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We theoretically report a remarkable revolving effect of electron flow when applying a lattice
temperature gradient across an asymmetric double-barrier heterostructure. Depending on the lattice
temperature increase/decrease, we demonstrate that electrons respectively absorb/emit a phonon
and subsequently go back to the reservoir from which they have been injected. Our simulation code,
which self-consistently solves the non-equilibrium Green’s function framework and the heat equation,
is capable to calculate the electron temperature and electrochemical potential inside the device. By
investigating those non-equilibrium thermodynamic quantities, we show that the revolving effect is
due to the sign inversion of the local electron distribution. In particular, simulation results evidenced
a variation of the electrochemical potential inside the device to compensate the temperature gradient,
and to maintain the electrostatic neutrality in the access regions. Finally, we propose an analytic
model which provides an intuitive picture of the effect, and discuss the possibility to use such a
behavior in the new context of heat management in nano-structures.

I. INTRODUCTION

Thermoelectric technology consists in converting heat
into electricity or vice versa. It is a solid-state heat engine
solution whose devices present the advantages of a high
reliability, small size and no sensibility to vibrations. As
such, they are very promising candidates to contribute to
the energy sustainability in a period of severe shortage.
Thermoelectric devices have therefore attracted an in-
creasing interest during the last decade1,2. Those devices
are based on the diffusive phonon and electron trans-
port, and operate in close to equilibrium regime, where
their produced power is obviously limited. The scenario
is significantly different in nanostructures where carrier
transport can be assumed as strongly ballistic. In this
non-equilibrium regime, electron temperature may sig-
nificantly differs from the lattice one, raising the oppor-
tunity to obtain devices with better performances than
conventional thermoelectric structures, in particular due
to energy filtering3.

However, in semiconductor nanostructures, the inter-
play between potential barrier height, transport prop-
erties, and electron/lattice temperatures is still unclear.
Therefore extensive theoretical investigations of thermo-
electric nanodevices are needed. In order to capture
the key aspects of the physics, we use the quantum
non-equilibrium Green’s function (NEGF) method. Our
quantum transport code takes into account the thermal
effects by self-consistently coupling the electron transport
equations expressed within the NEGF formalism with the
heat equation4,5. We also use the virtual probe concept
to calculate the electron temperature and electrochemical

potential inside the device6,7.

We will focus on double-barrier asymmetric het-
erostructures since we recently demonstrated that such
device can efficiently acts on both the electronic and
phononic bath’s refrigeration when applied a bias be-
tween the emitter and collector contacts8. We consider
the device shown in Figure 1. It illustrates the band
diagram of the asymmetric double-barrier heterostruc-
ture which couples ”tunnel injection” and ”thermionic
extraction”. When applying a bias, ”cold” electrons are
injected from the emitter into the GaAs quantum well
(QW) via a resonant tunneling effect through a thin po-
tential barrier (labelled as ”emitter barrier”). The role
of the emitter barrier is to filter injected electrons and
to concentrate the cooling in the QW. ”Hot” electrons
are removed from the QW through a thermionic pro-
cess above the thick AlGaAs alloy (labelled as ”collector
barrier”), extracting energy from the lattice via phonon
absorption. Electrons are then relaxed in the collector
by emitting phonons. As a result, the QW cools and
the collector heats. We showed that electron bath in
the QW was also refrigerated thanks to the evaporative
cooling effect. When applying a bias, hot electrons are
extracted above the thick collector barrier and the re-
maining low energy ones re-thermalize in the QW at a
lower temperature8,9.

In this work, we focus on the opposite effect, i.e. when
a temperature gradient is applied between the collector
and the emitter, and we study the induced electrical cur-
rent properties. We demonstrate that electrons are sub-
ject to an unexpected revolving effect, for which carriers
coming from the collector (emitter) are reflected back
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to the contact at a lower (higher) energy when reach-
ing the collector (emitter) barrier. For energies below
50 meV, it generates an electron flow which goes against
the temperature gradient. This revolving effect, which
is accompagnied by a phonon emission (absorption), and
it is here interpreted from the thermodynamic analysis
of the variations of the local electrochemical potential
and tempertaure. Indeed, we show that the difference
of the Fermi-Dirac distribution between two consecutive
plans depicts a sign inversion at the energy of 50 meV,
in agreement with the current spectrum features. We
can note that the role of the quantum well is less obvi-
ous in this operating configuration and will require addi-
tional investigations, for instance, to assess the impact on
the Seebeck thermodynamic factor compared to a device
without quantum well.

