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Abstract—Pandemic intensity monitoring, from the earliest
stages of the pandemic outbreak, constitutes a critical scientific
challenge with major societal stakes. The task is significantly
complicated by the low quality of reported infection counts,
stemming from emergency and crisis contexts, and by the need
for regular (daily) updates, while the pandemic is still active. The
present work first proposes a parametric Hidden Markov Model
(HMM) aiming to account jointly for epidemic propagation
mechanisms and for low-quality data, while imposing epidemic-
compliant constraints on the time-varying reproduction number,
considered as a proxy for pandemic intensity quantification.
Second, and to avoid the arbitrary or expert-based tuning of the
parameters of the HMM, data-driven automated selection proce-
dures are devised relying on tailoring a stochastic Expectation-
Maximization algorithm. Credibility interval-based estimation of
the time-varying reproduction number, modeled as a hidden vari-
able, is then obtained from Monte Carlo sampling. The potential
of the tools devised here is illustrated on real Covid19 daily new
infection counts from Johns Hopkins University repository.

Index Terms—Statistical modelization, Latent variable mod-
els, Statistical inference, Stochastic Expectation-Maximization,
Covid19 pandemic, Reproduction number.

I. INTRODUCTION

Context. With the Covid19 event, monitoring a pandemic
intensity in the active phase has been recognized as a crit-
ical challenge with high societal stakes [1], and has drawn
significant research efforts [2]. Retrospective assessment of
the intensity of a pandemic once it has ended, is generally
carried out using compartmental models [3], [4]. However,
these models suffer from high computational costs or de-
manding parameterization, inducing poor robustness to the
low-quality daily counts of newly reported infections, the key
ingredient for assessing pandemic intensity. Because of the
need to collect test outcomes in emergency and centralized
contexts, Covid19 counts reported by national health agencies
were, for all countries, massively corrupted with essentially
two classes of atypical values (see Fig. 1[right]): (i) non-
reported counts (week-ends, non-working days, thus inducing
a weekly pseudo-seasonality) and/or (ii) inaccurate counts.
Data corruption varied from one country to another and for the
same country between the different phases of the pandemic.
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Related works. Strategies for within pandemic intensity moni-
toring were devised, often focused on a time-varying reproduc-
tion number, Rt, that quantifies (dynamically) the number of
second infections stemming from one same primary infection
[5]–[8]. To account for Covid19 data limited quality, the
epidemic model in [8] was recast as a functional optimization
problem favoring piecewise linear temporal evolution of Rt
and assuming mild sparsity of atypical values, without using
any calendar information [9], [10]. When sanitary or economic
countermeasures must be designed, confidence assessment is
critical to decision-makers. Seeing Rt as a random variable
and modeling the counts as the observations in a parametric
Hidden Markov Model (HMM; see e.g. [11]), Markov Chain
Monte Carlo (MCMC) sampling strategies were further de-
vised to produce credibility interval-based (CI) estimates of Rt
[12], [13]. Though promising, these contributions suffer from
major limitations, addressed here: (i) the possibly multiple
causes of atypical counts are not modeled with sufficient
versatility; (ii) parameters of the HMM were so far tuned by
experts. In this paper, we use a Maximum Likelihood approach
to estimate the parameters, and derive a computation via a
Stochastic Approximation algorithm [14].
Goals, contributions, and outline. The present work aims to
devise strategies permitting a robust, accurate, parameter-free,
CI-based assessment of the time evolution of the intensity of
an epidemic, from daily new infection counts possibly highly
corrupted in several ways. As a first contribution, a HMM
is constructed by combining epidemic mechanisms, temporal
evolution regularity constraints, and count miss-report mod-
eling based on generic sparsity arguments and designed to
account for the multiple natures and sizes of erroneous counts
(Section II-A). This is complemented by devising MCMC
sampling strategies that output CI-based estimations of Rt
and, as a side result, of denoised realistic daily infection
counts (Section II-B). As a second contribution, a Stochastic
Approximation version of Expectation-Maximization (EM)
[15] is devised: it permits automated data-driven parameter
calibration, thus avoiding arbitrariness in expert-knowledge
a priori selection or a posteriori validation (Section II-C).
Finally, the potential and performance of the statistical es-
timation tools devised here are shown in action and assessed
on real Covid19 data extracted from Johns Hopkins University
repository, https://coronavirus.jhu.edu/ (Section III).

https://coronavirus.jhu.edu/


II. PANDEMIC REPRODUCTION NUMBER ESTIMATION

A. A parametric HMM

The present model aims to establish a link between the
observed daily infection count Zt and the non-observed daily
reproduction number Rt. Data corruption is encapsulated under
the general term of Ot which is unknown by construction. The
first contribution of this paper is to propose a mixture model
for the erroneous counts Ot, in order to account for small
and large errors due to strongly misreported counts or even
missing reports. As in [12], we propose a model in which
{Zt,Rt,Ot, t ∈ Z} are a HMM, taking values in Z× R× R.

