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We explore the controllability of a closed multi-input control-affine quantum system. Previous studies have demonstrated that a spectrum connected by conical intersections which do not pile up yields exact controllability in finite dimension and approximate controllability in infinite dimension. Actually, the property that intersections between eigenvalues are conical and that they do not pile up is generic. However, in physical situations, due to symmetry of the system, the spectrum can exhibit intersections that are not conical and possibly pile up. We extend the controllability result to cover this type of situations under the hypothesis that the intersections have at least one conical direction and the piled-up intersections have "rationally unrelated germs". Finally, we provide a testable first-order sufficient condition for controllability. Physically relevant examples are provided.

1. Introduction. In this paper, we consider the controllability of the bilinear Schrödinger equation

(1.1) i ψ(t) = H(u(t))ψ(t) = H 0 + m ℓ=1 u ℓ (t)H ℓ ψ(t),
where ψ belongs to a complex Hilbert space, H(u(t)) is a self-adjoint operator on H, and the control u(•) = u 1 (•), . . . , u m (•) takes values in an open and connected subset U of R m . The controllability properties of the system can be studied via different techniques [START_REF]Introduction to quantum control and dynamics[END_REF][START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF][START_REF] Nersesyan | Growth of Sobolev norms and controllability of the Schrödinger equation[END_REF][START_REF] Chambrion | Periodic excitations of bilinear quantum systems[END_REF][START_REF] Chambrion | Controllability of the discretespectrum Schrödinger equation driven by an external field[END_REF][START_REF] Bliss | Quantum control of infinite-dimensional many-body systems[END_REF]. In this paper we approach the controllability problem by studying the spectrum of H(u), where u is seen as a parameter. Such spectrum can exhibit eigenvalue intersections. Conical intersections can be defined in terms of the gap between eigenvalues in the vicinity of the intersection (see Figure 1.1a and Definition 2.4). It has have been proven in [START_REF] Boscain | Approximate controllability, exact controllability, and conical eigenvalue intersections for quantum mechanical systems[END_REF] that if the spectrum of u → H(u) is conically connected, i.e., there exists an eigenvalue intersection between every pair of subsequent eigenvalues and these intersections are not piled-up (see Figures 1.1c and 1.1d for examples), then • when n = dim(H) < ∞, System (1.1) is exactly controllable in the unitary group, i.e., its lift on the unitary group U (n) (or on SU (n) in the case that iH 0 , . . . , iH m ∈ su(n)) has the property that for every choice of initial and finite state, there is an admissible trajectory of the system going from the former to the latter. In particular, System (1.1) is exactly controllable in the unit sphere of H; • when dim(H) = ∞ and the operators H 1 , . . . , H m are bounded, System (1. [START_REF] Augier | Optimization of adiabatic control strategies along non-mixing curves with singularities[END_REF] is approximately controllable, i.e., for each ψ 0 on the unit sphere of H, the set of states that are reachable from ψ 0 by and admissible trajectory of the system is a dense subset of the unit sphere of H. Although eigenvalue intersections are generically conical for m = 2 in the case of real Hamiltonians (as shown in [START_REF] Boscain | Adiabatic control of the Schrödinger equation via conical intersections of the eigenvalues[END_REF]) and for m = 3 for complex Hamiltonians (as shown in [START_REF] Chittaro | Approximate controllability via adiabatic techniques for the three-inputs controlled Schrödinger equation[END_REF]), and generically they do not pile up, in physical situations, we can observe the following situations:

• Eigenvalue intersections may be non-conical. An example of a physical system that can exhibit non-conical intersections is the STIRAP process (Stimulated Raman Adiabatic Passage) (see [START_REF] Augier | Optimization of adiabatic control strategies along non-mixing curves with singularities[END_REF]Example 6.1.2]). Notice that when m = 2, in most cases, the non-conical intersections are actually semi-conical, as studied in [START_REF] Augier | Semi-conical eigenvalue intersections and the ensemble controllability problem for quantum systems[END_REF] (see Definition 2.7 and Figure 1.1b). • In physical situations, due to symmetries in the system, eigenvalue intersections can pile up. For example, when controlling the rotation of a quan-tum planar molecule (see [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF]), the eigenvalues of H 0 are mostly double and H 0 + m ℓ=1 u ℓ H ℓ has many piled-up intersections. Similarly, in Eberly-Law type models (see, for example, [START_REF] Bloch | Finite controllability of infinite-dimensional quantum systems[END_REF]), conical intersections can pile up as well. In this paper, we introduce the notion of weakly conical intersection, i.e., an isolated eigenvalue intersection for which there exists at least one conical direction (see Definition 2.6), which identifies a specific class of non-conical intersections that includes semi-conical ones. We extend the results of [START_REF] Boscain | Approximate controllability, exact controllability, and conical eigenvalue intersections for quantum mechanical systems[END_REF] to the case in which intersections can pile up and can be weakly conical. We say that such a spectrum is weakly conically connected. However, weak conical connectedness is not sufficient to obtain full controllability results. For example, the Hamiltonian

(1.2) H(u, v) =       -1 -v 0 0 0 -v -1 -u 0 0 0 -u 0 u 0 0 0 u 1 v 0 0 0 v 1      
has a weakly conically connected spectrum. However, the dynamics

(1.3) i ψ(t) = H(u(t), v(t))ψ(t)
is not controllable, since we can easily verify that the set

(ψ 1 , ψ 2 , ψ 3 , ψ2 , ψ1 ) | ψ 1 , ψ 2 ∈ C, ψ 3 ∈ R and 2|ψ 1 | 2 + 2|ψ 2 | 2 + ψ 2 3 = 1 is invariant for (1.3).
Under the hypothesis that the piled-up intersections of the weakly connected spectrum have rationally unrelated germs (see Definition 3.5), we are able to prove a controllability result of the following type.

Theorem 1.1. Let n = dim(H) < ∞, H 0 , . . . , H m (m ≥ 2) be self-adjoint operators, and assume that the spectrum of u → H(u) is weakly conically connected and that its eigenvalue intersections have rationally unrelated germs at each intersection point. Then Lie(iH 0 , . . . , iH m ) = su(n) if iH 0 , . . . , iH m ∈ su(n) and Lie(iH 0 , . . . , iH m ) = u(n) otherwise, meaning that System (1.1) is exactly controllable in the unitary group.

In the case where the Hilbert space H is infinite-dimensional, some technical hypotheses are necessary (see [START_REF] Ball | Controllability for distributed bilinear systems[END_REF][START_REF] Boussaïd | Regular propagators of bilinear quantum systems[END_REF]) and only an approximate controllability result can be obtained (see Theorem 3.8). Our results extend [START_REF] Boscain | Approximate controllability, exact controllability, and conical eigenvalue intersections for quantum mechanical systems[END_REF]Theorem 14] in two ways. First, it applies to systems in which the spectrum is only weakly connected and, moreover, it does not require H 1 , . . . , H m to be bounded, but just relatively bounded with respect to H 0 .

The paper is organized as follows: In Section 2 we recall the notion of conical and semi-conical intersections and we introduce the concept of weakly conical intersections. Characterizations of such intersections is given using spectral projectors. Section 3 contains the proof of the main controllability results of the paper, namely Theorem 1.1 and its counterpart for systems evolving in infinite-dimensional system (Theorem 3.8). In Section 4 we provide testable conditions guaranteeing that the eigenvalues intersections have rationally unrelated germs, using first-order expansions of the spectral gaps near conical and semi-conical intersections. We conclude by some examples in Section 5.

Eigenvalue intersections.

We consider a control-affine Hamiltonian given by (2.1)

H(u) = H 0 + m ℓ=1 u ℓ H ℓ ,
where u = (u 1 , . . . , u m ) belongs to an open and connected subset U of R m . We assume that H(•) satisfies (A1) H 0 is a self-adjoint operator on a separable Hilbert space H with domain D(H 0 ). For each ℓ ∈ {1, . . . , m}, H ℓ is a symmetric operator on D(H 0 ). We recall the following concept of relative boundedness (see, e.g., [17, sec. 4.1]).

