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CONTROLLABILITY OF QUANTUM SYSTEMS HAVING WEAKLY
CONICALLY CONNECTED SPECTRUM

RUIKANG LIANG∗, UGO BOSCAIN∗, AND MARIO SIGALOTTI∗

Abstract. We explore the controllability of a closed multi-input control-affine quantum system.
Previous studies have demonstrated that a spectrum connected by conical intersections which do
not pile up yields exact controllability in finite dimension and approximate controllability in infinite
dimension. Actually, the property that intersections between eigenvalues are conical and that they do
not pile up is generic. However, in physical situations, due to symmetry of the system, the spectrum
can exhibit intersections that are not conical and possibly pile up. We extend the controllability result
to cover this type of situations under the hypothesis that the intersections have at least one conical
direction and the piled-up intersections have “rationally unrelated germs”. Finally, we provide a
testable first-order sufficient condition for controllability. Physically relevant examples are provided.

Key words. Conical eigenvalue intersections, quantum control, exact and approximate control-
lability

MSC codes. 81Q93, 93B05

1. Introduction. In this paper, we consider the controllability of the bilinear
Schrödinger equation

(1.1) iψ̇(t) = H(u(t))ψ(t) =
(
H0 +

m∑
ℓ=1

uℓ(t)Hℓ

)
ψ(t),

where ψ belongs to a complex Hilbert space, H(u(t)) is a self-adjoint operator on
H, and the control u(·) =

(
u1(·), . . . , um(·)

)
takes values in an open and connected

subset U of Rm. The controllability properties of the system can be studied via
different techniques [16, 6, 18, 13, 14, 7]. In this paper we approach the controllability
problem by studying the spectrum of H(u), where u is seen as a parameter. Such
spectrum can exhibit eigenvalue intersections. Conical intersections can be defined in
terms of the gap between eigenvalues in the vicinity of the intersection (see Figure 1.1a
and Definition 2.4). It has have been proven in [10] that if the spectrum of u 7→ H(u)
is conically connected, i.e., there exists an eigenvalue intersection between every pair
of subsequent eigenvalues and these intersections are not piled-up (see Figures 1.1c
and 1.1d for examples), then

• when n = dim(H) < ∞, System (1.1) is exactly controllable in the unitary
group, i.e., its lift on the unitary group U(n) (or on SU(n) in the case that
iH0, . . . , iHm ∈ su(n)) has the property that for every choice of initial and
finite state, there is an admissible trajectory of the system going from the
former to the latter. In particular, System (1.1) is exactly controllable in the
unit sphere of H;

• when dim(H) = ∞ and the operators H1, . . . ,Hm are bounded, System (1.1)
is approximately controllable, i.e., for each ψ0 on the unit sphere of H, the
set of states that are reachable from ψ0 by and admissible trajectory of the
system is a dense subset of the unit sphere of H.

Although eigenvalue intersections are generically conical for m = 2 in the case
of real Hamiltonians (as shown in [11]) and for m = 3 for complex Hamiltonians (as
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(a) A conical intersection (b) A semi-conical intersection

(c) Piled-up intersections (d) Non-piled-up intersections

Figure 1.1: Intersections between eigenvalues ofH(u) seen as functions of u = (u1, u2),
with m = 2: conical (a); semiconical (b); piled-up intersections (c); non-piled-up
intersections (d).

shown in [15]), and generically they do not pile up, in physical situations, we can
observe the following situations:

• Eigenvalue intersections may be non-conical. An example of a physical system
that can exhibit non-conical intersections is the STIRAP process (Stimulated
Raman Adiabatic Passage) (see [1, Example 6.1.2]). Notice that when m =
2, in most cases, the non-conical intersections are actually semi-conical, as
studied in [3] (see Definition 2.7 and Figure 1.1b).

• In physical situations, due to symmetries in the system, eigenvalue intersec-
tions can pile up. For example, when controlling the rotation of a quan-
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tum planar molecule (see [9]), the eigenvalues of H0 are mostly double and
H0 +

∑m
ℓ=1 uℓHℓ has many piled-up intersections. Similarly, in Eberly–Law

type models (see, for example, [8]), conical intersections can pile up as well.
In this paper, we introduce the notion of weakly conical intersection, i.e., an isolated
eigenvalue intersection for which there exists at least one conical direction (see Defi-
nition 2.6), which identifies a specific class of non-conical intersections that includes
semi-conical ones. We extend the results of [10] to the case in which intersections
can pile up and can be weakly conical. We say that such a spectrum is weakly coni-
cally connected. However, weak conical connectedness is not sufficient to obtain full
controllability results. For example, the Hamiltonian

(1.2) H(u, v) =


−1 −v 0 0 0
−v −1 −u 0 0
0 −u 0 u 0
0 0 u 1 v
0 0 0 v 1


has a weakly conically connected spectrum. However, the dynamics

(1.3) iψ̇(t) = H(u(t), v(t))ψ(t)

is not controllable, since we can easily verify that the set{
(ψ1, ψ2, ψ3, ψ̄2, ψ̄1) | ψ1, ψ2 ∈ C, ψ3 ∈ R and 2|ψ1|2 + 2|ψ2|2 + ψ2

3 = 1
}

is invariant for (1.3).
Under the hypothesis that the piled-up intersections of the weakly connected

spectrum have rationally unrelated germs (see Definition 3.5), we are able to prove a
controllability result of the following type.

Theorem 1.1. Let n = dim(H) < ∞, H0, . . . ,Hm(m ≥ 2) be self-adjoint opera-
tors, and assume that the spectrum of u 7→ H(u) is weakly conically connected and that
its eigenvalue intersections have rationally unrelated germs at each intersection point.
Then Lie(iH0, . . . , iHm) = su(n) if iH0, . . . , iHm ∈ su(n) and Lie(iH0, . . . , iHm) =
u(n) otherwise, meaning that System (1.1) is exactly controllable in the unitary group.

In the case where the Hilbert space H is infinite-dimensional, some technical
hypotheses are necessary (see [5, 12]) and only an approximate controllability result
can be obtained (see Theorem 3.8). Our results extend [10, Theorem 14] in two ways.
First, it applies to systems in which the spectrum is only weakly connected and,
moreover, it does not require H1, . . . ,Hm to be bounded, but just relatively bounded
with respect to H0.

The paper is organized as follows: In Section 2 we recall the notion of conical
and semi-conical intersections and we introduce the concept of weakly conical inter-
sections. Characterizations of such intersections is given using spectral projectors.
Section 3 contains the proof of the main controllability results of the paper, namely
Theorem 1.1 and its counterpart for systems evolving in infinite-dimensional system
(Theorem 3.8). In Section 4 we provide testable conditions guaranteeing that the
eigenvalues intersections have rationally unrelated germs, using first-order expansions
of the spectral gaps near conical and semi-conical intersections. We conclude by some
examples in Section 5.



4 RUIKANG LIANG, UGO BOSCAIN, MARIO SIGALOTTI

2. Eigenvalue intersections. We consider a control-affine Hamiltonian given
by

(2.1) H(u) = H0 +

m∑
ℓ=1

uℓHℓ,

where u = (u1, . . . , um) belongs to an open and connected subset U of Rm. We assume
that H(·) satisfies
(A1) H0 is a self-adjoint operator on a separable Hilbert spaceH with domainD(H0).

For each ℓ ∈ {1, . . . ,m}, Hℓ is a symmetric operator on D(H0).
We recall the following concept of relative boundedness (see, e.g., [17, sec. 4.1]).

Definition 2.1. Let A be a self-adjoint operator on a Hilbert space H with do-
main D(A) and B be a symmetric operator on the domain D(A). We say that B is
A-bounded if there exist α, β > 0 such that ∥Bv∥ ≤ α∥Av∥+β∥v∥ for every v ∈ D(A).
The greatest lower bound α0 of all possible constant α is called the relative bound of
B with respect to A. We say that B is Kato-small with respect to A if it is A-bounded
with relative bound 0.

Let us introduce the following two possible assumptions for System (1.1):
(A2) For each ℓ ∈ {1, . . . ,m}, Hℓ is H0-bounded.
(A2*) For each ℓ ∈ {1, . . . ,m}, Hℓ is Kato-small with respect to H0.
Notice that (A2*) is a stronger assumption than (A2).