Given the serial interval function Φ := (Φu)16u6τφ de-
scribing the average infectiousness profile after infection (see
[8]), set ΦZ

t :=
∑τφ
u=1 ΦuZt−u for any t ∈ Z. Conditionally to

the past, and more precisely to (Rt,Ot,Φ
Z
t ), the new infections

count Zt at day t is modeled as P
(
Rt ΦZ

t + Ot
)

if Rt > 0 and Rt ΦZ
t + Ot > 0,

δ0 if Rt > 0 and Rt ΦZ
t + Ot = 0,

ν if Rt < 0 or Rt ΦZ
t + Ot < 0,

(1)

where P(I) denotes the Poisson distribution with parameter I,
ν is any distribution over the negative integers {−1,−2, . . .},
and δ0 is the Dirac mass at zero. The first two cases are
introduced in [8], and the third case in [12] to define a rigorous
statistical model. Since the counts Zt are non-negative, such
a model implies that: (i) a negative reproduction number or a
negative Poisson parameter never occurs; (ii) the conditional
distribution of Zt given (Rt,Ot,Φ

Z
t ) is

p
(
Zt|Rt,Ot,ΦZ

t

)
:=

(Rt ΦZ
t + Ot)

Zt

Zt!
e−(Rt ΦZ

t+Ot), (2)

if (Rt,Ot) ∈ Dt, where Dt := {Rt > 0 and Rt ΦZ
t +Ot > 0};

by convention, 00 = 1. Following [12], it is assumed that
conditionally to the past, Rt and Ot are independent. The Rt’s
are modeled through an AR(2) with Laplace noise:

p (Rt|Rt−1,Rt−2;λR) :=
λR
8

e−
λR
4 |Rt−2Rt−1+Rt−2| . (3)

The mode of the joint distribution p(R1, · · · ,RT |R0,R−1;λR)
is sparse, favoring a piecewise linear evolution of the function
t 7→ Rt [10]. Regarding the errors Ot, several modeling
choices are available to us. In [12], they are assumed to be
independent and modeled using a single-type Laplace distribu-
tion. Nevertheless, as shown for example in Fig. 1[right], there
may be a high variability in daily counts. Here, we propose
to allow two distinct types of counting errors to encompass
a broader range of behaviors. This duality is modeled using
a mixture of two Laplace distributions both centered on zero,
but with respective scale parameters λO,1 and λO,2. Given a
{0, 1}-valued Bernoulli variable Bt coding for the error type,
we set

p (Ot|Bt;λO,1, λO,2) :=
(λO,1

2
e−λO,1|Ot|

)Bt
×
(λO,2

2
e−λO,2|Ot|

)1−Bt
. (4)

The Bernoulli variables are independent and identically dis-
tributed with success parameter ω ∈ [0, 1]

p(Bt;ω) := ωBt(1− ω)1−Bt . (5)

The model (4)-(5) encompasses the single-mode model de-
veloped in [12] by setting ω = 1. Eqs. (1)-(5) define a
HMM, parameterized by Λ := (λR, λO,1, λO,2, ω) in E :=
(R>0)3 × [0, 1].

B. Estimation of the reproduction numbers Rt

The estimation of the daily reproduction numbers Rt is
based on the a posteriori distribution of R := (R1, . . . ,RT )
given the observations Z := (Z1, . . . ,ZT ) and the initial values
I :=

(
R−1,R0,Z−τφ+1, . . . ,Z0

)
. Point estimations and CIs

for R1, · · · ,RT may rely on the expectation, the median and
more generally on the quantiles of this conditional distribution.
Numerically, these statistics are estimated from a MCMC
approximation of π(·|Z, I; Λ), the a posteriori distribution
of (R,O,B), given Z and I, when the parameters of the
HMM are equal to Λ; we set O := (O1, . . . ,OT ) and
B := (B1, . . . ,BT ).
The a posteriori distribution. From (1)-(5), we have that
π(·|Z, I; Λ) is proportional to exp(UZ,I(R,O,B; Λ)) on D :=⋂T
t=1Dt and 0 otherwise, with

UZ,I(R,O,B; Λ) := FZ,I(R,O) + T lnλR

− λR SR(R−1,R0,R)− λO,1 SO,1(O,B)− λO,2 SO,2(O,B)