Definition 2.1. Let A be a self-adjoint operator on a Hilbert space H with domain D(A) and B be a symmetric operator on the domain D(A). We say that B is A-bounded if there exist α, β > 0 such that ∥Bv∥ ≤ α∥Av∥+β∥v∥ for every v ∈ D(A). The greatest lower bound α 0 of all possible constant α is called the relative bound of B with respect to A. We say that B is Kato-small with respect to A if it is A-bounded with relative bound 0.

Let us introduce the following two possible assumptions for System (1.1): (A2) For each ℓ ∈ {1, . . . , m}, H ℓ is H 0 -bounded. (A2*) For each ℓ ∈ {1, . . . , m}, H ℓ is Kato-small with respect to H 0 . Notice that (A2*) is a stronger assumption than (A2).

Remark 2.2. By Rellich-Kato theorem (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]), if (A1) and (A2) are satisfied, then there exists a neighborhood W ⊂ R m of 0 such that for all u ∈ W , H(u) is a self-adjoint operator with domain D(H(u)) = D(H 0 ). If (A1) and (A2*) are satisfied, one can take W = R m and, for every u ∈ R m and ℓ ∈ {1, . . . , m}, H ℓ is Kato-small with respect to H(u) (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]).

The spectrum σ(H(u)) of H(u) can be seen as a function of u ∈ U . Let us denote by {λ j (u), λ j+1 (u)} a pair of subsequent eigenvalues of σ(H(u)), meaning that they are the jth and (j + 1)th eigenvalues in a discrete sub-spectrum of σ(H(u)). To study the intersection between two eigenvalues, we will consider the following assumption: (A3) There are two eigenvalues λ j (•) and λ j+1 (•) of H(•), with λ j (•) ≤ λ j+1 (•), that intersect at ū = 0 and λ j (ū) = λ j+1 (ū) = 0. The subset {λ j (u), λ j+1 (u)} is separated from the rest of the spectrum by a positive gap on an open neighborhood w of ū = 0. Notice that assumption (A3) can be generalized to any intersection ū ∈ U between λ j (•) and λ j+1 (•) by replacing u with u -ū and H 0 with H(ū) -λ j (ū). This transformation does not affect Assumption (A2*), in the sense that H ℓ is Kato-small with respect to H 0 if and only if it is Kato-small with respect to H(ū) -λ j (ū). Concerning assumptions (A1) and (A2), if one deals with a general intersection ū ∈ U between λ j (•) and λ j+1 (•), the corresponding assumptions should be stated in terms of H(ū) -λ j (ū) instead of H 0 .

Remark 2.3. Assumption (A3) implies that there exists a circle C on C that separates {λ q (u) | q ∈ {j, j + 1}, u ∈ ω} from u∈ω σ(H(u)) \ {λ j (u), λ j+1 (u)} . Notice that C forms the boundary of a closed neighborhood D ⊂ C of 0.

In the following, let us define conical and weakly conical intersections.

Definition 2.4 (Conical intersection

). An eigenvalue intersection ū ∈ U between two eigenvalues λ j (•) and λ j+1 (•) is said to be conical if there exists C > 0 such that

1 C |t| ≤ |λ j+1 (ū + tη) -λ j (ū + tη)| ≤ C|t|
for every unit direction η ∈ R m and t in a neighborhood of 0.

Definition 2.5 (Conical direction). Given an intersection ū between λ j (•) and λ j+1 (•), a unit vector η ∈ R m is said to be a conical direction at ū if there exists C > 0 such that

1 C |t| ≤ λ j+1 (tη) -λ j (tη) ≤ C|t|
for t in a neighborhood of 0.

Definition 2.6 (Weakly conical intersection). A non-conical eigenvalue intersection ū ∈ U between two eigenvalues λ j (•) and λ j+1 (•) is said to be weakly conical if ū is an isolated point in

U j = {u ∈ U | λ j (u) = λ j+1 (u)}
and there exists at least one conical direction at ū.

In the case m = 2, let us recall the notion of semi-conical intersection introduced in [START_REF] Augier | Semi-conical eigenvalue intersections and the ensemble controllability problem for quantum systems[END_REF]. Semi-conical intersections are automatically weakly conical. Definition 2.7 (Semi-conical intersection). When m = 2, an intersection ū between two eigenvalues λ j (•) and λ j+1 (•) of H(•) is said to be semi-conical if there exists a unit vector η ∈ R 2 , called the non-conical direction at ū, such that every unit vector µ ∈ R 2 transversal to η is a conical direction and, for every smooth curve [0, 1] ∋ t → γ(t) ∈ R 2 satisfying γ(0) = ū and γ ′ (0) = η, there exists C > 0 such that

1 C t 2 ≤ |λ j+1 (γ(t)) -λ j (γ(t))| ≤ Ct 2
for t in a neighborhood of 0.

These definitions depend solely on the gap between eigenvalues in a neighborhood of the intersection ū. As we will see, the first-order expansion of λ j+1 (u) -λ j (u) in a neighborhood of ū is sufficient to determine whether the intersection is conical or not. In the case of m = 2, the second-order expansion of λ j+1 (u)-λ j (u) in a neighborhood of ū will determine whether the intersection in conical, semi-conical, or otherwise.

Remark 2.8. Notice that replacing H 0 with H(ū) -λ j (ū) and u with u -ū does not change the property of an intersection being conical or weakly conical.

Under assumptions (A1-A2-A3) or (A1-A2*-A3), we can define, for each u in a neighborhood of ū = 0, the spectral projector (2.2)

P (u) = 1 2iπ C (H(u) -ξ) -1 dξ
with respect to {λ j (u), λ j+1 (u)}. By Kato (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]), in a neighborhood of ū = 0 the operator-valued function u → U (u) given by (2.3) U (u) := 1 -P (u) -P (0)

2 -1 2 P (u)P (0) + 1 -P (u) 1 -P (0)
is well-defined and has the following properties: U (•) is holomorphic, U * (u)U (u) = U (u)U * (u) = 1, and U (u)P (0) = P (u)U (u). Moreover, for u in a neighborhood of 0, (2.4) h(u) := U * (u)P (u)H(u)P (u)U (u) = P (0)U * (u)H(u)U (u)P (0) is a self-ajoint operator on the two-dimensional subspace P (0)H and σ(h(u)) = {λ j (u), λ j+1 (u)}.

Remark 2.9. Standard analyticity arguments (see, e.g., [START_REF] Kato | Perturbation theory for linear operators[END_REF]) show that when (A1-A2-A3) are satisfied, there exists an open neighborhood N ⊂ w of ū such that the mapping N ∋ u → P (u) is analytic. When (A2*) is satisfied we have N = w. Moreover, for every u ∈ N , there exists a neighborhood O of u such that (2.5)

P (v) = P (u) + n≥1 P (n) u (v -u), ∀v ∈ O, with P (n)
u (v -u) the bounded self-adjoint operator given by

(2.6) P (n) u (v -u) = (-1) n 1 2iπ C dξ(H(u) -ξ) -1 m ℓ=1 (v ℓ -u ℓ )H ℓ (H(u) -ξ) -1 n .
In particular,

P (u) = P (0) + P (1) 0 (u) + O(∥u∥ 2 ), (2.7) 
where P

0 (u) is the bounded self-adjoint operator

(2.8) P (1) 0 (u) = - 1 2iπ C dξ(H 0 -ξ) -1 m ℓ=1 u ℓ H ℓ (H 0 -ξ) -1 .
The mapping N ∋ u → h(u) is also analytic. Since H 0 P (0) = 0 and P (0)H 0 = 0, the second-order expansion of h(u) in a neighborhood of ū = 0 is (2.9)

h(u) = P (0)U * (u)H(u)U (u)P (0) = P (0)( m ℓ=1 u ℓ H ℓ )P (0) + P (0)P (1) 0 (u)H 0 P (1) 
0 (u)P (0)

+ P (0)P (1) 0 (u) m ℓ=1 u ℓ H ℓ P (0) + P (0) m ℓ=1 u ℓ H ℓ P (1) 
0 (u)P (0) + O(∥u∥ 3 ).

