that h(w) = 0.

We highlight two fundamental situations in the case of
discriminative learning.

a) Expected Risk Minimization (ERM) for streaming data.
The function F is the expected loss ` on an observation X
(with distribution ρ) of a model w: F (w) := E[`(w,X)].
At iteration k+1, a new observation Xk+1 ∼ ρ, indepen-
dent from the past, is revealed. The random field is

H(wk,Xk+1) := −D10`(wk,Xk+1). (7)
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b) ERM for Batch Data. The function F is the empirical loss
` over a set of observations (Z1, . . . , Zn) for a model w:
F (w) := n−1

∑n
i=1 `(w, Zi). At iteration k+1, a random

index Xk+1 ∈ {1, . . . , n}, independent from the past and
with uniform distribution on {1, · · · , n}, is sampled by
the learner. The random field is defined as

H(wk,Xk+1) := −D10`(wk, ZXk+1
). (8)

Remark 1. Extension to mini-batch SG [56]: at itera-
tion k + 1, the learner may receive (resp. sample) a num-
ber b (called mini-batch size) of observations (resp. in-
dices). For the streaming case, the random field H is
then H(wk,Xk+1) := b−1

∑b
i=1 D10`(wk, Zbk+i) where

{Zk, k ∈ N} is a sequence of i.i.d. observations and
Xk+1 := (Zbk+1, . . . , Zb(k+1)). For the batch case, it is
H(wk,Xk+1) := b−1

∑
i∈Xk+1

D10`(wk, Zi), with Xk+1 is
a subset of size b sampled at random with or without replace-
ment in {1, . . . , n}. The choice of b leads to tradeoffs between
per-iteration computation cost and overall convergence rate,
interested readers are referred to [10, Sec. 4] for details.

In the case of batch data, it is possible to use a non-
uniform distribution to sample indices - see, for example, [57].
Moreover, the objective function has a finite-sum structure, and
the problem is often rewritten as follows for simplicity:

minw∈Rd F (w), F (w) := 1
n

∑n
i=1 fi(w) , (9)

where for all i ∈ {1, . . . , n}, fi : Rd → R, and fi(w) :=
`(w, Zi). The random field in (8) can then be written as

H(w,X) = −
∑n
i=1X

i∇fi(w), (10)

where X := (X1, . . . , Xn) ∈ {0, 1}n is an n-dimensional
binary sampling vector with

∑n
i=1X

i = 1. If the law of
the sampling vector X is such that E[Xi] = 1/n for any i,
then E[H(w,X)] = −∇F (w). We observe that SA scheme
using the above H(·) yields the classical stochastic gradient
algorithm for the finite-sum problem (9):

wk+1 = wk − γk+1

∑n
i=1X

i
k+1∇fi(wk) . (11)

We note that the computational complexity of (11) is inde-
pendent of n, since

∑n
i=1X

i
k+1 = 1 and the learner must

compute ∇fi(wk) for the only index i satisfying Xi
k+1 = 1.

2) Compressed Stochastic Approximation: We study com-
pressed SA methods where a compression operator is used in
the update scheme. The goal is either to reduce transmission,
storage, or computational costs. We focus here on instantiating
methods for the SG case. As a first example, we consider
the Gauss-Southwell coordinate descent estimator. For high-
dimensional problems (d � 1), coordinate descent methods
reduce computational complexity by restricting the update to
a subset of the coordinates. We consider the same optimization
problem as (9). Let jk+1 ∈ {1, . . . , d} is the chosen coordinate
in the k-th iteration, we have

wk+1 = wk − γk+1∇jk+1
F (wk) ejk+1

, (12)

where {e1, . . . , ed} is the canonical basis of Rd and ∇jF
is the j-th coordinate of the gradient. The Gauss-Southwell
selection rule [22] uses:

jk+1 := Argmax
j∈{1,...,d}

|∇jF (wk)| . (13)

This corresponds to a greedy selection procedure, since at
each iteration we select a coordinate with the largest di-
rectional derivative. The Gauss-Southwell rule, on the other
hand, corresponds to a deterministic algorithm: H(wk,∼
) := ∇jk+1

F (wk) ejk+1
with jk+1 in (13). A straightforward

extension to SG is possible by replacing the ∇jF (wk) in (13)
with

∑n
i=1X

i
k+1∇jfi(wk) and construct the stochastic oracle

as H(wk,Xk+1) :=
∑n
i=1X

i
k+1∇jk+1

fi (wk) ejk+1
.

The coordinate descent algorithm (12) is a special case
of the general compressed SG methods that aim to reduce
the storage and/or transmission cost of SG. To formally
discuss the general methods, we introduce the concept of
compression operators. A compression operator on Rd is a
mapping C : Rd × U→ Rd, where U is a general state space
equipped with a sigma field and distribution µU . The operator
C is called (random) compression if, for any x ∈ Rd, the
cost of storing/transmitting C(x,U), with U ∼ µU , is almost-
surely (or on average) less than the cost of storing/transmitting
x itself.

Remark 2. Two prevailing strategies have been used and
combined to create such compression schemes [58], [59]:

1) (random) projection: x ∈ Rd is projected onto a smaller
dimensional subspace. E.g., the Randh operator projects
x onto a random space generated by h canonical vectors;
and Toph operator projects x onto a deterministic space
generated by the h canonical vectors corresponding to the
largest values of x. For example, (13) corresponds to using
Top1 compressor;

2) (random) quantization, that (randomly) maps each coordi-
nate of x onto a scalar codebook and transmits the index of
the corresponding codeword [60]. E.g., assuming a uniform
quantizer converts a floating point value x ∈ R to the
closest quantized value as:

Qd(x,∼) := sign(x) ∆

⌊
|x|
∆

+
1

2

⌋
, (14)

where ∆ denotes the quantization resolution. On the other
hand, the quantization function for stochastic rounding is
defined as:

Qs(x, U) := ∆×

{⌊
x
∆

⌋
+ 1 if U ≤ x

∆ −
⌊
x
∆

⌋
,⌊

x
∆

⌋
otherwise,

(15)

where U is uniformly distributed on [0, 1). These scalar
quantizers can be extended to the vector case by applying
the quantization operation on each coordinate.

Let H(w,X) denotes the SA random field. We introduce
three classes of compressed SA methods as follows. The first
class corresponds to compressing the random field:

wk+1 = wk + γk+1 C(H(wk,Xk+1),Uk+1) . (16)



6

It includes (12) as a special case. In the literature, these
methods have attracted attention with the increasing interest in
distributed optimization, e.g., inexact gradient descent meth-
ods [61], [62], low-precision coordinate descent methods [63],
compressed SG methods [58], [59], [64]–[68], quantized
algorithms for wireless sensor networks [69]–[72] and the
references therein.

The second class of compressed SA refers to recursion
where H is observed at a point (slightly) different from wk
called the perturbed iterate:

wk+1 = wk + γk+1H(C(wk,Uk+1),Xk+1) . (17)

In the SG for deep learning, the above setup is known
as a Straight-Through Estimator (STE) introduced by [20],
which quantizes the model w before computing the gradient
oracle; then the SG update is performed using a full precision
buffer. In the convex optimization literature, recursion has
been studied as perturbed iterations by [73], and also in the
randomized- smoothing approach, where the observation point
is intentionally perturbed (e.g., by a Gaussian noise) to achieve
better regularity [74], [75]. The same approach includes the
study of SG with asynchrony (i.e., the field can be measured
on an ’old’ iterated model) [76], [77] or in distributed systems
where the gradient is observed on a local model held only by
the local workers [66], [78].

The third class of compressed SA method is the recursion:

wk+1 = C(wk + γk+1H(wk, ,Xk+1),Uk+1) . (18)

Note that (18) is a special case of (4) with the random field
H̃(wk,Uk+1,Xk+1) given by

1

γk+1
(C(wk + γk+1H(wk, ,Xk+1),Uk+1)−wk) . (19)

In the SG case, the above setup is known as the low-precision
SG, introduced in [79]–[82], which quantizes the model w
after computing the gradient oracle.

The use of low-precision arithmetic plays an essential role
in SP and ML, where frugal algorithms are often mandatory.
To train models with a low-precision representation of the
parameters, we can apply the quantization function C(·,U)
to convert entries of the parameter vector w into a quan-
tized/rounded version ŵ = C(w,U). The first application of
the STE rule was in the BinaryConnect algorithm of [20] for
training neural networks with Boolean weights; in this case,
the weights are binary {−∆,∆}. STE has been applied to
many different settings and improved; see [83]–[85].

3) Stochastic EM algorithms: The Expectation-
Maximisation algorithm (EM) proposed by the popular
work [86] was used to solve the optimization problem
arg minθ∈Rd F (θ) when F is defined by an (possibly
intractable) integral F (θ) := − log

∫
Z̃ p(z;θ)µ̃(dz), where

p(z;θ) is a positive function and µ̃ is a sigma-finite measure
on a measurable set Z̃; see [87], [88] and references therein.
There are numerous applications of EM, including inference
of mixture distributions [89], robust inference in the presence
of heavy tailed noise [90], Hidden Markov Models [91], [92],
factor analysis [93], graphical models with missing data. In
the subsequent discussions, we consider the case where both

the function p(z;θ) =
∏n
i=1 pi(zi;θ) and the dominating

measure µ̃ = µ⊗n have a product form that yields

F (θ) := − 1
n

∑n
i=1 log gi(θ), (20)

where
gi(θ) :=

∫
Z pi(zi;θ)µ(dzi), (21)

and pi(zi;θ) is positive for all i ∈ N and (zi,θ) ∈ Z × Rd.
Such an optimization problem is motivated by minimizing
the Kullback-Leibler divergence computed along the examples
indexed by i ∈ N. As expressed by (20)-(21), in EM the
divergence/loss F is not explicit and is given by an integral
over a latent variable z = (z1, · · · , zn).

A popular application of EM is the computation of Max-
imum Likelihood estimator. In this case, gi(θ) is the log-
likelihood function of an observation Yi in a latent variable
model (see, e.g., [86]–[88], [94]–[96]). The positive quantity
pi(zi;θ) is the joint probability of the observation Yi and
the latent variable zi for a given value of the parameter θ;
it is a shorthand notation for pYi(zi;θ). Subsequently, F (θ)
corresponds to the case where the observations are independent
and the statistical analysis is based on a given set of n
examples that are not necessarily identically distributed.

EM is a Majorize-Minimization algorithm (see, e.g., [23,
chapter 8]) that handles the minimization of (20) by iterating
between an Expectation step (E-step) and a Minimization step
(M-step). Given the current iterate θk, the E-step defines a
surrogate function QEM

θk
(θ) such that: F (θk) = QEM

θk
(θk) and

F (θ) ≤ QEM
θk

(θ) for all θ ∈ Rd. The M-step updates the
parameter by selecting a minimizer

θk+1 := argminθ∈RdQEM
θk

(θ) , (22)

which is assumed to be unique for simplicity. Under regularity
conditions, since QEM

θk
(·) majorizes F (·), θk+1 is a stationary

point of the difference θ 7→ QEM
θk

(θ)− F (θ). This yields

∇F (θk) = ∇QEM
θk

(θk) .

As the surrogate QEM
θk

(·) is an upper bound on the objective,
an improvement on the surrogate translates to an improvement
on the objective. This descent property lends EM algorithm
with remarkable numerical stability. Since each iteration is
defined as a minimization of a function, EM algorithm is
invariant under changes of parametrization, which is a sig-
nificant advantage over first-order (gradient) method. The EM
surrogate used by [86] is given up to an additive constant
(which depends on θ′) as

QEM
θ′ (θ) := − 1

n

n∑
i=1

∫
Z

log pi(zi;θ)πi(zi;θ
′)µ(dzi), (23)

where z 7→ πi(z;θ) is the probability density function (p.d.f.)
on Z defined by

πi(z;θ) := pi(z;θ)/gi(θ). (24)

In many applications, πi(zi;θ) is the posterior distribution of
the latent variable zi given the observation #i when the value
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of the parameter is θ. A useful decomposition of this surrogate,
which is the key discovery of [86], is given by

QEM
θ′ (θ) = − 1

n

n∑
i=1

log gi(θ) +Hθ′(θ) (25)

where Hθ′(θ) is the cross-entropy of the distribution
π(zn1 ;θ) :=

∏n
i=1 πi(zi;θ) relative to the distribution π(·;θ′):

Hθ′(θ) := − 1

n

n∑
i=1

∫
Z

log(πi(zi;θ))πi(zi;θ
′)µ(dzi) .

The cross-entropy θ 7→ Hθ′(θ) is minimized at θ′ such that
Hθ′(θ′) is the entropy of π(·;θ′). Under appropriate regularity
conditions, this in particular implies that, for all θ ∈ Rd,

∇Hθ(θ) = 0 . (26)

Moreover, the surrogate decomposition (25) and the inequality
Hθk(θk+1) ≥ Hθk(θk) imply

− 1
n

∑n
i=1 log gi(θk+1) + 1

n

∑n
i=1 log gi(θk)

≤ QEM
θk

(θk+1)−QEM
θk

(θk) ≤ 0 ,

where we used the definition of θk+1 in the RHS. Hence,
any update of the EM algorithm leads to an increase of the
function θ 7→ 1

n

∑n
i=1 log gi(θ).

The limiting point of the EM algorithms are the fixed point
of the EM mapping, i.e., the parameters θ? which satisfy

θ? = arg minθ∈Rd QEM
θ?

(θ).

Under appropriate regularity conditions (see e.g., [97]), we
have from (22) and (25) that

∇Hθk(θk+1) = 1
n

∑n
i=1∇ log gi(θk+1). (27)

If θ? is a fixed point of (22), together with (26), we have

0 = ∇Hθ?(θ?) = 1
n

∑n
i=1∇ log gi(θ?) , (28)

showing that the fixed points of the EM coincide with the
roots of the gradient of the objective function (see (20)).

We restrict our attention to the case where pi belongs to the
curved exponential family (see, e.g., [98]). Exponential family
models are important special cases as the E-step amounts only
to computing a conditional expectation. In particular,

EM 1. There exist measurable functions φ : Rd → Rd, ψ :
Rd → R, and for all i ∈ {1, · · · , n}, Si : Z → Rd such that

log pi(zi;θ) := 〈Si(zi) |φ(θ)〉 −ψ(θ).

In the terminology used for exponential families, the func-
tions Si’s are called the sufficient statistics. In the applications,
Si depends on i through the observation Yi. Moreover,

EM 2. There exists a measurable function T : Rd → Rd such
that for any s ∈ Rd

T(s) := argminθ∈Rd{ψ(θ)− 〈s |φ(θ)〉}.

In most cases, the optimization problem defined for T is
strongly convex, and in some cases, it can be solved in closed
form. Under EM1, the QEM

θ′ function writes

QEM
θ′ (θ) := ψ(θ)− 〈s̄(θ′) |φ(θ)〉,

where s̄(θ′) is the mean value of the expectations of the Si
functions under the p.d.f. πi’s:

s̄(θ′) :=
1

n

n∑
i=1

s̄i(θ
′), (29)

where s̄i(θ
′) :=

∫
Z

Si(zi)πi(zi;θ
′)µ(dzi). (30)

At each iteration of the EM algorithm, the computation of
the surrogate function θ → QEM

θk
(θ) boils down to the

computation of the expectation s̄(θk). EM1 and 2 imply that
a step of the EM algorithm is expressed as

θk+1 = T ◦ s̄(θk),

thus showing that the fixed points of the EM mapping are the
roots of θ 7→ T ◦ s̄(θ)− θ.

Note that s̄(θk) might be seen as a double expectation: the
inner expectation amounts to evaluating s̄i(θ

′), and the outer
integral is an average over the n functions s̄i. In large-scale
learning, the outer integral is intractable or has prohibitive
computational cost; it may also be the case that the inner
integrals are not explicit, e.g., when πi is known except for a
normalizing constant, and its expression or the geometry of Z
is complicated. The Stochastic EM algorithms were developed
to avoid a full scan of the n functions at each iteration and
to allow a stochastic approximation of the inner integrals
by Monte Carlo sampling. The stochastic EM algorithms
described in [25], [99]–[101] address the intractability of
inner expectation; the algorithms in [26], [31]–[33], [102]–
[104] address the intractability of the outer expectation; [38]
addresses both intractabilities.

Many if not all stochastic EM algorithms are instances
of SA. The key ingredient is the following result (see, for
example, [25, section 7]): if θ∞ is a root of θ 7→ T◦ s̄(θ)−θ
on Rd, then w∞ := s̄(θ∞) is a root of w 7→ s̄ ◦ T(w) − w
on Rd; (ii) if w∞ is a root of w 7→ s̄ ◦ T(w) − w on Rd,
then θ∞ := T(w∞) is a root of θ 7→ T ◦ s̄(θ) − θ on Rd.
Consequently, EM can be executed in the s-space by running
a SA algorithm to solve the root-finding problem

w ∈ Rd, s̄ ◦ T(w)−w = 0. (31)

Stochastic EM algorithms define a sequence {wk, k ∈ N}
by the iteration wk+1 = wk + γk+1H(wk,Xk+1) where
H(wk,Xk+1) is a random oracle of h(wk) := s̄ ◦ T(wk)−
wk, the mean field h evaluated at the current iterate wk; and
{γk, k ∈ N} is a deterministic stepsize sequence. The close
links between these versions of EM in the s-space and mirror
descent algorithms are highlighted in the recent work [105].

To develop a stochastic EM algorithm from (4), we note the
randomness Xk+1 defines a stochastic approximation of the
inner and/or outer expectations in the map s̄, see (29). Given
a SA sequence {wk, k ∈ N} converging to a solution w?
of the fixed point problem (31), the sequence θk := T(wk)
converges to θ? which is, thanks to (28), a stationary point of
the function F , i.e., ∇F (θ?) = 0. Of course, formulating
precisely this technical result requires assumptions on the
regularity of the model. Among the many stochastic versions
of EM in the literature (see references above), let us make the
stochastic mean field H explicit for two of them.
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a) Mini-batch EM: This algorithm is an adaptation to the
finite-sum context of the Online EM [31], which is designed
to process a data stream. Mini-batch EM avoids computing
the exact outer expectation in (29) at each iteration of EM; it
replaces the sum over n terms with a sum over a mini-batch
chosen at random. The stochastic oracle is given by

H(wk,Xk+1) :=
1

bEM

∑
i∈Xk+1

s̄i (T(wk))−wk, (32)

where Xk+1 is a set of size bEM, collecting indices picked at
random with or without replacement in {1, · · · , n}. See e.g.
[106]–[108] for an application.

b) Stochastic Approximation EM (SAEM): This algo-
rithm, proposed by [25], deals with the case the inner expec-
tations in (29) are intractable and must be approximated by
Monte Carlo, while the outer expectations in (29) can be com-
puted with reasonable computational effort; see e.g., [109]–
[125] for applications. The stochastic oracle is given by

H(wk,Xk+1) :=
1

n

n∑
i=1

m∑
j=1

ρji (wk) Si(Z
j
i,k+1)−wk (33)

where Xk+1 := (Zji,k+1, 1 ≤ i ≤ n, 1 ≤ j ≤ m) collect
the m outputs of n distinct Monte Carlo samplers designed to
approximate the distributions πi(zi; T(wk)), for i = 1, . . . , n.

If i.i.d. sampling is possible from the p.d.f. πi(zi; T(wk)),
then ρji (wk) := 1/m. If sampling according to the conditional
distribution πi(zi; T(wk))) is not possible, more sophisticated
sampling techniques must be used. For illustration, we con-
sider below the importance sampling procedure, a method
of using independent samples from a proposal distribution
π̃i(zi; T(wk)) to approximate the expectation with respect to
the target distribution πi(zi; T(wk)). The importance sampling
estimator approximates the target distribution by a random
probability measure using weighted samples that are generated
from the proposal; (see e.g. [126, Chapter V] and [127]).
More precisely, the self-normalized Importance Sampling
estimator works as follows. We first sample independently
Z1
i,k+1, . . . , Z

m
i,k+1 from the proposal π̃i(zi; T(wk)) and de-

fine the normalized importance weights

ρji (wk) :=
pi(Z

j
i,k+1; T(wk))

π̃i(Z
j
i,k+1; T(wk))

(
m∑
`=1

pi(Z
`
i,k+1; T(wk))

π̃i(Z`i,k+1; T(wk))

)−1

.

(34)
Instead of IS, another option is to use Markov Chain Monte
Carlo (MCMC) samplers targeting the p.d.f. πi(zi; T(wk));
see for example [25], [26], [101], [104], [109].

4) TD Learning: Many tasks in reinforcement learning
such as policy evaluation, Q-learning [29], etc., can be formu-
lated as root finding problems whose effective solutions are
often given as non-stochastic-gradient SA recursions. Below,
we select the temporal difference (TD) learning algorithm [28]
for policy evaluation to illustrate another aspect of general
principle of stochastic algorithm design.

We follow the derivations of [128] in this example. Consider
the problem of evaluating the value function of applying a
policy π in a Markov Decision Process. The policy π specifies
the conditional probability of choosing an action given a
certain state, It induces a Markov Reward Process (MRP)

given by the tuple (S,P,R, λ): S = {s1, . . . , sn} is the state-
space (assumed for simplicity to be finite); P is the n×n state
transition matrix of the probability of transition from a given
state to another; R is the reward function such that R(s, s′)
associates a reward with each state transition; λ ∈ (0, 1) is the
discount factor. With a slight abuse of notation, we define the
expected instantaneous reward from state s, for s ∈ S,

R(s) :=
∑
s′∈S P(s, s′)R(s, s′);

As a standing assumption, we concentrate on ergodic MRPs:

TD 1. The non-negative matrix P is irreducible and has a
unique stationary distribution $, i.e., $P = $.

Note that $(s) > 0 for any s ∈ S under TD1.
The value function V of the above MRP is the expected

cumulative discounted reward for a given state s ∈ S, i.e.,

V(s) := E

[ ∞∑
k=0

λkR(Sk)

∣∣∣∣∣S0 = s

]
=

∞∑
k=0

λkPkR(s), (35)

where the expectation is over the distribution of the Markov
chain {Sk, k ∈ N}, started at S0 = s, with Markov kernel
P . Note that PkR(s) =

∑
s′∈S Pk(s, s′)R(s′). This value

function obeys the Bellman equation B V = V where the
Bellman operator B is defined as

[B V ] (s) := R(s) +λ
∑
s′∈S P(s, s′)V (s′), ∀ s ∈ S , (36)

for any function V : S → R. Assume bounded reward
function, the value function V(s) is well defined and is the
only solution to (36) [29], [129]. In most applications, the
cardinality n of the state space S is large. It is often advocated
in such case to resort to parametric approximations, for exam-
ple by using a linear function approximation or deep neural
networks [130], [131]. For simplicity, we focus on linear
function approximation, where V(s) ≈ Vw(s) := φ(s)>w;
φ(s) ∈ Rd is called the feature vector for the state s ∈ S, and
w ∈ Rd is a parameter vector to be estimated. Without loss
of generality, we assume that

TD 2. For all s, s′ ∈ S, |R(s, s′)| ≤ 1, maxs∈S ‖φ(s)‖ ≤ 1.

Since the state space is finite, the value function Vw can
be represented as a vector in Rn, whose i-th coordinate is
Vw(si). This vector can be written compactly as

Vw = Φw, Φ := [φ(s1), . . . ,φ(sn)]> , (37)

such that Φ is the n × d feature matrix. The linear function
approximation restricts the set of admissible value function
Vw to span(Φ), the subset of Rn spanned by the columns of
Φ. As a result, the Bellman equation B V = V may no longer
be satisfied by Vw for any w ∈ Rd.

Among the many TD learning algorithms (see e.g. [132,
Section B]), we consider in this paper the so-called TD(0)-
learning algorithm. TD(0) is an SA scheme: under the on-
policy setting where the data is generated from the MRP
induced by π, the algorithm starts with an initial estimate
w0 and at iteration (k + 1), it gets a new observation
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Xk+1 = (Sk+1, S
′
k+1), and computes the next iterate by

wk+1 = wk + γk+1H(wk,Xk+1) where

H(w, (s, s′)) :=
(
R(s, s′) + λφ(s′)>w − φ(s)>w

)
φ(s) .