Remark 2.2. By Rellich–Kato theorem (see [17, Theorem V-4.3]), if (A1) and
(A2) are satisfied, then there exists a neighborhood W ⊂ Rm of 0 such that for all
u ∈W , H(u) is a self-adjoint operator with domain D(H(u)) = D(H0). If (A1) and
(A2*) are satisfied, one can take W = Rm and, for every u ∈ Rm and ℓ ∈ {1, . . . ,m},
Hℓ is Kato-small with respect to H(u) (see [17, Problem IV-1.2]).

The spectrum σ(H(u)) of H(u) can be seen as a function of u ∈ U . Let us denote by
{λj(u), λj+1(u)} a pair of subsequent eigenvalues of σ(H(u)), meaning that they are
the jth and (j + 1)th eigenvalues in a discrete sub-spectrum of σ(H(u)). To study
the intersection between two eigenvalues, we will consider the following assumption:
(A3) There are two eigenvalues λj(·) and λj+1(·) of H(·), with λj(·) ≤ λj+1(·), that

intersect at ū = 0 and λj(ū) = λj+1(ū) = 0. The subset {λj(u), λj+1(u)}
is separated from the rest of the spectrum by a positive gap on an open
neighborhood w of ū = 0.

Notice that assumption (A3) can be generalized to any intersection ū ∈ U between
λj(·) and λj+1(·) by replacing u with u− ū and H0 with H(ū)−λj(ū). This transfor-
mation does not affect Assumption (A2*), in the sense that Hℓ is Kato-small with
respect to H0 if and only if it is Kato-small with respect to H(ū) − λj(ū). Con-
cerning assumptions (A1) and (A2), if one deals with a general intersection ū ∈ U
between λj(·) and λj+1(·), the corresponding assumptions should be stated in terms
of H(ū)− λj(ū) instead of H0.

Remark 2.3. Assumption (A3) implies that there exists a circle C on C that
separates {λq(u) | q ∈ {j, j + 1}, u ∈ ω} from

⋃
u∈ω

(
σ(H(u)) \ {λj(u), λj+1(u)}

)
.

Notice that C forms the boundary of a closed neighborhood D ⊂ C of 0.

In the following, let us define conical and weakly conical intersections.

Definition 2.4 (Conical intersection). An eigenvalue intersection ū ∈ U be-
tween two eigenvalues λj(·) and λj+1(·) is said to be conical if there exists C > 0 such
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that

1

C
|t| ≤ |λj+1(ū+ tη)− λj(ū+ tη)| ≤ C|t|

for every unit direction η ∈ Rm and t in a neighborhood of 0.

Definition 2.5 (Conical direction). Given an intersection ū between λj(·) and
λj+1(·), a unit vector η ∈ Rm is said to be a conical direction at ū if there exists
C > 0 such that

1

C
|t| ≤ λj+1(tη)− λj(tη) ≤ C|t|

for t in a neighborhood of 0.

Definition 2.6 (Weakly conical intersection). A non-conical eigenvalue inter-
section ū ∈ U between two eigenvalues λj(·) and λj+1(·) is said to be weakly conical
if ū is an isolated point in

Uj = {u ∈ U | λj(u) = λj+1(u)}

and there exists at least one conical direction at ū.

In the case m = 2, let us recall the notion of semi-conical intersection introduced
in [3]. Semi-conical intersections are automatically weakly conical.

Definition 2.7 (Semi-conical intersection). When m = 2, an intersection ū
between two eigenvalues λj(·) and λj+1(·) of H(·) is said to be semi-conical if there
exists a unit vector η ∈ R2, called the non-conical direction at ū, such that every
unit vector µ ∈ R2 transversal to η is a conical direction and, for every smooth curve
[0, 1] ∋ t 7→ γ(t) ∈ R2 satisfying γ(0) = ū and γ′(0) = η, there exists C > 0 such that

1

C
t2 ≤ |λj+1(γ(t))− λj(γ(t))| ≤ Ct2

for t in a neighborhood of 0.

These definitions depend solely on the gap between eigenvalues in a neighborhood
of the intersection ū. As we will see, the first-order expansion of λj+1(u)− λj(u) in a
neighborhood of ū is sufficient to determine whether the intersection is conical or not.
In the case of m = 2, the second-order expansion of λj+1(u)−λj(u) in a neighborhood
of ū will determine whether the intersection in conical, semi-conical, or otherwise.

Remark 2.8. Notice that replacing H0 with H(ū)− λj(ū) and u with u− ū does
not change the property of an intersection being conical or weakly conical.

Under assumptions (A1-A2-A3) or (A1-A2*-A3), we can define, for each u in
a neighborhood of ū = 0, the spectral projector

(2.2) P (u) =
1

2iπ

∮
C
(H(u)− ξ)−1dξ

with respect to {λj(u), λj+1(u)}. By Kato (see [17, Remark II-4.2]), in a neighborhood
of ū = 0 the operator-valued function u 7→ U(u) given by

(2.3) U(u) :=
(
1−

(
P (u)− P (0)

)2)− 1
2
(
P (u)P (0) +

(
1− P (u)

)(
1− P (0)

))
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is well-defined and has the following properties: U(·) is holomorphic, U∗(u)U(u) =
U(u)U∗(u) = 1, and U(u)P (0) = P (u)U(u). Moreover, for u in a neighborhood of 0,

(2.4) h(u) := U∗(u)P (u)H(u)P (u)U(u) = P (0)U∗(u)H(u)U(u)P (0)

is a self-ajoint operator on the two-dimensional subspace P (0)H and σ(h(u)) =
{λj(u), λj+1(u)}.

Remark 2.9. Standard analyticity arguments (see, e.g., [17]) show that when
(A1-A2-A3) are satisfied, there exists an open neighborhood N ⊂ w of ū such that
the mapping N ∋ u 7→ P (u) is analytic. When (A2*) is satisfied we have N = w.
Moreover, for every u ∈ N , there exists a neighborhood O of u such that

(2.5) P (v) = P (u) +
∑
n≥1

P (n)
u (v − u), ∀v ∈ O,

with P
(n)
u (v − u) the bounded self-adjoint operator given by

(2.6) P (n)
u (v − u) = (−1)n

1

2iπ

∮
C
dξ(H(u)− ξ)−1

( m∑
ℓ=1

(vℓ − uℓ)Hℓ(H(u)− ξ)−1
)n
.

In particular,

(2.7) P (u) = P (0) + P
(1)
0 (u) +O(∥u∥2),

where P
(1)
0 (u) is the bounded self-adjoint operator

(2.8) P
(1)
0 (u) = − 1

2iπ

∮
C
dξ(H0 − ξ)−1

( m∑
ℓ=1

uℓHℓ

)
(H0 − ξ)−1.

The mapping N ∋ u 7→ h(u) is also analytic. Since H0P (0) = 0 and P (0)H0 = 0, the
second-order expansion of h(u) in a neighborhood of ū = 0 is
(2.9)
h(u) = P (0)U∗(u)H(u)U(u)P (0)

= P (0)(

m∑
ℓ=1

uℓHℓ)P (0) + P (0)P
(1)
0 (u)H0P

(1)
0 (u)P (0)

+ P (0)P
(1)
0 (u)

( m∑
ℓ=1

uℓHℓ

)
P (0) + P (0)

( m∑
ℓ=1

uℓHℓ

)
P

(1)
0 (u)P (0) +O(∥u∥3).

We assume in the following that A1-A2-A3 are satisfied. By adapting the results of
[17] to the control-affine Hamiltonian H(u) (see [17, II-(2.14)] for finite-dimensional

systems and [17, Section VII-1.5] for infinite-dimensional systems), P
(1)
0 (u) is given

by

(2.10) P
(1)
0 (u) = −P (0)

( m∑
ℓ=1

uℓHℓ

)
A−A

( m∑
i=1

uℓHℓ

)
P (0),

where A is the reduced resolvent of H0 for the eigenvalue 0 (see [17, II-(2.11)] and
[17, III-(6.31)]), such that

H0A = AH0 = 1− P (0), P (0)A = AP (0) = 0.
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Proposition 2.10. Let assumptions (A1-A2-A3) be satisfied and h be defined
as in (2.4). Then, for u in a neighborhood of 0,

(2.11)

h(u) =P (0)
( m∑
ℓ=1

uℓHℓ

)
P (0)

− P (0)
( m∑
ℓ=1

uℓHℓ

)
A
( m∑
ℓ=1

uℓHℓ

)
P (0) +O(∥u∥3).

Proof. This is a direct result of equations (2.9) and (2.10).

Lemma 2.11. Let B be a self-adjoint operator on P (0)H and denote its eigenval-
ues by λ0 ≤ λ1. Then

(2.12) λ1 − λ0 = 2

√
− det

(
B − 1

2
tr(B)

)
.