We assume in the following that A1-A2-A3 are satisfied. By adapting the results of [START_REF] Kato | Perturbation theory for linear operators[END_REF] to the control-affine Hamiltonian H(u) (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]] for finite-dimensional systems and [17, Section VII-1.5] for infinite-dimensional systems), P

0 (u) is given by (2.10) P

(1)

0 (u) = -P (0) m ℓ=1 u ℓ H ℓ A -A m i=1 u ℓ H ℓ P (0),
where A is the reduced resolvent of H 0 for the eigenvalue 0 (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]] and [17, III-(6.31)]), such that

H 0 A = AH 0 = 1 -P (0), P (0)A = AP (0) = 0.
Proposition 2.10. Let assumptions (A1-A2-A3) be satisfied and h be defined as in (2.4). Then, for u in a neighborhood of 0, (2.11)

h(u) =P (0) m ℓ=1 u ℓ H ℓ P (0) -P (0) m ℓ=1 u ℓ H ℓ A m ℓ=1 u ℓ H ℓ P (0) + O(∥u∥ 3 ).
Proof. This is a direct result of equations (2.9) and (2.10).

Lemma 2.11. Let B be a self-adjoint operator on P (0)H and denote its eigenvalues by λ 0 ≤ λ 1 . Then

(2.12) λ 1 -λ 0 = 2 -det B - 1 2 tr(B) .
Proof. Since B is a self-adjoint operator on a Hilbert space of dimension 2, we have

det B - 1 2 tr(B) = det(B) - 1 4 tr(B) 2 ,
and the eigenvalues of B are the roots of the quadratic equation λ 2 -tr(B)λ+det(B) = 0. Therefore,

λ 1 -λ 0 = tr(B) 2 -4 det(B) = 2 -det B - 1 2 tr(B) .
Let us define the linear map that removes the trace of a linear operator on P (0)H by (2.13)

R : L P (0)H → L P (0)H B → B - 1 2 tr(B).
Recall that h(u) ∈ L(P (0)H) is well defined for u in a neighborhood of 0 and σ(h(u)) = {λ j (u), λ j+1 (u)}. By Lemma 2.11, we have

(2.14) λ j+1 (u) -λ j (u) = 2 -det h(u) - 1 2 tr(h(u)) = 2 -det R(h(u)) .
Let us define for each ℓ ∈ {1, . . . , m}

(2.15) h (1) 
ℓ = P (0)H ℓ P (0), and, for u ∈ R m , (2.16) h (2) (u) = -P (0) m ℓ=1 u ℓ H ℓ A m ℓ=1 u ℓ H ℓ P (0).
Therefore, we obtain from (2.11) that (2.17)

h(u) = m ℓ=1 u ℓ h (1) ℓ + h (2) (u) + O(∥u∥ 3 ).
We now use this second-order expansion to characterize conical and semi-conical intersections.

Lemma 2.12. For a unit direction η ∈ R m , there exists C > 0 such that

(2.18) 1 C |t| ≤ λ j+1 (tη) -λ j (tη) ≤ C|t|
for t in a neighborhood of 0 if and only if

(2.19) m ℓ=1 η ℓ R(h (1) 
ℓ ) ̸ = 0.

Proof. By equations (2.14) and (2.17), we have

λ j+1 (tη) -λ j (tη) = 2 -det R(h(tη)) = 2t -det m ℓ=1 η ℓ R(h (1) 
ℓ ) + o(t).
Therefore, (2.18) is satisfied for some C > 0 if and only if det(

m ℓ=1 η ℓ R(h (1) 
ℓ )) ̸ = 0, which is equivalent to (2.19) since m ℓ=1 η ℓ R(h (1) 
ℓ ) is a zero-trace self-adjoint operator on a two-dimensional space.

Remark 2.13. Notice that the existence of a conical direction implies that there exists ℓ ∈ {1, . . . , m} such that R(h

ℓ ) ̸ = 0 and that the subset

µ ∈ R m | m ℓ=1 µ ℓ R(h 1) ℓ ) ̸ = 0
is dense and has zero-measure complement in R m . Proposition 2.14. Assume that (A1-A2-A3) are satisfied. The intersection between λ j (•) and λ j+1 (•) at ū = 0 is conical if and only if the family of zero-trace operators R(h

(1)
ℓ ) ℓ∈{1,...,m} is R-linearly independent, where R is the trace-removing function introduced in (2.13).

Proof. According to Definition 2.4 and Lemma 2.12, we deduce that the intersection at ū = 0 is conical if and only if, for every unit direction η ∈ R m , we have

m ℓ=1 η ℓ R(h (1) ℓ ) ̸ = 0, which is equivalent to the family R(h (1)
ℓ ) ℓ∈{1,...,m} being R-linearly independent.

Remark 2.15. Since zero-trace symmetric operators on P (0)H form a real vector space of dimension 3, a necessary condition for an intersection to be conical is that m ≤ 3. Moreover, in the case of real Hamiltonians, i.e., when there exists an orthonormal basis {χ j } j of the Hilbert space H such that ⟨χ j , H q χ k ⟩ is real for all j, k and each q ∈ {0, . . . , m}, then a necessary condition is that m ≤ 2.

Remark 2.16. When m = 2, the intersection is conical if and only if R(h

(1)
1 ) and R(h

(1)
2 ) are R-linearly independent. If we choose an orthonormal basis {ϕ j , ϕ j+1 } of P (0)H, the intersection is conical if and only if the two matrices

1 2 ⟨ϕ j , H s ϕ j ⟩ -1 2 ⟨ϕ j+1 , H s ϕ j+1 ⟩ ⟨ϕ j , H s ϕ j+1 ⟩ ⟨ϕ j+1 , H s ϕ j ⟩ 1 2 ⟨ϕ j+1 , H s ϕ j+1 ⟩ -1 2 ⟨ϕ j , H s ϕ j ⟩ , s ∈ {1, 2},
are R-linearly independent. The latter is equivalent to the inequality

(2.20) det 1 2 ⟨ϕ j , H 1 ϕ j ⟩ -1 2 ⟨ϕ j+1 , H 1 ϕ j+1 ⟩ ⟨ϕ j , H 1 ϕ j+1 ⟩ 1 2 ⟨ϕ j , H 2 ϕ j ⟩ -1 2 ⟨ϕ j+1 , H 2 ϕ j+1 ⟩ ⟨ϕ j , H 2 ϕ j+1 ⟩ ̸ = 0.
The 2 × 2 matrix appearing in (2.20) has been introduced under the name of conicity matrix in [START_REF] Boscain | Adiabatic control of the Schrödinger equation via conical intersections of the eigenvalues[END_REF]. Therefore, Proposition 2.14 generalizes the characterization of conical intersection by the conicity matrix given in [START_REF] Boscain | Adiabatic control of the Schrödinger equation via conical intersections of the eigenvalues[END_REF]Proposition 4.4].

Lemma 2.17. When m = 2, for a smooth curve γ :

[0, 1] → R 2 with γ(0) = 0, γ(0) = η and γ(0) = v, there exists C > 0 such that (2.21) t 2 C ≤ λ j+1 (γ(t)) -λ j (γ(t)) ≤ Ct 2
if and only if

(2.22) η 1 R h (1) 1 + η 2 R h (1) 2 = 0, 1 2 v 1 R h (1) 2 + 1 2 v 2 R h (1) 2 + R h (2) (η) ̸ = 0.
Proof. For t in a neighborhood of 0, γ(t) = tη + t 2 2 v +O(t 3 ). By (2.14) and (2.17), we have

λ j+1 (γ(t)) -λ j (γ(t)) = det 2 ℓ=1 (tη ℓ + t 2 2 v ℓ )R h (1) ℓ + t 2 R h (2) (η) + o(t 2 ).
By Lemma 2.12, we conclude that (2.21) is satisfied for some C > 0 if and only if (2.22) is satisfied and

det 2 ℓ=1 1 2 v ℓ R h (1) ℓ + R h (2) (η) ̸ = 0,
which is equivalent to the second equation of (2.22) since

2 ℓ=1 1 2 v ℓ R h (1) ℓ +R h (2) (η) is a zero-trace self-adjoint operator on a two-dimensional space. Proposition 2.18. Let m = 2. The intersection between λ j (•) and λ j+1 (•) at ū = 0 is semi-conical if and only if R(h (1)
1 ) and R(h