(38)
We make a simplifying assumption about Xk+1:

TD 3. The sequence {Sk, k ∈ N} is sampled independently
from the stationary distribution $ and, for each k, S′k is
sampled from P(Sk, ·).

This assumption is classical in reinforcement learning and is
suitable for algorithms that use a replay buffer [133].

Under mild conditions, the expected value of S′k+1 condi-
tionally to {Sk+1 = s} of R(Sk+1, S

′
k+1) + λφ(S′k+1)>w −

φ(Sk+1)>w evaluate to [B Vw](s) − Vw(s) which gives the
temporal difference error for the Bellman equation with the
estimate w. For any function g : S × S → R, denote

E$[g(S0, S
′
0)] :=

∑
s,s′∈S $(s)P(s, s′)g(s, s′) . (39)

The mean field function of the TD(0) algorithm is given by

h(w) := E$[φ(S0)R(S0, S
′
0)]

+ E$[φ(S0){λφ(S′0)− φ(S0)}>]w

= Φ>D$(B Φw −Φw) (40)

where we have set the diagonal matrix

D$ := diag($(s1), . . . , $(sn)). (41)

If w? is a root of h(w) = 0, then for all w′ ∈ Rd,

〈Φw′ | B Φw? −Φw?〉D$ = 0 (42)

showing that the Bellman error B Φw? −Φw? is orthogonal
to the linear subspace spanned by the column of the feature
matrix Φ in the scalar product 〈· | ·〉D$

. In light of (42), we
may now characterize the root w? to h(w) = 0 using the
projected Bellman equation

Vw = Prj$ B Vw ; (43)

Prj$ is the projection operator onto span(Φ) w.r.t. ‖ · ‖D$
.

In Section III-B4, we will show that the equation h(w) = 0
has a unique root, w?, which is the fixed point to (43).

Summary. In this section, we introduced the general
SA scheme under consideration, and showed that it can be
instantiated in several major applications of ML and SP. We
summarize in Table II the algorithms that we introduce.

III. ASSUMPTIONS

In this section, we first introduce in Section III-A the main
assumptions on the mean field h and the random oracle H
under which theoretical results will be derived in Sections IV
to VI. We then establish conditions under which those assump-
tions are satisfied on the four previously detailed examples, in
respectively Sections III-B1 to III-B4.

TABLE II: Summary of algorithms introduced in Section II-B,
that are variants of the SA scheme (4).

Setting Name Reference

SGD SGD for ERM eq. (10)

Compressed SA

Gauss-Southwell (GD with Top1) eqs. (12) and (13)
SA with compressed field eq. (16)
STE, SA with quantized iterates eq. (17)
Low precision SA eq. (19)

EM
Mini-batch EM eq. (32)
SAEM with independent MC eq. (33)
SAEM with importance sampling MC eqs. (33) and (34)

TD TD(0) eq. (38)

A. Assumptions on the SA scheme

Assume that the root-finding problem (1) is to be solved
by the SA algorithm (4) which acquires the mean-field h(w)
via subsequent calls to a stochastic oracle. At iteration (k +
1), we denote wk as the current value of the model and the
stochastic oracle outputs H(wk,Xk+1), where {Xk, k ∈ N}
are random variables taking values in X ⊆ R`. We denote by
Fk := σ(w0,X`, 1 ≤ ` ≤ k) the sigma-algebra generated by
the random variables {X`}k`=1 and the initial model w0.

We shall consider a set of assumptions for the Borel
functions H : Rd × X → Rd and h : Rd → Rd in relation
to the SA recursion. This gives rise to the first ingredient of
our analysis framework that considers a non-negative Borel
function W : Rd → R+ which controls the growth to infinity
of the variance of the stochastic oracle and its bias. We use
the same function in H 2, where it measures the coercivity of
the mean field.

H 1. a) For all k ≥ 0, E[‖H(wk,Xk+1)‖2] <∞.
b) There exist ch,0, ch,1 ∈ R+ such that for all w ∈ Rd

‖h(w)‖2 ≤ ch,0 + ch,1W(w).

c) For any k ≥ 0, there exist τ0,k, τ1,k ∈ R+ such that, a.s.,

‖EFk
[
H(wk,Xk+1)

]
− h(wk)‖2 ≤ τ0,k + τ1,kW(wk).

(44)
d) There exist σ2

0 , σ
2
1 ∈ R+ such that for any k ≥ 0, a.s.,

EFk
[
‖H(wk,Xk+1)− EFk

[
H(wk,Xk+1)

]
‖2
]

≤ σ2
0 + σ2

1W(wk). (45)

Under these assumptions, the random oracle H(wk,Xk+1)
may be a biased estimator of the mean-field h(wk), with
EFk

[
H(wk,Xk+1)

]
−h(wk) being a possibly time-varying

conditional bias. A special case often considered in the liter-
ature pertains to unbiased SA where EFk

[
H(wk,Xk+1)

]
=

h(wk). In this case, τ0,k = τ1,k := 0 for all k ∈ N in H 1-c).

Definition 1 (Unbiased stochastic oracle (USO)). The stochas-
tic oracle in SA scheme is said to be unbiased if τ0,k = τ1,k =
0 for any k ∈ N.

In USO, the sequence {uk, k ∈ N} where uk+1 :=
H(wk,Xk+1)−h(wk), is a martingale increment sequence:
EFk

[
uk+1

]
= 0, P-a.s.

An example of USO is the case where the mean field h has
a finite sum structure: h = n−1

∑n
i=1 hi. If X is a uniform
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random variable on {1, . . . , n}, then H(w,X) := hX(w)
is an unbiased stochastic oracle. A generalization of this
example is the case where h is defined as an expectation
h(w) :=

∫
S(z,w)π(dz;w) with respect to a distribution

π that may depend on the current value of the parameter
w; then H(w,X) := N−1

∑N
i=1 S(Zi,w), where X :=

(Z1, . . . , ZN ) ares i.i.d. samples from π(·;w), induces an
unbiased stochastic oracle. If instead a self-normalized im-
portance sampling is used (see e.g., (34)), then the oracle
is biased. In this case, the bias is inversely proportional to
the number of Monte Carlo samples used in the importance
sampling estimate; see e.g., [127].

It is worth noting that in the Robbins-Monro setting - in
reference to [1] - the sequence {Xk, k ∈ N} is assumed
to be i.i.d. In comparison, H 1-c) and H 1-d) used here are
slightly weaker since we do not assume that {Xk, k ∈ N} are
independent nor that they have the same distribution. However,
this excludes more subtle dependency structures and time-
dependent distributions: in some situations {Xk, k ∈ N}
is a Markov chain (possibly) controlled by {wk, k ∈ N};
considering such dependency structures requires the use of so-
phisticated probabilistic methods, that go beyond the scope of
this survey; see [5], [27], [37], [134]–[138] and the references
therein.

H1-d) implies the conditional variance of the random oracle
H(wk,Xk+1) is either bounded (σ2

1 = 0) or does not grow
faster than W(wk). The case σ2

1 = 0 is called the bounded
variance case; considered in the analysis of SG by [55].

Our analysis for SA follows that of the Lyapunov function
approach. In this setup, we introduce the second ingredient of
our analysis framework which considers a smooth Lyapunov
function V for the flow of the nonlinear ODE dw/dt = h(w).
Formally, we have the following set of assumptions:

H 2. There exists a function V : Rd → R such that,
a) V? := infw∈Rd V(w) > −∞.
b) V is continuously differentiable and LV-smooth,

i.e., there exists LV ∈ R+ such that for all w,w′ ∈ Rd,
‖∇V(w)−∇V(w′)‖ ≤ LV‖w −w′‖.

c) There exists % > 0 such that, for all w ∈ Rd,
〈∇V (w) |h(w)〉 ≤ −%W(w).

It may seem a bit complicated to have many different
constants that may seem redundant: For example, we could
have fixed W(w) := −〈∇V(w) |h(w)〉 and choose % = 1,
then change the constants ch,1, τ1,k, σ2

1 , and cV accordingly.
The motivation behind H 2-c) is to add an additional degree of
flexibility that will later facilitate analysis and allow covering
settings associated with different choices for W.

We will often use the constant cV > 0 which satisfies:

‖∇V(w)‖ ≤ cV
√

W(w), w ∈ Rd . (46)

Note that cV might be +∞ (see e.g. Section III-B1 for some
examples). On the set

ΛV := {w ∈ Rd, 〈∇V(w) |h(w)〉 = 0} , (47)

the function W is identically zero by H 2-c): for all w ∈ ΛV,
W(w) = 0. However the condition W(w) = 0 is not sufficient
yet to be able to derive useful information for solving the root

finding problem h(w) = 0. The set of equilibrium points of
the vector field h is the set

EQ(h) := {w ∈ Rd,h(w) = 0} = {h = 0} . (48)

Obviously, one has EQ(h) ⊂ ΛV, but the converse may not
hold. As we are trying to approach the equilibrium points, it
is sensible to assume that V is a strict Lyapunov function, i.e.,

EQ(h) = ΛV . (49)

If this is the case, the function W on EQ(h) is zero. In the
case of SG, the Lyapunov function V is the objective function
to be minimized F . The mean field h is the negated gradient of
the objective h = −∇F . In this case, 〈∇V |h〉 = −‖∇F‖2
and thus V is automatically a strict Lyapunov function. For
the function W, we typically choose W(w) := ‖∇F (w)‖2 =
‖h(w)‖2, so that {W = 0} = EQ(h). See Section III-B.

To obtain meaningful results, the function W should be
lower bounded outside any open neighborhood of EQ(h): for
any δ > 0, it is typically required that

min
d(w,{h=0})≥δ

W(w) =: εW(δ) > 0 , (50)

where d(w,A) is the Euclidean distance of w to the set A.
We have chosen not to include this condition in H 2 because
it is not involved in the proofs of the results presented below,
but only in their interpretation. Under (50), if for any ε > 0,
there exists a stopping time R, possibly random, such that
E [W(wR)] ≤ ε, then for any δ > 0, we have

P(d(wR, {h = 0}) ≥ δ) ≤ P(W(wR) ≥ εW(δ))

≤ E[W(wR)]/εW(δ) ≤ ε/εW(δ).

This upper bound can be set arbitrarily small with a convenient
choice of ε. We will prove in Section IV that under H 1 and H
2, given a total number of iterations T , there exists a stopping
rule strategy RT such that E [W(wRT )] goes to zero when
T → ∞. To understand why, we analyze the deterministic
sequence wk+1 = wk + γk+1h(wk). Note that, by H 2-b),

V(wk+1) ≤ V(wk) + γk+1〈∇V(wk) |h(wk)〉
+ (LV/2)γ2

k+1‖h(wk+1)‖2 .

Using that 〈∇V(w) |h(w)〉 ≤ −%W(w) and assuming for
simplicity ‖h(wk+1)‖2 ≤ ch,0, we immediately get that

%γk+1W(wk) ≤ V(wk)−V(wk+1) + (LV/2)γ2
k+1ch,0 .

For any T > 0, setting γk = 1√
T

for k ∈ {1, . . . , T}, we get

1

T

T−1∑
k=0

W(wk) ≤ 2{V(w0)−V?}+ LVch,0

2%
√
T

.

If RT is a uniform random variable on {0, . . . , T − 1}, then

E[W(wRT )] ≤ 2{V(w0)−V?}+ LVch,0

2%
√
T

.

The RHS goes to zero if T →∞. This discussion is essentially
an anticipation of the results to be obtained in Section IV,
which introduce the bias and variance of the random oracle.
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B. Verifying Assumptions for the Examples

1) Stochastic Gradient Descent: We recall from Sec-
tion II-B1 the stochastic gradient algorithm (11). Here, the
mean field h(w) = −∇F (w) is the negated gradient of the
objective function. For simplicity, we consider the algorithm
for the batch case (8), but results and assumption could easily
be extended to include the streaming data framework (7). We
concentrate on the case where the sampling of the index Xk+1

in (8) is uniform over {1, . . . , n}. The oracle H(w,X) of
the mean field h(w) is then unbiased, satisfying H 1-c) with
τ0,k = τ1,k = 0. Next, we describe conditions under which H
1, 2 are valid and derive the required constants.

Smooth (possibly non-convex) objective functions. We in-
stantiate the assumptions by setting the Lyapunov function as
V(w) := F (w) and choosing W(w) := ‖∇F (w)‖2. With
these choices, H 1-b) is satisfied with (ch,0, ch,1) := (0, 1),
H 2-c) is satisfied with % := 1 since 〈∇V(w) |h(w)〉 =
−‖∇F (w)‖2. Finally, we have cV := 1 in (46). To establish
the other conditions, namely H 1-d) and H 2-a), b), we add
the following assumption.

SG 1. a) For any i ∈ {1, . . . , n}, the function fi is differ-
entiable and its gradient is L∇fi -Lipschitz, i.e., for all
w,w′ ∈ Rd, ‖∇fi(w)−∇fi(w′)‖ ≤ L∇fi‖w −w′‖.

b) For any i ∈ {1, . . . , n}, M :=
maxi∈{1,...,n} supw∈Rd ‖∇fi(w)−∇F (w)‖ <∞.

Thus H 1-d) holds with σ2
0 := M2/n and σ2

1 := 0. Under
the above condition, H 2-a) holds with V? := infw∈Rd F (w).
H 2-b) holds with LV := n−1

∑n
i=1 L∇fi .

Smooth convex objective functions. When F is convex, we
can choose other functions V,W and obtain different constants
in H 1-2. We consider

CVX 1. The function F is convex with an optimal solution
i.e., Argminw∈RdF (w) 6= ∅.

Note that a differentiable function is convex on Rd if and
only if for all w,w′ ∈ Rd × Rd,

F (w′) ≥ F (w) + 〈∇F (w) |w′ −w〉 , (51)

and equivalently, its gradient is monotone

〈∇F (w)−∇F (w′) |w −w′〉 ≥ 0 ; (52)

see e.g., Proposition 17.45 and Proposition 17.7 in [139].
Second, under SG 1 and CVX 1, the mapping ∇F is co-
coercive i.e., for all w,w′ ∈ Rd,

〈∇F (w)−∇F (w′) |w −w′〉
≥ (1/L∇F )‖∇F (w)−∇F (w′)‖2 ; (53)

see e.g., Proposition 17.45 and Corollary 18.14 in [139].
When F is strictly convex, then the inequalities in (52) and
(53) are strict (see e.g., Proposition 17.10. in [139]).

Let w? ∈ Rd be a root of ∇F : ∇F (w?) = 0. We get
from (53) that ‖∇F (w)‖2 ≤ L∇F 〈∇F (w) |w −w?〉 for all
w ∈ Rd. This naturally suggests the definitions

V(w) := (1/2)‖w −w?‖2, W(w) := 〈∇F (w) |w −w?〉.

This yields

‖h(w)‖2 = ‖∇F (w)‖2 ≤ L∇FW(w) ,

so that H 1-b) is satisfied with (ch,0, ch,1) = (0, L∇F ). H 2-b)
trivially holds with LV := 1 and from

〈∇V(w) |h(w)〉 = −〈w −w? | ∇F (w)〉 = −W(w),

H 2-c) is satisfied with % = 1. Moreover, we note that the
condition (46) reads ‖w − w?‖ ≤ cV

√
〈∇F (w) |w −w?〉;

then cV = ∞ when F is convex but cV is finite when F is
strongly convex (see below).

Smooth strongly convex objective functions. We now
strengthen the condition on F to strongly convex functions.

CVX2. The function F is strongly convex with modulus µ > 0.

In other words, there exists µ > 0 such that for any w,w′ ∈
Rd and λ ∈ (0, 1), it holds

λF (w) + (1− λ)F (w′) ≥ F (λw + (1− λ)w′)

+ λ(1− λ)(µ/2)‖w −w′‖2.

Note that a strongly convex function possesses an unique
minimizer (see e.g., Corollary 11.17 in [139]), here denoted by
w?. Under SG1, CVX2 is equivalent to ∇F being µ-strongly
monotone i.e., for all w,w′ ∈ Rd,

〈∇F (w′)−∇F (w) |w′ −w〉 ≥ µ‖w′ −w‖2 , (54)

(see e.g., Definition 2.23 and Exercise 17.5 in [139]), which
is stronger that (52). As in the convex case above, we may
again instantiate the assumptions with

V(w) := (1/2)‖w −w?‖2, W(w) := 〈∇F (w) |w −w?〉,

Since CVX 2 implies CVX 1, (53) holds and (ch,0, ch,1) :=
(0, L∇F ). Under SG1, (σ2

0 , σ
2
1) := (M2/n, 0). We also have

LV := 1 and % := 1. Finally, cV :=
√

2/µ in (46).
Moreover, an alternative choice for W is possible, i.e.,

W(w) = V(w) := (1/2)‖w −w?‖2.

Observe that, from (54),

〈∇V(w) |h(w)〉 = −〈w −w? | ∇F (w)〉 ≤ −2µW(w) .

From SG 1-a) we get ‖∇F (w)‖2 ≤ 2L2
∇FW(w). It yields

that H 1-b) is satisfied with (ch,0, ch,1) := (0, 2L2
∇F ). In

addition, under SG 1, (σ2
0 , σ

2
1) := (M2/n, 0). We also have

LV := 1 and from (54), H 2-c) is satisfied with % := 2µ.
Finally, cV :=

√
2 in (46).

2) Compressed SA: We show that the assumptions are valid
for the methods introduced in Section II-B2. Proofs for this
section can be found in Appendix C. We first focus on the
compressed SA in (16). Consider the following assumption
about the compressor C:

CSA 1. There exists δC ∈ [0, 1] such that the compression
operator C satisfies for any x ∈ Rd:

E
[
‖C(x,U)− x‖2

]
≤ (1− δC)‖x‖2. (55)

The Gauss-Southwell estimator (see (12)), obtained by using
the projection operator Top1, satisfies CSA1 with δC := 1/d:
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Algorithm V(w) W(w) V? (ch,0, ch,1) (τ0, τ1) (σ2
0 , σ

2
1) LV % cV

SG-SG1 F (w) ‖∇F (w)‖2 F? (0, 1) (0, 0) (M2/n, 0) L∇F 1 1

SG-SG1-CVX1 1
2
‖w −w?‖2 〈∇F (w) |w −w?〉 0 (0, L∇F ) (0, 0) (M2/n, 0) 1 1 ∞

SG-SG1-CVX2 1
2
‖w −w?‖2 〈∇F (w) |w −w?〉 0 (0, L∇F ) (0, 0) (M2/n, 0) 1 1 1/

√
µ

SG-SG1-CVX2 1
2
‖w −w?‖2 1

2
‖w −w?‖2 0 (0, 2L2

∇F ) (0, 0) (M2/n, 0) 1 2µ
√

2

Mini-batch EM F ◦ T(w) ‖h(w)‖2 F? (0, 1) (0, 0) (σ̄2
0/nm, σ̄2

1/nm) LV vmin vmax

SAEM (i.i.d.) F ◦ T(w) ‖h(w)‖2 F? (0, 1) (0, 0) (σ̄2
0/bEM, σ̄

2
1/bEM) LV vmin vmax

SAEM (IS) F ◦ T(w) ‖h(w)‖2 F? (0, 1) (66) (67) LV vmin vmax

TD(0) 1
2
‖w −w?‖2 ‖Φw −Φw?‖2D$ 0 (0, (1 + λ)2) (0, 0) (70) 1 1− λ 1/

√
vmin

TABLE III: Required constants for H 1 and H 2, for each example detailed in Section III-B.

note indeed that
∑d
i=1 x

2
i ≤ d(maxi x

2
i ) which implies that

‖C(x,U) − x‖2 = ‖x‖2 − maxi x
2
i ≤ (1 − 1/d)‖x‖2. The

projection operator Toph satisfies CSA 1 with (1 − δC) :=
1 − h/d. Other compression operators satisfy this assumption
for various constants δC , see e.g., [65], [140], [141, Table 1].

We now discuss H 1 for the compressed oracles. Since
compression can be a random operator, we need to adjust
the definition of the filtration {Fk, k ∈ N} as follows:
F0 := σ(w0) and for all k ≥ 0

Fk+1 := σ (w0,X1,U1, . . . ,Xk+1,Uk+1) ;

Uk+1 denotes the random variable U sampled at iteration k+
1 when the compression operator C is applied. With these
definitions, wk ∈ Fk for all k ≥ 0. We assume that the oracle
H satisfies H 1. We show that the oracle C(H(w,X),U)
also satisfies H 1 with different constants.

Lemma 1. Assume that H satisfies H 1, with constants
(ch,0, ch,1), (τ0,k, τ1,k) and (σ2

0 , σ
2
1) and that supk(τ0,k +

τ1,k) < ∞. If C satisfies CSA 1, then, the compressed SG
in (16) satisfies H 1 with constants in H 1 c) and H 1 d) given
for ` ∈ {0, 1} and k ≥ 0, by

τ`,k;C := ((1 + ζ1) + (1 + ζ2)(1 + ζ−1
1 )(1− δC))τ`,k

+ (1 + ζ−1
2 )(1 + ζ−1

1 )(1− δC)ch,`

+ (1 + ζ−1
1 )(1− δC)σ2

` . (56)

σ2
`;C := (1− δC)

(
(1 + ζ2) sup

k
τ`,k + (1 + ζ−1

2 )ch,`

)
+ (1− δC)σ2

` . (57)

for any ζ1, ζ2 ∈ R̄+. ch,0 and ch,1 are unchanged.

An application of Lemma 1 is the Gauss-Southwell update.

Corollary 1. Consider the Gauss-Southwell update (13), with
the corresponding gradient field H(w,∼) = Top1(∇F(w))
satisfies H 1 with (ch,0;C, ch,1;C) = (0, 1), (τ0,k;C, τ1,k;C) =
(0, 1− 1/d) and (σ2

0;C, σ
2
1;C) = (0, 0), for W = ‖∇F (·)‖2).

Indeed, the Top1 compressor satisfies CSA 1 with
(1− δC) = (1 − 1/d) and the deterministic field h(w) ≡
∇F (w) satisfies H 1, for W = ‖∇F (·)‖2, with (ch,0, ch,1) =

(0, 1), (τ0,k, τ1,k) = (0, 0) and (σ2
0 , σ

2
1) = (0, 0). Using

Lemma 1, with (ζ1, ζ2) = (∞,∞), gives the result.
We note that the compressed random field can be biased

even if the original H is not biased: τ`,k = 0 does not imply
τ`,k;C = 0 if there is compression (i.e., (1 − δC) 6= 0). As a
workaround, a stronger assumption is unbiased compression.

CSA 2. There exists ωC ≥ 0 such that the compression
operator C satisfies for any x ∈ Rd:

E[C(x,U)] = x , E
[
‖C(x,U)− x‖2

]
≤ ωC‖x‖2. (58)

Note that among the operators satisfying this assumption,
(scaled) Randh with 1 + ωC = d/h, (scaled) p-sparsification
with 1 +ωC = 1/p, stochastic rounding quantization (15) with
ωC as a function of ∆ [59], [142].

Lemma 2. Assume that H satisfies H 1, with constants
(ch,0, ch,1), (τ0,k, τ1,k) and (σ2

0 , σ
2
1) and that supk(τ0,k +

τ1,k) < ∞. If C satisfies CSA 2, then, the compressed SA
in (16) satisfies H 1 with constants in H 1 c) and H 1 d) given
for ` ∈ {0, 1} and k ≥ 0, by τ`,k;C := τ`,k, c`,k;C := c`,k, and

σ2
`;C := (1 + ωC)σ2

` + 2ωC(ch,` + sup
k
τ`,k). (59)

Without compression (ωC = 0), the constants remain
unchanged; using compression introduces additional variance.
Next, we consider the following result for the compressed SA
with perturbed iterate (17). We introduce a third assumption
about compression operators that covers the case of a uni-
formly bounded quantization error in space.