Proof. Since B is a self-adjoint operator on a Hilbert space of dimension 2, we
have

det

(
B − 1

2
tr(B)

)
= det(B)− 1

4
tr(B)2,

and the eigenvalues of B are the roots of the quadratic equation λ2−tr(B)λ+det(B) =
0. Therefore,

λ1 − λ0 =
√
tr(B)2 − 4 det(B) = 2

√
−det

(
B − 1

2
tr(B)

)
.

Let us define the linear map that removes the trace of a linear operator on P (0)H by

(2.13)
R : L

(
P (0)H

)
→ L

(
P (0)H

)
B 7→ B − 1

2
tr(B).

Recall that h(u) ∈ L(P (0)H) is well defined for u in a neighborhood of 0 and σ(h(u)) =
{λj(u), λj+1(u)}. By Lemma 2.11, we have

(2.14) λj+1(u)− λj(u) = 2

√
−det

(
h(u)− 1

2
tr(h(u))

)
= 2

√
−det

(
R(h(u))

)
.

Let us define for each ℓ ∈ {1, . . . ,m}

(2.15) h
(1)
ℓ = P (0)HℓP (0),

and, for u ∈ Rm,

(2.16) h(2)(u) = −P (0)
( m∑
ℓ=1

uℓHℓ

)
A
( m∑
ℓ=1

uℓHℓ

)
P (0).
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Therefore, we obtain from (2.11) that

(2.17) h(u) =

m∑
ℓ=1

uℓh
(1)
ℓ + h(2)(u) +O(∥u∥3).

We now use this second-order expansion to characterize conical and semi-conical in-
tersections.

Lemma 2.12. For a unit direction η ∈ Rm, there exists C > 0 such that

(2.18)
1

C
|t| ≤ λj+1(tη)− λj(tη) ≤ C|t|

for t in a neighborhood of 0 if and only if

(2.19)

m∑
ℓ=1

ηℓR(h
(1)
ℓ ) ̸= 0.

Proof. By equations (2.14) and (2.17), we have

λj+1(tη)− λj(tη) = 2

√
−det

(
R(h(tη))

)
= 2t

√√√√−det
( m∑

ℓ=1

ηℓR(h
(1)
ℓ )
)
+ o(t).

Therefore, (2.18) is satisfied for some C > 0 if and only if

det(

m∑
ℓ=1

ηℓR(h
(1)
ℓ )) ̸= 0,

which is equivalent to (2.19) since
∑m

ℓ=1 ηℓR(h
(1)
ℓ ) is a zero-trace self-adjoint operator

on a two-dimensional space.

Remark 2.13. Notice that the existence of a conical direction implies that there

exists ℓ ∈ {1, . . . ,m} such that R(h
(1)
ℓ ) ̸= 0 and that the subset{

µ ∈ Rm |
m∑
ℓ=1

µℓR(h
1)
ℓ ) ̸= 0

}

is dense and has zero-measure complement in Rm.

Proposition 2.14. Assume that (A1-A2-A3) are satisfied. The intersection
between λj(·) and λj+1(·) at ū = 0 is conical if and only if the family of zero-trace

operators
{
R(h

(1)
ℓ )
}
ℓ∈{1,...,m} is R-linearly independent, where R is the trace-removing

function introduced in (2.13).

Proof. According to Definition 2.4 and Lemma 2.12, we deduce that the intersec-
tion at ū = 0 is conical if and only if, for every unit direction η ∈ Rm, we have

m∑
ℓ=1

ηℓR(h
(1)
ℓ ) ̸= 0,

which is equivalent to the family
{
R(h

(1)
ℓ )
}
ℓ∈{1,...,m} being R-linearly independent.



WEAKLY CONICALLY CONNECTED SPECTRUM 9

Remark 2.15. Since zero-trace symmetric operators on P (0)H form a real vec-
tor space of dimension 3, a necessary condition for an intersection to be conical is
that m ≤ 3. Moreover, in the case of real Hamiltonians, i.e., when there exists an
orthonormal basis {χj}j of the Hilbert space H such that ⟨χj , Hqχk⟩ is real for all j, k
and each q ∈ {0, . . . ,m}, then a necessary condition is that m ≤ 2.

Remark 2.16. When m = 2, the intersection is conical if and only if R(h
(1)
1 ) and

R(h
(1)
2 ) are R-linearly independent. If we choose an orthonormal basis {ϕj , ϕj+1} of

P (0)H, the intersection is conical if and only if the two matrices(
1
2 ⟨ϕj , Hsϕj⟩ − 1

2 ⟨ϕj+1, Hsϕj+1⟩ ⟨ϕj , Hsϕj+1⟩
⟨ϕj+1, Hsϕj⟩ 1

2 ⟨ϕj+1, Hsϕj+1⟩ − 1
2 ⟨ϕj , Hsϕj⟩

)
, s ∈ {1, 2},

are R-linearly independent. The latter is equivalent to the inequality

(2.20) det

(
1
2 ⟨ϕj , H1ϕj⟩ − 1

2 ⟨ϕj+1, H1ϕj+1⟩ ⟨ϕj , H1ϕj+1⟩
1
2 ⟨ϕj , H2ϕj⟩ − 1

2 ⟨ϕj+1, H2ϕj+1⟩ ⟨ϕj , H2ϕj+1⟩

)
̸= 0.

The 2× 2 matrix appearing in (2.20) has been introduced under the name of conicity
matrix in [11]. Therefore, Proposition 2.14 generalizes the characterization of conical
intersection by the conicity matrix given in [11, Proposition 4.4].

Lemma 2.17. When m = 2, for a smooth curve γ : [0, 1] → R2 with γ(0) = 0,
γ̇(0) = η and γ̈(0) = v, there exists C > 0 such that

(2.21)
t2

C
≤ λj+1(γ(t))− λj(γ(t)) ≤ Ct2

if and only if

(2.22) η1R
(
h
(1)
1

)
+ η2R

(
h
(1)
2

)
= 0,

1

2
v1R

(
h
(1)
2

)
+

1

2
v2R

(
h
(1)
2

)
+R

(
h(2)(η)

)
̸= 0.

Proof. For t in a neighborhood of 0, γ(t) = tη+ t2

2 v+O(t3). By (2.14) and (2.17),
we have

λj+1(γ(t))− λj(γ(t)) =

√√√√det
( 2∑

ℓ=1

(tηℓ +
t2

2
vℓ)R

(
h
(1)
ℓ

)
+ t2R

(
h(2)(η)

))
+ o(t2).

By Lemma 2.12, we conclude that (2.21) is satisfied for some C > 0 if and only if
(2.22) is satisfied and

det
( 2∑

ℓ=1

1

2
vℓR

(
h
(1)
ℓ

)
+R

(
h(2)(η)

))
̸= 0,

which is equivalent to the second equation of (2.22) since
∑2

ℓ=1
1
2vℓR

(
h
(1)
ℓ

)
+R

(
h(2)(η)

)
is a zero-trace self-adjoint operator on a two-dimensional space.

Proposition 2.18. Let m = 2. The intersection between λj(·) and λj+1(·) at

ū = 0 is semi-conical if and only if R(h
(1)
1 ) and R(h

(1)
2 ) are colinear, R(h

(1)
s ) ̸= 0 for

some s ∈ {1, 2}, and, setting

(2.23) η =

− ∥R(h
(1)
2 )∥√

∥R(h
(1)
1 )∥2 + ∥R(h

(1)
2 )∥2

,
∥R(h

(1)
1 )∥√

∥R(h
(1)
1 )∥2 + ∥R(h

(1)
2 )∥2

 ,
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R(h(2)(η)) is not colinear to R(h
(1)
s ).

Proof. By Definition 2.7 and Lemmas 2.12 and 2.17, ū = 0 is semi-conical if and
only if there exists a unit direction η ∈ R2 such that

η1R
(
h
(1)
1

)
+ η2R

(
h
(1)
2

)
= 0,

1

2
v1R

(
h
(1)
2

)
+

1

2
v2R

(
h
(1)
2

)
+R

(
h(2)(η)

)
̸= 0, ∀v ∈ R2,

and, for all µ ∈ R2 transversal to η,

µ1R
(
h
(1)
1

)
+ µ2R

(
h
(1)
2

)
̸= 0.

