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Abstract

We present the phenotype of an infant with the largest ATN1 CAG expansion reported to date
(98 repeats). He presented at 4 months with developmental delay, poor eye contact, acquired
microcephaly, failure to thrive. He progressively developed dystonia-parkinsonism with
paroxysmal oromandibular and limbs dyskinesia and fatal outcome at 17 months. Cerebral
MRI disclosed globus pallidus T2-WI hyperintensities and brain atrophy. Molecular analysis
was performed post-mortem following the diagnosis of dentatorubral—pallidoluysian atrophy
(DRPLA) in his symptomatic father. Polyglutamine expansion defects should be considered
when neurodegenerative genetic disease is suspected even in infancy and parkinsonism can be
a presentation of infantile-onset DRPLA.

Introduction

Dentatorubral—pallidoluysian atrophy (DRPLA) (OMIM 125370) is one of the nine autosomal
dominant polyglutamine (polyQ) defects, a group of clinically and genetically heterogeneous
neurodegenerative diseases.1,2 DRPLA is caused by the expansion of a trinucleotide
cytosine-adenineguanine (CAG) repeat in exon 5 of atrophin-1 (ATN1) gene.3 The CAG
repeat expansion demonstrates genetic anticipation, especially when inherited through the
paternal lineage and becomes pathogenic when expanded beyond 48 trinucleotide repeats.
The clinical phenotype is heterogeneous, and the length of the repeat is correlated to poor
prognosis: early onset, severity, functional impairment and eventually fatal outcome.1 Two
main phenotypes have been described.1,2 The first phenotype (CAG repeats >65) presents a
juvenile onset (<20 years) with progressive myoclonic epilepsy (PME) and encephalopathy.
The second phenotype (CAG repeats <65), also called the non-PME phenotype is
characterized by adult-onset (>20 years), ataxia, choreoathetosis, cognitive impairment, and
psychiatric symptoms clinically mimicking Huntington’s disease.1,2

In this report, we characterize the infantile-onset (<1 year of age) phenotype of the individual
with the largest ATN1 CAG expansion reported up to now (98 repeats).

Patients and Methods

The individual was assessed in the pediatric neurology clinics at Montpellier University
Medical Center. Legal guardians provided written informed consent for samples and data to
be used in research and publication, including the videos.

CAG repeat number in the ATN1 gene was analyzed by a polymerase chain reaction with
fluorescence-labeled primers as described elsewhere.4 The number of repeats was determined
by capillary electrophoresis using an ABI 3130X automated DNA sequencer and the
GeneMapper version 4.0 software (Applied Biosystems, Foster City, CA, USA). To assess the
number of repeats, Genescan 500 ROX size standard was used (Applied Biosystems) and
several samples with different DRPLA CAG allele lengths were sequenced as positive
controls.



Results

The proband was a male first child, born to non-consanguineous parents of non-Asian origin
(Fig. 1, individual I11-1). Premature rupture of the membranes at 27 weeks of pregnancy
resulted in oligohydramnios and pregnancy was closely monitored without abnormality. Birth
occurred at 37 weeks of gestation by cesarean section due to delayed labor, with normal
perinatal parameters (Apgar score 10/10, birth weight 2.870 kg (0.1 SD (Standard deviation)),
height 47 cm (- 0.4 SD), head circumference 33.5 cm (0 SD)).

From the age of 4 months the parents noticed the absence of eye contact and visual pursuit,
limited motor achievements, and feeding difficulties. The general pediatrician reported severe
hypotonia and global developmental delay. The individual also exhibited abnormal
movements from 4 months of age (Video section S1). The individual was finally referred to
the pediatric neurologist at 10 months. Growth failure was noticed (weight 6.9 kg (_3 SD)
height 70 cm (- 2.5 SD)) with microcephaly (head circumference of 42 cm (- 3.4 SD). He had
normal facial features as well as normal hands and feet. Clinical examination disclosed left
plagiocephaly, axial hypotonia combined to axial dystonic postures with no head control,
limited spontaneous and voluntary movements, distal rigidity, increased osteotendinous
reflexes in the lower limbs without other pyramidal tract signs. Close assessment of
movement disorders identified bradykinesia during most of the day interrupted by several
episodes of involuntary, erratic, writhing movements of his face, arms, and legs. These
dyskinetic paroxysms lasted between a few minutes to several hours, no evident trigger was
identified. Most of the time these movements were fluid, but rapid jerking or slow and
extended dystonic postures could occasionally appear. Reduced facial expression was
abruptly interrupted by mouth opening dystonia (Video section S2). Involuntary movements
disappeared during sleep. Between episodes the patient did not show another kind of
movement disorder. EEG recording during the episodes of involuntary movements and in
calm periods without paroxysmal movements was normal and the episodes were considered
as non-epileptic dyskinesia.