(1)
2 ) are colinear, R(h

(1)
s ) ̸ = 0 for some s ∈ {1, 2}, and, setting

(2.23) η =   - ∥R(h (1) 
2 )∥ ∥R(h

(1) 1 )∥ 2 + ∥R(h (1) 2 )∥ 2 , ∥R(h (1) 1 )∥ ∥R(h (1) 1 )∥ 2 + ∥R(h (1) 2 )∥ 2   , R(h (2) (η)) is not colinear to R(h (1) s ).
Proof. By Definition 2.7 and Lemmas 2.12 and 2.17, ū = 0 is semi-conical if and only if there exists a unit direction η ∈ R 2 such that

η 1 R h (1) 1 + η 2 R h (1) 2 = 0, 1 2 v 1 R h (1) 2 + 1 2 v 2 R h (1) 2 + R h (2) (η) ̸ = 0, ∀v ∈ R 2 ,
and, for all µ ∈ R 2 transversal to η,

µ 1 R h (1) 1 + µ 2 R h (1) 2 ̸ = 0.
Equivalently, R(h

(1)
1 ) and R(h

(1)
2 ) are colinear and not both zero, and, setting η as in

(2.23), R h (2) (η) is not colinear to R(h (1) 1 ) nor to R(h (1)
2 ). Remark 2.19. Assume that ū ∈ U (not necessarily 0) is an eigenvalue intersection between λ j (•) and λ j+1 (•) and that λ j (ū) = λ j+1 (ū) = λ ∈ R. The assumptions (A1-A2-A2*-A3) can be easily generalized to this intersection ū by replacing u with u -ū and H 0 with H(ū) -λ j (ū). Therefore, the characterization of conical and semiconical intersections (Proposition 2.14 and Proposition 2.18) can still be applied. In particular, for u in a neighborhood of ū, we have

λ j+1 (u) -λ j (u) = 2 -det m ℓ=1 (u ℓ -ūℓ )R P j,j+1 (ū)H ℓ P j,j+1 (ū) + o(∥u∥),
where P j,j+1 (ū) is the spectral projector with respect to {λ j (ū), λ j+1 (ū)}.

3. Systems connected by conical and weakly conical intersections. We say that System (1.1) satisfies (H) if

• H 0 , . . . , H m (m ≥ 2) are self-adjoint operators on H with dim(H) < ∞, and that System (1.1) satisfies (H ∞ ) if the following assumptions hold true:

• H is a separable Hilbert space with dim(H) = ∞, • H 0 is a self-adjoint operator on H with domain D(H 0 ) and H 1 , . . . , H m (m ≥ 2) are symmetric operators on D(H 0 ), • H 0 is an operator with compact resolvent, i.e., (H 0 + i) -1 is a compact operator, and H 1 , . . . , H m are Kato-small with respect to H 0 .

Remark 3.1. Notice that H 0 is an operator with compact resolvent if and only if the spectrum of H 0 is discrete, i.e., each point of σ(H 0 ) is an isolated eigenvalue of finite multiplicity. H 0 -boundedness implies that for all u ∈ U , H(u) is a selfadjoint operator on H with domain D(H 0 ), H 1 , . . . , H m are Kato-small with respect to H(u) and that the spectrum of H(u) is discrete. Moreover, both assumptions (H) and (H ∞ ) imply (A1-A2*), and therefore the conicity and weak conicity of the intersection points of σ(H(u)) can be characterized using the results of the previous section.

Under assumption (H) or (H ∞ ), the spectrum of H(•) is discrete. Let I denote {1, . . . , dim(H)} (respectively, N * ) when (H) (respectively, (H ∞ )) is satisfied. For every u ∈ U , we denote by {λ j (u)} j∈I the increasing sequence of eigenvalues of H(u), counted according to their multiplicities, and by {ϕ j (u)} j∈I a corresponding sequence of eigenvectors. Remark 3.2. Assume that System (1.1) satisfies (H ∞ ). Let u : [0, T ] → U be a piecewise constant control function. Then the propagator of System (1.1) associated with u is given by

(3.1) Υ u t = e i(t-t l )H(u l ) • e i(t l -t l-1 )H(u l-1 ) • • • • • e it1H(u1) , for t l < t ≤ t l+1 .
For any initial state ψ 0 ∈ D(H 0 ), the solution ψ(t) = Υ u t (ψ 0 ) satisfies the Schrödinger equation

i ψ(t) = H(u(t))ψ(t)
for a.e. t.

Similarly, for initial states

ψ 0 ∈ H \ D(H 0 ), the solution ψ(t) = Υ u t (ψ 0 ) satisfies, for every v ∈ D(H 0 ), the equation d dt ⟨v, ψ(t)⟩ = -i⟨H(u(t))v, ψ(t)⟩ for a.e. t.
Let us define the approximate controllability of System (1.1).

Definition 3.3 (Approximate controllability). Let (H ∞ ) be satisfied. We say that System (1.1) is approximately controllable if for every ψ 0 , ψ 1 in the unit sphere of H and every ϵ > 0, there exists a piecewise constant control function u : [0, T ] → U such that ∥Υ u T (ψ 0 ) -ψ 1 ∥ < ϵ. It has been proven in [START_REF] Boscain | Approximate controllability, exact controllability, and conical eigenvalue intersections for quantum mechanical systems[END_REF] that for a control-affine Hamiltonian H(u) = H 0 + m ℓ=1 u ℓ H ℓ with u in an open and connected subset U of R m , if H ℓ is bounded for each ℓ ∈ {1, . . . , m} and its spectrum is connected by conical intersections that do not pile up, then exact controllability can be established in finite dimension and approximate controllability in infinite dimension. We raise the question of whether it is possible to extend controllability results to the case where the control Hamiltonian H ℓ may be unbounded and the spectrum is connected by intersections that are not necessarily conical and can pile up. We start by defining weak conical connectedness and rationally unrelated germs. Definition 3.4 (Weakly conical connected spectrum). Let (H) or (H ∞ ) be satisfied. We say that the spectrum σ(H(•)) is weakly conically connected if each of its eigenvalue intersections is either conical or weakly conical, and, moreover, for every (j, j + 1) ∈ I 2 , there exists ūj ∈ U such that λ j (ū j ) = λ j+1 (ū j ). Definition 3.5 (Rationally unrelated germs). Let (H) or (H ∞ ) be satisfied and the spectrum σ(H(•)) be weakly conically connected. For a given intersection point ū ∈ U of σ(H(•)), define

(3.2) I(ū) := {j ∈ I | λ j (ū) = λ j+1 (ū)}.
We say that intersections have rationally unrelated germs at ū if for every finite subset J of I(ū), and for every neighborhood V of ū, the family of functions

V ∋ u → λ j+1 (u) -λ j (u) j∈J is rationally independent, meaning that if {α j } j∈J ∈ Q J is such that j∈J α j (λ j+1 (u) -λ j (u)) = 0, ∀u ∈ V,
then α j = 0 for all j ∈ J .

Lemma 3.6. If System (1.1) satisfies (H) or (H ∞ ) and the spectrum σ(H(•)) is weakly conically connected, then for every ū ∈ U such that the spectrum σ(H(ū)) is simple, the graph having I as nodes and having S(ū) := (j, k) ∈ I 2 | ⟨ϕ j (ū), H l ϕ k (ū)⟩ ̸ = 0 for some l = 1, . . . , m as the set of edges is connected.