Equivalently, R(h
(1)
1 ) and R(h

(1)
2 ) are colinear and not both zero, and, setting η as in

(2.23), R
(
h(2)(η)

)
is not colinear to R(h

(1)
1 ) nor to R(h

(1)
2 ).

Remark 2.19. Assume that ū ∈ U (not necessarily 0) is an eigenvalue intersec-
tion between λj(·) and λj+1(·) and that λj(ū) = λj+1(ū) = λ ∈ R. The assumptions
(A1-A2-A2*-A3) can be easily generalized to this intersection ū by replacing u with
u− ū and H0 with H(ū)−λj(ū). Therefore, the characterization of conical and semi-
conical intersections (Proposition 2.14 and Proposition 2.18) can still be applied. In
particular, for u in a neighborhood of ū, we have

λj+1(u)− λj(u) = 2

√√√√− det
( m∑

ℓ=1

(uℓ − ūℓ)R
(
Pj,j+1(ū)HℓPj,j+1(ū)

))
+ o(∥u∥),

where Pj,j+1(ū) is the spectral projector with respect to {λj(ū), λj+1(ū)}.

3. Systems connected by conical and weakly conical intersections. We
say that System (1.1) satisfies (H) if

• H0, . . . ,Hm (m ≥ 2) are self-adjoint operators on H with dim(H) <∞,
and that System (1.1) satisfies (H∞) if the following assumptions hold true:

• H is a separable Hilbert space with dim(H) = ∞,
• H0 is a self-adjoint operator on H with domain D(H0) and H1, . . . ,Hm (m ≥

2) are symmetric operators on D(H0),
• H0 is an operator with compact resolvent, i.e., (H0 + i)−1 is a compact oper-

ator, and H1, . . . ,Hm are Kato-small with respect to H0.

Remark 3.1. Notice that H0 is an operator with compact resolvent if and only
if the spectrum of H0 is discrete, i.e., each point of σ(H0) is an isolated eigenvalue
of finite multiplicity. H0-boundedness implies that for all u ∈ U , H(u) is a self-
adjoint operator on H with domain D(H0), H1, . . . ,Hm are Kato-small with respect
to H(u) and that the spectrum of H(u) is discrete. Moreover, both assumptions (H)
and (H∞) imply (A1-A2*), and therefore the conicity and weak conicity of the
intersection points of σ(H(u)) can be characterized using the results of the previous
section.

Under assumption (H) or (H∞), the spectrum of H(·) is discrete. Let I denote
{1, . . . ,dim(H)} (respectively, N∗) when (H) (respectively, (H∞)) is satisfied. For
every u ∈ U , we denote by {λj(u)}j∈I the increasing sequence of eigenvalues of H(u),
counted according to their multiplicities, and by {ϕj(u)}j∈I a corresponding sequence
of eigenvectors.
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Remark 3.2. Assume that System (1.1) satisfies (H∞). Let u : [0, T ] → U be a
piecewise constant control function. Then the propagator of System (1.1) associated
with u is given by

(3.1) Υu
t = ei(t−tl)H(ul) ◦ ei(tl−tl−1)H(ul−1) ◦ · · · ◦ eit1H(u1), for tl < t ≤ tl+1.

For any initial state ψ0 ∈ D(H0), the solution ψ(t) = Υu
t (ψ0) satisfies the Schrödinger

equation

iψ̇(t) = H(u(t))ψ(t) for a.e. t.

Similarly, for initial states ψ0 ∈ H\D(H0), the solution ψ(t) = Υu
t (ψ0) satisfies,

for every v ∈ D(H0), the equation

d

dt
⟨v, ψ(t)⟩ = −i⟨H(u(t))v, ψ(t)⟩ for a.e. t.

Let us define the approximate controllability of System (1.1).

Definition 3.3 (Approximate controllability). Let (H∞) be satisfied. We say
that System (1.1) is approximately controllable if for every ψ0, ψ1 in the unit sphere
of H and every ϵ > 0, there exists a piecewise constant control function u : [0, T ] → U
such that ∥Υu

T (ψ0)− ψ1∥ < ϵ.

It has been proven in [10] that for a control-affine Hamiltonian H(u) = H0 +∑m
ℓ=1 uℓHℓ with u in an open and connected subset U of Rm, if Hℓ is bounded for

each ℓ ∈ {1, . . . ,m} and its spectrum is connected by conical intersections that do
not pile up, then exact controllability can be established in finite dimension and
approximate controllability in infinite dimension. We raise the question of whether it
is possible to extend controllability results to the case where the control Hamiltonian
Hℓ may be unbounded and the spectrum is connected by intersections that are not
necessarily conical and can pile up. We start by defining weak conical connectedness
and rationally unrelated germs.

Definition 3.4 (Weakly conical connected spectrum). Let (H) or (H∞) be sat-
isfied. We say that the spectrum σ(H(·)) is weakly conically connected if each of its
eigenvalue intersections is either conical or weakly conical, and, moreover, for every
(j, j + 1) ∈ I2, there exists ūj ∈ U such that λj(ūj) = λj+1(ūj).

Definition 3.5 (Rationally unrelated germs). Let (H) or (H∞) be satisfied
and the spectrum σ(H(·)) be weakly conically connected. For a given intersection
point ū ∈ U of σ(H(·)), define

(3.2) I(ū) := {j ∈ I | λj(ū) = λj+1(ū)}.

We say that intersections have rationally unrelated germs at ū if for every finite subset
J of I(ū), and for every neighborhood V of ū, the family of functions(

V ∋ u 7→ λj+1(u)− λj(u)
)
j∈J

is rationally independent, meaning that if {αj}j∈J ∈ QJ is such that∑
j∈J

αj(λj+1(u)− λj(u)) = 0, ∀u ∈ V,

then αj = 0 for all j ∈ J .
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Lemma 3.6. If System (1.1) satisfies (H) or (H∞) and the spectrum σ(H(·)) is
weakly conically connected, then for every ū ∈ U such that the spectrum σ(H(ū)) is
simple, the graph having I as nodes and having

S(ū) :=
{
(j, k) ∈ I2 | ⟨ϕj(ū), Hlϕk(ū)⟩ ≠ 0 for some l = 1, . . . ,m

}
as the set of edges is connected.

Proof. Assume by contradiction that there exists ū ∈ U such that σ(H(ū)) is sim-
ple and the graph having I as notes and S(ū) as the set of edges is not connected. Then
there exists a proper subset J of I such that V = span{ϕj(ū)}j∈J is a proper subspace

of H invariant for the evolution of the system. Let us set V ⊥ = span{ϕj(ū)}j∈I\J ,

which is also an invariant subspace, and we have H = V
⊕
V ⊥.

For each j ∈ I, let us define

Uj :=
{
u ∈ U | λj(u) is simple

}
,

which is an open and connected subset of U with a discrete complement. For each
u ∈ Uj , the corresponding eigenvector ϕj(u) can be written as ϕj(u) = v + w, with
v ∈ V and w ∈ V ⊥. We have

H(u)ϕj(u) = λj(u)ϕj(u) = λj(u)v + λj(u)w.

On the other hand, we have

H(u)ϕj(u) = H(u)v +H(u)w,

with H(u)v ∈ V and H(u)w ∈ V ⊥, since V and V ⊥ are invariant spaces for H(u).
The uniqueness of decomposition implies that

H(u)v = λj(u)v, H(u)w = λj(u)w.

Since λj(u) is a simple eigenvalue, we conclude that v = 0 or w = 0 and that for all
u ∈ Uj , ϕj(u) can only be in V or in V ⊥. Denoting by PV the orthogonal projection
on V , we have, for every j ∈ I,

(3.3) ∥PV ϕj(u)∥ ∈ {0, 1}, ∀u ∈ Uj .

Since J is a proper subset of I, we can find j ∈ J such that j+1 ∈ I \J (or j ∈ I \J
and j + 1 ∈ I). In other words, ϕj(ū) ∈ V and ϕj+1(ū) ∈ V ⊥. Since the spectrum is
simple at ū, we have that ū is in Uj ∩Uj+1. Let us consider an intersection ūj,j+1 ∈ U
between λj(·) and λj+1(·). Notice that there exists a neighborhood O of ūj,j+1 such
that O \ {ūj,j+1} ⊂ Uj ∩ Uj+1. Let us take a smooth curve γ : [−1, 1] → U such that
γ(−1) = γ(1) = ū, γ(t) ∈ Uj ∩ Uj+1 for every t ∈ [−1, 0) ∪ (0, 1], γ(0) = ūj,j+1, and
γ̇(0) is a non-zero vector tangent to a conical direction.