CSA 3. There exists κC ≥ 0 such that the compression
operator C satisfies for any x ∈ Rd:

E
[
‖C(x,U)− x‖2

]
≤ κC. (60)

Such an assumption is satisfied for operators satisfying
CSA1 or CSA2 on a bounded domain X ⊂ Rd, or by using an
adaptive number of bits to compress the signal, depending on
its scale. This assumption was used, for example, in [143],
[144]. For deterministic rounding, as defined in (14), with
a quantization step ∆, it holds with κC = d∆2. Such an
assumption can be adapted to handle asynchrony, for a.s.
bounded fields and bounded delays (the compression scheme
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can be defined only on the points to which it is applied, and
depends on the previous sequence of iterates) [76].

Lemma 3. Assume that H satisfies H 1 with constants
(ch,0, ch,1), (τ0,k, τ1,k) and (σ2

0 , σ
2
1) such that supk(τ0,k) <

∞, for any k ≥ 0, τ1,k = 0, σ2
1 = 0. Assume that C satis-

fies CSA3, that h is Lh Lipschitz, and that EFk
[
H(·,Xk+1)

]
is LEH -Lipschitz. Then the compressed SA in (17) satisfies H
1-c) and H1-d), for all k ≥ 0, for any ζ ∈ R̄+ with τ1,k,C := 0,
σ2

1;C := 0, and

τ0,k,C := (1 + ζ)τ0,k + (1 +
1

ζ
)L2
hκC, σ2

0;C := σ2
0 + L2

EHκC.

In other words, the SA scheme with perturbed iterates
results in an additional bias and variance term. We get the
following corollary for compressed SG algorithm STE.

Corollary 2. Let H be the oracle given by (10) and consider
the STE compression SG algorithm (17). Assume SG1-a) and
C satisfies CSA3. Then the resulting field satisfies H 1-c) and
H 1-d), for all k ≥ 0, with τ1,k,C := 0, σ2

1;C := 0, and

τ0,k,C := L2
∇FκC, σ2

0;C := σ2
0 + L2

∇FκC.

Indeed, we have h = ∇F and an unbiased stochastic oracle,
thus EFk

[
H(·,Xk+1)

]
= ∇F .

Lastly, we study the low-precision SA introduced in (18)
where we work with the compressor satisfying:

CSA 4. There exists ∆C ≥ 0 such that for any x ∈ Rd,
the compression operator C satisfies: (i) E[C(x,U)] = x, (ii)
denote BdC as the image of C(·) and it holds for any x̄ ∈ BdC ,
C(x̄,U) = x̄ almost surely, and for any v ∈ Rd, x ∈ Rd,

E
[
‖C(x̄ + v,U)− x‖22

]
≤ ‖x̄ + v − x‖22 + ∆C‖v‖1. (61)

The above assumption is valid for the stochastic rounding
quantizer in (15) with ∆C = ∆, as shown in [143, Lemma 3]
with δ = ∆C, b = ∞ therein. Notice that it is also known as
a linear quantizer in [143].

Lemma 4. AssumeH satisfies H1, with constants (ch,0, ch,1),
(τ0,k, τ1,k) and (σ2

0 , σ
2
1) and that supk(τ0,k + τ1,k) < ∞.

Consider (18), (19) with constant stepsize γk = γ̄ for all k.
Assume that C satisfies CSA4. Then, the random field in (19)
satisfies H 1 with constants in H 1 c) and H 1 d) given for
` ∈ {0, 1} and k ≥ 0, by τ`,k;C := τ`,k and

σ2
0;C := σ2

0 + ∆C
√
d

2γ̄

(
3 + supk≥0 τ0,k + ch,0 + σ2

0

)
,

σ2
1;C := σ2

1 + ∆C
√
d

2γ̄

(
supk≥0 τ1,k + ch,1 + σ2

1

)
,

(62)

while ch,0 and ch,1 are unchanged.

We note that the random field in (19) inherits the same bias
properties from H , while its variance is increased to O(1 +
∆C
√
d

γ̄ ). Note that the variance is now inversely proportional
to the step size. As we show below in Section IV-B2, such
a compressed SA Algorithm converges only to an O(∆C

√
d)

approximate stationary solution.

3) Stochastic EM algorithms: We use the definitions and
notations introduced in Section II-B3. The Stochastic EM
algorithms solve the root-finding problem for the function

h(w) := s̄ ◦ T(w)−w; (63)

see (31). Our choice for the Lyapunov function is:

V(w) := F ◦ T(w). (64)

In addition to EM1 and 2, consider the following assumption

EM 3. a) There exists F? > −∞ such that F (θ) ≥ F? for
any θ ∈ Rd.

b) The function V is continuously differentiable on Rd and
there exists LV ∈ R+ such that for any w,w′ ∈ Rd,

‖∇V(w)−∇V(w′)‖ ≤ LV‖w −w′‖.

c) For any w ∈ Rd, there exists a d × d positive definite
matrix B(w) such that ∇V(w) = −B(w)h(w). In
addition, there exist positive constants vmin ≤ vmax such
that for any w,w′ ∈ Rd,

vmin‖w′‖2 ≤ ‖w′‖2B(w) ≤ vmax‖w′‖2 .

Lemma 2 in [25] provides sufficient conditions on the
regularity of the functions φ,ψ,Si and T, implying that

B(w) = (∇T(w))
> D02L(w,T(w)) (∇T(w)) ,

where L(w,θ) := ψ(θ) − 〈w |φ(θ)〉. Since under EM 2,
T(w) is the unique minimizer of θ 7→ L(w,θ), B(w) is
positive semi-definite. ∇T(w) is a d× d matrix and positive
definiteness results from conditions on the rank of ∇T(w).

Lemma 5. Under EM 1 to 3, for any w ∈ Rd, V(w) ≥
F?, 〈∇V(w) |h(w)〉 ≤ −vmin‖h(w)‖2, and ‖∇V(w)‖2 ≤
v2

max‖h(w)‖2. Thus H 2 is satisfied with V? := F? and

W(w) := ‖h(w)‖2, % := vmin, cV := vmax; (65)

H 1-b) is satisfied with ch,0 := 0 and ch,1 := 1.

Let us now check H 1-c) and H 1 -d) for some specific
examples of stochastic field H .

a) Mini-batch EM: We recall from Section II-B3a the
form of mini-batch EM, see eq. (32). We consider the follow-
ing condition, and obtain the subsequent lemma.

EM 4. There exist σ̄2
0 , σ̄

2
1 ∈ R+ such that for any w ∈ Rd

sup
i∈{1,...,n}

‖s̄i(T(w))‖2 ≤ σ̄2
0 + σ̄2

1W(w).

Lemma 6. Under EM1 to 4, for H given by (32), H 1-c)
and H 1 -d) are verified with τ`,k = 0 for all k ∈ N, and
σ2
` := σ̄2

`/bEM, for ` ∈ {1, 2}.

We refer e.g. to [38, Lemma 7.1.]: first,
EFk

[
H(wk,Xk+1)

]
= h(wk), thus eq. (32) provides

an unbiased stochastic oracle. Moreover, the conditional
variance of H(wk,Xk+1) is upper bounded by

1
bEM

1
n

∑n
i=1 ‖s̄i(T(wk))− 1

n

∑n
j=1 s̄j(T(wk))‖2.

Second, using
∑n
i=1 ‖ai − n−1

∑n
j=1 aj‖2 ≤

∑n
i=1 ‖ai‖2,

with EM4, H 1-d) is satisfied with σ2
` := σ̄2

`/bEM.
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b) SAEM: We now focus on SAEM, defined in (33).
First, consider the case when conditionally to the past, the
random variables {Zji,k+1, 1 ≤ j ≤ m, 1 ≤ i ≤ n} are
independent, and for all i ∈ {1, . . . , n} and j, the distribution
of Zji,k+1 is πi(zi; T(wk)). Then

EFk
[
ρji (wk) Si(Z

j
i,k+1)

]
=

1

m
s̄i(wk)

and the SAEM algorithm is an unbiased SA. Moreover, the
conditional variance of H(wk,Xk+1) is equal to

1

n2m

n∑
i=1

EFk
[
‖Si(Z1

i,k+1)− 1

n

n∑
j=1

s̄j(wk)‖2
]
.

Following the same lines as in the discussions about the Mini-
batch EM, we consider the following condition.

EM 5. There exist constants σ̄2
0 , σ̄

2
1 ∈ R+ such that for any

k ∈ N, almost-surely,

sup
i∈{1,...,n}

EFk
[
‖Si(Z1

i,k+1)‖2
]
≤ σ̄2

0 + σ̄2
1W(wk).

We have the following lemma.

Lemma 7. Assume that conditionally to the past, the random
variables {Zji,k+1, 1 ≤ j ≤ m, 1 ≤ i ≤ n} are independent,
and for all i ∈ {1, . . . , n} and j, Zji,k+1 ∼ πi(zi; T(wk)).
Assume also EM1 to 3 and 5. Then the oracle given by (33)
satisfies H 1-c) and H 1-d) with τ`,k = 0, and σ2

` := σ̄2
`/(nm),

for ` ∈ {1, 2} and any k ∈ N.

Finally, let us now consider the self-normalized Importance
Sampling case; conditionally to the past, the random variables
{Zji,k+1, 1 ≤ j ≤ m, 1 ≤ i ≤ n} are independent, and
for all i ∈ {1, . . . , n} and j, the distribution of Zji,k+1 is
π̃i(zi; T(wk)). In that case, SA is not unbiased due to the use
of the self-normalized importance weights

EFk
[
H(wk,Xk+1)

]
6= h(wk).

The expression of the bias and variance is complicated for
general functions Si and for simplicity, we assume here that
the functions Si are bounded (see [127, Theorem 2.3] for an in
depth study of self-normalized importance sampling). Define
the second moment of the importance ratio with respect to the
proposal π̃i(·; T(w))

χi(w) :=

∫
Z

(
πi(zi; T(w))

π̃i(zi; T(w))

)2

π̃i(zi; T(w))µ(dzi).

Consider the following assumptions.

EM 6. s? := max1≤i≤n supz∈Z ‖Si(z)‖ is finite and there
exist constants cχ,0, cχ,1 ∈ R+ such that for any w ∈ Rd(

1
n

∑n
i=1 χi(w)

)2 ≤ cχ,0 + cχ,1 W(w).

From [127, Theorem 2.1], it holds

‖EFk
[
H(wk,Xk+1)

]
− h(wk)‖ ≤ s?

12

m

1

n

n∑
i=1

χi(w),

EFk
[
‖H(wk,Xk+1)− EFk

[
H(wk,Xk+1)

]
‖2
]

≤ s2
?

4

m

1

n2

n∑
i=1

χi(w),

from which we deduce the following Lemma.

Lemma 8. Under EM1 to 3 and 6, for H given by (33), H
1-c) and H 1-d) are satisfied with

τ`,k := s2
?

144

m2
cχ,`, ` = 0, 1 (66)

σ2
0 := s2

?

4

nm

√
cχ,0 + cχ,1, σ2

1 := s2
?

4

nm

√
cχ,1. (67)

Finally, the case when the samples {Zji,k+1, 1 ≤ j ≤ m} are
the path of an ergodic Markov chain with invariant distribution
πi(zi; T(wk)), is more complex. We have again

EFk
[
H(wk,Xk+1)

]
6= h(wk).

An expression of the bias and of the conditional variance of H
can be found in [145, Proposition 5] (see also [101, Section 6])
in terms of the iterates of the Markov kernels of the Markov
Chain Monte Carlo samplers; these controls rely on Markov
Chain theory results (see e.g. [146]) whose exposition is out
of the scope of this paper.

4) TD Learning: We use the definitions and notations of
Section II-B4. We follow [128] to set up the following assump-
tions and the missing proofs are relegated to Appendix D.

To design a suitable function W for our assumptions about
the SA scheme, we first observe the following lemma from
[132, Lemma 4], which shows that the projected Bellman
operator Prj$ B is a contraction. Note that under TD1, D$

is positive-definite.

Lemma 9 ( [132]). Assume TD1 and 3. Then, Prj$ B is a
contraction with respect to ‖ · ‖D$ with modulus λ ∈ (0, 1),
i.e., for all w,w′ ∈ Rd, we get

‖Prj$ B Vw − Prj$ B Vw′‖D$
≤ λ ‖Vw − Vw′‖D$

. (68)

Therefore, under TD1 and 3, there exists an unique value
function V? in span(Φ) which solves the fixed point of the
projected Bellman equation (43): the TD(0) algorithm can be
interpreted as a simple SA scheme for solving the projected
Bellman fixed point equation. Finally, we set

W(w) := ‖Vw − V?‖2D$
, (69)

which measures the difference between the approximate value
function with parameter w and the function V?. With the
above setup, we are ready to establish H 1 under TD1 and 3.
It has been checked (see Section II-B4) that under TD 3,
EFk

[
H(wk,Xk+1)

]
= h(wk); hence, H 1-c) is satisfied

with τ0,k = τ1,k := 0. Moreover, it can be checked that H
1-a) holds, and H 1-b) holds with (ch,0, ch,1) = (0, (1 +λ)2).
The other conditions require some technical work, which is
summarized below:

Lemma 10. Assume TD 1 to 3. Then, for all w ∈ Rd we
get ‖h(w)‖2 ≤ (1 + λ)2 W(w) and for any k ≥ 0, it holds
almost-surely,

EFk
[
‖H(wk,Xk+1)− h(wk)‖2

]
≤ σ2

0 + σ2
1W(wk),
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σ2
0 := 6

(
1 + {λ2 + 1}‖V?‖2D$

)
, σ2

1 := 2(1 + λ)2. (70)

We now check H 2. Let w? ∈ Rd be such that V? = Φw?;
such a point exists since V? ∈ span(Φ). Define

V(w) := (1/2)‖w −w?‖2 . (71)

Then H 2-a), b) are verified with V? := 0 and LV := 1. The
following Lemma, borrowed from [128, Lemma 3], shows that
H 2-c) is satisfied with % := 1− λ.

Lemma 11. Assume TD1 and 3. For any w ∈ Rd,

〈∇V(w) |h(w)〉 ≤ −(1− λ)W(w) ,

where h and V are defined in (40) and (71) respectively.

Finally, let us check (46). Since W(w) = (w −
w?)

>Φ>D$Φ(w−w?), we get (see Appendix D for a proof)

Lemma 12. Assume TD 1. Then the minimal eigenvalue
vmin of Φ>D$Φ is non-negative and for all w ∈ Rd,√
vmin‖w‖ ≤ ‖w‖Σ$

≤ ‖w‖.

Hence we set cV := 1/
√
vmin in (46) which can be +∞.

Let us revisit this discussion under stronger conditions on
the feature matrix Φ. We assume in the sequel that the number
of parameters d needed to approximate the value function
Vw := Φw, is smaller than or equal to the number of states n
and that any redundant or irrelevant feature has been removed
from the feature matrix Φ defined in (37). Additionally, we
assume that the features are normalized. This is formalized in
the following assumption:

TD 4. The feature matrix is full rank with rk(Φ) = d. In
addition, for all s ∈ S, ‖φ(s)‖ ≤ 1.

Under TD1, 3 and 4, there exists an unique vector w? ∈ Rd
such that V? = Φw?, and w? is the unique root to the mean
field h. Under TD4, the feature covariance matrix

Σ$ := E$[φ(S0)φ>(S0)] = Φ>D$Φ , (72)

is positive-definite: we have an equivalent expression for
W(w),

W(w) = ‖w −w?‖2Σ$
,

and cV = 1/
√
vmin > 0. Finally, (σ2

0 , σ
2
1) are given by (70).

IV. NON-ASYMPTOTIC CONVERGENCE BOUNDS

As our first attempt on the theoretical analysis for SA,
we overview the non-asymptotic convergence bounds that
estimates some properties of the iterates after running the SA
scheme for a certain number of iterations. Throughout this
section, we focus on the case where the number of iterations
of the algorithm is bounded by T < ∞, the optimization
horizon. Note that the bounds to be presented are in the form
of expected convergence, where upper bounds on the expected
values of the function W are obtained after T iterations.

A. Finite-time bounds and sample complexity of SA

We introduce two simplifying assumptions to streamline our
forthcoming discussions.

NA 1. There exist constants τ0, τ1 ∈ R+ such that for any
k ∈ N, τ0,k = τ0, τ1,k = τ1.

NA 2. It holds cV(
√
τ0/2 +

√
τ1) < %, where cV is in (46).

Recall that cV can be infinite, and in this case, it is necessary
to have τ0 = τ1 = 0 for verifying NA2. In words, the above
assume that the bias in the oracle H(wk,Xk+1) is uniformly
bounded and small w.r.t. the strength of the drift %. Define

b0 := cV
√
τ0/2, b1 := cV(

√
τ0/2 +

√
τ1). (73)

For USO (see Definition 1), b0 = b1 = 0. Set for ` ∈ {0, 1}

η` := σ2
` + τ` + ch,` +

√
ch,` (

√
τ0 +

√
τ1) (74)

+
√
τ`
(√
ch,0 +

√
ch,1

)
,

γmax := 2{%− b1}/(LVη1) , (75)
ωk := 2{%− b1} − γkLVη1 . (76)

If η1 = 0, then by convention, γmax := +∞. By construction
and under NA2, if γk ∈ (0, γmax), then ωk > 0.

The essential argument of our analysis is a Robbins-
Siegmund type inequality [147], which has played an essential
role in the theory of SA since the first works on this subject.
Roughly speaking, we control the (expected) changes of the
Lyapunov function value V(wk+1) − V(wk) in relation to
W(wk), the stepsizes, bias, etc.

Lemma 13 (Robbins-Siegmund type inequality). Assume H 1
and 2 and NA1. Then, for any k ≥ 0, we have almost-surely

EFk
[
V(wk+1)

]
≤ V(wk)− (1/2)γk+1ωk+1 W(wk)

+ γk+1 b0 +γ2
k+1LVη0/2 . (77)

Proof. Let k ≥ 0. By H 2-b), we have

V(wk+1) ≤ V(wk) + 〈∇V(wk) |wk+1 −wk〉
+(LV/2)‖wk+1 −wk‖2 . (78)

Define bk := EFk
[
H(wk,Xk+1)

]
− h(wk). Computing the

conditional expectation of both sides of (78) yields:

EFk
[
V(wk+1)

]
≤ V(wk)

+ γk+1〈∇V(wk) |h(wk)〉 + γk+1〈∇V(wk) | bk〉
+ γ2

k+1(LV/2)EFk [‖H(wk,Xk+1)‖2] .

We now show that

|〈∇V(wk) | bk〉| ≤ b0 + b1 W(wk), (79)

Note first that, using H 1-c) and (46), we get

|〈∇V(wk) | bk〉| ≤ cV
√

W(wk){τ0 + τ1W(wk)}1/2,
≤ cV{

√
τ0
√

W(wk) +
√
τ1W(wk)} ,

and (79) follows from
√
a ≤ (1/2)(1 + a), a ≥ 0. Lastly,

EFk [‖H(wk,Xk+1)‖2] = ‖h(wk) + bk‖2

+ EFk
[
‖H(wk,Xk+1)− EFk [H(wk,Xk+1)]‖2

]
≤ η0 + η1W(wk) ,
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where η0, η1 are defined in (74). Combining the results above
and H 2-c), we get (77).

In Appendix E, we provide a slightly different version
for Lemma 13 for the particular case of GD. An important
consequence of Lemma 13 is that it allows us to deduce a
non-asymptotic bound on {W(wk)}T−1

k=0 as follows.

Theorem 1. Assume H1, 2 and NA1, 2. Assume in addition
that the step sizes {γk, k ∈ N} are chosen such that
γk ∈ (0, γmax). Then, for any T ≥ 1, we get

T−1∑
k=0

γk+1ωk+1∑T−1
`=0 γ`+1ω`+1

E[W(wk)]

≤
2(E[V(w0)]−V?) + LVη0

∑T−1
k=0 γ

2
k+1∑T−1

`=0 γ`+1ω`+1

(80)

+
2 b0

∑T−1
k=0 γk+1∑T−1

`=0 γ`+1ω`+1

.

Proof. Taking the expectations of both sides of (77) gives

(1/2)γk+1ωk+1E[W(wk)] ≤ E[V(wk)]− E[V(wk+1)]

+ γk+1 b0 +γ2
k+1LVη0/2.

We obtain (80) by summing these inequalities from k = 0
to k = T − 1 and by using H 2-a); note that under NA 2,
γmax > 0 and γ`+1ω`+1 > 0.

Suppose that b0 = 0, under an appropriate stepsize policy
(e.g., γk = γmax/

√
T ), it can be shown that the RHS of (80)

goes to zero when T → ∞. As discussed in Section III-A,
for strict Lyapunov functions, W(w) = 0 implies that w is
an equilibrium point to the vector field h(w) = 0. We further
recall that under (50), controlling E [W(wR)] at some random
stopping time R leads to a high probability bound for the
distance from wR to {h = 0}.

The following discussions demonstrate how to apply (80)
to obtain performance estimates for the SA scheme.
Random Stopping. We first discuss ways to implement the
LHS in (80). In particular, we note that it can be viewed as the
expected value E[W(wRT )], where RT is a random variable
taking values in {0, · · · , T−1}, independent of {wk, k ∈ N},
and with probability mass function

P(RT = k) =
γk+1ωk+1∑T−1
`=0 γ`+1ω`+1

. (81)

We may regard wRT as the output of the SA scheme ter-
minated at the random iteration number RT . Equivalently,
one can look at such a randomization scheme from a slightly
different perspective. Here, one can also run the SA algorithm
for T iterations, but randomly choose a point wRT from its
trajectory as the output of the algorithm. Clearly, in the latter
method, the algorithm only needs to be run for the first RT
iterations. Note, however, that the primary goal of introducing
the random iteration number RT is to derive complexity
results, not to save computational effort in the last T − RT
iterations of the algorithm.

Remark 3. When the function W is convex, the LHS of (80)
is lower bounded by E[W(w̄T )], where

w̄T :=

T−1∑
k=0

γk+1 ωk+1∑T−1
`=0 γ`+1 ω`+1

wk .

In this case, one may adopt the convex combination w̄T to
achieve the LHS of (80) as an alternative to random stopping.
Such averaging techniques are referred to as Polyak-Ruppert
averaging, and were introduced in [148], [149].

Constant step size. Let us analyze a special case when a
constant stepsize policy is used, i.e., γk+1 = γ for each k ∈
{0, . . . , T −1}. First, if γ ≤ γmax/2, then (80) can be written
more explicitly as follows

1

T

T−1∑
k=0

E[W(wk)] ≤ B +
2V + LVη0Tγ

2

γT{%− b1}
, (82)

where

B := 2 b0/(%− b1) , V := E[V(w0)]−V?. (83)

Not surprisingly, the first term, B, in the RHS of (82) which
is related to the bias of the random oracle H , cannot be made
small by any choice of γ. Indeed, according to its definition,
b0 (thus B) scales with τ0 (see (73)), and τ0 corresponds (see
H 1c)) to the part of the bias that does not scale with the h or
W . When τ0 6= 0, observing the oracle does not allow to find
an exact 0 of the field h: indeed, the oracle could for example
be equal to h + τ0 and thus the SA scheme would converge
to the roots of h+ τ0, that are distinct from those of h.

On the other hand, the second term in the RHS of (82) mixes
the dependence on the initial conditions, the bias and variance
of the stochastic oracle. It can be adjusted according to the
time horizon T and the different parameters of the problem
by a suitable choice of γ. The function γ 7→ 2V /γ+LVη0Tγ
is minimized on (0, γmax/2] by setting

γT := (2V /(η0LVT ))1/2 ∧ (γmax/2). (84)

Corollary 3. Assume H 1 and 2 and NA1 and 2. Then, for
any T ≥ 1, setting γk+1 := γT for k ∈ {0, . . . , T − 1} we get

1

T

T−1∑
k=0

E[W(wk)] ≤ B +
2
√

2V η0LV√
T{%− b1}

∨ 8V

γmaxT{%− b1}
.