+ SB,1(B) ln(ω λO,1) + SB,2(B) ln((1− ω)λO,2);

FZ,I(R,O) :=

T∑
t=1

(
Zt ln(Rt ΦZ

t + Ot)− (Rt ΦZ
t + Ot)

)
,

SR(R−1,R0,R) :=
1

4

T∑
t=1

|Rt − 2Rt−1 + Rt−2|,

SO,1(O,B) :=

T∑
t=1

Bt|Ot|, SO,2(O,B) :=

T∑
t=1

(1− Bt)|Ot|,

SB,1(B) :=

T∑
t=1

Bt, SB,2(B) :=

T∑
t=1

(1− Bt) = T − SB,1(B).

π(·|Z, I; Λ) has an intricate expression and is known up to a
normalization constant; thus a MCMC approximation is used.
The Gibbs-PGdual MCMC sampler. The approximation
of π(·|Z, I; Λ) is obtained by running a Gibbs sampler. Let
us derive the conditional distributions associated with this
joint distribution. Conditionally to (R,O), B has independent
components with a Bernoulli distribution such that Bt = 1
with probability

(1 + (1−ω)λO,2 exp(−λO,2|Ot|)/ωλO,1 exp(−λO,1|Ot|))
−1
.

Given (O,B), the log-density of R is, up to an additive
constant, R 7→ FZ,I(R,O) − λRSR(R−1,R0,R) on the set
D and −∞ otherwise. Finally, given (R,B), the log-density
of O is, up to an additive constant, O 7→ FZ,I(R,O) −
λO,1SO,1(O,B) − λO,2SO,2(O,B) on the set D and −∞
otherwise. Exact sampling from the conditional distributions of



R and O is not possible. We replace such a sampling with one
iteration of the PGdual kernel (see [12, Section III-C]). This
kernel was designed for log-target densities being the sum of
a continuously differentiable function (here, the FZ,I function)
and a prox-friendly function (here, the SO,` functions) possibly
combined with a linear operator (here, the SR function) when
a support exists (here, the set D). PGdual was successfully
applied for a Bayesian analysis of the Covid19 reproduction
number (see e.g. [13], [16], [17]).

C. Data-driven calibration of the parametric HMM

The parameters Λ are unknown. In this work, we propose
to compute the Maximum-Likelihood estimator of the obser-
vations Z conditionally to the initial values I:

Λ̂ ∈ argmax
Λ∈E

lnL(Z|I; Λ). (6)

The likelihood L is defined through an integral over the hidden
variables (see Section II-A) and does not have an explicit
expression. The second contribution of our paper is to derive
a stochastic optimization procedure to solve (6). It is based
on Expectation-Maximization (EM) [15]. Yet, the E-step of
EM is not tractable, and we propose to tackle this intractability
by using a Stochastic Approximation (see [14], [18], [19]).
The EM algorithm. From Section II-A, L(Z|I; Λ) is equal to

ln
∑

b∈{0,1}T

∫
D

exp (UZ,I(r,o,b; Λ)) dr do,

up to an additive constant independent of Λ. Given the current
value of the parameters Λ(k), the E-step of EM consists in
computing the function Q(·; Λ(k)) defined by

Λ 7→
∑

b∈{0,1}T

∫
D
UZ,I(r,o,b; Λ)π(r,o,b|Z, I; Λ(k))drdo.

Then, the M-step updates the parameters by setting Λ(k+1) ∈
argmaxEQ(·; Λ(k)). In our case, it is readily seen from the
expression of U , that the Q-function is fully determined by the
computation of the expectations of so-called sufficient statistics

S̄all(Λ
(k)) :=

∑
b∈{0,1}T

∫
D
Sall(r,o,b)π(r,o,b|Z, I; Λ(k))drdo

(7)
where Sall := (SR, SO,1, SO,2, SB,1, SB,2) collects all the
sufficient statistics Sx (see Section II-A). On the left-hand side
of (7), the dependence upon Z and I is omitted. The M-step
is explicit and gets into Λ(k+1) := T(S̄all(Λ

(k))), where
T(sR, sO,1, sO,2, sB,1, sB,2) := argmax Λ∈E T lnλR − λRsR
−
∑2
`=1 λO,`sO,`+sB,1 ln(ωλO,1)+sB,2 ln((1−ω)λO,2), i.e.,

λ
(k+1)
R :=

T

S̄R(Λ(k))
, ω(k+1) :=

S̄B,1(Λ(k))

T
, (8)

λ
(k+1)
O,` :=

S̄B,`(Λ
(k))

S̄O,`(Λ(k))
, ` ∈ {1, 2}. (9)

However, due to the intricate expression of π, none of the
expectations defining S̄all(Λ

(k)) can be exactly computed:
hence, EM does not apply.