By Lemma 3.2 in [2] (which can be generalized to infinite-dimensional systems
with holomorphic spectral projectors), we can choose ϕj(γ(·)) and ϕj+1(γ(·)) such
that

(3.4) ψ : [−1, 1] ∋ t 7→
{
ϕj(γ(t)), if t ∈ [−1, 0]
ϕj+1(γ(t)), if t ∈ (0, 1]

is in C∞([−1, 1],H). Notice that for all t ∈ [−1, 0) ∩ (0, 1], γ(t) is in Uj ∩ Uj+1.
By (3.3) and (3.4), we have ∥PV ψ(t)∥ ∈ {0, 1} for all t ∈ [−1, 0) ∩ (0, 1]. Since
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∥PV ψ(·)∥ is continuous on [−1, 1], ∥PV ψ(·)∥ is constant on [−1, 1]. However, we have
∥PV ψ(−1)∥ = ∥PV ϕj(ū)∥ = 1 and ∥PV ψ(1)∥ = ∥PV ϕj+1(ū)∥ = 0. The contradiction
is reached.

The following result generalizes Lemmas 9 and 14 in [10] to the case of weakly
connected spectra.

Lemma 3.7. Let System (1.1) satisfy (H) or (H∞). Assume that the spectrum
σ(H(·)) is weakly conically connected and that the eigenvalue intersections have ra-
tionally unrelated germs at every intersection point ū ∈ U . Then there exists Ū ⊂ U
which is dense and with zero-measure complement in U such that if

∑N
j=1 αjλj(ū) = 0

with ū ∈ Ū , N ∈ N∗, N ≤ dimH, and {α1, . . . , αN} ∈ QN then α1 = · · · = αN .

Proof. Let Ξ be the set of all α = (α1, . . . , αN ) ∈ QN with N ∈ N∗, N ≤ dimH,
and αj ̸= αk for some j, k ∈ {1, . . . , N}. For every N ∈ N∗ and α ∈ Ξ ∩ QN , define
the set

Uα =
{
u ∈ U |

N∑
j=1

αjλj(u) = 0
}
.

Let Ū be the complement in U of the union of all Uα such that α ∈ Ξ. Notice that
a countable union of subsets of Rm with empty interior and zero measure has empty
interior and zero measure. Therefore, to prove that Ū is dense and with zero-measure
complement in U , we only need to prove that Uα has empty interior and zero measure
for every α ∈ Ξ.

Assume by contradiction that there exists α ∈ Ξ such that Uα has positive mea-
sure. Let N ∈ N∗ be such that α ∈ QN . Notice that the sub-spectrum σN (H(·)) =
{λ1(·), . . . , λN (·)} is analytic on the open and connected set

{u ∈ U | λ1(u), . . . , λN (u) are simple},

which is dense and with zero-measure complement in U . Hence Uα = U .
Fix an eigenvalue intersection point ū. Then for all j ∈ I(ū), the intersection

between {λj(·), λj+1(·)} is either conical or weakly conical. Consider an analytic
path γ : (−1, 1) → U such that γ(0) = ū, γ(t) is not an eigenvalue intersection for
t ∈ (−1, 0)∪ (0, 1), and γ̇(0) is a (non-zero) conical direction at ū for the intersection
between λj and λj+1 for every j ∈ I(ū). Then, we have

N∑
l=1

αlλl(γ(t)) = 0, ∀t ∈ (−1, 1).

By analytic dependence of the spectrum along γ in a neighbourhood of γ(0) (see
[19]), for all j ∈ I(ū), the functions

t 7→

{
λj(γ(t)) if t < 0,

λj+1(γ(t)) if t ≥ 0,
t 7→

{
λj+1(γ(t)) if t < 0,

λj(γ(t)) if t ≥ 0,

and the functions t 7→ λl(γ(t)), l ̸∈ {j, j + 1 | j ∈ I(ū)}, are analytic on (−1, 1).
Hence, setting αl = 0 for every l ∈ I \ {1, . . . , N}, we have, for all t ∈ (−1, 1),∑

j∈I(ū)

αjλj+1(γ(t)) +
∑

j∈I(ū)

αj+1λj(γ(t)) +
∑

l ̸=j,j+1,∀j∈I(ū)

αlλl(γ(t)) = 0.
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As a consequence,∑
j∈I(ū)

(αj − αj+1)
(
λj(γ(t))− λj+1(γ(t))

)
= 0, ∀t ∈ (−1, 1).

This is true for every analytic path γ as above. Since the intersections have rationally
unrelated germs at ū, we have αj − αj+1 = 0 for all j ∈ I(ū). Since this is true for
every intersection of σ(H(·)), we have α1 = · · · = αN . The contradiction is reached.
We conclude that Ū is dense and with zero-measure complement in U .

Theorem 3.8. If System (1.1) satisfies (H∞), the spectrum is weakly conically
connected and the eigenvalue intersections have rationally unrelated germs at each
intersection point, then System (1.1) is approximately controllable.

Proof of Theorems 1.1 and 3.8. Notice that the assumption of Theorem 1.1 im-
ply (H). By applying Lemma 3.7, we deduce that there exists ū ∈ U , such that

if
∑N

j=1 αjλj(ū) = 0 with N ∈ N∗, N ≤ dimH, and {α1, . . . , αN} ∈ QN , then
α1 = · · · = αN . In particular, the spectrum σ(H(ū)) is simple and two spectral gaps
λj(ū) − λk(ū) and λr(ū) − λs(ū) are different if (j, k) ̸= (r, s) and j ̸= k, r ̸= s. By
Lemma 3.6, we have that the graph having I as nodes and having{

(j, k) ∈ I2 | ⟨ϕj(ū), Hlϕk(ū)⟩ ≠ 0 for some l = 1, . . . ,m
}

as the set of edges is connected.
When dimH = n <∞, we deduce from [10, Proposition 11] that the Lie algebra

Lie(iH0, . . . , iHm) is equal to su(n) if iH0, . . . , iHm ∈ su(n) and to u(n) otherwise,
and we conclude that System (1.1) is exactly controllable in the unitary group. When
dimH = ∞, the approximate controllability of System (1.1) forllows from [10, Propo-
sition 15].

Remark 3.9. Let us notice that [10, Proposition 15] is only stated for bounded
H1, . . . ,Hm. However, since it is an adaption of Theorem 2.6 in [9], it can be easily
extended to the case where H1, . . . ,Hm are Kato-small with respect to H0. Following
[9], a stronger version of the previous theorem can be stated as an infinite-dimensional
counterpart of the exact controllability in the unitary group. With the same assump-
tions, System (1.1) is approximately simultaneously controllable, i.e., for every r > 0,
ψ1, . . . ψr ∈ H, ϵ > 0, and every unitary operator Υ̂ on H there exists a piecewise
constant control u : [0, T ] → U such that, for every 1 ≤ k ≤ r,∥∥∥Υ̂ψk −Υu

Tψk

∥∥∥ < ϵ.

Remark 3.10. Notice that if we can choose an open and connected subset U ′ of
U such that the spectrum σ(H(u)) is weakly conically connected and the eigenvalue
intersections have rationally unrelated germs at every intersection point on U ′, we
can still apply the spectral conditions above and obtain controllability results.

4. First-order condition for rational independence in the case m = 2.
Assume that m = 2, that System (1.1) satisfies (H) or (H∞), and that the spectrum
H(u(·)) is weakly conically connected. Let us consider ū ∈ U such that

(4.1) I(ū) = {j ∈ I | λj+1(ū) = λj(ū)}

has a cardinality greater than one. Our goal is to provide testable conditions guar-
anteeing that the eigenvalues intersections at ū have rationally unrelated germs. Let
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us take j ∈ I(ū) and denote by Pj,j+1(·) the spectral projector with respect to λj(·)
and λj+1(·) in a neighborhood of ū. By Lemma 2.12, for all unit direction η ∈ R2, we
have

d

dt

∣∣∣∣
t=0+

(
λj+1(ū+ tη)− λj(ū+ tη)

)
= 2
√

−det
(
η1hj,1 + η2hj,2

)
,

where hj,1, hj,2 are the self-adjoint operators on Pj,j+1(ū)H defined by

(4.2) hj,s = Pj,j+1(ū)HsPj,j+1(ū)−
1

2
tr
(
Pj,j+1(ū)HsPj,j+1(ū)

)
, s ∈ {1, 2}.