In the unbiased case (B = 0), this yields an O(1/
√
T )

convergence rate for SA.
Lower bounds and ε-approximate stationarity. In general
non-convex optimization, it is intractable to find a global
minima of functions or even to test if a point is a local
minimum or a high-order saddle point. As a remedy, the
most common approach by far is to consider ε-approximate
stationarity. Our goal is to find a point wR ∈ Rd with

E[W(wR)] ≤ ε , (85)

where the expectation is taken over the randomness in both
the mean-field oracle and the query R. The use of stationarity
as a convergence criterion dates back to the early days of
nonlinear optimization (see [150]). Recent years have seen
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rapid development of a body of work that studies non-convex
optimization through the lens of non-asymptotic convergence
rates to ε-stationary points [41], [55], [151], [152].

We will discuss how to choose the constant step size γ and
the total number of iterations T to guarantee ε-approximate
stationarity when USO is satisfied. Corollary 3 implies

Corollary 4. Assume H 1, H 2-NA 1, NA 2 and USO (i.e.,
τ0 = τ1 = 0). Then, for ε > 0, the number of iterations
to guarantee an ε approximate stationary point (85) is lower
bounded by

T (ε) =
8V η0LV

ε2%2
∨ 8V

γmaxε%
. (86)

Proof. This complexity is obtained by choosing the query R
to be uniform over {0, . . . , T − 1}, and T such that the upper
bound in Corollary 3 is at most ε. Under USO, b1 = 0 and this
bound reads E[W(wR)] ≤ 2

√
2V η0LV/(

√
T%) ∨ 8V/(γmaxT%). It

is easily checked that (86) ensures (85).

When T ≥ T (ε), the algorithm which returns wR when
R is a uniform random variable on {0, . . . , T − 1}, satisfies
the ε-approximate stationarity condition E [W(wR)] ≤ ε. The
upper bound in Corollary 4 shows that there are two regimes
depending on the value of ε w.r.t. γmaxη0LV/% = 2η0/η1.

a) In the high-precision regime where ε ∈ (0, 2η0/η1],

T (ε) =
8V LV

%2

η0

ε2
, (87)

achieved with a constant step size γ(ε) = %ε
2η0LV

.
b) In the low-precision regime where ε > 2η0/η1,

T (ε) =
4V LV

%2

η1

ε
, (88)

achieved with a constant stepsize γ = γmax/2.
Last iterate or “Random” iterate? The standard analysis
holds only for random stopping, or, when W is convex, for a
convex combination of the iterates. Most practitioners just use
the final iterate of SA instead of randomly selecting a solution
wRT from {wk}T−1

k=0 . In the case of SG for convex functions
(the mean field is the gradient of a smooth convex function)
and of a stochastic oracle without bias, [153], [154] (see also
[155]) show that with a clever choice of piecewise constant
step, it is possible to obtain for the last iteration the same
decay 1/

√
T as for the randomly stopped estimator (or the

averaged one in the case where W is convex, see Remark 3).
Unfortunately, this approach is strongly linked to the use of
a gradient algorithm and does not extend to SA under the
general assumptions we consider.

Another option would be to output a solution ŵT such that

W(ŵT ) = min
k=0,...,T−1

W(wk) . (89)

In the case of SG for smooth functions and unbiased oracles,
the lower bounds reported for example in [156] show that there
is no hope of improving the speed in 1/

√
T . Using (89) re-

quires additional computational effort for {W(wk)}T−1
k=0 . Since

in most practical cases W(wk) cannot be computed exactly,
estimation using Monte Carlo simulations would introduce
approximation errors and raise robustness issues. For SG,

[12, Section 6.1.1.2] describes a two-stages procedure which
runs S times the optimization procedure from the same initial
condition. This procedure provides a comparable theoretical
guarantee, but is rarely used in practice.

Faster Rate. It is possible to improve Theorem 1 if H 1 and 2
hold with W = V; note that, since W ≥ 0 and is null on ΛV,
this implies V? = 0. We note that this setting applies to the
stochastic gradient algorithms with strongly convex objective
function and a special case of TD(0) learning. Starting from
Lemma 13, taking the expectation of both sides of (77), we
get

E[W(wk+1)] ≤ λk+1 E[W(wk)] + bk+1 (90)

where

λk := 1− γk(%− b1) + γ2
kLVη1/2, (91)

bk := γk b0 +γ2
kLVη0/2 . (92)

A straightforward induction shows that for any k ∈ N,

E[W(wk)] ≤ Λ1:k E[W(w0)] +
∑k
j=1 Λj+1:k bj , (93)

where we have set Λk+1:k := 1 and for 1 ≤ j ≤ k, Λj:k :=∏k
i=j λi. Plugging (92) into (93), we obtain for any k ∈ N,

E[W(wk+1)] ≤ Λ1:k+1E[W(w0)]

+ LVη0
2

∑k+1
j=1 γ

2
jΛj+1:k+1 + b0

∑k+1
j=1 γjΛj+1:k+1 .

Lemma 17 provides sharp estimates of
∑k+1
j=1 γ

`
jΛj+1:k+1, for

` ∈ {1, 2}, which leads to the following conclusions.

Theorem 2. Assume H 1, 2 are satisfied with V = W.
Assume in addition NA1, 2, and that the stepsize sequence
{γk, k ∈ N} is non-increasing and chosen such that, for
any k ∈ N, γk ≤ γmax/2 and

γk/γk+1 ≤ 1 + γk+1(%− b1)/4 . (94)

Then, for any k ≥ 0, we get

E[W(wk)] ≤ Λ1:k E[W(w0)] +
2LVη0

%− b1
γk + B . (95)

Proof. Under (94) and γk+1 ≤ γmax/2, we have λk+1 ≤
1− γk+1(%− b1)/2. Using Lemma 17 in the Appendix, with
a := (%−b1)/2 and b := (%−b1)/4, concludes the proof.

Condition (94) encompasses constant stepsize policies
which are common in the literature. Diminishing stepsize
sequences are also a popular choice, e.g., the sequence

γk+1 := γ̃/(k + 1 + T0)β for β ∈ (0, 1], (96)

satisfies (94) by choosing appropriately γ̃ and T0. The follow-
ing corollary is obtained by setting β = 1.

Corollary 5. Assume H 1 and 2 are satisfied with V = W.
Assume in addition NA 1 and 2. Let γ̃ ≥ 6/(% − b1) and
T0 ≥ 2γ̃/γmax; and suppose that γk+1 := γ̃/(k+1+T0), for
k ∈ {0, . . . , T − 1}. Then it holds

E[W(wT )] ≤
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B +

(
T0

T + T0

) γ̃(%−b1)
2

E [W(w0)] +
2LVη0γ̃

(T + T0)(%− b1)
.

(97)

Corollary 5 provides a bound on the last iterate of SA. In
the upper bound, The second term is O(T−α) for some α ≥ 3,
and the third term is O(T−1). As discussed in [50], [157], for
SG this upper bound is tight up to factors independent of T .

B. Application to the examples
1) Stochastic Gradient Method: We apply the results of the

previous sections to the case of SG. As there are many results
in the literature on this subject, e.g., [12], [50]–[52], [158] and
the references therein which offer excellent discussions, the
only interest in the following results is to show that we can
find “state-of-the-art” results by simply choosing V and W.

Proposition 1. Assume SG 1, the sequence {γk, k ∈ N∗}
satisfies 0 < γk ≤ 2/L∇F . The following holds for SG (11),
1) For any T ∈ N,

T−1∑
k=0

(2γk+1 − L∇F γ2
k+1)∑T−1

`=0 (2γ`+1 − L∇F γ2
`+1)

E[‖∇F (wk)‖2]

≤
E[F (w0)]− F? + L∇F (M2/n)

∑T−1
k=0 γ

2
k+1∑T−1

`=0 (2γ`+1 − L∇F γ2
`+1)

. (98)

2) If CVX1 also holds, then for any T ∈ N,

E[F (w̄T )]−F? ≤
E[‖w0 −w?‖2] + (M2/n)

∑T−1
k=0 γ

2
k+1∑T−1

`=0 (2γ`+1 − L∇F γ2
`+1)

(99)
where w̄T =

∑T−1
k=0

(2γk+1−L∇F γ2
k+1η)∑T−1

`=0 (2γ`+1−L∇F γ2
`+1)

wk.

3) If CVX 2 also holds and γk < µ/L2
∇F , γk/γk+1 ≤ 1 +

(µ/4)γk+1. Then, for any k ∈ N,

E[‖wk −w?‖2] ≤ L2
∇F (M2/n)

µ
γ2
k

+

k∏
l=1

(
1− 2µγl + 2L2

∇F γ
2
l

)
E[‖w0 −w?‖2] . (100)

Notice that item 1 retrieves the conclusions of [12, Theo-
rem 6.1]; item 2 is classical where precise results are given in
[50, Section 2] but these results were known since [159], see
[158], [160]; item 3 has a long history, see [50, Section 2].

2) Compressed SA: We describe convergence results ob-
tained for compressed SA. We focus on the case of a stochastic
gradient field (10), which has been the most studied. The
proofs for this section are given in Appendix F. We first
analyze the Gauss-Southwell update (12), which has been
studied [22], and is also known as the steepest-coordinate
descent [161]. Our results can be naturally extended to the
compressed algorithm GD for any compressor that satisfies
CSA1.

Proposition 2. Assume SG1 and consider a constant sequence
{γk, k ∈ N∗} chosen as γk = 1/8dL∇F . The following holds
for the iterates of the Gauss-Southwell algorithm (12).

1

T

T−1∑
k=0

E[‖∇F (wk)‖2] ≤ 32d2L∇F (E[F (w0)]− F?)
T

.

This result can be compared with [22, Eq. (7)] for Gauss-
Southwell, [162, Theorem 5.3] for GD with relatively bounded
errors, both of which give a result under an additional as-
sumption of strong convexity. A similar result, also given
in [163, Theorem J.3] for an error-compensated version of
the compressed algorithm, shows an increase in rate by a
factor δ−1

C . Note that our result has a dependence on d2 that
is suboptimal. A refined version of Lemma 13 is given in
Appendix E, which allows us to obtain a bound scaling with
d. However, the corresponding Lemma 18 only allows us to
improve convergence for (i) gradient methods (stochastic or
not), (ii) with bias, and (iii) when we choose V = F . Since
our interest is much more general, we omit the refinements of
this more detailed analysis.

Second, we consider the case of unbiased compression
as in (16) applied to a stochastic gradient descent update.
This case has been extensively studied in the communication-
constrained distributed optimization community, starting with
[59] and with several successors [142]. Combining Lemma 2
and Theorem 1 gives the following result:

Proposition 3. Assume SG 1 and consider unbiased-
compressed SG, i.e. Equation (16) with a C satisfying CSA2
and the sequence {γk, k ∈ N∗} satisfying 0 < γk ≤
1/(LV(2ωC + 1)). The following holds for any T ∈ N,

T−1∑
k=0

(2γk+1 − L∇F γ2
k+1)∑T−1

`=0 (2γ`+1 − L∇F γ2
`+1)

E[‖∇F (wk)‖2] (101)

≤
E[F (w0)]− F? + (M2/n)L∇F (1 + ωC)

∑T−1
k=0 γ

2
k+1∑T−1

`=0 (2γ`+1 − L∇F γ2
`+1)

.

The unbiased compression leads to a multiplicative increase
of the noise level and a reduction of the maximum stepsize
by a factor 1 + 2ωC; see [142, Theorem 9]. Third, we apply
Theorem 1 to STE using (3) with deterministic rounding (14).

Proposition 4. Assume SG 1 and consider the STE com-
pression SG algorithm (17). Assume C is Qd in (14) with
a quantization step ∆ < 1/(L∇F

√
d). Assume that the

sequence {γk, k ∈ N∗} is constant {γk} = γ/
√
T , with

0 < γ ≤ 1/L∇F . The following holds for the iterates:

1

T

T−1∑
k=0

E[‖∇F (wk)‖2] ≤ 2L∇F
√
d∆

+
2(E[V(w0)]−V?) + (M2/n+ 3L∇F

√
d∆)γ2

√
Tγ/2

This rate can be compared to [82, Theorem 3] for
BinaryConnect, although we do not assume a bounded
domain: we have a convergence rate of 1/

√
T up to a fixed

threshold proportional to
√
d∆. Finally, we consider the case

of low precision SG in terms of (18). Combining Lemma 4
with (82) (which holds under conditions of Theorem 1) gives:

Proposition 5. Assume SG 1 and consider compressed SG
(18) with constant stepsize γk = γ̄. If C satisfies CSA4 and

γ̄ + ∆C
√
d < 2/L∇F . (102)
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Then the following holds for any T ∈ N,

1

T

T−1∑
k=0

E[‖∇F (wk)‖2] ≤ 2(E[F (w0)]− F?)
γ̄T

+ γ̄
M2L∇F

n

+
√
d∆CL∇F

(
3 +M2/n

)
. (103)

Eq. (102) holds provided that ∆C ≤ 2/L∇F
√
d. In the

case of random quantization, this constraints the resolution
of quantizer. Moreover, inserting γ̄ = O(1/

√
T ) shows that

the first two terms in (103) are O(1/
√
T ), while the last term

does not vanish with T . This shows that the compressed SG
Algorithm converges to a O(∆C

√
d) approximate stationary

solution, i.e., similar to [143, Theorem 2].
3) Stochastic EM algorithms: The stochastic EM algo-

rithms are used to find a root of the mean-field h defined
in (63). We specialize our results to the Mini-batch EM
introduced in Section III-B3a and to the SAEM algorithm
introduced in Section III-B3b, under the assumptions EM 1
to 3.

a) Mini-batch EM: This case is an example of USO (see
Definition 1) where τ0 = τ1 = 0. Using Section III-B3, it is
easily checked that η0 = σ̄2

0/bEM, η1 = 1 + σ̄2
1/bEM, γmax =

2vmin/(LVη1), and ωk = 2vmin−γkLVη1. Let T > 0 be the total
number of iterations. Assume that, for all k ∈ {0, . . . , T −1},
γk+1 < 2vmin/(LVη1). If the Mini-batch EM is stopped at a
random iteration index RT whose distribution is given in (81),
then E[‖h(wRT )‖2] is upper bounded by Theorem 1 as:

Proposition 6. Assume EM1 to 4. Let {wk, k ∈ N} be the
SA sequence with random oracle (32). Then for any T ∈ N,

E
[
‖h(wRT )‖2

]
≤

2V + LVσ̄
2
0

∑T
k=1 γ

2
k/bEM∑T

k=1 γk(2vmin − γkLV(1 + σ̄2
1/bEM))

,

where RT is the uniform random variable on {0, . . . , T − 1}
and V , LV, vmin and σ̄2

` are defined by (83), EM3 and EM4.

Assume constant step sizes on {0, . . . , T − 1}:

γk+1 = γ :=

(
2V

σ̄2
0LV

bEM

T

)1/2

∧ vmin

LV(1 + σ̄2
1/bEM)

,

and that RT is the uniform random variable on {0, . . . , T−1}.
Then, using Corollary 3, we get the following upper bound

E
[
‖h(wRT )‖2

]
≤ 2

√
2V σ̄2

0LV√
bEM Tvmin

∨ 8V LV(1 + σ̄2
1/bEM)

2Tv2
min

.

(104)
Let ε ∈

(
0, 2σ̄2

0/σ̄
2
1

)
. We discuss how to select the number

of iterations T , the step size γ and the size of the mini-batch
bEM so that E

[
‖h(wRT )‖2

]
≤ ε. Assume first that

0 < ε ≤ 2σ̄2
0/(bEM + σ̄2

1) . (105)

In this case (see (87)), the number of iterations needed to
guarantee an ε-approximate stationary point is

T (ε, bEM) :=
8V LV

v2
min

σ̄2
0

bEMε2
, (106)

which grows as ε−2 as ε ↓ 0+. The bound in (106) is achieved
by taking a constant step size γ(ε, bEM) := vminbEMε/(2σ̄2

0LV).
We observe that T (ε, bEM) is inversely proportional to the

mini-batch size bEM, while the step size is proportional to
bEM. Increasing bEM allows more aggressive step sizes to be
used and the number of iterations to be reduced accordingly.

It is interesting to study the impact of the choice of bEM

on the computational complexity. Note that the computational
cost of mini-batch EM depends on two factors: the evaluation
of the functions s̄i for the current mini-batch Xk+1, and
the cost of updating the parameter by calling the optimiza-
tion map T. The cost of evaluating the stochastic oracle is
bEM costs̄ + costT, and after T (ε, bEM) iterations, this cost is

cost(ε, bEM) :=
8V LVσ̄

2
0

v2
minε

2
costs̄

(
1 +

costT

costs̄

1

bEM

)
.

(107)
If costT is negligible w.r.t. costs̄, there is no clear incentive
to take a mini-batch larger than 1 (to see the interest in using
a larger mini-batch, we would have to go much further in
evaluating computational cost by considering the possibility
of parallelization or multithreading, etc.). However, if costT

is taken into account - which is often the case, since the
evaluation of T requires solving an optimization program -
then it becomes interesting to increase the size of the mini-
batch. Since this discussion assumes that (105) holds, the
maximum batch size is (up to appropriate roundings):

bEM(ε) := 2σ̄2
0/ε− σ̄2

1 .

This “optimal” mini-batch size is inversely proportional to
the accuracy ε, consistent with the fact that using aggressive
strategies to reduce the number of iterations is a win. It is
interesting to note that the step size γ(ε, bEM(ε)) is equal to
vmin(1− εσ̄2

1/(2σ̄
2
0))/LV > vmin/(2LV).

Assume now that bEM is such that ε ≥ 2σ̄2
0/(bEM + σ̄2

1).
Using (88), the total number of iterations needed to guarantee
an ε-approximate stationary point is

T (ε, bEM) :=
4V LV

v2
min

1 + σ̄2
1/bEM

ε
, (108)

which grows as ε−1 as ε ↓ 0+. The bound in (108) is achieved
by taking a constant step size γ(ε, bEM) := γmax/2 =
vminbEM/(LV(bEM + σ̄2

1)). After T (ε, bEM) iterations, the
total cost of evaluating the stochastic oracles is

cost(ε, bEM) :=
4V LV

v2
minε

(bEM + σ̄2
1) costs̄

(
1 +

costT

costs̄

1

bEM

)
.

This quantity is minimized by bEM(ε) := (2σ̄2
0/ε− σ̄2

1)∨b?EM,

b?EM :=
√
σ̄2

1 costT / costs̄.

When ε ≤ 2σ̄2
0/(b?EM + σ̄2

1), then bEM(ε) = 2σ̄2
0/ε − σ̄2

1

and cost(ε, bEM(ε)) is equal to the previous case (see (107));
otherwise, the cost cost(ε, b?EM) is lower. See the summary of
the cost for minibatch EM in Table IV.

b) SAEM with exact sampling (SAEM-ES): Consider the
case when conditionally to the past, the random variables
{Zji,k+1, 1 ≤ j ≤ m} are sampled from the distribution
πi(zi; T(wk)) for all i ∈ {1, . . . , n}; and {Zji,k+1, 1 ≤ j ≤
m, i ∈ {1, . . . , n}} are independent. Assume EM5.
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We have (see Section III-B3b) η0 = σ̄2
0/(nm), η1 = 1 +

σ̄2
1/(nm), b0 = b1 = 0, γmax = 2vmin/(LVη1) and ωk = 2vmin−
γkLVη1. From Theorem 1, we obtain the following result.

Proposition 7. Assume EM1 to 3. Let {wk, k ∈ N} be the
SA sequence with random oracle (33). Assume in addition
EM5. Then for any T ∈ N,

E
[
‖h(wRT )‖2

]
≤

2V + LVσ̄
2
0

∑T
k=1 γ

2
k/(nm)∑T

k=1 γk(2vmin − γkLV(1 + σ̄2
1/(nm)))

,

where RT is the uniform random variable on {0, . . . , T − 1}
and V , LV, vmin and σ̄2

` are defined by (83), EM3 and EM5.

We discuss the case of constant step sizes γk = γ. By
Corollary 3, we choose

γ :=

(
2V

σ̄2
0LV

nm

T

)1/2

∧ vmin

LV(1 + σ̄2
1/(nm))

,

and obtain the upper bound

E
[
‖h(wRT )‖2

]
≤ 2

√
2V σ̄2

0LV√
nmTvmin

∨ 8V LV(1 + σ̄2
1/(nm))

2Tv2
min

,

where RT is the uniform random variable on {0, . . . , T − 1}.
Let ε ∈

(
0, 2σ̄2

0/σ̄
2
1

)
. We discuss how to select the number

of iterations T , the step size γ and the number m of Monte
Carlo samples so that E

[
‖h(wRT )‖2

]
≤ ε. Assume that m

satisfies
0 < ε ≤ 2σ̄2

0/(nm + σ̄2
1) . (109)

In this case (see (87)), the total number of iterations needed
to guarantee an ε-approximate stationary point is

T (ε,m) :=
8V LV

v2
min

σ̄2
0

nmε2
, (110)

which grows as ε−2 as ε ↓ 0+. The bound in (110) is achieved
by taking a constant step size γ(ε,m) := vminnmε/(2σ̄2

0LV). The
minimal number of iterations T (ε,m) is inversely proportional
to the Monte Carlo sample size m, while the step size is
proportional to m. Increasing m allows more aggressive step
sizes to be used and the number of iterations to be reduced
accordingly. As in the Mini-batch EM, let us evaluate the
computational cost to understand the impact of this choice on
the computational complexity. The computational cost depends
on the number of calls to the optimization map T (with
cost costT) and the cost of approximating each of the n
expectations s̄i by a Monte Carlo sum with m terms (each
term has a cost costMC). The cost of evaluating one oracle is
costT +nm costMC, and after T (ε,m) iterations, this cost is

cost(ε,m) :=
8V LVσ̄

2
0

v2
minε

2
costT

(
1

nm
+

costMC

costT

)
. (111)

Increasing the number m of Monte Carlo samples reduces the
cost due to the optimization step T but will have no impact on
the Monte Carlo cost. Since this discussion assumes (109), the
maximal Monte Carlo sample size is given (up to appropriate
roundings) by m(ε) := n−1(2σ̄2

0/ε−σ̄2
1): the ”optimal” sample

size is inversely proportional to the accuracy ε. It is interesting
to note that the step size γ(ε,m(ε)) associated with this choice
of sample size is vmin(1− εσ̄2

1/(2σ̄
2
0))/LV > vmin/(2LV).

Assume now that m is such that ε ≥ 2σ̄2
0/(nm+ σ̄2

1). Using
(88), the total number of iterations needed to achieve an ε-
approximate stationary point is lower bounded by

T (ε,m) :=
4V LV

v2
min

1 + σ̄2
1/nm

ε
, (112)

which grows as ε−1 as ε ↓ 0+. The bound in (112) is
achieved by taking a constant step size γ(ε,m) := γmax/2 =
vminnm/(LV(nm + σ̄2

1)). After T (ε,m) iterations, the total
cost of evaluating the stochastic oracles is

cost(ε,m) :=
4V LV

v2
minε

(nm + σ̄2
1) costT

(
1

nm
+

costMC

costT

)
.

This quantity is minimal with m(ε) := {n−1(2σ̄2
0/ε− σ̄2

1)} ∨
m? where

m? := n−1
√
σ̄2

1 costT / costMC.