The paper is organized as follows. Section II describes
the electronic quantum transport, heat transport model,
and thermodynamic quantities calculation based on the
virtual probe approach. In Section III, we investigate
the revolving effect and emphasize the role of the non-
equilibrium electron temperature and electrochemical po-
tential inside the structure. From these results, we pro-
pose a compact model which confirms this phenomena
and discuss its possible applications for heat manage-
ment in nanostructures. Finally, Section IV draws our
concluding remarks.

II. THEORETICAL APPROACH

In order to theoretically study such a quantum device,
we couple both electron and phonon transport. The ap-
proach being already described in previous studies4,5,9,
we therefore briefly remind below the milestones of the
theory and the computational implementation.

A. Transport of electron and heat

Electron transport is described via the NEGF quan-
tum formalism10,11. Transport equations are expressed
within the effective mass approximation to implement a
quantum simulator along the heterostructure growth di-
rection (x). The single band effective mass Hamiltonian
describes the Γ-valley of the conduction band of the III-
V semiconductors. In the following, we summarize the
main features of the NEGF approach in matrix notation.
We first define the retarded Green’s function at the en-
ergy E for each transverse mode kt,

Grkt =
[
(E − V )I −Hkt − ΣrL,kt − ΣrR,kt − ΣrS,kt

]−1
,
(1)

where I is the identity matrix, Hkt represents the ef-
fective mass Hamiltonian for kt and V is the electro-
static potential energy. Assuming a cylindrical symme-
try, the transverse mode kt is given by kt = nkt × 2π/Lt,

FIG. 1. (Color online) Sketch of the considered asymmetric
double-barrier heterostructure. LEmit, LQW and LColl refer
to the thicknesses of the emitter barrier, the quantum well
and the collector barrier respectively. E0 is the QW state,
while EFE (TE) and EFC (TC) are the Fermi levels (temper-
atures) of the emitter and collector respectively. For all the
considered devices, doping in the emitter and the collector is
1018 cm−3, LEmit=LQW =5 nm and LColl=100 nm. x and y
are the aluminum concentrations in the emitter and collector
barrier respectively. The value x=0.45 corresponds to a bar-
rier height of 0.38 eV, while the value y=0.1 corresponds to
a barrier height of 0.075 eV.

with Lt = 80 nm is the cylinder diameter and nkt an
integer indexing the transverse modes, whose degener-
acy is equal to π(2nkt + 1)12. As such, the structure
is assumed translationally invariant in the perpendicu-
lar plane with respect to the transport direction. The
choice of Lt = 80 is large enough to obtained a refined
mesh of transverse wave vector. This approach led to suc-
cessful comparison of simulations results and experimen-
tal measurements8. ΣrL/R and ΣrS are the retarded self-

energies for the left/right semi-infinite device contacts13

and scattering mechanisms, respectively.
From the retarded Green’s function, the lesser/greater

Green’s functions are then obtained as

G
≶
kt

= Grkt

(
Σ

≶
L,kt

+ Σ
≶
R,kt

+ Σ
≶
S,kt

)
Gr†kt , (2)

where the Σ≶ are the lesser/greater self-energies, related
to their retarded counterpart by

Σr =
1

2

[
Σ> − Σ<

]
. (3)

Only acoustic- and polar optical-phonon14 interactions
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TABLE I. Principal NEGF parameters used.

m∗Γ(GaAs) m∗Γ(AlAs) m∗Γ(AlxGa1−xAs) ~ωLO (meV) ε0 ε∞
0.067 0.15 x.m∗Γ(AlAs)+(1-x).m∗Γ(GaAs) 35 12.9 10.89

Ref. 21 21 21 22 22 22

are considered, since non-polar-optical phonons turn out
to be negligible in the semiconductors considered in this
work15,16. Interactions with acoustic ones (AC) are as-
sumed elastic at room temperature4, while polar optical
phonons (POP) have an energy ~ωLO=35 meV.

Interaction self-energies are calculated within the self-
consistent Born approximation (SCBA)17–19.

Interactions with polar optical phonons are here as-

sumed to be local and we then consider only the diago-
nal part of the matrix self-energies. We indeed proposed
a diagonal expression of the POP scattering self-energy

Σ
≶
POP,kt

for phonons with longitudinal frequency. The
latter approach is based on a scaling factor which takes
into account the diagonal approximation and which is
obtained within a physically-based analytical model14.