For θ ∈ [0, 2π), set η(θ) = (cos(θ), sin(θ))⊤ and define the family of functions
(4.3)

F(ū) =

(
[0, 2π) ∋ θ 7→ gj(θ) :=

d

dt

∣∣∣∣
t=0+

(
λj+1(ū+ tη(θ))− λj(ū+ tη(θ))

))
j∈I(ū)

.

Proposition 4.1. Assume that System (1.1) satisfies (H) or (H∞) and that
the spectrum σ(H(·)) is weakly conically connected. Let ū ∈ U be such that I(ū) is
nonempty. If the family of functions F(ū) is rationally independent then the eigen-
value intersections have rationally unrelated germs at ū.

Proof. Let us take a finite subset J ⊂ I(ū), a neighborhoodO of ū, and {αj}j∈J∈
QJ such that

∑
j∈J αj(λj+1(u) − λj(u)) = 0 for all u ∈ O. We deduce that, for all

θ ∈ [0, 2π),

0 =
d

dt

∣∣∣∣
t=0+

(∑
j∈J

αj

(
λj+1(ū+ tη(θ))− λj(ū+ tη(θ))

))
=
∑
j∈J

αjgj(θ).

Therefore, if there exist a finite subset J ⊂ I(ū) and a neighborhood O of ū such
that the family {u 7→ λj+1(u) − λj(u)}j∈J is rationally dependent, then the family
of functions F(ū) is rationally dependent. By Definition 3.5, we deduce that if the
family of functions F(ū) is rationally independent then the intersections at ū have
rationally unrelated germs.

Proposition 4.2. Assume that j ∈ I(ū) and that ū is a conical intersection
between λj(·) and λj+1(·). Let gj : θ ∈ [0, 2π) → R be the function defined in (4.3).
Then there exists a unique (kj , rj , βj) in

(4.4) D :=
(
R∗

+ × (0, 1)× [0, 2π)
)
∪
(
R∗

+ × {0} × {0}
)

such that

(4.5) gj(θ) = 2kj

√
1 + rj cos(2θ − βj), ∀θ ∈ [0, 2π).

Proof. Since hj,1 and hj,2 are self-adjoint zero-trace operators on Pj,j+1(ū)H, they
can be represented by the 2× 2 Hermitian matrices

Mj,1 =

(
aj 0
0 −aj

)
, Mj,2 =

(
bj cj
c̄j −bj

)
,

with aj , bj ∈ R and cj ∈ C. Since ū is a conical intersection between λj(·) and λj+1(·),
it follows from Proposition 2.14 that hj,1 and hj,2 are not colinear, hence aj ̸= 0 and
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cj ̸= 0. Then, for every θ ∈ [0, 2π), we have

gj(θ) =
d

dt

∣∣∣∣
t=0+

(
λj+1(ū+ tη(θ))− λj(ū+ tη(θ))

)
= 2

√
− det

(
cos(θ)Mj,1 + sin(θ)Mj,2

)
= 2

√
a2j + b2j + |cj |2

2
+
a2j − b2j − |cj |2

2
cos(2θ) + ajbj sin(2θ).

If bj = 0 and |aj | = |cj |, let us set

kj = |aj |, rj = 0, βj = 0.

Notice that (kj , rj , βj) belongs to D and that, for every θ ∈ [0, 2π),

gj(θ) = 2

√
a2j + |cj |2

2
= 2|aj | = 2kj

√
1 + rj cos(2θ − βj).

Otherwise, if bj ̸= 0 or |aj | ≠ |cj |, let us set

kj =

√
a2j + b2j + |cj |2

2
, ρj =

√(a2j − b2j − |cj |2

2

)2
+ a2jb

2
j , rj =

ρ2j
k2j
.

There exists a unique βj ∈ [0, 2π) such that

cos(βj) =
a2j − b2j − |cj |2

2ρj
, sin(βj) =

ajbj
ρj

.

Since aj , cj ̸= 0, then

ρ2j =
(a2j − b2j − |cj |2

2

)2
+ a2jb

2
j =

(a2j + b2j + |cj |2

2

)2
− a2jc

2
j < k2j .

Since, moreover, bj ̸= 0 or |aj | ≠ |cj |, we also have that

ρ2j =
(a2j − b2j − |cj |2

2

)2
+ a2jb

2
j =

(a2j − |cj |2

2

)2
+

1

4
b4j + c2jb

2
j > 0.

Thus, we have rj =
ρ2
j

k2
j
∈ (0, 1) and (kj , rj , βj) ∈ D. Moreover, for all θ ∈ [0, 2π),

gj(θ) = 2
√
k2j + ρ2j cos(β) cos(2θ) + ρ2j sin(β) cos(2θ)

= 2kj

√
1 +

ρ2j
k2j

cos(2θ − β) = 2kj

√
1 + rj cos(2θ − β).

We have proven that, once the intersection between λj(·) and λj+1(·) is conical, there
exists (kj , rj , βj) ∈ D such that (4.5) holds true. The uniqueness of a representative
in D can be easily proven.
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Proposition 4.3. Assume that j ∈ I(ū) and that ū is a weakly conical intersec-
tion between λj(·) and λj+1(·). Let gj : θ ∈ [0, 2π) → R be the function defined in
(4.3). Then there exists a unique (kj , βj) in

(4.6) D′ := R∗
+ × [0, π)

such that

(4.7) gj(θ) = 2kj | cos(θ − βj)|, ∀θ ∈ [0, 2π).

Proof. The proof is similar to that of Proposition 4.2.

Let

(4.8) D̄ :=
(
(0, 1)× [0, 2π)

)
∪ {(0, 0)}

and consider the family

(4.9) F̄ :=
(
R ∋ x 7→

√
1 + r cos(x− β)

)
(r,β)∈D̄

of 2π-periodic functions. We are going to prove that such a family is linearly inde-
pendent. For each (r, β) ∈ D̄,

(4.10) g : R ∋ x 7→
√
1 + r cos(x− β)

is a 2π-periodic continuously differentiable function. The Fourier series for g is given
by

(4.11) SN (x) =
1

2
A0(r, β) +

N∑
n=1

(
An(r, β) cos(nx) +Bn(r, β) sin(nx)

)
and converges uniformly to g as N → ∞. Meanwhile, since |r cos(x− β)| ≤ r < 1 for
all x ∈ R, we can develop g by means of the power series

(4.12)
√
1 + r cos(x− β) = 1 +

∞∑
n=1

Cnr
n cosn(x− β), Cn =

(−1)n−1(2n− 2)!

22n−1(n− 1)!n!
.

Notice that |Cn| < 1 for all n ≥ 1, and the convergence of the series in (4.12) is
uniform with respect to x ∈ R. In the following lemma we use the development (4.12)
to compute the coefficients of the Fourier series (4.11).

Lemma 4.4. Let (r, β) ∈ D̄, where the latter is defined in (4.8), and consider g
as in (4.10). The coefficients of the Fourier series for g are given by

A0 = 2 +

∞∑
m=1

r2m
C2m

22m−1

(
2m
m

)
<∞,

A2n =

∞∑
m=n

r2m
C2m

22m−1

(
2m

m− n

)
cos(2nβ) <∞, n > 0,

B2n =

∞∑
m=n

r2m
C2m

22m−1

(
2m

m− n

)
sin(2nβ) <∞, n > 0,

A2n+1 =

∞∑
m=n

r2m+1C2m+1

22m

(
2m+ 1
m− n

)
cos((2n+ 1)β) <∞, n ≥ 0,

B2n+1 =

∞∑
m=n

r2m+1C2m+1

22m

(
2m+ 1
m− n

)
sin((2n+ 1)β) <∞, n ≥ 0.
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Proof. Let us take (r, β) ∈ D̄. By (4.12), we have

√
1 + r cos(x− β) = 1 +

∞∑
n=1

Cnr
n cosn(x− β)

= 1 +

∞∑
n=1

Cnr
n

(
ei(x−β) + e−i(x−β)

2

)n

= 1 +

∞∑
n=1

Cn

n∑
k=0

rn
1

2n

(
n
k

)
e−i(n−2k)(x−β).

Since r ∈ (0, 1) and for all n ∈ N∗, |Cn| < 1, we have that

∞∑
n=1

n∑
k=0

∣∣∣∣Cnr
n 1

2n

∣∣∣∣ ∣∣∣∣(nk
)
e−i(n−2k)(x−β)

∣∣∣∣ ≤ ∞∑
n=1

n∑
k=0

|Cn| rn
1

2n

(
n
k

)

≤
∞∑

n=1

rn
n∑

k=0

1

2n

(
n
k

)
=

∞∑
n=1

rn <∞.