When ε ≤ 2σ̄2
0/(nm? + σ̄2

1), then m(ε) = n−1(2σ̄2
0/ε − σ̄2

1)
and cost(ε,m(ε)) is equal to the previous case (see (111));
otherwise, the cost cost(ε,m?) is lower. See the summary of
the cost for SAEM-ES in Table IV.

c) SAEM with self-normalized Importance Sampling
(SAEM-IS): Consider the case of SAEM-IS: conditionally to
the past, the random variables {Zji,k+1, 1 ≤ j ≤ m, 1 ≤ i ≤
n} are independent, and for all i ∈ {1, . . . , n} and j, the
distribution of Zji,k+1 is π̃i(zi; T(wk)). Assume EM6. From
Section III-B3b, we have for any Monte Carlo batch size m
large enough: η0 = σ̄2

0/m, η1 = 1 + σ̄2
1/m, b0 = cb/m and

b1 small enough so that vmin − b1 ≥ vmin/2. The exact
expressions of η0, η1,b0 and b1 in terms of s?, cχ,`, n, m and
vmax are given in Appendix G. From Theorem 1, we obtain:

Proposition 8. Assume EM 1 to 3. Let {wk, k ∈ N}
be the SA sequence with random oracle (33). Assume in
addition that for all i ∈ {1, . . . , n} and k ≥ 0, the random
variables {Zji,k+1, j ≥ 1} are independent and sampled from
the distribution πi(zi; T(wk)) and EM6 holds. Then for any
T ∈ N,

E
[
‖h(wRT )‖2

]
≤

2cb
∑T
k=1 γk/m∑T

`=1 γ` (2vmin − γ`LV(1 + σ̄2
1/(nm)))

+
2V + LVσ̄

2
0

∑T
k=1 γ

2
k/(nm)∑T

k=1 γk(2vmin − γkLV(1 + σ̄2
1/(nm)))

,

where RT is the uniform random variable on {0, . . . , T − 1}
and V , LV and vmin are defined by (83) and EM3 respectively.

Let us discuss how to choose a constant step size γ, the
total number of iterations T , and the Monte Carlo batch size
m to satisfy the ε-approximate stationary condition. SAEM-
IS is not a USO algorithm: the stochastic oracles are biased
approximations of the mean field. Consequently, B 6= 0 in
Corollary 3 as this term does not depend on the step size γ
nor on the number of iterations T . Nevertheless, m goes to
infinity, we have b0 → 0, b1 → 0, which implies that B→ 0.
As such, B can be made small by a convenient choice of m.

From Corollary 3, we have

E
[
‖h(wRT )‖2

]
≤ 4cb
vminm

+
4
√

2V σ̄2
0LV√

m
√
Tvmin

∨ 16V LVη1

Tv2
min

,

(113)
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where RT is the uniform random variable on {0, · · · , T − 1}.
Such an upper bound is obtained with a constant step size

γ :=

(
2V m

σ̄2
0LVT

)1/2

∧ vmin − b1

LV(1 + σ̄2
1/m)

.

Choose κ ∈ (0, 1) such that for any ε ∈
(
0, 2σ̄

2
0/σ̄2

1

]
,

4cb
(1− κ)vmin

+ εσ̄2
1 ≤

2σ̄2
0

κ
. (114)

Let ε ∈
(
0, 2σ̄

2
0/σ̄2

1

]
. First, we choose m such that B =

4cb/(vminm) ≤ (1− κ)ε. This yields

m ≥ 4cb/((1− κ)vminε). (115)

Now we choose T and m to make the second term in (113)
smaller than κε. As in the comments following Corollary 3,
we distinguish two regimes: the second term in (113) is lower
than κε if the number of iterations T is larger than

16V LV(1 + σ̄2
1/m)

v2
minκε

∨ 32V σ̄2
0LV

mv2
minκ

2ε2
,

and this bound, seen as a function of ε, defines two regimes
depending on the value of ε w.r.t. 2σ̄2

0/(κ(m + σ̄2
1)).

In the high-precision regime where ε ∈
(
0, 2σ̄

2
0/κ(m+σ̄2

1)
]
,

the number of iterations T is lower bounded by

T (ε,m) :=
32LVV σ̄2

0

v2
minmκ2ε2

.

The step size is γ(ε,m) := κεvminm/(4LVσ̄
2
0). Increasing the

number of Monte Carlo points allows more aggressive step
sizes and decreases the number of iterations. Nevertheless, it
has an impact on the computational cost of the algorithm. The
cost, per iteration, is the sum of the optimization cost when
computing T (it is denoted by costT) and the Monte Carlo cost
nm costMC when approximating each of the n expectations s̄i
with m draws (costMC denotes the cost of one Monte Carlo
draw). After T (ε,m) iterations, it is equal to

cost(ε,m) =
32LVV σ̄2

0

v2
minκ

2ε2
costT

(
1

m
+

costMC

costT
n

)
. (116)

There is a gain in increasing m; nevertheless, in this high-
precision regime, m is upper bounded by 2σ̄2

0/(κε)− σ̄2
1 , and

it also satisfies (115): the definition of κ (see (114)) allows
the choice m(ε) = 2σ̄2

0/(κε)− σ̄2
1 .

In the low-precision regime, which corresponds to ε ≥
2σ̄2

0/κ(m+σ̄2
1), the number of iterations is lower bounded by

T (ε,m) :=
16V LV(1 + σ̄2

1/m)

v2
minκε

and the step size γ(ε,m) is larger than vmin/(2LV(1+ σ̄2
1/m)).

The computational cost is

cost(ε,m) :=
16V LV(1 + σ̄2

1/m)

v2
minκε

costT

(
1 +

costMC

costT
nm

)
.

It is minimized with m(ε) = m? ∨ (2σ̄2
0/(κε)− σ̄2

1) where

m? :=
√
σ̄2

1 costT /(n costMC).

Stochastic EM Algorithms Computational Cost

M
in

i-
ba

tc
h

E
M

High precision regime

ε ∈
(

0,
2σ̄2

0

b?EM+σ̄2
1

] 8V LVσ̄
2
0

v2
min

costs̄

ε

(
1

ε
+

costT

costs̄

1

2σ̄2
0 − εσ2

1

)

Low precision regime

ε ∈
[

2σ̄2
0

b?EM+σ̄2
1
,

2σ̄2
0

σ̄2
1

) 8V LVσ̄
2
0

v2
min

b?EM + σ̄2
1

2σ̄2
0

costs̄

ε

(
1 +

costT

costs̄

1

b?EM

)

SA
E

M
-E

S

High precision regime

ε ∈
(

0,
2σ̄2

0

nm?+σ̄2
1

] 8V LVσ̄
2
0

v2
minε

costT

(
1

2σ̄2
0 − εσ̄2

1

+
costMC

costT

1

ε

)

Low precision regime

ε ∈
[

2σ̄2
0

nm?+σ̄2
1
,

2σ̄2
0

σ̄2
1

) 8V LVσ̄
2
0

v2
minε

nm? + σ̄2
1

2σ̄2
0

costT

(
1

nm?
+

costMC

costT

)

SA
E

M
-I

S

High precision regime

ε ∈
(

0,
2σ̄2

0

κ(m?+σ̄2
1)

] 32LVV σ̄2
0

v2
minκε

costT

(
1

2σ̄2
0 − κεσ̄2

1

+
costMC

costT

n

κε

)

Low precision regime

ε ∈
[

2σ̄2
0

κ(m?+σ̄2
1)
,

2σ̄2
0

σ̄2
1

) 16V LV(m? + σ̄2
1)

v2
minκε

costT

(
1

m?
+

costMC

costT
n

)

TABLE IV: Computation costs to find ε-approximate sta-
tionary points for stochastic EM. The optimal batch size
b?EM (Mini-batch EM), the Monte Carlo sample size m?

(SAEM-ES/SAEM-IS), and the step sizes can be found in
Section IV-B3. The low-precision regime does not exist if
σ̄2

1 = 0.

When κε ≤ 2σ̄2
0/(m? + σ̄2

1), then m(ε) = 2σ̄2
0/(κε)− σ̄2

1 and
the cost cost(ε,m(ε)) is equal to the previous case (see (116));
otherwise, the cost cost(ε,m?) is lower. See the summary of
the cost for SAEM-IS in Table IV.

4) TD Learning: TD(0) is an example of USO (see Defini-
tion 1) with τ0 = τ1 = 0. Using the results of Section III-B4,
it is easily checked that b0 = b1 = 0, η0 = 6(1 + 2‖V?‖2D$

),
η1 = 3(1 + λ)2, γmax = 2(1 − λ)/(3(1 + λ)2) and ωk =
2(1− λ)− 3γk(1 + λ)2. We obtain the following result from
Theorem 1 and Remark 3, which extends [128].

Proposition 9. Assume TD 1 to 3 and sups ‖φ(s)‖ ≤ 1.
Consider the TD(0) sequence defined in (38). Set T > 0,
and let {γk, k ∈ N} be a sequence such that 0 < γk <
2(1− λ)/(3(1 + λ)2). Set

w̄T :=

T∑
k=1

γk(2(1− λ)− 3γk(1 + λ)2)∑T
`=1 γ`(2(1− λ)− 3γ`(1 + λ)2)

wk.

Then,

E[‖Vw̄T − V?‖2D$
]

≤
E[‖w0 −w?‖2] + 6{1 + 2‖V?‖2D$

}
∑T
k=1 γ

2
k∑T

`=1 γ`(2(1− λ)− 3γ`(1 + λ)2)
,

where Σ$ and σ2
0 are given in (72) and (70) respectively. w?

is any solution of V? = Φw?.

Proposition 9 bounds the mean squared distance between
the value function estimator under the averaged iterate w̄T
and the fixed point to the projected Bellman equation (43). The
strength of this result is that the step sizes and the bound do
not depend on the condition number of the feature covariance
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matrix (under TD4, vmin > 0). Let us first consider the case
of constant stepsize policy. Set

γT :=

√
2E[‖Vw0

− V?‖2D$
]

6(1 + 2‖V?‖2D$
)T
∧ 1− λ

3(1 + λ)2
.

Using Corollary 3, we get:

Corollary 6. Assume TD1 to 3. Then, for any T ≥ 1, setting
γk+1 := γT for k ∈ {0, . . . , T − 1}, we get

E[‖Vw̄T − V?‖2D$
]

≤
2
√

12V {1 + 2‖V?‖2D$
}

√
T (1− λ)

∨ 12V (1 + λ)2

T (1− λ)2

where V = E[‖Vw0 − V?‖2D$
] and w̄T := T−1

∑T−1
k=0 wk.

Using Lemma 12, we observe that the Lyapunov functions
V and W are equivalent, i.e., for all w ∈ Rd, we get

2
√
vminV(w) ≤W(w) ≤ 2V(w) . (117)

The conclusions of Lemmas 10 and 11 may be rewritten as

〈∇V(w) |h(w)〉 ≤ −2
√
vmin(1− λ)V(w) ,

‖h(w)‖2 ≤ 2(1 + λ)2V(w) ,

showing that H 1 and H 2 are satisfied with W = V, % :=
2
√
vmin(1− λ), ch,0 := 0, and ch,1 := 2(1 + λ)2, σ2

0 and σ2
1

given by (70).
We can therefore apply Corollary 5; note that under TD1

to 4, τ0 = τ1 = 0 and cV < ∞, NA1 and 2 are verified and
b0 = b1 = 0. This yields the following result, which gives a
convergence rate O(T−1). Note that under TD4, there exists
a unique w? ∈ Rd such that V? = Φw?.

Corollary 7. Assume TD1 to 4. Let T ≥ 1 and set γk+1 :=
γ̃/(k+1+T0) for k = {0, . . . , T−1}, where γ̃ > 3/√vmin(1−λ)

and T0 ≥ 2γ̃(1 + λ)2/(
√
vmin(1− λ)). Then

E
[
‖wT −w?‖2

]
≤
(

T0

T + T0

)γ̃√vmin(1−λ)

E
[
‖w0 −w?‖2

]
+

12γ̃

(T + T0)
√
vmin(1− λ)

(
1 + {λ2 + 1}‖V?‖2D$

)
.

In this case, however, the choice of stepsize γk = γ̃/(k +
T0), depends on the minimal eigenvalue vmin of the feature co-
variance matrix through the constants γ̃, T0. These results are
in the spirit of the robust SA introduced by [50]. With constant
stepsize policy, after T iterations, the mean squared distance
between the value function estimates under the averaged iterate
and the fixed point to the projected Bellman equation decreases
at the rate O(T−1/2). Of course, this is worse than the rate
O(T−1) for the decreasing step size SA algorithm. However,
the expected error bounds of Corollary 6 are guaranteed re-
gardless of the knowledge of vmin. The O(T−1/2) bound still
holds with any constant step size γk = γ̃/

√
T , k ∈ {1, . . . , T}

with γ̃ > 0, an error in the choice of γ̃ has a linear effect on
the error bound in max

{
γ̃, γ̃−1

}
. This is to be compared with

a potentially catastrophic effect of an appropriate choice of the
hyperparameters γ̃ and T0 in Corollary 7. These observation
justifies the ‘robustness’ of the method as ”fine tuning” of the
step sizes to the objective function is not necessary.

V. ALMOST-SURE CONVERGENCE

This section overviews the asymptotic convergence analysis
of SA scheme where we study the behavior of (4) when the
optimization horizon tends to infinity (k → ∞) and we will
use decreasing step sizes. At the first glance, these asymptotic
convergence results may appear less powerful than the non-
asymptotic bounds in Section IV, yet we emphasize that these
results are presented in flavor of the almost-sure convergence
towards one of the equilibrium points set. In contrast, the
non-asymptotic bounds only show the convergence towards
a near-equilibrium point within a finite number of iterations,
and the results are often given in expectation. In fact, the first
results in SA were obtained in the almost-sure convergence
framework in the pioneering works of [1] and [2]; see [13,
Chapter 1-2] for a historical introduction. Nevertheless, both
types of convergence results are equally important for our
understanding of the SA schemes.

A. The ODE method

A powerful method for establishing almost-sure conver-
gence results is the so-called ordinary differential equation
(ODE) method, which allows us to relate the almost-sure limit
point of SA schemes (see (4)) with the limiting sets of the flow
of the autonomous ODE

dw/dt = h(w). (118)

The key element is a detailed analysis of the flow associated to
vector field h. Let Φ : R×Rd → Rd (t, y) 7→ Φ(t, y) = Φt(y),
be a continuous function. The family Φ = (Φt)t∈R is called a
flow of Rd, if Φ0 = I and for all (t, s) ∈ R2, Φt ◦Φs = Φt+s.
Φ is a semi-flow if we substitute the above R by R+. The
forward orbit of y ∈ Rd is the set Orb+(y) = {Φt(y) : t ≥ 0}
and the orbit of y is Orb(y) = {Φt(y) : t ∈ R}.

The continuous vector field h on Rd is said to have unique
integral curve if there exists a flow Φh : R × Rd → Rd,
(t, y) 7→ Φh(t, y) = Φht (y), which is differentiable with
respect to t satisfying, for all t ∈ R,

dΦht /dt = h(Φht ), Φh0 (y) = y .

A point w? ∈ Rd is an equilibrium if Φt(w?) = w? for all
t ∈ R. The set EQ(Φh) of the equilibrium point of the flow
Φh coincides with roots of h:

EQ(Φh) = {w? ∈ Rd,h(w?) = 0} . (119)

A set Λ ⊂ Rd is invariant (resp. positively invariant) for the
flow Φ if Φt(Λ) ⊂ Λ for all t ∈ R (resp. for all t ∈ R+).
In this case, we denote by Φ|Λ the flow (resp. semi-flow)
restricted to Λ. If w? is an equilibrium point, then the set
{w?} is invariant.

The ODE method was introduced by [3] and further refined
in [4] (with recursive system identification in mind) and
extensively studied thereafter; see, e.g., the books [13], [34],
[5] for a comprehensive introduction and further references.
The possibility of associating limit points of stochastic approx-
imation procedure and a subset of the family of invariant sets
of the flow Φh - which includes equilibrium points but might
include more ”complex ” sets - is the main motivation for the
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work of [3], which extends older contributions on this subject.
Previous results in this field have been established under
simple and often unverifiable assumptions about the flow Φh,
for example the existence of a single global ”asymptotically
stable” equilibrium [1] or of a finite number of equilibrium
points whose ”basins of attraction” cover the whole space. The
success of the ODE method stems from the fact that many
results of the rich theory of dynamical systems are readily
available; see [164], [13, Chapter 4], and [34, Chapter 2].

We will consider two situations. In the first, the most classi-
cal, the bias disappears asymptotically, i.e. limk→∞ τ`,k = 0,
` = 0, 1. There is an extensive literature on this subject: we
give below a very brief overview of these results, which are
mainly inspired by [164], [165]; see also [13], [34]. We then
extend these results to the case where the bias does not vanish
but is bounded by a sufficiently small constant, by extending
the results from [39], [40], [166]. To keep the presentation
concise, we report the results with only a sketch of proofs.

B. Limit set of SA with vanishing bias

We consider the following deterministic sequence, which is
a perturbed Euler discretization of the ODE (118)

wk+1 = wk + γk+1{h(wk) + uk+1 + bk+1}. (120)

We first strengthen the conditions on the stepsize sequence:

SA 1. {γk, k ∈ N} is a non increasing sequence of positive
numbers such that

∑∞
k=1 γk =∞ and limk→∞ γk = 0.

For the mean field h, we strengthen H 2 used in the non-
asymptotic analysis, by assuming that the field h is globally
Lipschitz; it guarantees the existence and the uniqueness of
the solutions of the ODE (118) which can be extended to R:

SA 2. The vector field h is Lipschitz continuous, i.e., for all
w,w′ ∈ Rd, ‖h(w)− h(w′)‖ ≤ Lh‖w −w′‖.

A key assumption in the analysis (and one of the most
annoying one) is that the sequence is bounded.

SA 3. supk∈N ‖wk‖ <∞.

This may seem innocuous since we are interested in con-
vergence, but the stability of SA is a non-trivial issue in
general. When SA 3 is not satisfied - which unfortunately
occurs in many practical examples - a classical approach is
to project the iterates on a compact set. The projection then
modifies the underlying dynamical system, which becomes
a differential inclusion; see [13, Chapters 4-5] for details.
Another possibility is to project onto a growing sequence of
compact sets; this has been advocated by [167] and recently
studied in great detail (with Markovian noise) in [37], [136].
Another solution is to reinitialize the sequence upon crossing
a growing sequence of boundaries, as suggested by [168] and
further worked out in [135]. Technical details to prove stability
under these modifications go beyond this survey.

Define t0 := 0 and for k ∈ N∗, tk :=
∑k
`=1 γ`. The

”inverse” of k → tk is the map m : R+ → N defined by

m(t) := sup {k ≥ 0 : t ≥ tk} .

By construction, m(tk) = k. We denote for T > 0,
Ik(T ) := {k + 1, . . . ,m(tk + T )}. We finally assume that
the perturbations satisfy the following assumption.

SA 4. It holds limk→∞ bk = 0 and that for all T > 0,

limn→∞ sup
{∥∥∥∑k−1

`=n γ`+1u`+1

∥∥∥ : k ∈ In(T )
}

= 0 .

This condition is often referred as the asymptotic rate of
change (see e.g., [13, Chapter 5, pp.137-138]). We compare
the sequence {wk, k ∈ N} with the flow induced by the
vector field h. For a sequence {yk, k ∈ N} in Rd, we define
the continuous time affine and piecewise constant interpolated
functions Y, Ȳ : R+ → Rd respectively by

Y (tk + s) = yk + s
yk+1 − yk
tk+1 − tk

, and Ȳ (tk + s) = yk (121)

for all k ∈ N and 0 ≤ s < γk+1. We define, for (t, T ) ∈ R2
+,

∆u(t, T ) := sup0≤s≤T

∥∥∥∫ t+st
Ū(s) ds

∥∥∥ . (122)

Note that SA4 is equivalent to limt→∞∆u(t, T ) = 0. With
these notations, (120) writes, for t ≥ 0,

W(t)−W(0) =
∫ t

0

(
h(W̄(s)) + Ū(s) + B̄(s)

)
ds.

The first key result for SA algorithms is the convergence of
the linear interpolation to the ODE flow:

Proposition 10 ( [164, Proposition 4.1]). Assume SA1 to 4.
Then for all T > 0,

lim
t→∞

sup
0≤s≤T

∥∥W(t+ s)− Φhs (W(t))
∥∥ = 0.

Let δ > 0, T > 0. A (δ, T )-pseudo-orbit for a flow Φ from
a, b ∈ Rd is a finite sequence of partial trajectories: there exist
N and time instants {ti}Ni=1 ⊂ (0, T ] and y1, . . . , yN ∈ Rd
satisfying ‖y0 − a‖ < δ, ‖Φtj (yj) − yj+1‖ ≤ δ for j =

0, . . . , k − 1 and ‖yk − b‖ ≤ δ. We write a ↪→Φ
δ,T b if there

exists a (δ, T )-pseudo-orbit for the flow Φ from a to b. We
write a ↪→Φ b if a ↪→Φ

δ,T b for every δ > 0, T > 0. If
a ↪→Φ a then a is a chain recurrent point for the flow Φ. The
set of chain-recurrent points of the flow Φ is denoted CR(Φ).
It is easy to verify that CR(Φ) is a closed positively invariant
set and that EQ(Φ) ⊂ CR(Φ). When CR(Φ) is compact,
then it is invariant (see [164, Theorem 5.5]). A subset Λ is
said internally chain-recurrent if Λ is a nonempty compact
invariant set of which every point is chain-recurrent for the
restricted flow Φ|Λ (i.e., CR(Φ|Λ) = Λ).

We now have all the essential notions to formulate the
central result for the convergence of SA sequences. In the
form given below, the result is due to [165]; see also [164].
Denote by Lim({wk, k ∈ N}) the limit set of the sequence
{wk, k ∈ N}: w? ∈ Lim({wk, k ∈ N}), if there exists a
sequence {nk, k ∈ N}, satisfying limk→∞ nk = +∞ and
limk→∞wnk = w?.

Theorem 3 (after [165, Theorem 1.2]). Let {wk, k ∈ N}
be the sequence given by (120). Assume SA 1 to 4. Then
Lim({wk, k ∈ N}) is a connected internally chain-recurrent
set for the flow Φh.
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It is shown in [165, Theorem 1.3] that this result cannot
be improved, in the sense that any connected internally chain-
recurrent set of the vector field h is the limit set of a sequence
(120) which satisfies the assumptions SA 1 to 4; see [165,
Theorem 1.3]. One must therefore be careful that the set of
limit points of sequences (120) are not just the equilibrium
of the vector field h, but can be a priori larger sets on which
the vector field h does not necessarily vanish. Thus, to obtain
guarantees to converge only to equilibrium points, one must be
able to guarantee that the only connected internally recurrent
sets are included in {w ∈ Rd,h(w) = 0}, which is, of course,
possible but typically requires additional assumptions beyond
SA2; see [34, Chapter 2, Corollary 4].

The characterization of connected internally chain recurrent
sets for the flow Φh is simplified when the vector field h is
associated to a Lyapunov function. A continuous function V :
Rd → R is called a Lyapunov function for Λ if the function t ∈
R+ → V(Φht (y)) is constant for y ∈ Λ and strictly decreasing
for y ∈ Rd \Λ. If Λ coincides with the equilibrium set of the
flow associated with the vector field h, {w ∈ Rd,h(w) = 0},
then V is a strict Lyapunov function and the flow Φh is said
to be gradient-like.

Corollary 8 ( [164, Proposition 6.4, Corollary 6.6]). Let
{wk, k ∈ N} be the sequence given by (120). Assume SA1
to 4. Assume in addition that

a) Φh admits a Lyapunov function V for a compact invariant
set Λ of the flow Φh.

b) V(Λ) has an empty interior.
Then Lim({wk, k ∈ N}) is contained in Λ and V is constant
on Lim({wk, k ∈ N}). If in addition V is a strict Lyapunov
function for Φh, then Lim({wk, k ∈ N}) ⊂ {h = 0}.

We conclude this short presentation with a practical char-
acterization of Lyapunov functions which directly connects
almost-sure convergence with the assumption H 2 we used to
establish the non-asymptotic bounds.

Proposition 11. Assume that there exists a continuously
differentiable function V : Rd → R such that, for any w ∈ Rd,
〈∇V(w) |h(w)〉 ≤ 0. Define

ΛV := {w ∈ Rd, 〈∇V(w) |h(w)〉 = 0}. (123)

Assume that
a) ΛV is compact and invariant for Φh.
b) V(ΛV) has an empty interior.

Then, every connected internally chain-recurrent set L ⊂ ΛV

is contained in ΛV and V restricted to L is constant. If in
addition ΛV = {h = 0} then V is a strict Lyapunov function.