Proof. Assume by contradiction that there exists ū ∈ U such that σ(H(ū)) is simple and the graph having I as notes and S(ū) as the set of edges is not connected. Then there exists a proper subset J of I such that V = span{ϕ j (ū)} j∈J is a proper subspace of H invariant for the evolution of the system. Let us set V ⊥ = span{ϕ j (ū)} j∈I\J , which is also an invariant subspace, and we have H = V V ⊥ . For each j ∈ I, let us define

U j := u ∈ U | λ j (u) is simple ,
which is an open and connected subset of U with a discrete complement. For each u ∈ U j , the corresponding eigenvector ϕ j (u) can be written as ϕ j (u) = v + w, with v ∈ V and w ∈ V ⊥ . We have

H(u)ϕ j (u) = λ j (u)ϕ j (u) = λ j (u)v + λ j (u)w.
On the other hand, we have

H(u)ϕ j (u) = H(u)v + H(u)w,
with H(u)v ∈ V and H(u)w ∈ V ⊥ , since V and V ⊥ are invariant spaces for H(u). The uniqueness of decomposition implies that

H(u)v = λ j (u)v, H(u)w = λ j (u)w.
Since λ j (u) is a simple eigenvalue, we conclude that v = 0 or w = 0 and that for all u ∈ U j , ϕ j (u) can only be in V or in V ⊥ . Denoting by P V the orthogonal projection on V , we have, for every j ∈ I,

(3.3) ∥P V ϕ j (u)∥ ∈ {0, 1}, ∀u ∈ U j .
Since J is a proper subset of I, we can find j ∈ J such that j +1 ∈ I \J (or j ∈ I \J and j + 1 ∈ I). In other words, ϕ j (ū) ∈ V and ϕ j+1 (ū) ∈ V ⊥ . Since the spectrum is simple at ū, we have that ū is in U j ∩ U j+1 . Let us consider an intersection ūj,j+1 ∈ U between λ j (•) and λ j+1 (•). Notice that there exists a neighborhood O of ūj,j+1 such that O \ {ū j,j+1 } ⊂ U j ∩ U j+1 . Let us take a smooth curve γ :

[-1, 1] → U such that γ(-1) = γ(1) = ū, γ(t) ∈ U j ∩ U j+1 for every t ∈ [-1, 0) ∪ (0, 1], γ(0) = ūj,j+1
, and γ(0) is a non-zero vector tangent to a conical direction. By Lemma 3.2 in [START_REF] Augier | Adiabatic ensemble control of a continuum of quantum systems[END_REF] (which can be generalized to infinite-dimensional systems with holomorphic spectral projectors), we can choose ϕ j (γ(•)) and ϕ j+1 (γ(•)) such that

(3.4) ψ : [-1, 1] ∋ t → ϕ j (γ(t)), if t ∈ [-1, 0] ϕ j+1 (γ(t)), if t ∈ (0, 1] is in C ∞ ([-1, 1], H). Notice that for all t ∈ [-1, 0) ∩ (0, 1], γ(t) is in U j ∩ U j+1 . By (3.3) and (3.4), we have ∥P V ψ(t)∥ ∈ {0, 1} for all t ∈ [-1, 0) ∩ (0, 1]. Since ∥P V ψ(•)∥ is continuous on [-1, 1], ∥P V ψ(•)∥ is constant on [-1, 1]
. However, we have ∥P V ψ(-1)∥ = ∥P V ϕ j (ū)∥ = 1 and ∥P V ψ(1)∥ = ∥P V ϕ j+1 (ū)∥ = 0. The contradiction is reached.

The following result generalizes Lemmas 9 and 14 in [START_REF] Boscain | Approximate controllability, exact controllability, and conical eigenvalue intersections for quantum mechanical systems[END_REF] to the case of weakly connected spectra. Lemma 3.7. Let System (1.1) satisfy (H) or (H ∞ ). Assume that the spectrum σ(H(•)) is weakly conically connected and that the eigenvalue intersections have rationally unrelated germs at every intersection point ū ∈ U . Then there exists Ū ⊂ U which is dense and with zero-measure complement in U such that if

N j=1 α j λ j (ū) = 0 with ū ∈ Ū , N ∈ N * , N ≤ dim H, and {α 1 , . . . , α N } ∈ Q N then α 1 = • • • = α N .
Proof. Let Ξ be the set of all α = (α 1 , . . . , α N ) ∈ Q N with N ∈ N * , N ≤ dim H, and α j ̸ = α k for some j, k ∈ {1, . . . , N }. For every N ∈ N * and α ∈ Ξ ∩ Q N , define the set

U α = u ∈ U | N j=1 α j λ j (u) = 0 .
Let Ū be the complement in U of the union of all U α such that α ∈ Ξ. Notice that a countable union of subsets of R m with empty interior and zero measure has empty interior and zero measure. Therefore, to prove that Ū is dense and with zero-measure complement in U , we only need to prove that U α has empty interior and zero measure for every α ∈ Ξ.

Assume by contradiction that there exists α ∈ Ξ such that U α has positive measure. Let N ∈ N * be such that α ∈ Q N . Notice that the sub-spectrum σ N (H(•)) = {λ 1 (•), . . . , λ N (•)} is analytic on the open and connected set {u ∈ U | λ 1 (u), . . . , λ N (u) are simple}, which is dense and with zero-measure complement in U . Hence U α = U .

Fix an eigenvalue intersection point ū. Then for all j ∈ I(ū), the intersection between {λ j (•), λ j+1 (•)} is either conical or weakly conical. Consider an analytic path γ : (-1, 1) → U such that γ(0) = ū, γ(t) is not an eigenvalue intersection for t ∈ (-1, 0) ∪ (0, 1), and γ(0) is a (non-zero) conical direction at ū for the intersection between λ j and λ j+1 for every j ∈ I(ū). Then, we have

N l=1 α l λ l (γ(t)) = 0, ∀t ∈ (-1, 1).
By analytic dependence of the spectrum along γ in a neighbourhood of γ(0) (see [START_REF] Rellich | Perturbation theory of eigenvalue problems[END_REF]), for all j ∈ I(ū), the functions

t → λ j (γ(t)) if t < 0, λ j+1 (γ(t)) if t ≥ 0, t → λ j+1 (γ(t)) if t < 0, λ j (γ(t)) if t ≥ 0,
and the functions t → λ l (γ(t)), l ̸ ∈ {j, j + 1 | j ∈ I(ū)}, are analytic on (-1, 1). Hence, setting α l = 0 for every l ∈ I \ {1, . . . , N }, we have, for all t ∈ (-1, 1),

j∈I(ū) α j λ j+1 (γ(t)) + j∈I(ū) α j+1 λ j (γ(t)) + l̸ =j,j+1,∀j∈I(ū) α l λ l (γ(t)) = 0.
As a consequence,

j∈I(ū) (α j -α j+1 ) λ j (γ(t)) -λ j+1 (γ(t)) = 0, ∀t ∈ (-1, 1).
This is true for every analytic path γ as above. Since the intersections have rationally unrelated germs at ū, we have α j -α j+1 = 0 for all j ∈ I(ū). Since this is true for every intersection of σ(H(•)), we have

α 1 = • • • = α N .
The contradiction is reached. We conclude that Ū is dense and with zero-measure complement in U .

Theorem 3.8. If System (1.1) satisfies (H ∞ ), the spectrum is weakly conically connected and the eigenvalue intersections have rationally unrelated germs at each intersection point, then System (1.1) is approximately controllable.

Proof of Theorems 1.1 and 3.8. Notice that the assumption of Theorem 1.1 imply (H). By applying Lemma 3.7, we deduce that there exists ū ∈ U , such that if

N j=1 α j λ j (ū) = 0 with N ∈ N * , N ≤ dim H, and {α 1 , . . . , α N } ∈ Q N , then α 1 = • • • = α N .
In particular, the spectrum σ(H(ū)) is simple and two spectral gaps λ j (ū) -λ k (ū) and λ r (ū) -λ s (ū) are different if (j, k) ̸ = (r, s) and j ̸ = k, r ̸ = s. By Lemma 3.6, we have that the graph having I as nodes and having

(j, k) ∈ I 2 | ⟨ϕ j (ū), H l ϕ k (ū)⟩ ̸ = 0 for some l = 1, . . . , m
as the set of edges is connected.