Therefore, by applying the Fubini–Tonelli theorem, we can change the order of sum-
mation. On the other hand, we notice that, for m ∈ N,

2m∑
k=0

(
2m
k

)
e−i(2m−2k)(x−β) =

(
2m
m

)
+ 2

m−1∑
k=0

(
2m
k

)
cos
(
(2m− 2k)(x− β)

)
,

2m+1∑
k=0

(
2m+ 1
k

)
e−i(2m−2k)(x−β) = 2

m∑
k=0

(
2m+ 1
k

)
cos
(
(2m+ 1− 2k)(x− β)

)
.

Then we have

√
1 + r cos(x− β) =1 +

∞∑
m=1

r2m
C2m

22m

(
2m
m

)

+

∞∑
m=1

r2m
C2m

22m−1

m∑
k=1

(
2m
m− k

)
cos
(
2k(x− β)

)
+

∞∑
m=0

r2m+1C2m+1

22m

m∑
k=0

(
2m+ 1
m− k

)
cos
(
(2k + 1)(x− β)

)
.

We notice that cos(n(x−β)) = cos(nβ) cos(nx)+sin(nβ) sin(nx). By properly chang-
ing the order of summation and by term identification with the Fourier series (4.11),
we get the formulas for the coefficients stated in the lemma.

Lemma 4.5. Fix K ∈ N∗ and let β1, . . . , βK be pairwise distinct points in [0, 2π).
If {αk}1≤k≤K is a set of non-zero coefficients in R, then there exists C > 0 such that
for every integer A > 0, there exists an integer N > A such that∣∣∣∣∣

K∑
k=1

αk exp(iNβk)

∣∣∣∣∣ > C.

Proof. Since n 7→ (exp(inβ1), . . . , exp(inβK)) is recurrent, it is enough to prove

that m 7→
∑K

k=1 αk exp(inβk) is not identically zero. The case K = 1 is trivial, since
α1 ̸= 0.



WEAKLY CONICALLY CONNECTED SPECTRUM 19

In the case K > 1, let us assume by contradiction that

K∑
k=2

αk exp
(
in(βk − β1)

)
= −α1, ∀n ∈ N.

Then, for every h ∈ N∗,

1

h

h∑
n=1

K∑
k=2

αk exp
(
in(βk − β1)

)
= −α1.

Therefore, by changing the order of summation, we obtain that

(4.13)

K∑
k=2

αk

(
1

h

h∑
n=1

exp
(
in(βk − β1)

))
= −α1.

Since βk − β1 ∈ (0, 2π) for every k ∈ {2, . . . ,K}, we have

1

h

h∑
n=1

exp
(
in(βk − β1)

)
−−−−→
h→∞

0, ∀k ∈ {2, . . . ,K}.

We then deduce from (4.13) that α1 = 0. The contradiction is reached.

Proposition 4.6. F̄ is a linearly independent family of functions.

Proof. Assume by contradiction that there exists a positive integer K, K different
points (r1, β1), . . . , (rK , βK) in D̄, and a set {αk}1≤k≤K of non-zero coefficients in R
such that

K∑
k=1

αk

√
1 + rk cos(x− βk) = 0, ∀x ∈ R.

Therefore, by the Fourier series expansion (4.11), we would have

K∑
k=1

αkAn(rk, βk) = 0,

K∑
k=1

αkBn(rk, βk) = 0, ∀n > 0.

By changing order of (rk, βk), we can assume without loss of generality that 0 ≤ r1 ≤
· · · ≤ rK < 1. Let us define, for n ∈ N,
(4.14)

Ã2n+1(r) :=

∞∑
m=n

r2m+1C2m+1

22m

(
2m+ 1
m− n

)
, Ã2n(r) :=

∞∑
m=n

r2m
C2m

22m

(
2m

m− n

)
.

Therefore Ãn is defined for every n ∈ N. We notice that for every n > 0, An(r, β) +
iBn(r, β) = Ãn(r)e

inβ . Thus, for every n ∈ N∗,

(4.15)

K∑
k=1

αkÃn(rk)e
inβk = 0.

Since C2m+1 > 0 for every m ∈ N and C2m < 0 for every m ∈ N∗ then, by (4.14), for
r, r′ ∈ R such that 0 ≤ r < r′ < 1,

(4.16)
|Ãn(r)|
|Ãn(r′)|

<
( r
r′

)n
, ∀n ∈ N∗.
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If rK = 0, then K = 1 since there is only one point in D̄ for which r = 0. Since the
function corresponding to (r = 0, β = 0) is non-zero, we should have α1 = 0, which is
a contradiction. Otherwise, if rK > 0, there exists 1 ≤ l ≤ K such that rl = · · · = rK
and, if l > 1, rl−1 < rl. Recall that αk ̸= 0 for all 1 ≤ k ≤ K. By Lemma 4.5, there
exists C > 0 such that for every A ∈ N, there exists an integer N > A such that∣∣∣∣∣

K∑
k=l

αk exp(iNβk)

∣∣∣∣∣ > C.

Then by (4.16), there exists a big enough M ∈ N such that, for all N > M ,

(4.17)

∣∣∣∣∣
l−1∑
k=1

αkÃN (rk)

∣∣∣∣∣ < C|ÃN (rK)|.

Therefore, by Lemma 4.5, there exists N̄ > M such that∣∣∣∣∣
K∑
k=l

αk exp(iN̄βk)ÃN̄ (rk)

∣∣∣∣∣ =
∣∣∣∣∣
K∑
k=l

αk exp(iN̄βk)

∣∣∣∣∣ |ÃN̄ (rK)| > C|ÃN̄ (rK)|

>

∣∣∣∣∣
l−1∑
k=1

αkÃN̄ (rk)

∣∣∣∣∣ .
With this inequality, equality (4.15) can no longer hold true for n = N̄ . Thus the
contradiction is reached and the proof is concluded.

Now, let us define

(4.18) Ic(ū) =
{
j ∈ I | λj(·) and λj+1(·) intersect conically at ū

}
,

and, in accordance with Proposition 4.2, the family of functions

(4.19) Fc(ū) =

(
[0, 2π) ∋ θ 7→ gj(θ) = 2kj

√
1 + rj cos(2θ − βj)

)
j∈Ic(ū)

.

For each (r, β) ∈ D̄, we furthermore define

(4.20) Ic
r,β(ū) = {j ∈ Ic(ū) | (rj , βj) = (r, β)} .

Proposition 4.7. The family of functions Fc(ū) is rationally independent if and
only if for each nonempty Ic

r,β(ū) the family (kn)n∈Ic
r,β(ū)

is rationally independent.

Proof. First, we should notice that the rational independence of Fc(ū) is equiva-
lent to the rational independence of the family

(4.21) F̄c(ū) :=

(
R ∋ x 7→ kj

√
1 + rj cos(x− βj)

)
j∈Ic(ū)

.

Assume that there exists (r, β) ∈ D̄ such that Ic
r,β(ū) is nonempty and the family

(kj)j∈Ic
r,β(ū)

is rationally dependent. Therefore, the sub-family(
x 7→ kj

√
1 + r cos(x− β)

)
j∈Ic

r,β(ū)
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of F̄c(ū) is rationally dependent. Hence Fc(ū) is rationally dependent.
Assume that for all (r, β) ∈ D̄, Ic

r,β(ū) is either empty or (kj)j∈Ic
r,β(ū)

is rationally

independent. For all finite subset J of Ic
r,β(ū), let us take (αj)j∈J ∈ QJ such that∑

j∈J
αjkj

√
1 + rj cos(x− βj) = 0, ∀x ∈ R.

Since J is finite, there exist M ∈ N∗ and (r̄1, β̄1), . . . , (r̄M , β̄M ) ∈ D̄ pairwise distinct
such that, for each j ∈ J ,

(rj , βj) ∈
{
(r̄1, β̄1), . . . , (r̄M , β̄M )

}
,

and for each 1 ≤ m ≤M , the set

Im =
{
j ∈ J | (rj , βj) = (r̄m, β̄m)

}
is nonempty and finite. Then we have

M∑
m=1

( ∑
n∈Im

αnkn

)√
1 + r̄m cos(x− β̄m) = 0, ∀x ∈ R.

By Proposition 4.6 we deduce that
∑

j∈Im
αjkj = 0 for all m ∈ {1, . . . ,M}. Since

(kn)n∈Im is assumed to be rationally independent, we have αn = 0 for every n ∈ Im.
Therefore αj = 0 for every j ∈ J .