Proof. Note indeed that, by the chain rule, we get,

d

dt
V(Φht (y)) = 〈∇V(Φht (y)) |h(Φht (y))〉. (124)

If the set ΛV is compact and invariant, then V is a Lyapunov
function for ΛV. Indeed, since ΛV is invariant, then for any
y ∈ ΛV, Φht (y) ∈ ΛV for all t ≥ 0. It follows from (124)
that t 7→ V(Φht (y)) is constant. If y ∈ Rd \ ΛV, then for all
t ∈ R+, Φht (y) 6∈ ΛV (since ΛV is invariant) and (124) shows
that t 7→ V(Φht (y)) is strictly decreasing. If the set ΛV (see

(123)) is compact and invariant for the flow Φht associated to
the vector-field h, and if V(ΛV) has an empty interior, then
every connected internally chain recurrent set for the flow is
included in ΛV.

A direct proof of Theorem 3 for the field h satisfying the
assumptions of Proposition 11 is in [25] and refined by [135].
Almost-sure convergence. Consider the sequence {wk, k ∈
N} defined by (4). We first show that under H 1-H 2 and SA1-
SA2, the assumptions SA3-SA4 are satisfied with probability
1. To apply the results above, we rewrite (4) as:

wk+1 = wk + γk+1{h(wk) + uk+1 + bk+1},

where we have set

uk+1 := H(wk,Xk+1)− EFk
[
H(wk,Xk+1)

]
, (125)

bk+1 := EFk
[
H(wk,Xk+1)

]
− h(wk) . (126)

By construction {uk, k ∈ N} is a martingale difference
sequence adapted to the filtration F = {Fk, k ∈ N}, where
for k ∈ N, Fk := σ(w0,X`, ` = 1, . . . , k). We can then use
Theorem 3 to establish the almost-sure convergence of the
sequence {wk, k ∈ N}. The proof is in Appendix H.

Theorem 4. Assume that
∑∞
k=0 γk =∞,

∑∞
k=0 γ

2
k <∞,

i) H 1 holds with limk cVτ0,k = limk→∞ cVτ1,k = 0
and

∑∞
k=0 γkcV

√
τ0,k <∞, where cV is in (46).

ii) H 2 holds with the function V satisfying
lim‖w‖→∞V(w) =∞.

Then, with probability one, the sequence {wk, k ∈ N}
converges, limk→∞V(wk) exists and Lim({wk, k ∈
N}) is a connected internally chain recurrent set of
the vector-field h. If in addition, ΛV := {w ∈
Rd, 〈∇V(w) |h(w) = 0〉} is compact and invariant for
Φh and V(ΛV) has an empty interior, then with probability
1, Lim({wk, k ∈ N}) ⊂ ΛV. Finally, if E [V(w0)] <∞,
then supk E [V(wk)] <∞.

C. Limit set of SA sequences with bounded bias

We now briefly discuss the behavior of the stochastic
approximation when the bias is bounded but does not tend to
0. There are few results in the literature, and all of these results
were obtained for stochastic gradient algorithms; see [39],
[40], [138], [166] . However, the analysis of the proofs shows
that these results also hold for general stochastic approxi-
mation algorithms. Presenting these results in details would
lead us to introduce a large number of delicate mathematical
concepts. Unlike the rest of this tutorial, we present the results
in a more informal manner. The proofs are based on the use
of differential inclusion methods, which generalize ODEs. The
idea is thus to see the bias term as a bounded perturbation of
the ”unbiased” dynamic; these results build on the work of
[169]–[173]. Basically, we replace the recursion (120) by

wk+1 = wk + γk+1{gk+1 + uk+1}, (127)

where gk+1 ∈ hτ0DI(wk) := B(h(wk), τ0), with B(y, δ) :=
{y′, ‖y′ − y‖ ≤ δ}. To analyse such sequence, we should
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replace the ODE by a differential inclusion (DI). hτ0DI : Rd ⇒
Rd is a set valued map in the sense that for each y ∈ Rd,
we have that hτ0DI(y) is a subset of Rd (in this case, a ball of
radius δ, centered at h(w)). To determine the limit points of
(127), we introduce the DI

dw(t)/dt ∈ hτ0DI(w(t)). (128)

We say that an absolutely continuous curve (a.c.) w : R+ →
Rd is a solution if (128) holds for almost every t ∈ R+.

Various notions of continuity exist for set valued maps.
The one that will be important for us is the notion of upper
semicontinuity. A set valued map H : Rd ⇒ Rd is upper semi
continuous (u.s.c.) at w ∈ Rd if for every U , a neighborhood
of H(w), there is δ > 0 such that

‖w′ −w‖ ≤ δ =⇒ H(w′) ⊂ U.

Under SA2, the set-valued map hτ0DI is upper semi continuous
(u.s.c.) and it follows from [174, Chapter 2.1] (see also [175,
Chapter 4.1]) that

Proposition 12. Assume SA2. For every y ∈ Rd, there exists
a solution to (128) such that w(0) = y.

Denote by Ch
τ0
DI the set of solutions. The set-valued semi-flow

Φh
τ0
DI associated to the set-valued map hτ0DI is defined by

Φ
h
τ0
DI

t (y) = {w(t),w ∈ Ch
τ0
DI ,w(0) = y}, t ∈ R+ . (129)

As above, we denote by W the linear interpolation of the
sequence y; see (121). Let {sk, k ∈ N} be an increasing
sequence of positive numbers such that limk→∞ sk = ∞.
Denote by Wk(t) = W(sk + t), for t ∈ R+. The following
result follows from [173, Theorem 3.2] (see also [171, The-
orem 4.2]). It shows that the limits points of shifted in time
linear interpolation converge to solutions of the differential
inclusion (128). The formulation is weaker than the one
obtained for the ODE in (10) (the statement differs from [169,
Theorem 4.2] which is wrong as it is stated).

Proposition 13. Assume SA 1 to 4. For any increasing se-
quence {nk, k ∈ N} there exists a subsequence {ñk, k ∈
N} ⊂ {nk, k ∈ N} and an absolutely continuous function
W∞ such that for any T > 0,

lim
k→∞

sup
0≤s≤T

‖Wñk(s)−W∞(s)‖ = 0 .

Moreover, W∞ is a solution of the differential inclusion (128).

A set Λ ⊂ Rd is invariant if for every y ∈ Λ there
exists a trajectory w contained in Λ with w(0) = y. See
[169, Section 3.2] for further discussion. Let Λ ⊂ Rd be an
invariant set of (128) and consider Φh

τ0
DI‖Λ, the set-valued

flow Φh
τ0
DI restricted to Λ. For a, b ∈ Rd, we write a ↪→ b

if for every δ > 0 and T > 0 there exists an integer n ∈ N,
solutions y1, . . . , yn to (128), and real numbers t1, t2, . . . , tn
greater than T such that yi(s) ∈ Λ for all 0 ≤ s ≤ ti and
i = 1, . . . , n,

∥∥yi(ti)− yi+1(0)
∥∥ ≤ δ, for all i = 1, . . . , n−1,

and ‖y1(0)− a‖ ≤ δ and ‖yn(tn)− b‖ ≤ δ. The sequence
(y1, . . . , yn) is called an (δ, T ) chain in Λ from a to b for the
differential inclusion (128).

A point a is chain recurrent if a ↪→ a. The set of chain-
recurrent point is denoted CR(Φh

τ0
DI). We now have all the

necessary notions to formulate an analogue of Theorem 3.

Theorem 5. Assume SA1 to 4. Then Lim(w) is a connected
internally chain-recurrent set for the flow Φh

τ0
DI .

The last step consists in linking the internally chain-
recurrent sets of the Φh, associated to the ODE (118), to
those of the set-valued flow Φh

τ0
DI , associated to the differential

inclusion (128). For this purpose we use a general result,
[171, Theorem 3.1] on perturbations of set-valued dynamical
systems. This key result is used in the proofs of [40] and [39].

Theorem 6. Assume SA1 to 4. Let V be an open neighborhood
of CR(Φh). Then, there exists τmax

0 such that, for all τ0 ∈
[0, τmax

0 ), CR(Φh
τ0
DI) ⊂ V .

In words, this means that the boundary sets of perturbed
recursions are in a neighborhood of the boundary sets of
unperturbed recursions, if the perturbation is small enough.
The weakness of this result is that it is non-quantitative. It
can be made more precise, in the case where the mean field
is the gradient of a sufficiently regular function; see [39,
Theorem 2.1]. We finally give a simplified version of the
previous result which is based on Corollary 8:

Corollary 9. Assume that V is a strict Lyapunov function for
Φh. Then, for all open neighborhood V of the equilibrium set
{h = 0}, there exists τmax

0 such that, for all τ0 ∈ [0, τmax
0 ),

Lim(w) ⊂ V .

VI. VARIANCE REDUCTION

Lastly we review on a recent advance in SA, namely the
variance reduction technique. These results are motivated by
relevant applications in ML and SP, and involve slight modifi-
cations to the basic SA scheme (4). Below, we shall introduce
the main algorithm and the general theoretical results. The
proofs are postponed to Appendix I.

Variance reduction in SA aims to provide a sequence of
iterates {wk, k ∈ N} having smaller variance than a plain SA
scheme. We describe a general variance reduction technique
for non-gradient SA when the mean field h is a finite sum

h(w) := 1
n

∑n
i=1 hi(w), w ∈ Rd. (130)

Originally, variance reduction techniques for SA were pro-
posed in the stochastic gradient setting (see the survey paper
[176] and the classical references [41], [42], [177]–[180],
see also [181]–[185]). These results were later extended to
non-gradient SA, in a series of works targeting mostly the
stochastic versions of the EM algorithm [26], [32], [33], [38],
[43], [104], [186]–[188].

Variance reductions techniques are based on the use of
control variates (see, for example. [126, chapter 5]). Given
an unbiased estimator U of the unknown quantity E[U], a
control variate is a centered random variable V, such that the
variance of U+V is less than the variance of U; such a variate
yields an estimate U + V of E[U] with a smaller variance
than the original estimator U. The difficulty is to design such
a variable V with minimal additional computational effort /
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Algorithm 1: SA-SPIDER
Data: an initial value winit, the number of inner

loops kin and outer loops kout, a stepsize
sequence γt,k+1 for t = 1, . . . , kout and
k = 0, . . . , kin − 1

Result: A Rd-valued sequence wt,k+1, t = 1, . . . , kout

and k = 0, . . . , kin − 1.
1 w0,kin = winit;
2 for t = 1, . . . , kout do
3 wt,0 = wt−1,kin

and wt,−1 = wt−1,kin
;

4 Sample Bt,0, of size bvr, in {1, . . . , n} with or
without replacement ;

5 Set Hvr
t,0 = h(wt,0) ;

6 for k = 0, . . . , kin − 1 do
7 Sample Bt,k+1, of size bvr, in {1, . . . , n} with

or without replacement ;
8 Hvr

t,k+1 = Hvr
t,k +

b−1
vr

∑
i∈Bt,k+1

{hi(wt,k)− hi(wt,k−1)} ;
9 wt,k+1 = wt,k + γt,k+1H

vr
t,k+1;

memory footprint. The mechanism proposed in this section
relies on the Stochastic Path-Integrated Differential EstimatoR
(SPIDER) proposed by [180] and later improved in [41], [42].
It has been shown that the SPIDER method offers optimality
guarantees among other variance reduction methods in both
the stochastic gradient setting and the stochastic EM setting
(see e.g. [42, Table 1] and [156] for the stochastic gradient
case and [33, section 6] for stochastic EM).

At iteration (k + 1), SPIDER defines an oracle for h(wk)
by using the current estimate Hvr

k of h(wk−1) as follows

Hvr
k+1 := 1

bvr

∑
i∈Bk+1

hi(wk) + Vk+1

where

Vk+1 := Hvr
k − 1

bvr

∑
i∈Bk+1

hi(wk−1), (131)

and Bk+1 is a set of indices of cardinality bvr cho-
sen randomly in {1, . . . , n} with or without replacement
and independently of the history of the algorithm Fk.
Vk+1 is a random variable chosen to be correlated with
the naive oracle b−1

vr

∑
i∈Bk+1

hi(wk), the correlation re-
lying essentially on the random minibatch Bk+1. Since
EFk

[
b−1

vr

∑
i∈Bk+1

hi(wk−1)
]

= h(wk−1), (131) shows that
Vk+1 is the difference of two estimators of h(wk−1); yet its
(conditional) expected value is not zero. Namely, we have

EFk
[
Vk+1

]
= Hvr

k − h(wk−1);

(see Lemma 14). The bias is tamed by resetting the control
variate: every kin iterations, the control variate is set to zero.

The SA-SPIDER algorithm is given by Algorithm 1. The
iteration index is a pair (t, k), where t counts the number
of control variate updates (outer loops number) and k is the
number of SA updates since last reset (inner loops number).

The following intermediate results show how the bias of
the stochastic mean field Hvr

· , its conditional variance and

the L2-moment of the error Hvr
t,k+1 − h(wt,k) evolve along

the inner loops. Define the filtration

Ft,k := σ (winit,Bτ,κ, 1 ≤ τ ≤ t, 1 ≤ κ ≤ k) ,

for all t ∈ {1, . . . , kout} and k ∈ {1, . . . , kin}. Assume

VR 1. For all i ∈ {1, . . . , n}, there exists Li ≥ 0 such that
for all w,w′ ∈ Rd, ‖hi(w)− hi(w′)‖ ≤ Li‖w −w′‖.

Lemma 14. Consider the iterates from Algorithm 1. For any
t ∈ {1, . . . , kout} and k ∈ {0, . . . , kin − 1}, it holds

EFt,k
[
Hvr
t,k+1

]
− h(wt,k) = Hvr

t,k − h(wt,k−1) (132)

EFt,0
[
Hvr
t,k+1 − h(wt,k)

]
= Hvr

t,0 − h(wt,−1) = 0. (133)

Equation (132) shows that at each inner iteration, the oracle
Hvr
t,k+1 is a biased approximation of the mean field h(wt,k)

and the bias propagates along inner iterations. Conditionally to
the initialization of the inner iteration, the bias is equal to the
error Hvr

t,0−h(wt,−1) (see (133)). The strategy used in Line 3
and Line 5 of Algorithm 1 implies that Hvr

t,0−h(wt,−1) = 0.
In that sense, we say that at the beginning of each inner loop,
the bias is canceled and the control variate is reset.

Lemma 15. Assume VR1 and set L2 := n−1
∑n
i=1 L

2
i . For

any t ∈ {1, . . . , kout} and k ∈ {0, . . . , kin − 1}, it holds

EFt,k
[
‖Hvr

t,k+1 − EFt,k
[
Hvr
t,k+1

]
‖2
]
≤ L2

bvr
γ2
t,k‖Hvr

t,k‖2,

and with the convention that γt,0 := 0, it holds

EFt,k
[
‖Hvr

t,k+1 − h(wt,k)‖2
]
≤ ‖Hvr

t,k − h(wt,k−1)‖2

+ (L2/bvr)γ
2
t,k‖Hvr

t,k‖2.

When γt,k+1 ≤ γt,k for any k ≥ 1, Lemma 15 implies that

γt,k+1EFt,0
[
‖Hvr

t,k+1 − h(wt,k)‖2
]

(134)

≤ 2L2

bvr

k∑
`=1

γ3
t,`EFt,0

[
‖Hvr

t,` − h(wt,`−1)‖2 + ‖h(wt,`−1)‖2
]
.

In the simple case when the stepsize sequence is constant
(γt,k = γ) and the mean field is bounded (ch,1 = 0), the
summed MSE along the inner loop iterations satisfies(

1− 2γ2L
2kin

bvr

) kin−1∑
k=0

EFt,0
[
‖Hvr

t,k+1 − h(wt,k)‖2
]

≤ 2γ2(L2kin
2/bvr)ch,0.

This inequality illustrates the benefit of variance reduction: the
cumulated MSE can be set arbitrarily small by a convenient
choice of the learning rate γ. Such a property remains true
when the stepsize sequence is not constant and the mean
field h is not bounded; it will be a key ingredient for the
convergence analysis provided in Theorem 7 below.

The following lemma is an analogue of the Robbins-
Siegmund Lemma for obtaining non-asymptotic bounds.

Lemma 16. Assume H1-b) and H2. For any t ∈ {1, . . . , kout}
and k ∈ {0, . . . , kin − 1}, it holds

EFt,0
[
V(wt,k+1)

]
≤ EFt,0

[
V(wt,k)

]
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− γt,k+1{νt,k+1EFt,0
[
W(wt,k)

]
+ µt,k+1 EFt,0

[
‖Hvr

t,k+1 − h(wt,k)‖2
]
}

+ γt,k+1 a EFt,0
[
‖Hvr

t,k+1 − h(wt,k)‖2
]

+ γ2
t,k+1LVch,0.

where νt,k+1 := %/2 − ch,1γt,k+1LV, µt,k+1 := %/2 −
γt,k+1LV and a := (c2V%

−1 + %)/2.

We will use (134) to show that the term EFt,0
[
‖Hvr

t,k+1 −
h(wt,k)‖2

]
in the RHS is negligible w.r.t. the term

µt,k+1 EFt,0
[
‖Hvr

t,k+1 − h(wt,k)‖2
]

in the LHS. We can
establish a non-asymptotic convergence result.

Theorem 7. Assume H 1-b), H 2 and VR 1. Let kin, kout

be positive integers and winit ∈ Rd. Let {γt,k+1, 1 ≤ t ≤
kout, 0 ≤ k ≤ kin − 1} be a stepsize sequence satisfying
for all k ≥ 1: γt,k+1 ≤ γt,k, (1 ∨ ch,1) γt,k λt,k ∈ (0, %/2)
where λt,k := LV + γt,kL

2
{
c2V%

−1 + %
}

kin/bvr. Consider
the sequence given by Algorithm 1. Then∑kout

t=1

∑kin

k=1 γt,k
(
%
2 − ch,1 γt,k λt,k

)
E [W(wt,k−1)]

+
∑kout

t=1

∑kin

k=1 γt,k
(
%
2 − γt,k λt,k

)
E
[
‖Hvr

t,k − h(wt,k−1)‖2
]

≤ E [V(winit)]−V? + ch,0 Bvr, (135)

where

Bvr := LV

kout∑
t=1

kin∑
k=1

γ2
t,k +

L2kin

bvr

(
c2V
%

+ %

) kout∑
t=1

kin∑
k=1

γ3
t,k.

Theorem 7 controls W(wt,k) and the quadratic error
‖Hvr

t,k+1 − h(wt,k)‖2 along the kinkout iterations. Set

T := kinkout.

We observe the following consequences of Theorem 7.

Random stopping. The LHS in Theorem 7 can be viewed as
the expected value of W(wRvr

T
) and ‖Hvr

R̃vr
T +1
− h(wR̃vr

T
)‖2

where Rvr
T and R̃vr

T are random variables taking values in
{1, . . . , kout}×{0, . . . , kin−1}, independent of the {wk, k ∈
N}, and with probability mass functions (see Section IV-A)

P(Rvr
T = (t, k)) ∝ γk+1 (%/2− ch,1 γt,k+1 λt,k+1)

P(R̃vr
T = (t, k)) ∝ γk+1 (%/2− γt,k+1 λt,k+1) .

Remark 4. Similar to Remark 3. When the function W is
convex, a stronger convergence result can be derived. Define
the convex combination of the iterates

w̄vr
T :=

kout∑
t=1

kin−1∑
k=0

γt,k+1 ω
vr
t,k+1∑kout

t′=1

∑kin−1
k′=0 γt′,k′+1 ωvr

t′,k′+1

,

where ωvr
t,k+1 := %/2 − ch,1 γt,k+1 λt,k+1. We have from

Theorem 7 that E [W(w̄vr
T )] is upper bounded by the RHS

of (135) divided by
∑kout

t′=1

∑kin−1
k′=0 γt′,k′+1 ω

vr
t′,k′+1.

Constant stepsize. Assume γt,k+1 = γ for each t ∈
{1, . . . , kout} and k ∈ {0, . . . , kin − 1}. The assumptions of
Theorem 7 are satisfied by choosing γ ∈ (0, γvr

max) where

γvr
max :=

%LVbvr

2L2(c2V + %2)kin

(
{1 + 2

L2(c2V + %2)kin

L2
V(1 ∨ ch,1)bvr

}1/2 − 1

)
.

This yields

1
T

∑kout

t=1

∑kin−1
k=0

(
E[W(wt,k)] + E

[
‖Hvr

t,k+1 − h(wt,k‖2
])

≤ ∆1

γT{%/2− γλ(γ)(1 ∨ ch,1)}

+ γ ch,0

(
LV + γvr

maxL
2
(
c2V + %2

)
kin/(%bvr)

%/2− γλ(γ)(1 ∨ ch,1)

)
,

where

λ(γ) := LV + γL2
{
c2V%

−1 + %
}

kin/bvr,

∆1 := E[V(winit)]−V?.

Contrary to Theorem 1 (see Corollary 3), the RHS can be
made small by a clever choice of γ: even if the oracle Hvr

t,k+1

is a biased estimator of h(wt,k) (see Lemma 14), the SPIDER
variance reduction is able to manage this bias.

The terms in the RHS can be adjusted according to the
total number of iterations T and the different parameters of
the problem by a suitable choice of γ. When γ ≤ γvr

max/2, then
%/2 − γλ(γ)(1 ∨ ch,1) ≥ %/4; in addition, the function γ 7→
α/γ + βγ is minimized on (0, γvr

max/2] at the point
√
α/β ∧

(γvr
max/2) when α, β > 0. Therefore, set

∆2 := 2LV%+ γvr
maxL

2
(
c2V + %2

)
kin/bvr,

and γvr
T := γvr

max/2 if ch,0 = 0 and otherwise

γvr
T :=

√
2∆1%/T∆2 ∧ (γvr

max/2). (136)

Corollary 10 (of Theorem 7). Setting γt,k+1 = γvr
T for t ∈

{1, . . . , kout} and k ∈ {0, . . . , kin − 1} we get

1

T

kout∑
t=1

kin−1∑
k=0

(
E[W(wt,k)] + E

[
‖Hvr

t,k+1 − h(wt,k‖2
])

≤ 4∆1/(γ
vr
T T%) + 2γvr

T ch,0∆2/%
2 .

Choose kin = bvr and let us comment the rate of the RHS
when T → +∞. When ch,0 = 0, the RHS decreases at the
rate O(1/T ), while when ch,0 > 0, the rate is O(1/

√
T ).

ε-Approximate Stationarity. Using Corollary 10, we analyze
the complexity of SA-SPIDER to reach ε-approximate sta-
tionarity. First, observe that the RHS in Corollary 10 is an
upper bound of E

[
W(wRvr

T
)
]

where Rvr
T is a uniform random

variable on {1, . . . , kout} × {0, . . . , kin − 1}.
Consider first the case when ch,0 = 0; then γvr

T =
γvr

max/2 and is independent of the accuracy ε. Choose kout =
O(1/(

√
nε)) and kin = bvr = d

√
ne; it means that the total

number of calls to one of the functions hi (see (130)) is
equal to n. Then the total number of iterations to reach an
ε-approximate stationary point is O(1/ε) and the total number
of calls to one of the functions hi is nkout + 2koutkinbvr =
O(
√
n/ε). Such a complexity analysis retrieves earlier results

established in specific settings of SA-SPIDER: SG for non
convex optimization [41, Theorem 2], [42, Theorem 1], the
stochastic EM algorithms [33, Section 3] and for more general
SA-based root-finding problems [38, Corollary 4.3].
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Consider now the case ch,0 > 0. Choose again kin = bvr =
dne, and kout large enough so that

T ≥ 8(1 + ch,0)2∆1∆2

%3ε2
∨ 8∆1%

∆2(γvr
max)2

.

Then γvr
T =

√
2∆1%/

√
T∆2 and SA-SPIDER reaches an ε-

approximate stationary point in T = O(1/ε2) iterations, and
by callingO(

√
n/ε2) functions hi. To our best knowledge, this

is the first complexity analysis of SA-SPIDER when ch,0 > 0.