A gastrostomy was performed at 14 months of age. At 15 months, the individual exhibited
two episodes of febrile generalized clonic seizures, lasting less than 2 minutes, during an
episode of gastroenteritis. Interictal wake and sleep EEG was normal and sodium valproate
treatment was initiated. Seizures did not recur. The individual never acquired the ability to
control his head, grab objects, or develop language and his motor function did not improve.
He died suddenly at the age of 17 months during a febrile illness.

The proband underwent a work-up at 10 months of age (detailed in Table 1). Brain MRI
showed cerebral atrophy, mild atrophy of the brainstem and cerebellar vermis, thin corpus
callosum, and bilateral and symmetrical globus pallidus T2-WI hyperintensities (Fig. 2).

Cerebrospinal fluid (CSF) neurotransmitters profile disclosed elevated neopterins, low levels
of 5-hydroxyindolacetic acid (5-HIAA), and homovanillic acid (HVA) (Table 1).

Early developmental delay, severe hypotonia and high levels of neopterine raised the
suspicion of Aicardi-Goutieres Syndrome (AGS); molecular resequencing gene panel
involved in AGS (TREX1, RNASEH2B, RNASEH2A, RNASEH2C, SAMHD1, IFIH1, and
ADAR) did not disclose pathogenic variant. CGH array did not show any segmental genomic
copy number variations (CNVs Eight years after the proband’s death, his father aged 42 years
(Fig. 1 individual 11-1) was referred to the neurologist for a 5-year history of progressively



worsening ataxia, choreo-dystonic, and myoclonic involuntary movements associated to
insidious impairment of executive functions and behavior (irritability, impulsiveness). Brain
MRI showed cortical and pontocerebellar atrophy and white matter hyperintensities. Because
of the clinical presentation, genetic testing for Huntington’s disease and Huntington-like
disorders was performed. Molecular analysis revealed a repeat expansion of 8 out of 61 copies
of the CAG trinucleotide in the ATN1 gene and the diagnosis of DRPLA was established.
Proband’s stored DNA sample analysis identified a heterozygous expansion of 15 out of 98
copies of the CAG repeat, which was consistent with the diagnosis of DRPLA with a very
high CAG repeat load.
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Discussion

We described a child affected by a severe rapidly progressive neurological disease with early
infantile onset, major developmental delay with axial hypotonia and no motor achievement,
combined to a complex movement disorder characterized by dystonia-parkinsonism with
episodes of oromandibular and limbs dyskinesia; the individual had acquired microcephaly,
generalized febrile seizures and fatal outcome. Molecular testing following his father’s
diagnosis of DRPLA identified the largest ATN1 CAG expansion with a total of 98 repeats
published in the literature up to now.
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DRPLA have been mainly described in the Asian population, and it represents the most
frequent cause of childhood-onset cerebellar ataxia in Japan.5 Neonatal or infantile DRPLA
onset has only been reported in seven cases so far6-12 (Table 2) with a phenotype
characterized by early developmental delay, regression of developmental milestones, and
myoclonic or generalized tonico—clonic epileptic seizures, with variable age at onset and
pharmaco-resistance. Abnormal movements were also common, including dystonia, chorea,
myoclonus, and oral dyskinesia. The clinical presentation of our individual was mainly
characterized by developmental delay with movement disorders; epilepsy was limited to two
febrile seizures, but the individual was noteworthy by his very short life span compared to
other cases,6-12 and this short life span is consistent with established correlation between
CAG repeat load and early deathl (Table 2). Abnormal MRI findings were common to these
neonatal or infantile-onset cases, especially cerebral, cerebellar, and brainstem atrophy; basal
ganglia T2 hyperintensities has also been reported in infantile-onset cases6-12 as well as in
late-onset cases.13 As in our case, most of the earlyonset cases inherited their expansion from
their father; and unlike in our family, the individuals were referred mostly while the parental
diagnosis was already established.6-12



Table 2. Irdneduas wih a geeete comlinmaton of nladde-onsel DIFLA and ifantde onet (2 1 yaar of age).