For a given wave vector kt, it can be shown that:

Σ
≶
POP,kt

(j, j, E) =
λM2

2πS

∑
k′t

[
(nL(j) + 1)G

≶
k′t

(j, j, E ± ~ωLO) +(nL(j))G
≶
k′t

(j, j, E ∓ ~ωLO)
]

(4)

×
∫ π

π/Lt

π(2nk′t + 1)√
(kt − k′t cos θ)2 + (k′t sin θ)2

dθ,

with nL(j) = (e(~ωLO)/(kBTPOP (j)) − 1)−1, M2 =
2π~ωLOe2( 1

ε∞
− 1

ε0
), θ is the angle between kt and k′t,

S = πL2
t , and ~ωLO=35 meV. The index j indicates the

x position along the discretized domain, while M is the
Fröhlich factor in which ε0 and ε∞ represent the static
and high frequency dielectric permittivities respectively.
Finally, λ is a scaling factor which takes into account for
the diagonal approximation. The value λ=8 used in this
paper has been obtained within the comprehensive and
physically-based analytical model proposed in Ref.14.

Interface roughness scattering is also assumed to be
negligible with respect to polar optical phonon scatter-
ing. On that point, we can mention the work of Lake et

al.20, who showed that polar optical phonon scattering is
significantly larger than the interface roughness contribu-
tion in GaAs/AlAs resonant tunneling diodes. Moreover,
this interface treatment provided an excellent agreement
between modeling and experimental comparisons on both
the current-voltage characteristics and the electron tem-
peratures (please see Fig. 2-a) and 3-d) respectively of
Ref. 8).

The total scattering SCBA self-energy Σ
≶
S,kt

for a given
mode kt can be then decomposed as :

Σ
≶
S,kt

= Σ
≶
AC,kt

+ Σ
≶
POP,kt

. (5)

Once the lesser/greater Green’s function G
≶
kt

of
each mode kt is determined, electron density can be
calculated17:

nj = −2× i

2π

∑
kt

π(2nkt + 1)

∫ +∞

−∞
G<kt(j, j;E)dE, (6)

= −i
∫ +∞

−∞
G<(j, j;E)dE, (7)

with G<(j, j;E) =
∑
kt

(2nkt + 1)G<kt(j, j;E) and the in-
dex j indicates the x position along the discretized do-
main. The carrier current density flowing from position
j to j + 1 is calculated from the off-diagonal elements

(j, j + 1) of G<kt(i, j;E) as

Jj→j+1 =

∫ +∞

−∞
dE

e

~
∑
kt

(2nkt + 1)

S

×
[
Hj,j+1G

<
kt

(j + 1, j;E)−G<kt(j, j + 1;E)Hj+1,j

]
,

=

∫ +∞

−∞
Jj→j+1(E)dE.

(8)

where Hj,j+1 corresponds to the nearest neighbor hop-
ping term in the discretized tight-binding like Hamilto-
nian and Jj→j+1(E) is the current density spectrum (in
A/(m2· eV)). From Eq.(8) we can deduce the correspond-
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ing electronic energy current23:

JEj→j+1 =

∫ +∞

−∞
EJj→j+1(E)dE, (9)

=

∫ +∞

−∞
J T j→j+1(E)dE. (10)

Taking the derivative of J T , we can obtain the power
density spectrum exchanged between the electron and
phonon baths (in m−3s−1):

JTj→j+1(E) = −∇jJ T j→j+1(E). (11)

In practice, the set of Eqs. (1)-(5) is solved self-
consistently using a recursive algorithm13,24 until the cri-
teria of convergence for both electron density and car-
rier current density are reached. The potential energy
V is self-consistently determined by nonlinearly coupling
the transport equations (1)-(5) with the Poisson equa-
tion through the electron density. In all the study, band
offsets are calculated based on the values reported in
Ref.21. The other parameters used in the NEGF code
are reported in Table I.

Equation (11) directly determines the energy trans-
ferred between the electron bath and the lattice, estab-
lishing the coupling between the heat equation and elec-
tron transport equations. The 1D heat equation along
the x direction (which determines the lattice tempera-
ture) is then iteratively solved together with the trans-
port equations and the Poisson equation, until a global
self-consistency is achieved. This approach has been pre-
cisely described in Ref.4 and 5.

B. Non-equilibrium thermodynamic parameters

Since the device operates in a strongly non-equilibrium
regime, temperature of electrons can significantly differ
from its lattice counterpart. In this section, we detail
how the local electronic temperature and electrochemi-
cal potentiel are estimated based on the virtual probe
approach. Within the method, the local thermodynamic
parameters are those cancelling the particle and energy
currents between a floating probe and a point of the de-
vice. The probe is then in local thermodynamic equilib-
rium with the non-equilibrium structure. Stafford and
co-workers6,7,25 showed that temperature and electro-
chemical potential determined within this approach are
physically-consistent, as they are unique and fulfill the
four laws of thermodynamics. We then consider a ther-
moelectric probe at the position j along the x-axis de-
fined by the following self-energy (similar to the Büttiker
probes26–28):

Σ>(j;E) =− i[1− fFD(E,µj , T
e
j )]LDOS(j;E)νcoup,

(12)

Σ<(j;E) =ifFD(E,µj , T
e
j )LDOS(j;E)νcoup, (13)

where fFD is the Fermi-Dirac distribution of the elec-
trons in the probe, µj and T ej are respectively the local
electrochemical potential and electronic temperature at

the position j; LDOS(j;E) = i [G
>(j,j;E)−G<(j,j;E)]

2π is the
local density of states of the probe (taken equal to the one
of the device) and νcoup is the energy independent cou-
pling strength between the probe and the system. The
exact value of νcoup is unrelevant, as it will cancel out in
the following computations.