VII. CONCLUSIONS

We have overview state-of-the-art results for SA scheme
with a focus on its use as a general stochastic non-gradient
algorithm common to statistical learning. We have proposed a
general theoretical framework based on the designs of flexible
Lyapunov function and unified the modern asymptotic, non-
asymptotic convergence results for SA schemes. We illustrated
the applications of our techniques to SG, compressed SA,
stochastic EM and TD learning; as well as presenting how
the recent variance reduction technique can be adopted to SA.
We studied the effects of bias in SA updates caused by the
non-gradient nature in popular designs.

Our findings shed lights on how to design stochastic al-
gorithms with nice convergence properties. In particular, we
illustrated how to construct the stochastic random field in SA
from fixed point equation of the statistical learning problem,
and to tame with the bias in SA resulted from the design.
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[64] S. Magnússon, C. Enyioha, N. Li, C. Fischione, and V. Tarokh,
“Convergence of limited communication gradient methods,” IEEE
Transactions on Automatic Control, vol. 63, no. 5, pp. 1356–1371,
2017.

[65] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error feedback
fixes signsgd and other gradient compression schemes,” in ICML.
PMLR, 2019, pp. 3252–3261.

[66] S. U. Stich and S. P. Karimireddy, “The error-feedback framework:
Better rates for sgd with delayed gradients and compressed updates,”
Journal of Machine Learning Research, vol. 21, pp. 1–36, 2020.

[67] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signsgd: Compressed optimisation for non-convex problems,” in
ICML. PMLR, 2018, pp. 560–569.

[68] A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani, “An exact
quantized decentralized gradient descent algorithm,” IEEE Transactions
on Signal Processing, vol. 67, no. 19, pp. 4934–4947, 2019.

[69] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms
for distributed optimization,” IEEE Journal on Selected Areas in
Communications, vol. 23, no. 4, pp. 798–808, 2005.

[70] A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained distributed
estimation for wireless sensor networks-part i: Gaussian case,” IEEE
transactions on signal processing, vol. 54, no. 3, pp. 1131–1143, 2006.

[71] E. J. Msechu and G. B. Giannakis, “Sensor-centric data reduction for
estimation with wsns via censoring and quantization,” IEEE Transac-
tions on Signal Processing, vol. 60, no. 1, pp. 400–414, 2011.

[72] P. Yi and Y. Hong, “Quantized subgradient algorithm and data-rate
analysis for distributed optimization,” IEEE Transactions on Control
of Network Systems, vol. 1, no. 4, pp. 380–392, 2014.

[73] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and
M. I. Jordan, “Perturbed iterate analysis for asynchronous stochastic
optimization,” SIAM Journal on Optimization, vol. 27, no. 4, pp. 2202–
2229, 2017.

[74] J. C. Duchi, P. L. Bartlett, and M. J. Wainwright, “Randomized
smoothing for stochastic optimization,” SIAM Journal on Optimization,
vol. 22, no. 2, pp. 674–701, 2012.

[75] K. Scaman, F. Bach, S. Bubeck, L. Massoulié, and Y. T. Lee, “Opti-
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Professor at École Polytechnique, Paris, France.

His research topics cover high dimensional statis-
tics, stochastic optimization, statistical machine
learning and Federated Learning.



32

Gersende Fort received her Ph.D. degree in applied
mathematics from University Paris VI - France in
2001, the Engineering degree from Ecole Nationale
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became a full professor in 1996. In 2015, he joined
the Applied Mathematics Center of Ecole Polytech-
nique, where he is currently professor.

His areas of expertise include statistical signal
processing, computational statistics (Monte Carlo

simulations, stochastic approximation), statistical machine learning, and time-
series analysis.

His current research topics cover high-dimensional Monte Carlo sampling,
stochastic optimization, and generative models (variational autoencoders, Gen-
erative Adversarial Networks). He received the silver medal from the Centre
National Recherche Scientifique (CNRS) in 2010, the ”Grand Prix Orange”
de l’Académie des Sciences (2011), the EURASIP technical Achievement
Award (2020). He has been elected to the French Academy of Sciences in
2017, where he is currently deputy chair for computer sciences and applied
mathematics. He is a fellow of the Institute of Mathematical Statistics (IMS)
- 2016, and of the EURASIP - 2011.

Hoi-To Wai (S’11–M’18) received his Ph.D. de-
gree from Arizona State University in Electrical
Engineering in Fall 2017, B. Eng. (with First Class
Honor) and M. Phil. degrees in Electronic Engineer-
ing from The Chinese University of Hong Kong
(CUHK) in 2010 and 2012, respectively. He is
currently an Assistant Professor in the Department
of SEEM at CUHK (HK).

He currently serves on the editorial board of
the IEEE Transactions on Signal and Information
Processing over Networks. His research interests

are in the broad area of optimization algorithms, graph signal processing,
and machine learning. He has received a Best Student Paper Award from
ICASSP 2018, and the 2017’s Dean’s Dissertation Award from the Ira A.
Fulton Schools of Engineering of ASU for his thesis on network science
and distributed optimization. His works have received a best student paper
award from ICASSP 2018 and a best dissertation award from Arizona State
University’s Schools of Engineering.



1

Supplementary Material for “Stochastic
Approximation Beyond Gradient for Signal

Processing and Machine Learning”
Aymeric Dieuleveut, Gersende Fort, Eric Moulines, Hoi-To Wai

APPENDIX

This document presents the proofs or detailed calculations
that have been skipped in the main paper. Readers can find the
following content: Appendix B shows two elementary inequal-
ities for numerical sequences. Appendix C and Appendix D
check the assumptions for the examples on compressed SA
and TD(0) learning. Appendix E gives a variant of Lemma 13
for the finite-time bounds of SA. Appendix F and Appendix G
show how to obtain finite-time bounds for compressed SG
methods and SAEM algorithms. Appendix H gives missing
proof for the asymptotic convergence. Appendix I provides
proofs for the variance reduced SA algorithm.

A. Table of notations

In the following, we provide complete notation tables, that
aggregate the notations of the paper, with references to the
points where each notation is introduced. Tables V to VIII
respectively aggregate all notations used in the application to
the four examples, namely SGD, compressed SA, EM, and
TD learning.

TABLE V: Summary of notations used in the analysis of SGD,
in Sections II-B1, III-B1 and IV-B1.

Notation Object Def. in

Section II-B1

F function to be minimized
∇F (·) gradient of F and mean-field h
n number of observations
(Z1, . . . , Zn) observations
ρ distribution of Xk+1

` loss
b batch size
fi := `(w, Zi) loss function on obs. i

Section III-B1

L∇fi Smoothness of fi SG1.a)
L∇f Smoothness of f
M Uniform bound on ‖∇fi(w)−∇F (w)‖ SG1.b)
µ > 0 strong-convexity modulus of F CVX2

AD and EM are with Ecole Polytechnique, CMAP, UMR 7641, France.
GF is with Institut de Mathématiques de Toulouse, UMR5216, Université
de Toulouse, CNRS; UPS, F-31062 Toulouse Cedex 9, France. HTW is
with CUHK, Hong Kong. E-mails: aymeric.dieuleveut@polytechnique.edu,
gersende.fort@math.univ-toulouse.fr, eric.moulines@polytechnique.edu, ht-
wai@se.cuhk.edu.hk. Work partly supported by the Fondation Simone et Cino
Del Duca, Institut de France, ANR under the program MaSDOL-19-CE23-
0017-01, ANR-19-CHIA-SCAI-002, HKRGC Project 24203520, Hi!Paris
FLAG project, and been carried out under the auspices of Lagrange research
Center for Mathematics and Calculus.

TABLE VI: Summary of notations used in the analysis of
Compressed and modified SA, in Sections II-B2, III-B2
and IV-B2.

Notation Object Def. in

Section II-B2

F function to be minimized
jk+1 ∈ {1, . . . , d} chosen coordinate in the k-th iteration eq. (12)
{e1, . . . , ed} the canonical basis of Rd
∇jF j-th coordinate of the gradient
C : Rd × U→ Rd Compression operator
U general state space
µU distribution of U
Randh,Toph Ex. of sparsification-based compression operator Remark 2.1
h Sparsification parameter for Randh,Toph Remark 2.1
Qd, Qs Ex. of quantization-based compression operator Remark 2.2
∆ quantization resolution Remark 2.2

Section III-B2

(1− δC) Contractivness of C CSA1, eq. (55)
ζ1, ζ2 ∈ R̄+ technical constants (from Young inequality) Lemma 1
ωC Relative bound on variance of C CSA2, eq. (58)
κC Uniform bound on variance of C CSA3, eq. (60)

TABLE VII: Summary of notations used in the analysis of
EM, in Sections II-B3, III-B3 and IV-B3.

Notation Object Def. in

Section II-B3

F (θ) := − log
∫
Z̃ p(z;θ)µ̃(dz) Intractable objective function (to be minimized) eq. (20)

θ parameter of the original optimization problem
p(z;θ) =

∏n
i=1 pi(zi;θ) Product form; z ∈ Z̃ and zi ∈ Z

µ sigma-finite measure on the measurable set Z
πi(zi;θ) :=
pi(zi;θ)/

∫
Z pi(u;θ)µ(du)

A distribution on Z

QEM
θ′ EM surrogate function tangent at θ′ eq. (22), (23)

– In the maximum likelihood context –

Yi observation #i
zi latent variable #i
pi(zi;θ) joint probability of the observation Yi and the latent

variable zi for a given value of the parameter θ;
gi(θ) :=

∫
Z pi(zi;θ)µ(dzi) likelihood of Yi eq. (21)

πi(zi;θ) posterior distribution of the latent variable zi given the
observation #i when the value of the parameter is θ

eq. (24)

In the exponential family context

Si sufficient statistics associated to the observation #i EM1
s̄i(θ) :=

∫
Z Si(zi)πi(zi;θ)µ(dzi) expectation of the sufficient statistic eq. (29)

s̄(θ) := n−1
∑n
i=1 s̄i(θ) the mean value of the n functions s̄i

QEM
θ′ (·) := 〈̄s(θ′) |φ(·)〉 −ψ(·) the specific form of the EM surrogate function

φ,ψ functions on Rd, parameterizing the family of surrogate
functions

EM1

T optimization map in EM EM2
bEM batch size in Mini-batch EM eq. (32)
m number of Monte Carlo samples in SAEM eq. (33), (34)

Section III-B3

F? Uniform lower bound on F EM3
B(w) d× d p.d. matrix, s.t. ∇V(w) = −B(w)h(w) EM3
vmin ≤ vmax constants characterizing the conditioning of B EM3
σ̄2

0 , σ̄
2
1 ∈ R+ control on the averaged sufficient statistic EM4 and 5

s? Uniform bound on ‖Si(z)‖ EM6
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TABLE VIII: Summary of notations used in the analysis of
TD learning, in Sections II-B4, III-B4 and IV-B4.

Notation Object Def. in

Section II-B4

π policy in a Markov Decision Process
(S,P,R, λ) Markov Reward Process (MRP)
S = {s1, . . . , sn} state-space
P n× n state transition matrix of the probability of transition
R(s, s′) reward function
λ ∈ (0, 1) discount factor
R(s) expected instantaneous reward from state s
$ unique stationary distribution TD1
V value function of the MRP eq. (35)
{Sk, k ∈ N} Markov chain started at S0 = s, with Markov kernel P
Vw(s) := φ(s)>w linear approximation of V
φ(s) ∈ Rd feature vector for the state s ∈ S
w ∈ Rd parameter vector to be estimated
Φ n× d feature matrix

Section III-B4

λ ∈ (0, 1) contraction modulus Lemma 9
V? unique value function in span(Φ) which solves the fixed point

of the projected Bellman eq.
Lemma 9

vmin minimal eigenvalue of Φ>D$Φ Lemma 12
Σ$ feature covariance matrix Equation (72)

B. Elementary inequalities

Lemma 17. Let a > 0 and {γk, k ∈ N} be a sequence such
that γk < 1/a for any k ≥ 1. Then, for any integer k ≥ 1,

k+1∑
j=1

γj

k+1∏
l=j+1

(1− γla) =
1

a

{
1−

k+1∏
l=1

(1− γla)

}
(137)

If in addition, for some 0 < b < a and all k ≥ 1, γk/γk+1 ≤
1 + bγk+1, then

k+1∑
j=1

γ2
j

k+1∏
l=j+1

(1− γla) ≤ γk+1/(a− b) . (138)

Proof. Consider first (137). Let us denote uj:k+1 :=∏k+1
l=j (1− γla). Then, for j ∈ {1, . . . , k + 1}, uj+1:k+1 −

uj:k+1 = aγjuj+1:k+1. Hence,

k+1∑
j=1

γj

k+1∏
l=j+1

(1− γla) = γk+1 +

k∑
j=1

γjuj+1:k+1

= γk+1 +
1

a

k∑
j=1

(uj+1:k+1 − uj:k+1)

= a−1 (1− u1:k+1) . (139)

Consider now (138).
k+1∑
j=1

γ2
j

k+1∏
l=j+1

(1− γla) = γk+1

k+1∑
j=1

γj
γk+1

γj

k+1∏
l=j+1

(1− γla)

= γk+1

k+1∑
j=1

γj

k+1∏
l=j+1

γl−1

γl
(1− γla)

where in the last equality, we used
γj
γk+1

=
γk
γk+1

γk − 1

γk
· · · γj

γj+1
.

Note that, since γl−1/γl ≤ 1 + bγl for l ≥ 2, we have
γl−1

γl
(1− γla) ≤ (1 + bγl) (1− γla) ≤ 1− (a− b)γl.

Substituting into the above inequality yields
k+1∑
j=1

γ2
j

k+1∏
l=j+1

(1− γla) ≤ γk+1

k+1∑
j=1

γj

k+1∏
l=j+1

(1− γl(a− b)) .

Applying (139) implies
∑k+1
j=1 γ

2
j

∏k+1
l=j+1 (1− γla) ≤

γk+1
1
a−b and thus the lemma.

C. Proofs of Section III-B2

Throughout the proof, we will use the shorthand notations

Yk+1 := H(wk,Xk+1),

Zk+1 := C(H(wk,Xk+1),Uk+1).

Observe that by H 1 for the oracle Yk+1,

‖EFk
[
Yk+1

]
− h(wk)‖2 ≤ τ0,k + τ1,kW(wk). (140)

For the proofs of Lemma 1 and Lemma 2, define the filtrations
{Fk+1/2, k ∈ N} by

Fk+1/2 := σ (w0,X1,U1, · · · ,Xk,Uk,Xk+1) . (141)

CSA1 and CSA2 claim

EFk+1/2
[
‖Zk+1 −Yk+1‖2

]
≤ (1− δC)‖Yk+1‖2, (142)

and CSA2
EFk+1/2

[
Zk+1

]
= Yk+1. (143)

For the proof of Lemma 3, we define the filtrations
{Fk+1/2, k ∈ N} by

Fk+1/2 := σ (w0,U1,X1, · · · ,Uk,Xk,Uk+1) . (144)

Proof of Lemma 1. Let k ≥ 0. We first prove H 1-c) for the
compressed oracle Zk+1. We write, for any ζ1 > 0

‖EFk
[
Zk+1

]
−h(wk)‖2 ≤ (1 + ζ1)‖EFk

[
Zk+1−Yk+1

]
‖2

+ (1 + ζ−1
1 )‖EFk

[
Yk+1

]
− h(wk)‖2.

The second term is upper bounded by (140). For the first one,
by convexity of ‖ · ‖2 and (142), it holds that

‖EFk
[
Zk+1 −Yk+1

]
‖2 ≤ EFk

[
‖Zk+1 −Yk+1‖2

]
≤ EFk

[
EFk+1/2

[
‖Zk+1 −Yk+1‖2

] ]
≤ (1− δC) EFk

[
‖Yk+1‖2

]
.

We further observe that, by definition of the conditional
expectation

EFk
[
‖Yk+1‖2

]
= ‖EFk

[
Yk+1

]
‖2

+ EFk
[
‖Yk+1 − EFk

[
Yk+1

]
‖2
]

≤ (1 + ζ2)‖EFk
[
Yk+1

]
− h(wk)‖2

+ (1 + ζ−1
2 )‖h(wk)‖2

+ EFk
[
‖Yk+1 − EFk

[
Yk+1

]
‖2
]
,

for any ζ2 > 0. This yields, by using H 1,

EFk
[
‖Yk+1‖2

]
≤ (1 + ζ2) (τ0,k + τ1,kW(wk))

+ (1 + ζ−1
2 ) (ch,0 + ch,1W(wk)) + σ2

0 + σ2
1W(wk). (145)

Hence, H 1-c) holds for Zk+1 with the constants

τ`,k;C := ((1 + ζ1) + (1 + ζ2)(1 + ζ−1
1 )(1− δC))τ`,k+

(1 + ζ−1
2 )(1 + ζ−1

1 )(1− δC)ch,` + (1 + ζ−1
1 )(1− δC)σ2

` .

We now prove H 1-d) for the compressed oracle Zk+1. Using
again the convexity of ‖ · ‖2, it holds

EFk
[
‖Zk+1 − EFk

[
Zk+1

]
‖2
]
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= EFk
[
EFk+1/2

[
‖Zk+1 − EFk

[
Zk+1

]
‖2
] ]

≤ EFk
[
EFk+1/2

[
‖Zk+1 −Yk+1‖2

] ]
using the fact that Yk+1 is Fk+1/2 measurable, and the
fact that for any real random variable U , we have E[U ] =
arg minc∈R E[‖U − c‖2].

By (142), we write

EFk
[
EFk+1/2

[
‖Zk+1−Yk+1‖2

] ]
≤ (1−δC)EFk

[
‖Yk+1‖2

]
;

the expectation in the RHS is upper bounded by (145). which
yields the bound (57).

Proof of Lemma 2. We follow the same lines as in the proof
of Lemma 1 except that we use (143). Let k ≥ 0. We first
prove H 1-c) for the compressed oracle Zk+1. We write

‖EFk
[
Zk+1

]
−h(wk)‖2 = ‖EFk

[
EFk+1/2

[
Zk+1

] ]
−h(wk)‖2;

with (143) and H 1 for Yk+1, this yields

‖EFk
[
Zk+1

]
− h(wk)‖2 ≤ τ0,k + τ1,kW(wk).

Hence we have τ`,k;C := τ`,k for ` ∈ {0, 1}.
We now verify H 1-d) for Zk+1. Using (143), we write

EFk
[
‖Zk+1 − EFk

[
Zk+1

]
‖2
]

= EFk
[
‖Zk+1 − EFk

[
Yk+1

]
‖2
]

= EFk
[
‖Zk+1 −Yk+1‖2

]
+ EFk

[
‖Yk+1 − EFk

[
Yk+1

]
‖2
]

+ 2EFk
[
〈Zk+1 −Yk+1 |Yk+1 − EFk

[
Yk+1

]
〉
]
.

For the scalar product, we have

EFk+1/2
[
〈Zk+1 −Yk+1 |Yk+1 − EFk

[
Yk+1

]
〉
]

= 〈EFk+1/2
[
Zk+1

]
−Yk+1 |Yk+1 − EFk

[
Yk+1

]
〉,

since Yk+1 ∈ Fk+1/2 and Fk ⊂ Fk+1/2. By (143), the scalar
product is zero. Therefore, by H 1-d) for Yk+1

EFk
[
‖Zk+1 − EFk

[
Zk+1

]
‖2
]

≤ EFk
[
‖Zk+1 −Yk+1‖2

]
+ EFk

[
‖Yk+1 − EFk

[
Yk+1

]
‖2
]

≤ EFk
[
‖Zk+1 −Yk+1‖2

]
+ σ2

0 + σ2
1W(wk).

By (142), we have

EFk
[
‖Zk+1 −Yk+1‖2

]
≤ ωC EFk

[
‖Yk+1‖2

]
.

Using (145) with ζ1 = ζ2 = 1 yields our conclusion.

Proof of Lemma 3. Set Wk+1 := H(C(wk,Uk+1),Xk+1)
and w̃k+1 := C(wk,Uk+1). By CSA3 we have that wk is
Fk-measurable, that w̃k+1 is Fk+1/2-measurable (as defined
in (144)), and that

EFk
[
‖w̃k+1 −wk‖2

]
= EFk

[
‖C(wk,Uk+1)−wk‖2

]
≤ κC. (146)

We first prove H 1-c) for Wk+1.

‖EFk
[
Wk+1

]
− h(wk)‖2

= ‖EFk
[
Wk+1 − h(w̃k)

]
+ EFk

[
h(w̃k)− h(wk)

]
‖2.

Thus for any ζ ∈ R̄+, we get:

‖EFk
[
Wk+1

]
− h(wk)‖2 ≤ (1 + ζ)‖EFk

[
Wk+1 − h(w̃k)

]
‖2

+ (1 + ζ−1)‖EFk
[
h(w̃k)− h(wk)

]
‖2.

As h is Lh Lipschitz, we have an upper bound for the second
term: h(w̃k)− h(wk) ≤ Lh‖w̃k −wk‖ almost surely, thus:

‖EFk
[
Wk+1 − h(w̃k)

]
‖2 ≤ L2

hκC. (147)

Moreover, by Jensen inequality,

‖EFk
[
EFk+1/2

[
Wk+1 − h(w̃k)

] ]
‖2

= ‖EFk
[
EFk+1/2

[
H(w̃k,Xk+1)− h(w̃k)

] ]
‖2

≤ EFk
[
‖EFk+1/2

[
H(w̃k,Xk+1)− h(w̃k)

]
‖2
]

and by H 1-c) with τ1 = 0, ‖EFk+1/2
[
H(w̃k,Xk+1) −

h(w̃k)
]
‖2 ≤ τ0,k + τ1,kW(w̃k) ≤ τ0. Overall, H 1-c) is

satisfied with τ0,C = (1+ζ)τ0 +(1+ζ−1)L2
hκC and τ1,C = 0.

We now prove H 1-d) for Wk+1:

EFk
[
‖Wk+1 − EFk

[
Wk+1

]
‖2
]

= EFk
[
EFk+1/2

[
‖Wk+1 − EFk+1/2

[
Wk+1

]
‖2
] ]

+ EFk
[
‖EFk+1/2

[
Wk+1

]
− EFk

[
Wk+1

]
‖2
]
.

By H 1-d), with σ2
1 = 0

EFk+1/2
[
‖Wk+1 − EFk+1/2

[
Wk+1

]
‖2
]

= EFk+1/2
[
‖H(w̃k,Xk+1)− EFk+1/2

[
H(w̃k,Xk+1)

]
‖2
]

≤ σ2
0 + σ2

1W(w̃k) ≤ σ2
0 .

Moreover,

EFk
[
‖EFk+1/2

[
Wk+1

]
− EFk

[
Wk+1

]
‖2
]

≤EFk
[
‖EFk+1/2

[
H(w̃k,Xk+1)

]
− EFk

[
H(wk,Xk+1)

]
‖2
]

=EFk
[
‖EFk+1

2

[
H(w̃k,Xk+1)

]
− EFk+1

2

[
H(wk,Xk+1)

]
‖2
]
.

By assumption, EFk+1/2
[
H(·,Xk+1)

]
is LEH -Lipschitz. We

conclude using (146):

EFk
[
‖EFk+1/2

[
Wk+1

]
− EFk

[
Wk+1

]
‖2
]
≤ L2

EHκC.

We get the result by combining the two bounds above.

Proof of Lemma 4. Under the constant stepsize assumption,
the random field can be written as

H̃(wk,Uk+1,Xk+1) =
1

γ̄
(C(wk + γ̄Yk+1,Uk+1)−wk) .

Notice that H 1-c) can be easily verified since

EFk
[
H̃(wk,Uk+1,Xk+1)

]
= EFk

[
Yk+1

]
.

To verify H 1-d), we proceed by

γ̄2EFk
[
‖H̃(wk,Uk+1,Xk+1)− EFk

[
Yk+1

]
‖2
]

= EFk
[
‖C(wk + γ̄Yk+1,Uk+1)− (wk + γ̄EFk

[
Yk+1

]
)‖2
]
.