Stochastic Approximation EM. A stochastic version of
EM is used here, namely the Stochastic Approximation EM
(SAEM) algorithm proposed in [20] (see e.g. [21]–[25] for
applications in Signal Processing). It replaces the intractable
expectations S̄x(Λ) in (8)-(9) with a random approximation.
More precisely, SAEM defines a (random) sequence of param-
eters {Λ̂(k+1), k > 0} by setting Λ̂(k+1) := T(Ŝ

(k+1)
all ), where

Ŝ
(k+1)
all is a random approximation of S̄all(Λ̂(k)). This approx-

imation is defined iteratively as follows: Given sequences of
learning rates {γ(k)

x , k > 1} for x ∈ {R, (O, 1), (O, 2), (B, 1)},
SAEM computes

Ŝ(k+1)
x = Ŝ(k)

x + γ(k+1)
x

(
H(k+1)
x − Ŝ(k)

x

)
,

where H(k+1)
x is a random oracle for S̄x(Λ̂(k)). We produce

the oracles H(k+1)
x by a Monte Carlo approximation of the

expectation S̄x(Λ̂(k)) (see (7))

H(k+1)
x :=

1

M

M∑
m=1

Sx(Rm,k+1,Om,k+1,Bm,k+1),

where {(Rm,k+1,Om,k+1,Bm,k+1),m > 0} is the path of a
Markov chain designed to have π(·|Z, I; Λ̂(k)) as the unique in-
variant distribution. Here again, we use the Gibbs-PGdual
algorithm (see Section II-A).

Convergence analysis of SAEM when the random oracles
are biased approximations of the quantity of interest (note
that they rely on a (non-stationary) Markov chain) is out of
the scope of this paper; the interested reader can refer to [26,
Section III-B-3] or [27].

III. COVID-19 MONITORING

Let us apply the methodologies detailed in Section II to
the estimation of the Covid19 pandemic reproduction number.
The data are those made available at Johns Hopkins University
repository; it collects every day since the earliest phase of
the pandemic, and until mid-march 2023, the Covid-19 data
made available by the National Health Authorities of more
than 200 countries worldwide. The chronological series Z used
in this work, are the daily new infections counts in France, for
T = 68 days starting on April 29, 2022. They are displayed
in Fig. 1[right] (black curve); the counts look under-estimated
one or two days a week, over-estimated few days after, and the
errors look small between successive periods of such a strong
variability. This calls for testing the mixture model on the a
priori distribution of the errors, Ot, introduced in Section II-A.
Parameter estimation by SAEM. SAEM is run with a step
size γ(k)

x which is constant during the first iterations and then
decreasing at the rate 1/

√
k until kmax = 15000 iterations.

The oracles H(k)
x are computed with M = 375 000 samples.

A path of SAEM, k 7→ Λ̂(k) := (λ̂
(k)
R , λ̂

(k)
O,1, λ̂

(k)
O,2, ω̂

(k))
is displayed in red in Fig. 1[left]. The SAEM sequence
{Λ̂(k), k ≥ 0} converges towards the limiting value Λ̂ :=
(573, 9.60 10−5, 3.28 10−5, 0.26). Observe that λ̂O,1/λ̂O,2 ≈ 3
so that, under the a priori distribution, the expectation and the



Fig. 1. SAEM estimation. Left: SAEM estimates λ̂(k)R , λ̂(k)O,1 (solid line),

λ̂
(k)
O,2 (dashed line) and ω̂(k), as functions of the number of iterations k.

Right: Counts Zt marked in red, cyan, green and black, when the a posteriori
probability that |Ot| is large, is respectively in [0.9, 1], in [0.8, 0.9], in
[0.7, 0.8], and less than 0.7.

standard deviation of the absolute value of the errors, |Ot|, are
larger in class #2 than in class #1, by a factor 3.