By enforcing the simultaneous cancellation of the elec-
tron charge and energy currents at each point j between
the device and the probe, we obtain a system of two cou-
pled nonlinear equations in the unknowns µj and T ej :

∆J(j) =

∫ +∞

−∞
Σ>(j;E)G<(j, j;E)dE −

∫ +∞

−∞
G>(j, j;E)Σ<(j;E)dE = 0, (14)

∆JE(j) =

∫ +∞

−∞
EΣ>(j;E)G<(j, j;E)dE −

∫ +∞

−∞
EG>(j, j;E)Σ<(j;E)dE = 0. (15)

The system is iteratively solved at each position j
through a Newton-Raphson algorithm29. These calcu-
lations are done as a post-processing step once the self-
consistent lesser and greater Green’s functions of the sys-
tem are obtained. The physical validity of this approach
has been discussed in Sec. III.B of Reference 9.

III. RESULTS AND DISCUSSION

A. Physical analysis

We consider the structure shown in Figure 1 on which
we applied a temperature gradient of 1 K between the col-
lector and emitter (TEmit=300 K and TColl=301 K) with-
out applying a bias voltage. Figure 2-a) represents the
resulting lattice temperature which varies linearly across
the structure (a constant thermal conductivity equal to
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46 W.m−1.K−1) is assumed in all the materials). Figure
2-b) shows the corresponding electron current spectrum
(Jj→j+1(E) of Eq.(8)). Interestingly, we can see that
the current direction in the emitter and collector access
regions depends on the energy. The electrons with an en-
ergy lower than 50 meV go from left to right (i.e. against
the temperature gradient), while those with an energy
above this value flow in the reverse direction, from right
to left. At this stage, we can notify two important re-
marks: i) the total integrated current (Eq.(8)) is positive
(equal to 2.825×103 A/m2), which means that the to-
tal electron flow goes, as intuitively expected, from rigth
to left, following the temperature gradient; ii) the inver-
sion of the electron flow for energies below 50 meV is not
induced by a possible sign inversion of the difference of
the Fermi-Dirac distributions of the emitter and collec-
tor reservoirs (i.e. fFDColl

− fFDEmit
), which keeps the

same sign for all the energies in the conduction band (not
shown).

To shed light on this phenomenon, we represent on
Figure 3 the divergence of the energy current spectrum
(Eq.(11)). This physical quantity provides both a spec-
tral (in energy) and a spatial analysis of the energy trans-
fer between the electronic and phononic baths. The main
energy transfers occur at the edges of emitter and collec-
tor barriers (indicated by vertical arrows). On the emit-
ter barrier side, we see a transfer of electron from energies
below 50 meV to energies above 50 meV, represented by
an upward vertical arrow. On the collector barrier side,
we observe an opposite behavior with a transfer of elec-
tron from energies above 50 meV downward energies be-
low 50 meV. The interpretation of the two electron fluxes
becomes now clearer: on the emitter side, the injected
electrons reaching the thin emitter barrier (white arrow
of Fig.2-b)) absorb polar optical phonons and go back to
the reservoir at higher energies (red arrow on Fig.2-b)).
On the collector side, the injected electrons undergo the
opposite phenomena. While reaching the collector bar-
rier (red arrow on Fig.2-b), most of the electrons emit
polar optical phonons and go back to the reservoir at
lower energies (white arrow on Fig.2-b). In both emitter
and collector access regions, the flow of the electrons go-
ing from right to left (in yellow) is larger than the one of
electrons going from left to right (in blue) leading at the
end to a total net current which follows the temperature
gradient.

As a comparison, Figure 4 shows the electron current
spectrum in the same device when a 0.1 V bias is applied
without any temperature gradient (TEmit=TColl=300
K). In that configuration, the device operates like a cool-
ing structure5,8. As expected, we see that the electron
flow goes from the emitter region towards the collector
side for all the energies, following the Femi levels differ-
ence between the two reservoirs. In both emitter access
region and GaAs quantum well, the electrons absorb a
phonon to reach the top of the collector barrier. Once
they reach this latter region, they emit phonons to pro-
gressively thermalize within the collector reservoir. It is

FIG. 2. (Color online) a) Lattice temperature gradient along
the device shown in Figure 1. 1 K is applied between the
emitter (TEmit=300 K) and collector (TColl=301 K) reser-
voirs; b) Corresponding electron current spectrum. The solid
red line represents the energy potential profile, while red and
white arrows indicate the electron flow and reflection on the
potential barrier. The smaller red arrow in the central region
represents the total electron flow, going from right to left. No
potential bias is applied (V=0 V).