When dim H = n < ∞, we deduce from [START_REF] Boscain | Approximate controllability, exact controllability, and conical eigenvalue intersections for quantum mechanical systems[END_REF]Proposition 11] that the Lie algebra Lie(iH 0 , . . . , iH m ) is equal to su(n) if iH 0 , . . . , iH m ∈ su(n) and to u(n) otherwise, and we conclude that System (1.1) is exactly controllable in the unitary group. When dim H = ∞, the approximate controllability of System (1.1) forllows from [START_REF] Boscain | Approximate controllability, exact controllability, and conical eigenvalue intersections for quantum mechanical systems[END_REF]Proposition 15]. Remark 3.9. Let us notice that [10, Proposition 15] is only stated for bounded H 1 , . . . , H m . However, since it is an adaption of Theorem 2.6 in [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF], it can be easily extended to the case where H 1 , . . . , H m are Kato-small with respect to H 0 . Following [START_REF] Boscain | A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule[END_REF], a stronger version of the previous theorem can be stated as an infinite-dimensional counterpart of the exact controllability in the unitary group. With the same assumptions, System (1.1) is approximately simultaneously controllable, i.e., for every r > 0, ψ 1 , . . . ψ r ∈ H, ϵ > 0, and every unitary operator Υ on H there exists a piecewise constant control u : [0, T ] → U such that, for every

1 ≤ k ≤ r, Υψ k -Υ u T ψ k < ϵ.
Remark 3.10. Notice that if we can choose an open and connected subset U ′ of U such that the spectrum σ(H(u)) is weakly conically connected and the eigenvalue intersections have rationally unrelated germs at every intersection point on U ′ , we can still apply the spectral conditions above and obtain controllability results.

4. First-order condition for rational independence in the case m = 2. Assume that m = 2, that System (1.1) satisfies (H) or (H ∞ ), and that the spectrum H(u(•)) is weakly conically connected. Let us consider ū ∈ U such that (4.1)

I(ū) = {j ∈ I | λ j+1 (ū) = λ j (ū)}
has a cardinality greater than one. Our goal is to provide testable conditions guaranteeing that the eigenvalues intersections at ū have rationally unrelated germs. Let us take j ∈ I(ū) and denote by P j,j+1 (•) the spectral projector with respect to λ j (•) and λ j+1 (•) in a neighborhood of ū. By Lemma 2.12, for all unit direction η ∈ R 2 , we have

d dt t=0 + λ j+1 (ū + tη) -λ j (ū + tη) = 2 -det η 1 h j,1 + η 2 h j,2 ,
where h j,1 , h j,2 are the self-adjoint operators on P j,j+1 (ū)H defined by (4.2) h j,s = P j,j+1 (ū)H s P j,j+1 (ū) -1 2 tr P j,j+1 (ū)H s P j,j+1 (ū) , s ∈ {1, 2}.

For θ ∈ [0, 2π), set η(θ) = (cos(θ), sin(θ)) ⊤ and define the family of functions (4.3)

F(ū) = [0, 2π) ∋ θ → g j (θ) := d dt t=0 + λ j+1 (ū + tη(θ)) -λ j (ū + tη(θ)) j∈I (ū) 
.

Proposition 4.1. Assume that System (1.1) satisfies (H) or (H ∞ ) and that the spectrum σ(H(•)) is weakly conically connected. Let ū ∈ U be such that I(ū) is nonempty. If the family of functions F(ū) is rationally independent then the eigenvalue intersections have rationally unrelated germs at ū.

Proof. Let us take a finite subset J ⊂ I(ū), a neighborhood O of ū, and {α j } j∈J ∈ Q J such that j∈J α j (λ j+1 (u) -λ j (u)) = 0 for all u ∈ O. We deduce that, for all θ ∈ [0, 2π),

0 = d dt t=0 + j∈J α j λ j+1 (ū + tη(θ)) -λ j (ū + tη(θ)) = j∈J α j g j (θ).
Therefore, if there exist a finite subset J ⊂ I(ū) and a neighborhood O of ū such that the family {u → λ j+1 (u) -λ j (u)} j∈J is rationally dependent, then the family of functions F(ū) is rationally dependent. By Definition 3.5, we deduce that if the family of functions F(ū) is rationally independent then the intersections at ū have rationally unrelated germs.

Proposition 4.2. Assume that j ∈ I(ū) and that ū is a conical intersection between λ j (•) and λ j+1 (•). Let g j : θ ∈ [0, 2π) → R be the function defined in (4.3). Then there exists a unique (k j , r j , β j ) in

(4.4) D := R * + × (0, 1) × [0, 2π) ∪ R * + × {0} × {0} such that (4.5) g j (θ) = 2k j 1 + r j cos(2θ -β j ), ∀θ ∈ [0, 2π).
Proof. Since h j,1 and h j,2 are self-adjoint zero-trace operators on P j,j+1 (ū)H, they can be represented by the 2 × 2 Hermitian matrices

M j,1 = a j 0 0 -a j , M j,2 = b j c j cj -b j ,
with a j , b j ∈ R and c j ∈ C. Since ū is a conical intersection between λ j (•) and λ j+1 (•), it follows from Proposition 2.14 that h j,1 and h j,2 are not colinear, hence a j ̸ = 0 and c j ̸ = 0. Then, for every θ ∈ [0, 2π), we have

g j (θ) = d dt t=0 + λ j+1 (ū + tη(θ)) -λ j (ū + tη(θ)) = 2 -det cos(θ)M j,1 + sin(θ)M j,2 = 2 a 2 j + b 2 j + |c j | 2 2 + a 2 j -b 2 j -|c j | 2 2 cos(2θ) + a j b j sin(2θ).
If b j = 0 and |a j | = |c j |, let us set

k j = |a j |, r j = 0, β j = 0.
Notice that (k j , r j , β j ) belongs to D and that, for every θ ∈ [0, 2π),

g j (θ) = 2 a 2 j + |c j | 2 2 = 2|a j | = 2k j 1 + r j cos(2θ -β j ). Otherwise, if b j ̸ = 0 or |a j | ̸ = |c j |, let us set k j = a 2 j + b 2 j + |c j | 2 2 , ρ j = a 2 j -b 2 j -|c j | 2 2 2 + a 2 j b 2 j , r j = ρ 2 j k 2 j .
There exists a unique

β j ∈ [0, 2π) such that cos(β j ) = a 2 j -b 2 j -|c j | 2 2ρ j , sin(β j ) = a j b j ρ j .
Since a j , c j ̸ = 0, then

ρ 2 j = a 2 j -b 2 j -|c j | 2 2 2 + a 2 j b 2 j = a 2 j + b 2 j + |c j | 2 2 2 -a 2 j c 2 j < k 2 j .
Since, moreover, b j ̸ = 0 or |a j | ̸ = |c j |, we also have that

ρ 2 j = a 2 j -b 2 j -|c j | 2 2 2 + a 2 j b 2 j = a 2 j -|c j | 2 2 2 + 1 4 b 4 j + c 2 j b 2 j > 0.
Thus, we have

r j = ρ 2 j k 2 j
∈ (0, 1) and (k j , r j , β j ) ∈ D. Moreover, for all θ ∈ [0, 2π),

g j (θ) = 2 k 2 j + ρ 2 j cos(β) cos(2θ) + ρ 2 j sin(β) cos(2θ) = 2k j 1 + ρ 2 j k 2 j cos(2θ -β) = 2k j 1 + r j cos(2θ -β).
We have proven that, once the intersection between λ j (•) and λ j+1 (•) is conical, there exists (k j , r j , β j ) ∈ D such that (4.5) holds true. The uniqueness of a representative in D can be easily proven.

Proposition 4.3. Assume that j ∈ I(ū) and that ū is a weakly conical intersection between λ j (•) and λ j+1 (•). Let g j : θ ∈ [0, 2π) → R be the function defined in (4.3). Then there exists a unique (k j , β j ) in (4.6)

D ′ := R * + × [0, π) such that (4.7) g j (θ) = 2k j | cos(θ -β j )|, ∀θ ∈ [0, 2π).
Proof. The proof is similar to that of Proposition 4.2. C n r n cos n (x -β), C n = (-1) n-1 (2n -2)! 2 2n-1 (n -1)!n! .

Let

Notice that |C n | < 1 for all n ≥ 1, and the convergence of the series in (4.12) is uniform with respect to x ∈ R. In the following lemma we use the development (4.12) to compute the coefficients of the Fourier series (4.11).