Given the estimation Λ̂ of the HMM parameters, we use the
a posteriori distribution π(R,O,B|Z, I; Λ̂) to obtain informa-
tion on the hidden variables (R,O,B). This distribution is ap-
proximated by the Gibbs-PGdual Markov chain {Hm,∞ :=
(Rm,∞,Om,∞,Bm,∞),m ≥ 0} (see Section II-A).
Classification. For each day #t, we compute
M−1

∑M
m=1 1Bm,∞t =0, a Monte Carlo approximation of

P(Bt = 0|Z, I; Λ̂), the a posteriori probability that the count
data Zt is associated to a large absolute error |Ot| (i.e. from
the component #2 of the mixture a priori distribution).
These probabilities are displayed in Fig. 1[right]. The plot
illustrates that the HMM with a mixture a priori distribution
for the errors, has an excellent comprehension of the data:
the counts Zt which look aberrant have a high probability to
be associated to a large error.
Credibility intervals. The Markov chain {Hm,∞,m =
0, · · · , 107} is now used to estimate the quantiles qα(Rt) and
qα(Ot) of order α ∈ {0.025, 0.5, 0.975} of the a posteriori
distribution of Rt and Ot. The estimator is the empirical
quantile one. We deduce a CI at the asymptotic level 0.95 for
Rt and for Ot from the estimations of the quantiles q0.025(·)
and q0.975(·); and a point estimate from the estmation of
q0.5(·). However, these empirical quantiles depend on the
randomness induced by the Markov chain {Hm,∞,m ≥ 0};
the mean value µ[qα(Lt)] is estimated, for Lt ∈ {Rt,Ot},
from 200 empirical quantiles computed from 200 indepen-
dent realizations of the Markov chain {Hm,∞,m ≥ 0}. In
Fig. 2[left, bottom], the mean value µ[q0.5(Rt)] of the Monte
Carlo estimate of the median q0.5(Rt) is displayed in blue,
together with the mean values µ[q0.025(Rt)] and µ[q0.975(Rt)]
(in red). The same analyzes are run for the errors Ot, from
which we deduce mean values of the estimates of the quantiles
for the denoised data Z

(D)
t := Zt − Ot (see Fig. 2[left,top]).

The first conclusion is that, when t is small, the CIs for Rt are
influenced by the initial values R`, ` ∈ {−1, 0}, fixed here to
Z`/Φ

Z
` (see [10, Section 2.2.]): R0 = 0.73 and R−1 = 0.74.

Second, in adequacy with the evolution of the counts Zt, the
reproduction number increases and then decreases: note that
this change of monotonicity for t 7→ Rt occurs about ten days
before the counts data express this change.

Fig. 2. Credibility interval estimates: of Rt (bottom plot, in red), with
initial values R0,R−1 shown as blue diamonds; and of denoised counts Z(D)

t
(top plot, in red), superimposed to counts Zt (black dotted line). In blue, the
estimate of the median. Two models are compared: the mixture model for the
a priori distribution of Ot (left) and the model in [12] (right).

Benefits of the mixture model. The mixture model detailed
in Section II-A extends the simpler model in [12] where the a
priori distribution on Ot is a single Laplace distribution. We
calibrate this simpler model by running a SAEM algorithm
(detailed derivations of the algorithm and numerical conver-
gence of the SAEM sequence are not shown here). We then
repeat the computation of the quantiles as explained above for
the mixture model: the mean value of the quantiles, computed
from 200 independent realizations, is displayed in Fig. 2[right]
and yields the following conclusions. First, the two models
produce consistent estimates for t 7→ Rt: the estimates of Rt
increase until day #t = 30, reach a maximal value around
day #t = 32, and then decrease. Second, CI for Rt obtained
by the two models identifies similar ranges; yet the mixture
model succeeds better in capturing uncertainties on the values
of the errors: a close inspection indeed shows that whatever
the time t, the mixture model yields narrower CIs than the
ones from simpler model, the ratio of the sizes being lower
than 0.94 after day #t = 4 and even about 0.8 around day
#t = 50. Finally, contrary to the simpler model, the mixture
model allows to quantify the probability that a count Zt is
corrupted by a large error. However, all these benefits have
to be put next to the computational cost, which increases
because of the larger number of parameters (four instead of
two), and of the introduction of T additional hidden variables
B (the Markov chain takes values in R2T × {0, 1}T instead
of R2T ) which increases the Monte Carlo cost per iteration of
the MCMC sampler.

IV. CONCLUSION

These promising preliminary achievements will be com-
plemented by exploring several tracks. First, sequential sta-
tistical modeling and learning for an online processing of
the daily counts will be considered. Second, we will explore
alternatives strategies for data-driven automated parameter
selection. Adopting a hierarchical Bayes formalism [28, Ch
10], the proposed HMM will be extended by also considering
Λ as a random variable which can be estimated by MCMC
algorithms. Another strategy is to assume the existence of
a deterministic ground truth for Rt, Ot, and to augment the
variational estimation procedure of [29] with an adapted Stein
Unbiased Risk Estimate [30], [31] enabling automated data-
driven selection of regularization parameters.
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