FIG. 3. (Color online) Derivative of the energy current spec-
trum (Eq. (11)). The yellow color regions represent the pre-
dominance of outgoing electrons, while blue color regions are
those of incoming electrons. The up arrow indicates the pro-
motion of low energy electrons to high energy electrons (i.e.
phonon absorption). The down arrow indicates electron decay
to lower energy (phonon emission).
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FIG. 4. (Color online) Electron current spectrum for the same
previous structure on which a potential bias of V=0.1 V is
applied between the emitter and collector reservoirs. No tem-
perature gradient is considered (TEmit=TColl=300 K). The
solid red line represents the energy potential profile. In this
case, the electron goes in the same direction (i.e. from left to
right) at all the energies.

important to note that the magnitude of the current spec-
trum with applied bias is lower than the one in presence
of a temperature gradient.

To understand the origin of the discrepancy in current
spectrum features when applied a temperature gradient
and a bias voltage, we calculate, based on the virtual
probe approach, the electronic temperature and electro-
chemical potential along the structure in those two op-
erating configurations. Figure 5-a) shows the electron
temperature when a temperature gradient is applied. We
see that the non-equilibrium electron temperature follows
rather faithfully the variation of the lattice temperature.
The small dips observed just before the emitter barrier
and in the QW correspond to an evaporative cooling ef-
fect when electrons ”jump” above a potential barrier by
thermionic emission9. On the opposite, the temperature
peak right after the collector barrier results from the ki-
netic energy gain of the electrons. Finally, we can men-
tion that the temperature does not exactly reach 300 K
and 301 K in the emitter and collector respectively since
electron-phonon coupling is not strong enough to fully
thermalize the electrons before entering in the contacts.

Figure 5-b) shows the corresponding electrochemical
potential. Except the abrupt variation in the emitter
barrier, which represents the largest resistive part of the
system, the electrochemical potential always decreases
when going from the emitter towards the collector. This
decrease can be seen as a driving force for the electrons to
flow from left to right against the temperature gradient,
and could be at the origin of the revolving effect observed
in the Figure 2-b).

By comparison, the same thermodynamic quantities in
the structure with an applied potential bias V=0.1 V are
plotted on Figure 6 -a) and -b) respectively. First, the
electron temperature (Fig.6-a)) is in this case almost con-
stant along the entire structure and equal to 300 K. The
small temperature decrease in the QW is due to an evap-
orative cooling effect8,9. The peak in the emitter barrier

FIG. 5. (Color online) a) Non-equilibrium electron temper-
ature along the device and b) corresponding electrochemical
potential when applying lattice temperature gradient of 1K
and no potential bias (V=0 V).

is a numerical artefarct since it is physically challenging
to define an electron temperature in a tunneling region.
The electrochemical potential (Fig.6-b)) is constant by
intervals. It is equal to the emitter Fermi level until the
first barrier, and equal to the collector Fermi level be-
yond this region. The difference is of course equal to
the total applied bias, i.e 0.1 V. The electrochemical po-
tential profile then drains the electrons from the emitter
towards the collector, following the applied bias. We can
also remark that, like in Figure 5-b), the electrochemical
drop occurs in the emitter barrier since it represents the
most resistive part of the structure.

From the previous calculations of electron tempera-
tures and electrochemical potentials, one can calculate
the local Fermi-Dirac distribution fFD in each plan i of
the structure. We then compute the difference of this
distribution between two consecutive plans j and j+1
(∆fFD=fFDj+1

−fFDj
). The resulting distribution map

is plotted on Figure 7-a) in the case of the temperature
gradient (Fig. 5). Remarkably, we see that ∆fFD de-
picts the same general feature in the leads as the cur-
rent spectrum of Figure 2-b). More precisely, there is a
clear sign inversion at 50 meV above the bottom of the
conduction band which corresponds exactly to the en-
ergy of the flow inversion in the current spectrum. This
result indicates that the current between two consecu-
tive plans follows the Landauer formula, with an unitary
transmission probability, in which the transport is gov-
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FIG. 6. (Color online) a) Non-equilibrium electron temper-
ature along the device and b) corresponding electrochemical
potential when applying a potential bias (V=0.1 V) and no
temperature gradient (TEmit=TColl=300 K).

erned by the difference of the left an right distributions10,
and taking the non-equilibrium electron temperature and
electrochemical potential. Figure 7-b) illustrates this be-
haviour by showing the vertical cuts in two plans of the
emitter and collector leads, at x=25 nm and x=205 nm
respectively. In the two vertical cuts, ∆fFD is negative
between 0 meV (i.e. bottom of the conduction band) and
E=50 meV. The sign is reversed for higher energies.