Lemma 4.4. Let (r, β) ∈ D, where the latter is defined in (4.8), and consider g as in (4.10). The coefficients of the Fourier series for g are given by

A 0 = 2 + ∞ m=1 r 2m C 2m 2 2m-1 2m m < ∞, A 2n = ∞ m=n r 2m C 2m 2 2m-1 2m m -n cos(2nβ) < ∞, n > 0, B 2n = ∞ m=n r 2m C 2m 2 2m-1 2m m -n sin(2nβ) < ∞, n > 0, A 2n+1 = ∞ m=n r 2m+1 C 2m+1 2 2m 2m + 1 m -n cos((2n + 1)β) < ∞, n ≥ 0, B 2n+1 = ∞ m=n r 2m+1 C 2m+1 2 2m 2m + 1 m -n sin((2n + 1)β) < ∞, n ≥ 0.
Proof. Let us take (r, β) ∈ D. By (4.12), we have

1 + r cos(x -β) = 1 + ∞ n=1 C n r n cos n (x -β) = 1 + ∞ n=1 C n r n e i(x-β) + e -i(x-β) 2 n = 1 + ∞ n=1 C n n k=0 r n 1 2 n n k e -i(n-2k)(x-β) .
Since r ∈ (0, 1) and for all n ∈ N * , |C n | < 1, we have that

∞ n=1 n k=0 C n r n 1 2 n n k e -i(n-2k)(x-β) ≤ ∞ n=1 n k=0 |C n | r n 1 2 n n k ≤ ∞ n=1 r n n k=0 1 2 n n k = ∞ n=1 r n < ∞.
Therefore, by applying the Fubini-Tonelli theorem, we can change the order of summation. On the other hand, we notice that, for m ∈ N,

2m k=0 2m k e -i(2m-2k)(x-β) = 2m m + 2 m-1 k=0 2m k cos (2m -2k)(x -β) , 2m+1 k=0 2m + 1 k e -i(2m-2k)(x-β) = 2 m k=0 2m + 1 k cos (2m + 1 -2k)(x -β) .
Then we have

1 + r cos(x -β) =1 + ∞ m=1 r 2m C 2m 2 2m 2m m + ∞ m=1 r 2m C 2m 2 2m-1 m k=1 2m m -k cos 2k(x -β) + ∞ m=0 r 2m+1 C 2m+1 2 2m m k=0 2m + 1 m -k cos (2k + 1)(x -β) .
We notice that cos(n(x -β)) = cos(nβ) cos(nx) + sin(nβ) sin(nx). By properly changing the order of summation and by term identification with the Fourier series (4.11), we get the formulas for the coefficients stated in the lemma.

Lemma 4.5. Fix K ∈ N * and let β 1 , . . . , β K be pairwise distinct points in [0, 2π). If {α k } 1≤k≤K is a set of non-zero coefficients in R, then there exists C > 0 such that for every integer A > 0, there exists an integer N > A such that

K k=1 α k exp(iN β k ) > C.
Proof. Since n → (exp(inβ 1 ), . . . , exp(inβ K )) is recurrent, it is enough to prove that m → K k=1 α k exp(inβ k ) is not identically zero. The case K = 1 is trivial, since α 1 ̸ = 0.

In the case K > 1, let us assume by contradiction that

K k=2 α k exp in(β k -β 1 ) = -α 1 , ∀n ∈ N.
Then, for every h ∈ N * ,

1 h h n=1 K k=2 α k exp in(β k -β 1 ) = -α 1 .
Therefore, by changing the order of summation, we obtain that (4.13)

K k=2 α k 1 h h n=1 exp in(β k -β 1 ) = -α 1 .
Since β k -β 1 ∈ (0, 2π) for every k ∈ {2, . . . , K}, we have

1 h h n=1 exp in(β k -β 1 ) ----→ h→∞ 0, ∀k ∈ {2, . . . , K}.
We then deduce from (4.13) that α 1 = 0. The contradiction is reached.

Proposition 4.6. F is a linearly independent family of functions. Proof. Assume by contradiction that there exists a positive integer K, K different points (r 1 , β 1 ), . . . , (r K , β K ) in D, and a set {α k } 1≤k≤K of non-zero coefficients in R such that

K k=1 α k 1 + r k cos(x -β k ) = 0, ∀x ∈ R.
Therefore, by the Fourier series expansion (4.11), we would have

K k=1 α k A n (r k , β k ) = 0, K k=1 α k B n (r k , β k ) = 0, ∀n > 0.
By changing order of (r k , β k ), we can assume without loss of generality that 0

≤ r 1 ≤ • • • ≤ r K < 1. Let us define, for n ∈ N, (4.14) 
Ã2n+1 (r) := ∞ m=n r 2m+1 C 2m+1 2 2m 2m + 1 m -n , Ã2n (r) := ∞ m=n r 2m C 2m 2 2m 2m m -n .
Therefore Ãn is defined for every n ∈ N. We notice that for every n > 0, A n (r, β) + iB n (r, β) = Ãn (r)e inβ . Thus, for every n ∈ N * , If r K = 0, then K = 1 since there is only one point in D for which r = 0. Since the function corresponding to (r = 0, β = 0) is non-zero, we should have α 1 = 0, which is a contradiction. Otherwise, if r K > 0, there exists 1 ≤ l ≤ K such that r l = • • • = r K and, if l > 1, r l-1 < r l . Recall that α k ̸ = 0 for all 1 ≤ k ≤ K. By Lemma 4.5, there exists C > 0 such that for every A ∈ N, there exists an integer N > A such that

K k=l α k exp(iN β k ) > C.
Then by (4.16), there exists a big enough M ∈ N such that, for all N > M , (4.17)

l-1 k=1 α k ÃN (r k ) < C| ÃN (r K )|.
Therefore, by Lemma 4.5, there exists N > M such that

K k=l α k exp(i N β k ) à N (r k ) = K k=l α k exp(i N β k ) | à N (r K )| > C| à N (r K )| > l-1 k=1 α k à N (r k ) .
With this inequality, equality 

F c (ū) = [0, 2π) ∋ θ → g j (θ) = 2k j 1 + r j cos(2θ -β j ) j∈I c (ū)
.

For each (r, β) ∈ D, we furthermore define (4.20)

I c r,β (ū) = {j ∈ I c (ū) | (r j , β j ) = (r, β)} .
Proposition 4.7. The family of functions F c (ū) is rationally independent if and only if for each nonempty I c r,β (ū) the family (k n ) n∈I c r,β (ū) is rationally independent. Proof. First, we should notice that the rational independence of F c (ū) is equivalent to the rational independence of the family

(4.21) Fc (ū) := R ∋ x → k j 1 + r j cos(x -β j ) j∈I c (ū)
.

Assume that there exists (r, β) ∈ D such that I c r,β (ū) is nonempty and the family (k j ) j∈I c r,β (ū) is rationally dependent. Therefore, the sub-family

x → k j 1 + r cos(x -β) j∈I c r,β (ū) 
of Fc (ū) is rationally dependent. Hence F c (ū) is rationally dependent.

Assume that for all (r, β) ∈ D, I c r,β (ū) is either empty or (k j ) j∈I c r,β (ū) is rationally independent. For all finite subset J of I c r,β (ū), let us take (α j ) j∈J ∈ Q J such that j∈J α j k j 1 + r j cos(x -β j ) = 0, ∀x ∈ R.

Since J is finite, there exist M ∈ N * and (r 1 , β1 ), . . . , (r M , βM ) ∈ D pairwise distinct such that, for each j ∈ J , (r j , β j ) ∈ (r 1 , β1 ), . . . , (r M , βM ) , and for each 1 ≤ m ≤ M , the set

I m = j ∈ J | (r j , β j ) = (r m , βm )
is nonempty and finite. Then we have

M m=1 n∈Im α n k n 1 + rm cos(x -βm ) = 0, ∀x ∈ R.
By Proposition 4.6 we deduce that j∈Im α j k j = 0 for all m ∈ {1, . . . , M }. Since (k n ) n∈Im is assumed to be rationally independent, we have α n = 0 for every n ∈ I m . Therefore α j = 0 for every j ∈ J . We thus conclude that F c (ū) is rationally independent if and only if for each nonempty I r,β (ū) the family (k n ) n∈I r,β (ū) is rationally independent. 

Let us define

F wc (ū) = [0, 2π) ∋ θ → g j (θ) = 2k j | cos(θ -β j )| j∈I wc (ū)
.

For each β ∈ [0, π), we define (4.24) I wc β (ū) = {j ∈ I wc (ū) | β j = β}.