As wk ∈ BdC , applying CSA4 gives

EFk
[
‖H̃(wk,Uk+1,Xk+1)− EFk

[
Yk+1

]
‖22
]

≤ EFk
[
‖Yk+1 − EFk

[
Yk+1

]
‖22
]

+
∆C

γ̄
EFk

[
‖Yk+1‖1

]
≤ σ2

0 + σ2
1W(wk) +

∆C

γ̄
EFk

[
‖Yk+1‖1

]
.
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Lastly, we obtain the following chain

EFk
[
‖Yk+1‖1

]
≤ EFk

[
‖EFk

[
Yk+1

]
−Yk+1‖1

]
‖h(wk)‖1 + ‖EFk

[
Yk+1

]
− h(wk)‖1

≤
√
d

(√
τ0,k + τ1,kW(wk) +

√
ch,0 + ch,1W(wk)

)
+
√
d
√
σ2

0 + σ2
1W(wk)

≤
√
d

(
3 + τ0,k + ch,0 + σ2

0

2
+
τ1,k + ch,1 + σ2

1

2
W(wk)

)
,

where we have used
√
x ≤ 1+x

2 , x ≥ 0 in the last inequality.
Collecting terms from the above bounds lead to the desired
terms in (62).

D. Proofs of Section III-B4

Proof of Lemma 9. Let w,w′ ∈ Rd. Since a projection is a
contraction.

‖Prj$ B Vw − Prj$ B Vw′‖D$
≤ ‖B Vw − B Vw′‖D$

.

From the expression of B (see (36)), we write

B Vw(s)− B Vw′(s) = λ
∑
s′

P(s, s′) (Vw(s′)− Vw′(s′)) .

The squared D$-norm of the RHS is equal to

λ2
∑
s

$(s)

(∑
s′

P(s, s′) (Vw(s′)− Vw′(s′))

)2

.

Since P is a transition kernel, we have the inequality(∑
s′

P(s, s′) (Vw(s′)− Vw′(s′))

)2

≤
∑
s′

P(s, s′) ((Vw(s′)− Vw′(s′)))
2
.

Finally, since $P = $ by TD1, we have∑
s

$(s)
∑
s′

P(s, s′) ((Vw(s′)− Vw′(s′)))
2

=
∑
s′

$(s′) ((Vw(s′)− Vw′(s′)))
2

= ‖Vw − Vw′‖2D$
.

This concludes the proof.

Set
G(s, s′) := φ(s){λφ(s′)− φ(s)}> ; (148)

we may rewrite H(w, (s, s′)) in (38) as

H(w, (s, s′)) = φ(s)R(s, s′) + G(s, s′)w . (149)

We denote

X0 := (S0, S
′
0), Ḡ$(s, s′) := G(s, s′)− E$[G(X0)].

Let w? be such that V? = Φw?. Since h(w?) = 0 and
h(w) = E$ [H(w,X0)], we get

h(w) = h(w)− h(w?) = E$[G(X0)](w −w?). (150)

We also have

H(w, (s, s′))−H(w?, (s, s
′)) = G(s, s′) (w −w?) .

This yields

H(w, (s, s′))− h(w) = H(w?, (s, s
′))

+ Ḡ$(s, s′)(w −w?) . (151)

Set

ξw(s) := (w −w?)>φ(s) = Vw(s)− Vw?(s). (152)

From (148) and (150), we have

h(w) = E$[G(S0, S
′
0)] (w −w?)

= E$[φ(S0){λξw(S′0)− ξw(S0)}]. (153)

Proof of Lemma 10. Using (153), we get that

‖h(w)‖2 = ‖E$[φ(S0){λξw(S′0)− ξw(S0)}]‖2

≤ E$[‖φ(S0)‖2] E$[{λξw(S′0)− ξw(S0)}2].

For the second term, we use

E[(λU + V )2] ≤ λ2E[U2] + E[V 2] + 2λ
√
E[U2]E[V 2]

with U := ξw(S′0) and V := ξw(S0). By TD1,

E$[ξ2
w(S′0)] = E$[ξ2

w(S0)] = ‖Vw − V?‖2D$

which implies that

E$[{λξw(S′0)− ξw(S0)}2] ≤ (1 + λ)2‖Vw − V?‖2D$
.

This concludes the proof of the first inequality. From (151)
and TD3, we obtain

EFk
[
‖H(wk,Xk+1)− h(wk)‖2

]
≤ 2E$[‖H(w?, X0)‖2]

+ 2 (wk −w?)>E$[Ḡ$(X0)Ḡ>$(X0)](wk −w?) .

We first upper bound E$[‖H(w?, X0)‖2]. Since λ ≤ 1 and
|R(s, s′)| ≤ 1 (see TD2), we get that, for all w ∈ Rd, and
(s, s′), it holds that

‖H(w, (s, s′))‖ ≤ 1 + ‖φ(s){λV?(s′) + V?(s)}‖
≤ 1 + {λ|V?(s′)|+ |V?(s)|} .

We obtain

E$[‖H(w?, X0)‖2] ≤ 3
(
1 + {λ2 + 1}‖V?‖2D$

)
.

Let us upper bound the second term. For any u ∈ Rd, it holds
that

u>E$[Ḡ$(X0)Ḡ>$(X0)]u ≤ u>E$[G(X0)G>(X0)]u ,

and

uTG(s, s′)G>(s, s′)u ≤ {u>φ(s)}2(1 + λ)2 .

By combining these two inequalities, we finally obtain

(wk −w?)>E$[Ḡ$(X0)Ḡ>$(X0)](wk −w?)
≤ (1 + λ)2‖Vwk − V?‖2D$

This concludes the proof.
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Proof of Lemma 11. It follows from (153) that

〈w −w∗ |h(w)− h(w?)〉
= E$[ξw(S0){λξw(S′0)− ξw(S0)}]
= λE$[ξw(S0)ξw(S′0)]− E$[(ξw(S0))2].

By using the Cauchy-Schwarz inequality, we have

E$[ξw(S0)ξw(S′0)] ≤ {E$[ξ2
w(S0)]}1/2{E$[ξ2

w(S′0)]}1/2.

Under TD1, $P = $, which implies that for any function g,

E$[g(S′0)] = E$[g(S0)].

This yields

〈w −w∗ |h(w)− h(w?)〉 ≤ −(1− λ)E$[ξ2
w(S0)].

The proof is concluded by using (152) and

E$[ξ2
w(S0)] = E$[(Vw(S0)− V?(S0))

2
]

= ‖Vw − V?‖2D$
.

Proof of Lemma 12. Note first that

w>Φ>D$Φw =
∑
s∈S

$(s)〈φ(s) |w〉2

≤
∑
s∈S

$(s)‖φ(s)‖2‖w‖2 ≤ ‖w‖2,

where we have used that
∑
s∈S $(s) = 1. On the other hand,

under TD 1, D$ is full rank (D$ is diagonal and all its
diagonal entries are positive), which implies that the minimal
eigenvalue of Φ>D$Φ is positive. The result follows.

E. Proofs of Section IV-A

We hereafter give a slightly different statement of Lemma 13
for the particular case in which ∇V = −h.

H3. The field h and the function V in H 2 satisfy: ∇V = −h.

Then under H 2-c), the Lyapunov functions V, W satisfy,
for any w ∈ Rd,

− ‖∇V(w)‖2 = 〈∇V(w) |h(w)〉 ≤ −%W(w) . (154)

Define, for any k ≥ 0:

ω2,k+1 := (%− τ1)− γk+1LVσ
2
1 (155)

γ2,max := min

(
1

LV
,
(%− τ1)
LVσ2

1

)
. (156)

Lemma 18 (Robbins-Siegmund type inequality for
∇V = −h). Assume H 1 and 2, NA 1 and H 3. Then,
for any k ≥ 0, we have almost-surely

EFk
[
V(wk+1)

]
≤ V(wk)− γk+1

2
ω2,k+1W(wk)

+
γk+1

2
τ0 +

γ2
k+1LV

2
σ2

0 , (157)

Proof. Let k ≥ 0. By H 2-b), we have

V(wk+1) ≤ V(wk) + 〈∇V(wk) |wk+1 −wk〉
+ (LV/2)‖wk+1 −wk‖2 .

Computing the conditional expectation of both sides of this
inequality yields

EFk
[
V(wk+1)

]
≤ V(wk)

+ γk+1〈∇V(wk) |EFk
[
H(wk,Xk+1)

]
〉+

+ γ2
k+1(LV/2)EFk [‖H(wk,Xk+1)‖2] .

We now use 2〈a | b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2.

2〈∇V(wk) |EFk
[
H(wk,Xk+1)

]
〉

= −2〈−∇V(wk) |EFk
[
H(wk,Xk+1)

]
〉

= −‖ −∇V(wk)‖2 − ‖EFk
[
H(wk,Xk+1)

]
‖2

+ ‖ − ∇V(wk)− EFk
[
H(wk,Xk+1)

]
‖2.

Define bk := EFk
[
H(wk,Xk+1)

]
−h(wk). We have, using

Equation (154),

EFk
[
V(wk+1)

]
≤ V(wk)− %γk+1

2
W(wk)

− γk+1

2
‖EFk

[
H(wk,Xk+1)

]
‖2 +

γk+1

2
‖bk‖2

+ γ2
k+1(LV/2)EFk [‖H(wk,Xk+1)‖2] .

Note first that, using H 1-c) we get

EFk
[
V(wk+1)

]
≤ V(wk)− %γk+1

2
W(wk)

− γk+1

2
‖EFk

[
H(wk,Xk+1)

]
‖2 +

γk+1

2
(τ0 + τ1W(wk))

+ γ2
k+1(LV/2)EFk [‖H(wk,Xk+1)‖2] .

We compute a bias-variance decomposition and use H 1-d):

EFk [‖H(wk,Xk+1)‖2] = ‖EFk [H(wk,Xk+1)]‖2

+ EFk
[
‖H(wk,Xk+1)− EFk [H(wk,Xk+1)]‖2

]
≤ ‖EFk [H(wk,Xk+1)]‖2 + σ2

0 + σ2
1W(wk).

Overall, we get:

EFk
[
V(wk+1)

]
≤ V(wk)

−
(
γk+1

2
(%− τ1)−

γ2
k+1LV

2
σ2

1

)
W(wk)

−
(
γk+1

2
−
γ2
k+1LV

2

)
‖EFk

[
H(wk,Xk+1)

]
‖2

+
γk+1

2
τ0 +

γ2
k+1LV

2
σ2

0 .

We thus get:

EFk
[
V(wk+1)

]
≤ V(wk)− γk+1

2
ω2,k+1W(wk)

+
γk+1

2
τ0 +

γ2
k+1LV

2
σ2

0 ,

with ω2,k, γ2,max as in (155), (156).

F. Proofs of Section IV-B2

Proof of Proposition 2. By Corollary 1, the field H(w,∼) =
Top1(∇F(w)) satisfies H 1 with (ch,0, ch,1) = (0, 1),
(τ0,k, τ1,k) = (0, 1 − 1/d) and (σ2

0 , σ
2
1) = (0, 0), for W =

‖∇F (·)‖2).
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We consider V = F and thus have H 2 with cV = 1, ρ = 1,
LV = L∇F . We thus verify Equations (73) to (76) with:

b0 := cV
√
τ0/2 = 0

b1 := cV(
√
τ0/2 +

√
τ1) =

√
1− 1/d ≤ 1− 1

2d
.

η0 := 0

η1 := σ2
1 + τ1 + ch,1 +

√
ch,1 (

√
τ0 +

√
τ1)

+
√
τ1
(√
ch,0 +

√
ch,1

)
≤ 4,

γmax := 2{%− b1}/(LVη1) ≥ 1

dLVη1
,

ωk := 2{%− b1} − γkLVη1 ≥
1

2d
.

Proposition 2 is then a direct application of Theorem 1 with
the constants above.

For the proofs of the next two propositions, we note that the
random field H satisfies H 1 with V = F , W = ‖∇F (·)‖2.
Moreover, the constants are (ch,0, ch,1) = (0, 1), (τ0,k, τ1,k) =
(0, 0), (σ2

0 , σ
2
1) = (M2/n, 0), and % = 1.

Proof of Proposition 3. By Lemma 2, the compressed SG in
(16) uses a random field that satisfies H 1 with the same set
of constants that inherit from H except for σ2

0;C := (1 +
ωC)σ2

0 , σ2
1;C := 2ωC. Thus we have (73) with b0 = b1 =

0 and (74), (75), (76) with

η0 := (1 + ωC)M2/n, η1 := 2ωC + 1,

γmax := 2/(L∇F η1) = 2/(L∇F (2ωC + 1)) ,

ωk := 2− γkL∇F η1 ≥ 1 .

Where the last equation holds as γk ≤ γmax/2. As before,
Proposition 3 is then a direct application of Theorem 1 with
the constants above.

Proof of Proposition 4. For C is Qd, CSA4 is satisfied with
κC = d∆2. Using Corollary 2, we can apply the result of
Theorem 1, with τ0,k,C := L2

∇F d∆2, σ2
0;C := M2

n +
L2
∇F d∆2. Thus

b0 = L∇F
√
d∆/2 ≤ 1/2 , b1 = L∇F

√
d∆/2 ≤ 1/2,

η0 =
M2

n
+ 2L2

∇F d∆2 + L∇F
√
d∆ ≤ M2

n
+ 3L∇F

√
d∆

η1 := 1 +
(
L∇F

√
d∆
)
≤ 2

γmax := 2{1− b1}/(L∇F η1) ≥ 1/(2L∇F )

ωk := 2{%− b1} − γkLVη1 ≥ 1/2 .

Proposition 4 is then a direct application of Theorem 1 with
the constants above.

Proof of Proposition 5. By Lemma 4, the compressed SG in
(18) uses a random field (19) that satisfies H 1 with the same
set of constants inherited from H except for

σ2
0;C :=

M2

n
+

∆C
√
d

2γ̄
(3 +M2/n), σ2

1;C :=
∆C
√
d

2γ̄
.

We also have (73) with b0 = b1 = 0 and (74), (75) with

η0 := M2/n+ (M2/n)
∆C
√
d

2γ̄
, η1 := 1 +

∆C
√
d

2γ̄
,

γmax := 2/(L∇F (1 + ∆C
√
d/(2γ̄))) .

To apply Theorem 1, we have to satisfy γ̄ < γmax, which is
then equivalent to

γ̄ <
2

L∇F (1 + ∆C
√
d

2γ̄ )
⇐⇒ γ̄ + ∆C

√
d <

2

L∇F
.

This yields the stepsize condition in (102). Our bound in (103)
is then achieved by plugging the above η0 into (82).

G. Proofs of Section IV-B3c

From Section III-B3b, it holds

η0 = 12s?
√
cχ,0/m + 144s2

?cχ,0/m2 + 4s2
?

√
cχ,0 + cχ,1/(nm),

η1 = 1 + 12s?
(√
cχ,0 +

√
cχ,1

)
/m + 144s2

?cχ,1/m2

+ 4s2
?
√
cχ,1/(nm),

b0 = 6s?
√
vmax

√
cχ,0/m,

b1 = 6s?
√
vmax

(√
cχ,0 + 2

√
cχ,1

)
/m,

γmax = 2{vmin − b1}/(LVη1),

ωk = 2{vmin − b1} − γkLVη1.

H. Proofs of Section V

Proof of Theorem 4. We first establish that the sequence
{wk, k ∈ N} satisfies SA3 with probability 1. Define

b0,k := cV
√
τ0,k/2, b1,k := cV(

√
τ0,k/2 +

√
τ1,k).

It follows from the Robbins-Siegmund inequality (see
Lemma 13) that

EFk
[
V(wk+1)

]
≤ V(wk) + γk+1 b0,k +γ2

k+1LVη0/2

− γk+1{%− b1,k −γk+1LV η1/2}W(wk).

By
∑∞
k=0 γk =∞ and

∑∞
k=0 γ

2
k <∞, and i),

lim
k→∞

{%− b1,k −γk+1LV η1/2} = % (158)

exists and is positive. Therefore, there exists k0 such that for
all k ≥ k0,

EFk
[
V(wk+1)

]
≤ V(wk) + γk+1 b0,k +γ2

k+1LVη0/2

− γk+1{%− b1,k −γk+1LV η1/2} (W(wk) ∧ C) (159)

where C is a positive constant, and

EFk
[
V(wk+1)

]
≤V(wk)+γk+1 b0,k +γ2

k+1LVη0/2 . (160)

Define for k ≥ k0,

Mk := V(wk)−V? +

∞∑
`=k+1

c`, (161)

where c`+1 := γ`+1 b0,` +(LVη0/2)γ2
` . It is easily checked

that for all k ≥ k0, Mk ≥ 0 and EFk
[
Mk+1

]
≤ Mk almost-

surely. Hence, {M`−k0 , `− k0 ∈ N} is a non-negative super-
martingale. It follows from [189, Theorems II-2-7,II-2-9] that
supk∈NMk < ∞ and the sequence {Mk, k ∈ N} converges
with probability one. This implies that, with probability one,
supk V(wk) < ∞ and limk→∞V(wk) exists. By ii), this
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yields supk∈N ‖wk‖ < ∞ with probability one. Hence, SA3
holds with probability one.

Note two corollaries of the discussion above. First, from
(158), (159), supk V(wk) < ∞, the stepsize condition∑∞
k=0 γk = ∞,

∑∞
k=0 γ

2
k < ∞, and i), we have when

C → +∞,
sup
k

W(wk) <∞

with probability one. Second, it also follows from (160) that

sup
k∈N

E[V(wk)]≤E[V(w0)]+

∞∑
k=0

γk+1{b0,k +(LVσ
2
0/2)γk+1};

the RHS is finite by the stepsize conditions, i) and the
condition E[V(w0)] <∞.

We now consider SA 4. We proved that supk W(wk) <
∞ with probability one. Combined with i), this yields with
probability one,

‖EFk
[
H(wk,Xk+1)

]
− h(wk)‖2

≤ τ0,k + τ1,kW(wk)→ 0.

The asymptotic rate of change condition is a conse-
quence of the convergence theorem for square integrable
martingales (see e.g. [190, Theorem 2.15]): the series∑∞
k=1 γkuk+1 converges with probability one on the event∑∞
k=1 γ

2
kEFk

[
‖uk+1‖2

]
< ∞. We thus have to prove that∑

k γ
2
k+1σ

2
0 +

∑
k γ

2
k+1σ

2
1W(wk) <∞ with probability one.

This holds true by the stepsize conditions and the property
supk W(wk) <∞.

I. Proofs of Section VI

Proof of Lemma 14. Let t ∈ {1, . . . , kout} and k ∈
{0, . . . , kin − 1}. Since b−1

vr E
[∑

i∈Bt,k+1
ai

]
= n−1

∑n
i=1 ai

(see e.g. [38, Lemma 7.1.]) and Hvr
t,k ∈ Ft,k, then

EFt,k
[
Hvr
t,k+1

]
= Hvr

t,k + n−1
n∑
i=1

(hi(wt,k)− hi(wt,k−1)) .

This concludes the proof of the first claim. The second
one follows by induction, upon noting that EFt,0

[
U
]

=
EFt,0

[
EFt,`

[
U
] ]

for any ` ≥ 0.

Proof of Lemma 15. Let t ∈ {1, . . . , kout} and k ∈
{0, . . . , kin − 1}. By Lemma 14, we have

Hvr
t,k+1 − EFt,k

[
Hvr
t,k+1

]
= Hvr

t,k+1 − h(wt,k)−Hvr
t,k + h(wt,k−1)

=
1

bvr

∑
i∈Bk+1

∆i(wt,k,wt,k−1)− 1

n

n∑
i=1

∆i(wt,k,wt,k−1)

where ∆i(wt,k,wt,k−1) := hi(wt,k) − hi(wt,k−1). The
conditional expectation of the L2-moment is upper bounded
by b−1

vr n
−1
∑n
i=1 ‖∆i(wt,k,wt,k−1)‖2 (see e.g. [38, Lemma

7.1.]). Under VR 1, we have ‖∆i(wt,k,wt,k−1)‖2 ≤
L2
i ‖wt,k − wt,k−1‖2. This concludes the proof of the first

claim. For the second one, we writeHvr
t,k+1−h(wt,k) = U1+

U2 where U1 := Hvr
t,k+1 − EFt,k

[
Hvr
t,k+1

]
. By definition of

the conditional expectation and since U2 ∈ Ft,k, we have

EFt,k
[
‖U1 + U2‖2

]
= EFt,k

[
‖U1‖2

]
+ EFt,k

[
‖U2‖2

]
=

EFt,k
[
‖U1‖2

]
+‖U2‖2. The proof is concluded by using the

first statement and Lemma 14.

Proof of Lemma 16. From H 2-b), we write for any w,d,h ∈
Rd and γ, β > 0,

V(w + γd) ≤ V(w) + γ〈∇V(w) |d〉 + γ2LV

2
‖d‖2

≤ V(w) + γ〈∇V(w) |h〉 + γ2LV

(
‖d− h‖2 + ‖h‖2

)
+

γ

2β
‖∇V(w)‖2 +

γβ

2
‖d− h‖2.

Applied with h← h(w), and using H 1-b), H 2-c) and (46),
this inequality implies

V(w + γd) ≤ V(w)− γ
(
%− 1

2β
c2V − γLVch,1

)
W(w)

+ γ

(
β

2
+ γLV

)
‖d− h(w)‖2 + γ2LVch,0.

We choose β := c2V/% and obtain, for any µ > 0,

V(w+γd) ≤ V(w)−γ
(%

2
− γLVch,1

)
W(w)+γ2LVch,0

− γµ‖d− h(w)‖2 + γ

(
c2V
2%

+ µ+ γLV

)
‖d− h(w)‖2.

Applying this inequality with γ = γt,k+1, w = wt,k, d =
Hvr
t,k+1, µ = µt,k+1 := %/2 − γt,k+1LV and computing the

conditional expectation w.r.t. to Ft,0, concludes the proof.

Proof of Theorem 7. By Equation (134) and H 1-b)

kin−1∑
k=0

γt,k+1EFt,0
[
‖Hvr

t,k+1 − h(wt,k)‖2
]

≤ 2
L2kin

bvr

kin∑
k=1

γ3
t,kEFt,0

[
‖Hvr

t,k − h(wt,k−1)‖2
]

+ 2
L2kin

bvr

kin∑
k=1

γ3
t,k(ch,0 + ch,1EFt,0

[
W(wt,k−1)

]
).

We use Lemma 16 and sum from k = 0 to k = kin − 1:

EFt,0
[
V(wt,kin)

]
≤ EFt,0

[
V(wt,0)

]
+ LVch,0

kin−1∑
k=0

γ2
t,k+1

−
kin−1∑
k=0

γt,k+1νt,k+1EFt,0
[
W(wt,k)

]
−

kin−1∑
k=0

γt,k+1 µt,k+1 EFt,0
[
‖Hvr

t,k+1 − h(wt,k)‖2
]

+ 2
L2kin

bvr
a

kin−1∑
k=0

γ3
t,k+1EFt,0

[
‖Hvr

t,k+1 − h(wt,k)‖2
]

+ 2
L2kin

bvr
ch,0 a

kin−1∑
k=0

γ3
t,k+1

+ 2
L2kin

bvr
ch,1 a

kin−1∑
k=0

γ3
t,k+1EFt,0

[
W(wt,k)

]
.
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Hence, we get
kin∑
k=1

γt,k
(%
2
− ch,1 γt,k λt,k

)
EFt,0

[
W(wt,k−1)

]
+

kin∑
k=1

γt,k
(%
2
− γt,k λt,k

)
EFt,0

[
‖Hvr

t,k − h(wt,k−1)‖2
]

≤ EFt,0
[
V(wt,0)

]
− EFt,0

[
V(wt,kin)

]
+ ch,0

{
LV

kin∑
k=1

γ2
t,k + 2

L2kin

bvr
a

kin∑
k=1

γ3
t,k

}
.

We sum from t = 1 to t = kout, and use H 2-a), wt−1,kin
=

wt,0 (see Line 3 in Algorithm 1) to conclude the proof.
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