This behavior is significantly different from the one
obtained with the temperature and the electrochemical
potential resulting from an applied bias of 0.1 V (Fig.
6). In this case, the ∆fFD, plotted on Figure 8-a), shows
a constant sign for all the energies above the bottom of
the conduction band, in clear agreement with the cur-
rent spectrum of Figure 4. It corresponds to a flow of
electrons from the emitter towards the collector. The
vertical cuts at x=25 nm and x=205 nm shown on Fig-
ure 8-b) confirms this phenomenon. The ∆fFD is in this
case always negative in emitter and collector regions for
energies above 0 eV and -0.1 eV respectively (0.1 V is
applied on the collector).

The thermodynamic analysis we have developed shows
that the revolving effect originates from the variation of
the electrochemical potential in the active region. This
variation, which is not observed when a potential bias is
applied, aims at compensating for the temperature varia-
tion and thus at maintaining a constant electron density
in the access regions (equal to that of the doping). To
emphasize this point, Figure 9 shows the obtained elec-

FIG. 7. (Color online) a) Difference between two consecu-
tive plans of the Fermi-Dirac distributions calculated with
the electron temperature and chemical potential shown on
Fig. 5-a) and -b) respectively; b) Vertical cuts of Fig. 7-a) at
x=25 nm (red solid line) and x=205 nm (dashed line). The
vertical black solid line defines the Fermi-levels of the emitter
and collector (equal since there is no applied bias).

tronic temperature and electrochemical potential when
articifially modifying the interaction strength between
the electrons and the polar optical phonons. We can see
that the stronger the interaction, the steeper the electron
temperature, which follows the lattice temperature with
a linear increase from the emitter towards the collector
(Fig.9-a)). To compensate the faster increase of temper-
ature and to maintain a constant electron density, the
electrochemical potential depicts the opposite trend with
a steeper decrease in the emitter, central and collector
regions.

We now investigate the impact of this effect on current-
voltage characteristics. Figure 10 shows J(V ) for three
different temperature profiles: i) without gradient, i.e.
where the lattice temperature is homogeneous, equal to
300 K in all the device; ii) with a positive 50 K gradient,
i.e. TEmit=300 K, TColl=350 K; and iii) with a negative
50 K gradient, i.e. TEmit=300 K, TColl=250 K. At V=0
V, as expected, a TColl of 350 K (resp. 250 K) induces
a negative (resp. positive) current density, while the
case of TColl=300 K leads to a trivial vanishing current.
More interestingly, when applying bias voltage, a tem-
perature gradient in the opposite direction to the voltage
(i.e. TColl=350 K) induces an increase in the total cur-
rent density with respect to the case without temperature
gradient (i.e. TColl=300 K). On the contrary, a temper-
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FIG. 8. (Color online) a) Difference between two consecu-
tive plans of the Fermi-Dirac distributions calculated with
the electron temperature and chemical potential shown on
Fig. 6-a) and-b) respectively; b) Vertical cuts of Fig. 8-a) at
x=25 nm (red solid line) and x=205 nm (dashed line). The
vertical black solid (dashed) line defines the Fermi-level of the
emitter (collector) (V=0.1 V).

ature gradient apparently favorable to the applied bias
(i.e. TColl=250 K) leads to a current density reduction.
This behavior directly derives from the revolving effect.
Figure 11 indeed shows the electron current spectra at
V=1 V for the three previous temperature profiles. For
TColl=350 K (Fig. 11-a)), the electrons absorb phonons
when reaching the emitter barrier, increasing their aver-
age energy. It then facilitates the electron transmission
accross the emitter barrier, leading to an increase of the
current density compared to the case where the lattice
temperature is constant (see current spectrum of Fig.11-
b)). On the other hand, for TColl=250 K, the negative
temperature gradient induces a phonon emission at the
emitter barrier. It results in a decrease of the electron
energy, and therefore a reduction of the total current den-
sity (Fig.11-c)). The revolving effect can then be experi-
mentally evidenced by performing J(V ) measurements at
various temperature gradients. Moreover, it may repre-
sent a relevant approach to improve the performances of
the electronic devices by increasing/decreasing the cur-
rent density.