We thus conclude that Fc(ū) is rationally independent if and only if for each
nonempty Ir,β(ū) the family (kn)n∈Ir,β(ū) is rationally independent.

Let us define

(4.22) Iwc(ū) =
{
j ∈ I | λj(·) and λj+1(·) intersect weakly conically at ū

}
,

and, in accordance with Proposition 2.18,

(4.23) Fwc(ū) =
(
[0, 2π) ∋ θ 7→ gj(θ) = 2kj | cos(θ − βj)|

)
j∈Iwc(ū)

.

For each β ∈ [0, π), we define

(4.24) Iwc
β (ū) = {j ∈ Iwc(ū) | βj = β}.

Proposition 4.8. The family of functions Fwc(ū) is rationally independent if
and only if for each nonempty Iwc

β (ū) the family (kj)j∈Iwc
β (ū) is rationally independent.

Proof. We should notice that the rational independence of Fwc(ū) is equivalent
to the rational independence of the family of functions

(4.25) F̄wc(ū) :=
(
R ∋ x 7→ kj | cos(x− βj)|

)
j∈Iwc(ū)

.

Notice that x 7→ | cos(x− β)| is differentiable everywhere on R except at x = β + kπ,
k ∈ Z, and the family of functions(

R ∋ x 7→ | cos(x− β)|
)
β∈[0,π)
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is linearly independent. Then the proof can be done using similar arguments as those
used for Proposition 4.7.

Proposition 4.9. The family of functions F(ū) (defined in (4.3)) is rationally
independent if and only if Fc(ū) (defined in (4.19)) and Fwc(ū) (defined in (4.23))
are rationally independent.

Proof. Assume that F(ū) is rationally independent. Since Fc(ū) and Fwc(ū) are
sub-families of F(ū), they are also rationally independent.

Assume now that Fc(ū) and Fwc(ū) are rationally independent. Let us consider
a finite subset J of I(ū) and (αj)j∈J ∈ QJ such that∑

j∈J
αjgj(θ) = 0, ∀θ ∈ [0, 2π).

Set

J c = J ∩ Ic(ū), J wc = J ∩ Iwc(ū).

If J = J c or J = J wc, by rational independence of Fc(ū) and Fwc(ū), we deduce
that αj = 0 for every j ∈ J . Otherwise, since all gj(·) are π-periodic, we have∑

j∈J c

αjkj

√
1 + rj cos(2θ − βj) +

∑
j∈Jwc

αjkj | cos(θ − βj)| = 0, ∀θ ∈ R.

Let us take j ∈ J wc and β = βj , and define J wc
β = Iwc

β (ū) ∩ J wc ̸= ∅. Then, for all
θ ∈ R, we have

(4.26)

( ∑
p∈Jwc

β

kpαp

)
| cos(θ − β)| =−

∑
p∈Jwc\Jwc

β

αpkp| cos(θ − βp)|

−
∑
p∈J c

αpkp

√
1 + rp cos(2θ − βp).

Let us note that the right-hand side of the above equality is differentiable at θ = β,
while | cos(θ − β)| is not. Hence, ∑

p∈Jwc
β

αpkp = 0.

By Proposition 4.8 and the rational independence of Fwc(ū), we obtain that αp = 0
for every p ∈ J wc

β . This is true for each β = βj with j ∈ J wc. Therefore, αj = 0 for
every j ∈ J wc. Then∑

j∈J c

αjkj

√
1 + rj cos(2θ − βj) = 0, ∀θ ∈ R.

By the rational independence of Fc(ū), we deduce that αj = 0 for every j ∈ J c.
Thus, αj = 0 for every j ∈ J . We conclude that F(ū) is rationally independent.

5. Examples. In the following, we illustrate how to apply the results of the
paper on systems having piled-up intersections (Examples 1,2,3) and weakly coni-
cal intersections (Examples 2,3). Example 3 is for a system evolving in an infinite-
dimensional space.
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Example 5.1. Let us consider H = C4 and

(5.1) H(u1, u2) =


1 u1 0 0
u1 2 u2 0

0 u2 3
√
2u1

0 0
√
2u1 4

 , (u1, u2) ∈ R2.

It is not difficult to compute that, at ū = (0,
√
2), λ1 intersects conically with λ2 and λ3

intersects conically with λ4, with (k1, r1, β1) = ( 23 ,
1
2 , 0) and (k3, r3, β3) = (

√
7
3 ,

5
7 , 0).

By Proposition 4.7, the eigenvalue intersections have rationally unrelated germs at

(0,
√
2). Moreover, λ2 intersects conically with λ3 at ū = (

√
12− 2

√
33, 0). Therefore,

by Remark 3.10 and by Theorem 1.1, System (1.1) is exactly controllable in the unitary
group, since, up to suitably choosing U ′ ⊂ R2, the spectrum of H(·) on U ′ is weakly
conically connected and its eigenvalue intersections have rationally unrelated germs
at every intersection point.

Example 5.2. Let us take H = C5, U = R2, and

(5.2) H(u1, u2) =


−1 u1 0 0 0
u1 −1 u2 0 0
0 u2 0 u1 0
0 0 u1 1 2u2
0 0 0 2u2 1

 , (u1, u2) ∈ U.

It is not difficult to compute that, at ū = (0, 0), λ1 intersects semi-conically with λ2
and λ4 intersects semi-conically with λ5 with (k1, β1) = (1, 0) and (k4, β4) = (2, π2 ).
By Proposition 4.8, the eigenvalue intersections have rationally unrelated germs at
(0, 0). Moreover, λ2 intersects conically with λ3 at ū = (23 , 0) and λ3 intersects

conically with λ4 at ū = (0, 3−
√
3

3 ). Therefore, by Remark 3.10 and by Theorem 1.1,
System (1.1) is exactly controllable in the unitary group.

Example 5.3. Let us consider a Eberly–Law type model of a qubit coupled with
a harmonic oscillator, described by the equation

(5.3) i
dψ(t)

dt
= H(u)ψ(t), ψt ∈ C2 × L(R,C),

where the Hamiltonian H(u) = H0 + u1H1 + u2H2 is described next. In absence of
any coupling, the drift Hamiltonian H0 is given by

H0 =
ωeg

2
σz ⊗ Ic + ωcIq ⊗ (a†a+

1

2
Ic),

where Iq and Ic are identity operator in the qubit and harmonic oscillator, σz the
Pauli matrix, a† the creation operator, a the annihilation operator, and ωeg < ωc.
The eigenstates of H0 can be represented as

ϕ2n+1 = |g, n⟩ , ϕ2n+2 = |e, n⟩ , n ≥ 0,

with corresponding eigenvalues

λ2n+1 =
(
− ωeg

2
+
(
n+

1

2

)
ωc

)
, λ2n+2 =

(ωeg

2
+
(
n+

1

2

)
ωc

)
, n ≥ 0.
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The interaction Hamiltonians are H1 = σx ⊗ Ic, where σx is the Pauli matrix, that
represents the carrier transitions between |g, n⟩ and |e, n⟩, and H2 = σ−⊗a†+σ+⊗a
that represents the red sideband transitions between |e, n⟩ and |g, n+ 1⟩. Then H(u)
can be written in matrix form as

H(u) =

−ωeg

2 u1
u1

ωeg

2 u2
u2 ωc − ωeg

2 u1
u1 ωc +

ωeg

2

√
2u2√

2u2 2ωc − ωeg

2 u1
u1 2ωc +

ωeg

2

√
3u2

√
3u2 3ωc − ωeg

2

. . .

. . .
. . .


.

Notice that H1 and H2 are Kato-small with respect to H0. The eigenvalue intersec-
tions of H(·) are either conical or weakly conical and can only appear when u1 = 0
or u2 = 0 (see, eg., [4]). Let us take U = [−ωc

2 ,
ωc

2 ]× R and suppose that(
1− ωeg

ωc

)2

is an irrational number.

Then, it is not difficult to compute that, when u2 = 0, for all n ≥ 1, the intersections

between λ2n and λ2n+1 occur at ū = (

√
ω2

c−ω2
eg

2 , 0) and have rationally unrelated
germs at ū. When u1 = 0 and n ≥ 1, the intersections between λ2n−1 and λ2n are
weakly conical and are non-overlapping. Therefore, by Theorem 3.8, System (1.1) is
approximately controllable, since its spectrum is weakly conically connected and its
eigenvalue intersections have rationally unrelated germs at every intersection point.
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