Proposition 4.8. The family of functions F wc (ū) is rationally independent if and only if for each nonempty I wc β (ū) the family (k j ) j∈I wc β (ū) is rationally independent. Proof. We should notice that the rational independence of F wc (ū) is equivalent to the rational independence of the family of functions is linearly independent. Then the proof can be done using similar arguments as those used for Proposition 4.7.

Proposition 4.9. The family of functions F(ū) (defined in (4.3)) is rationally independent if and only if F c (ū) (defined in (4.19)) and F wc (ū) (defined in (4.23)) are rationally independent.

Proof. Assume that F(ū) is rationally independent. Since F c (ū) and F wc (ū) are sub-families of F(ū), they are also rationally independent.

Assume now that F c (ū) and F wc (ū) are rationally independent. Let us consider a finite subset J of I(ū) and (α j ) j∈J ∈ Q J such that j∈J α j g j (θ) = 0, ∀θ ∈ [0, 2π).

Set J c = J ∩ I c (ū), J wc = J ∩ I wc (ū).

If J = J c or J = J wc , by rational independence of F c (ū) and F wc (ū), we deduce that α j = 0 for every j ∈ J . Otherwise, since all g j (•) are π-periodic, we have j∈J c α j k j 1 + r j cos(2θ -β j ) + j∈J wc α j k j | cos(θ -β j )| = 0, ∀θ ∈ R.

Let us take j ∈ J wc and β = β j , and define J wc β = I wc β (ū) ∩ J wc ̸ = ∅. Then, for all θ ∈ R, we have Let us note that the right-hand side of the above equality is differentiable at θ = β, while | cos(θ -β)| is not. Hence, p∈J wc β α p k p = 0. By Proposition 4.8 and the rational independence of F wc (ū), we obtain that α p = 0 for every p ∈ J wc β . This is true for each β = β j with j ∈ J wc . Therefore, α j = 0 for every j ∈ J wc . Then j∈J c α j k j 1 + r j cos(2θ -β j ) = 0, ∀θ ∈ R.

By the rational independence of F c (ū), we deduce that α j = 0 for every j ∈ J c . Thus, α j = 0 for every j ∈ J . We conclude that F(ū) is rationally independent.

Examples.

In the following, we illustrate how to apply the results of the paper on systems having piled-up intersections (Examples 1,2,3) and weakly conical intersections (Examples 2,3). Example 3 is for a system evolving in an infinitedimensional space.

The interaction Hamiltonians are H 1 = σ x ⊗ I c , where σ x is the Pauli matrix, that represents the carrier transitions between |g, n⟩ and |e, n⟩, and H 2 = σ -⊗ a † + σ + ⊗ a that represents the red sideband transitions between |e, n⟩ and |g, n + 1⟩. Then H(u) can be written in matrix form as

H(u) =               - ωeg 2 u 1 u 1 ωeg 2 u 2 u 2 ω c - ωeg 2 u 1 u 1 ω c + ωeg 2 √ 2u 2 √ 2u 2 2ω c - ωeg 2 u 1 u 1 2ω c + ωeg 2 √ 3u 2 √ 3u 2 3ω c - ωeg 2 . . . . . . . . .              
.

Notice that H 1 and H 2 are Kato-small with respect to H 0 . The eigenvalue intersections of H(•) are either conical or weakly conical and can only appear when u 1 = 0 or u 2 = 0 (see, eg., [START_REF] Augier | Effective adiabatic control of a decoupled hamiltonian obtained by rotating wave approximation[END_REF]). Let us take U = [-ωc 2 , ωc 2 ] × R and suppose that 1 -ω eg ω c 2 is an irrational number.

Then, it is not difficult to compute that, when u 2 = 0, for all n ≥ 1, the intersections between λ 2n and λ 2n+1 occur at ū = (

√ ω 2 c -ω 2 eg 2
, 0) and have rationally unrelated germs at ū. When u 1 = 0 and n ≥ 1, the intersections between λ 2n-1 and λ 2n are weakly conical and are non-overlapping. Therefore, by Theorem 3.8, System (1.1) is approximately controllable, since its spectrum is weakly conically connected and its eigenvalue intersections have rationally unrelated germs at every intersection point.

Figure 1 . 1 :

 11 Figure 1.1: Intersections between eigenvalues of H(u) seen as functions of u = (u 1 , u 2 ), with m = 2: conical (a); semiconical (b); piled-up intersections (c); non-piled-up intersections (d).

1 )( 4 A

 14 × [0, 2π) ∪ {(0, 0)} and consider the family (4.9)F := R ∋ x → 1 + r cos(x -β) (r,β)∈ Dof 2π-periodic functions. We are going to prove that such a family is linearly independent. For each (r, β) ∈ D, (4.10)g : R ∋ x → 1 + r cos(x -β)is a 2π-periodic continuously differentiable function. The Fourier series for g is given by n (r, β) cos(nx) + B n (r, β) sin(nx) and converges uniformly to g as N → ∞. Meanwhile, since |r cos(x -β)| ≤ r < 1 for all x ∈ R, we can develop g by means of the power series (4.12) 1 + r cos(x -β) = 1 + ∞ n=1

  Ãn (r k )e inβ k = 0. Since C 2m+1 > 0 for every m ∈ N and C 2m < 0 for every m ∈ N * then, by (4.14), for r, r ′ ∈ R such that 0 ≤ r < r ′ < 1, (4.16) | Ãn (r)| | Ãn (r ′ )| < r r ′ n , ∀n ∈ N * .

  (4.15) can no longer hold true for n = N . Thus the contradiction is reached and the proof is concluded. Now, let us define (4.18) I c (ū) = j ∈ I | λ j (•) and λ j+1 (•) intersect conically at ū , and, in accordance with Proposition 4.2, the family of functions (4.19)

( 4 .

 4 22) I wc (ū) = j ∈ I | λ j (•) and λ j+1 (•) intersect weakly conically at ū , and, in accordance with Proposition 2.18, (4.23)

( 4 .

 4 25) Fwc (ū) := R ∋ x → k j | cos(x -β j )| j∈Iwc(ū) . Notice that x → | cos(x -β)| is differentiable everywhere on R except at x = β + kπ, k ∈ Z,and the family of functions R ∋ x → | cos(x -β)| β∈[0,π)

  p | cos(θ -β)| = -p∈J wc \J wc β α p k p | cos(θ -β p )| -p∈J c α p k p 1 + r p cos(2θ -β p ).
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It is not difficult to compute that, at ū = (0, √ 2), λ 1 intersects conically with λ 2 and λ 3 intersects conically with λ 4 , with (k 1 , r 1 , β 1 ) = ( 23 , 1 2 , 0) and (k

3 , 5 7 , 0). By Proposition 4.7, the eigenvalue intersections have rationally unrelated germs at (0, √ 2). Moreover, λ 2 intersects conically with λ 3 at ū = ( 12 -2 √ 33, 0). Therefore, by Remark 3.10 and by Theorem 1.1, System (1.1) is exactly controllable in the unitary group, since, up to suitably choosing U ′ ⊂ R 2 , the spectrum of H(•) on U ′ is weakly conically connected and its eigenvalue intersections have rationally unrelated germs at every intersection point.

Example 5.2. Let us take H = C 5 , U = R 2 , and

It is not difficult to compute that, at ū = (0, 0), λ 1 intersects semi-conically with λ 2 and λ 4 intersects semi-conically with λ 5 with (k 1 , β 1 ) = (1, 0) and (k 4 , β 4 ) = (2, π 2 ). By Proposition 4.8, the eigenvalue intersections have rationally unrelated germs at (0, 0). Moreover, λ 2 intersects conically with λ 3 at ū = ( 23 , 0) and λ 3 intersects conically with λ 4 at ū = (0, 3- √ 3

3 ). Therefore, by Remark 3.10 and by Theorem 1.1, System (1.1) is exactly controllable in the unitary group.

Example 5.3. Let us consider a Eberly-Law type model of a qubit coupled with a harmonic oscillator, described by the equation

where the Hamiltonian H(u) = H 0 + u 1 H 1 + u 2 H 2 is described next. In absence of any coupling, the drift Hamiltonian H 0 is given by

where I q and I c are identity operator in the qubit and harmonic oscillator, σ z the Pauli matrix, a † the creation operator, a the annihilation operator, and ω eg < ω c . The eigenstates of H 0 can be represented as