The key findings of this study are threefold. First, we
have shown that the so-called revolving effect, obtained
when applying a lattice temperature gradient along the
device, was due to both electrochemical and electron tem-
perature variations inside the active region to maintain

FIG. 9. (Color online) Electron temperature a) and electro-
chemical potential b) along the device for four different cou-
pling strengthes with polar optical phonons: divided by 2
(blue), standard (red), multiplied by 2 (green), and multi-
plied by 4 (black). The dashed line represents the potential
profile. TEmit=300 K, TColl=301 K and V=0 V.

FIG. 10. (Color online) J(V ) for three different temperature
profiles: i) with a positive 50 K gradient, i.e. TEmit=300
K, TColl=350 K (triangles); ii) without gradient, where the
lattice temperature equals 300 K in all the device (squares);
and iii) with a negative 50 K gradient, i.e. TEmit=300 K,
TColl=250 K (circles). We consider the structure of Fig.1 with
an aluminum concentration in the collector barrier y=0.2, cor-
responding to a barrier height of 160 meV. This higher barrier
allows to emphasize the impact of the revolving effect on cur-
rent charactristics.
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FIG. 11. (Color online) Electron current spectrum at V=0.1
V for the three collector temperatures shown in Fig.10: a)
TColl=350 K, b) TColl=300 K, c) TColl=250 K. In the three
cases, TEmit=300 K. The solid red line represents the energy
potential profile, while red and white arrows indicate the elec-
tron flow, reflection and transmission on the potential barrier.

an electron density equal to the doping. Second, the
proposed analysis demonstrates the operability of the
electron temperature and electrochemical potential de-
termined in a non-equilibrium regime on the transport
properties of nanodevices operating at room tempera-
ture. It thus represents an important step forward in the
field of quantum thermodynamics where investigation of
thermodynamic quantities in a non-equilibrium regime is
still an open question. Third, this effect should be exper-
imentally observed peforming J(V ) measurements under
temperature gradient.

B. Discussion

The revolving effect can be summarized as follows:
when entering the structure via the highest tempera-
ture reservoir (i.e. collector in the present case), the
electrons undergo very few interactions with phonons,
since the length of the access region is much smaller
than their mean free path. The decrease of the non-
equilibrium electron temperature then remains smaller
than the one of the lattice, due to the weak interactions
with the phonons in this region. At the edge of the collec-
tor barrier, the low lattice temperature induces a much
smaller phonon population than the one in the contact.
To compensate this situation, the electrons emit phonons
and are reflected back at lower energies towards the col-
lector contact, undergoing again very few interactions
with phonons (Fig.3). Interestingly, we show that the
non-equilibrium electron temperature and electrochemi-
cal potential provide a difference of the electron distri-
butions between two consecutive plans with a sign in-
version at 50 meV above the bottom of the conduction
band (Fig.7-a)). This value is in good agreement with
the reverse electron flow observed in the current spec-
trum (Fig.2-b)). The symmetrical phenomenon occurs
on the emitter side. We should note that the barrier edge
plays the role of a scattering center. The revolving effect
could also have been obtained considering other types of
scattering centers like a variation of the thermal conduc-
tivity. Figure 12 shows that we obtain a similar effect
when considering a pure GaAs structure (i.e. without
potential barrier), in which the thermal conductivity is
reduced to 4 W.m−1.K−1 in the shaded region (see Fig-
ure 12-a)). Such a thermal conductivity decrease can re-
sult, for instance, from the thermal resistance associated
to the interface between different layers30. Interestingly,
Figure 12-b) evidences that revolving effect also occurs
at the borders where the thermal conductivity is modi-
fied. In that case, the effect generates a circular electron
flux inside the region of low thermal conductivity.

In order to provide a more intuitive picture of this
behavior, we propose a simple rate-equation model,
schematically represented on Fig.13. We consider high
(h) and low (l) energy states separated by the optical-
phonon energy (Eph) both in a reservoir (R) and at the
edge of an infnite barrier (B). It results four states noted
|Rh〉, |Rl〉, |Bh〉 and |Bl〉. The corresponding distribu-
tions are fRh, fRl, fBh and fBl. The electron fluxes be-
tween these states are defined in Fig.13, with τ the tran-
sition rate between the reservoir and barrier edge, and M
the electron-phonon coupling. The reservoir is assumed
at equilibrium, meaning that electrons and phonons are
at the same temperature TR. The corresponding flux be-
tween |Rh〉 and |Rl〉 therefore cancels. At the barrier
edge, we assume the phonons at temperature TB , differ-
ent from TR. In this region, the electrons coming from
the reservoir are not in equilibrium with the phonons,
and then have a different temperature Te. Its results a
flux φB between |Bl〉 and|Bh〉. The flux conservation im-
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FIG. 12. (Color online) a) Lattice temperature gradient along
a GaAs device of the same length as the one of Figure 1, when
considering a thermal conductivity of 4 W.m−1.K−1 inside the
shaded central region. As previously a thermal conductivity
of 46 W.m−1.K−1 is assumed elsewhere and 1 K is applied
between the emitter (TEmit=300 K) and collector (TColl=301
K) reservoirs; b) Corresponding electron current spectrum.
The horizontal solid red line represents the energy potential
profile, while red and white arrows indicate the electron flow
and reflection at the borders where the thermal conductivity
varies. The smaller red arrow in the right region represents
the total electron flow, going from right to left. No potential
bias is applied (V=0 V).