Repoded indviduak wih a genetic conlirmaten of DRPLA and onget = yaarof age

Faature O repert TR ] 1 11 12 13
Indidual i i i n F2-2 a -6 i
Oigin Momhgan  Adan Asan Moihsan Agian Aaan Aian Asan
i Repeats 33 33 90 E& £3 33 ) 78
Clawcal phanctyps
Faga al onset Fersl menths & montis dmenns 2 monlhs Meawbern 12 moaths & moats 12 ments
Age at repedtieath 1 paar & yeary? 15 pears’ 12 ypears B meatlhs 15 pears®  MA 13 years 4 yaars
5 monins'
Deedeperntal + H yeaf +HB meafs G paars HI yaars + HE montts +
delayfreqresion
fage]
Seqused + A B + A MA M M
icsocanhaly
Dysphagia + + + HA + HA + HA
Alaga - - = + M HA, + HA
Dystonia + + + MA MA HA MNA +
hafea — + + M + A MA M
Mypadenus - - - + + HA + B
[l A L + + + LY + M MA M
D Endon +H+ +H+ + +H+ MA MaA MNA ++
releass
Seguses fage al H1 paar H paas HT year H2 months) Hiewbon]  HMNA) HE paas]  H pears
cnzed Jmenthsg  Tmoats) 8 ments) § mentihs)
Seduses Ty Gamerdimd  Tonic GIC GIC Meenatdd WA M Myeudofic
[ Myoclenr SEbEL
Afone dop attacks Myoclonic
Aypial abwence
Radecieqxal findamgs
Age At M 10 months 2 yaars 2 yoars 11 years M M 10 peas 4 yeans
Carabial alophy + + + + MA HA + +
Cesehellar alrephy  + ¥ + + HA HA ¥ 4
Banslam atrephy  + + + 4 KA HA + +
Daen while matler - - + + MA HNA MA -
hypesmes il
Dalayed mypeinaton  — ¥ + + M HA MA -
Rasal ganga T2 + + - - HA MA MA +
high segnal
inlensly

—, Taalusasgn nol presant; + katuskgn mesent; GTC, ganeralzad tonc-chone: MA, nol avalabh,
"Mt

Cerebrospinal fluid neurotransmitters profile has not been reported before in individuals with
infantile-onset DRPLA. Atrophin-1 is a nuclear transcriptional corepressor which interacts
with key proteins critical for neural progenitor cell survival, proliferation, and neuronal
migration.14 Neuropathological findings of DRPLA include combined degeneration of the
dentatorubral and pallidoluysian systems and white matter damage. Accumulation of
expanded polyglutamine stretches have been demonstrated in the neuronal nuclei resulting in
neuronal toxicity.15 Increased CSF neopterin levels may reflect an inflammatory response
related to cellular damage occurring within the central nervous system and related to the
disease process, as postulated in other trinucleotide repeat expansion diseases such as
Huntington’s disease and other adult-onset neurodegenerative disorders.16,17



Decreased levels of CSF homovanillic acid suggested secondary dopaminergic depletion, as
observed in several neurological disorders especially those with degenerating process.18 The
dopamine depletion profile was very concordant with the bradykinetic-dystonic phenotype of
the individual. Although bradykinesia have been occasionally reported in juvenile or adult-
onset DRPLA cases,6,19 dystonia parkinsonism was not reported in previously published
infantile-onset cases6-12 (Table 2); it is well admitted that parkinsonian signs are difficult to
assess and may be underdiagnosed especially in infants.20 Given the limited number of
previously reported patients with infantile-onset DRPLA,6-12 it is difficult to draw
conclusions on the phenotypic spectrum of infantile ATN1- DRPLA, as the legal guardians of
the reported individual did not agree to perform further genetic testing, we cannot rule out
other contributing genetic causes in his complex phenotype. However, the phenotype of our
patient shares many common features with previous cases, including parkinsonian features,
and we suggest that DRPLA may be added to the growing list of genetic causes of infantile
parkinsonism, especially in the context of developmental delay or regression; whether the
spectrum of infantile DRPLA involves dopamine depletion will be highlighted by
neurotransmitters’ analysis in newly diagnosed cases.

Recently, a high prevalence of individuals carrying intermediate or pathological ranges of
polyglutamine disease-associated alleles among the general population has been reported.21
Trinucleotide repeat expansion analysis is not included (or covered by insurance) in the
genetic workup of infantile or childhood-onset neurodegenerative movement disorders,
especially in the absence of a significant familial history and the role of polyglutamine defect
is probably underrecognized.22 Our case highlights that polyglutamine diseases should be
considered, even in infantile onset neurodegenerative diseases without family history.
However, polyQ detection raised ethical issues; delineation of the spectrum of polyglutamine
defects in infants and children will be necessary meanwhile novel techniques for genome-
wide evaluation of repeat expansions are under development and validation.23
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