poses that φB=φl = -φh, φl (φh) being the flux between
|Rl〉 (|Rh〉) and |Bl〉 (|Bh〉). Based on this analysis, we
can then compute Te. Our results show that Te is al-
ways between TR and TB . This temperature regulates
the fluxes between the different states. Taking TR=300
K, TB=300.5 K, M=τ , fRh=10−4, we obtain Te=300.32
K. As a result, φl is positive and φh is negative, corre-
sponding to a flux loop equivalent to the revolving effect
obtained numerically. On the contrary, if we consider TB
at 299.5K, we obtain Te=299.69 K and a revolving effect
in the reverse direction.

Note that such a revolving effect, while it does not (al-
most) transport electrons, transfers a high energy flux
from a hot area to a colder one. For instance, the de-
vice considered on Fig.3, with a temperature gradient of
only 1K, generates an energy flux at the emitted barrier
edge, due to phonon absorption, equal to 1800 W/cm2.
As a comparison the same structure, on which 1V is ap-

FIG. 13. (Color online) Schematic representation of an an-
alytic model of the revolving effect based on electronic flux.
Left rectangle represents the reservoir at equilibrium in which
both electrons and phonons are at the same temperature, TR.
The right rectangle represents the barrier in which tempera-
tures of electrons (Te) and phonons (TB) can be different. fRl

and fRh are the Fermi-Dirac distributions in the reservoir of
the low and high energy states, separated by the energy of a
polar optical phonon (Eph), respectively. Similarly, fBl and
fBh are the electronic distributions at the barrier edge. In the
reservoir and the barrier edge, the electronic fluxes between
the low and high states, due to phonon absorption/emission
are φR and φB respectively. M is the electron-phonon cou-
pling, and NB is the phonon’s distribution at the barrier edge,
given by the Bose-Einstein distribution. Finally, the fluxes be-
tween the reservoir and barrier states at high- and low-energy
are φh and φl respectively. τ is the transition rate between
the reservoir and the barrier states (assumed constant at low
and high energies).

plied between the emitter and collector, provides a cool-
ing power in the quantum well of 210 W/cm2. Such
an impressive power flow could appear as inconsistent
with the fact that the lattice temperature is not mod-
ified at the edges of the emitter and collector barriers,
where the power absorption/emission occurs. Neverthe-
less, considering the usual heat equation, it results that a
GaAs thermal conductivity of 46 W.m−1.K−1 can drain
a heat flow of more than 90 000 W/cm2 when a gradi-
ent temperature of 1 K is applied over 50 nm. In order
to have a significant impact of the lattice temperature,
we should therefore consider devices with higher electron
currents, which can be reachable by increasing the dop-
ing in the access regions for instance. This is however far
beyond the scope of the present work, which aims at ex-
plaining and illustrating the revolving effect. Moreover,
the revolving effect can take place in any semiconductors
where inelastic interactions between electrons and opti-
cal phonons are dominant. We consider here III-V het-
erostructures since their growth is technologically very
well controlled, which will facilitate the future experi-
mental investigation of this effect. This could provide
simple and relevant technological solutions in semicon-
ductor industry to electronically control the temperature
in nanostructures based on a single contact.
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IV. CONCLUSIONS

In this work, we report an original temperature-
gradient induced revolving effect, able to control the di-
rection flow of electrons in a given energy interval. This
effect is induced by the variation of the electrochemi-
cal potential inside the active region to compensate the
electronic temperature modification and to maintain the
electroneutrality in the system. As a result, the difference
of the Fermi-Dirac distribution between two consecutive
plans depicts a sign inversion at the energy correspond-
ing to the inversion of the direction flow in the current
spectrum. Moreover, current-voltage characteristics at
different temperature gradients should be a straightfor-
ward approach to experimentally verify this effect. We

also propose a simple analytic model which reproduces
this phenomenon and we put forward its relevancy to
improve heat management in electronic nanostructures.
Finally, our study demonstrates an additional validation
of the virtual probe approach to determine thermody-
namic properties in strongly non-equilibrium regime.
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