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EQUILIBRIA OF LARGE RANDOM LOTKA-VOLTERRA SYSTEMS

WITH VANISHING SPECIES: A MATHEMATICAL APPROACH

IMANE AKJOUJp1q, WALID HACHEMp2q,

MYLÈNE MAÏDAp1q,p3q, JAMAL NAJIMp2q

Abstract. Ecosystems with a large number of species are often modelled as Lotka-Volterra
dynamical systems built around a large random interaction matrix. Under some known condi-

tions, a global equilibrium exists and is unique. In this article, we rigorously study its statistical

properties in the large dimensional regime. Such an equilibrium vector is known to be the so-
lution of a so-called Linear Complementarity Problem (LCP). We describe its statistical prop-

erties by designing an Approximate Message Passing (AMP) algorithm, a technique that has

recently aroused an intense research effort in the fields of statistical physics, Machine Learning,
or communication theory. Interaction matrices taken from the Gaussian Orthogonal Ensemble,

or following a Wishart distribution are considered. Beyond these models, the AMP approach

developed in this article has the potential to describe the statistical properties of equilibria
associated to more involved interaction matrix models.

1. Introduction

Equilibrium of a large Lotka-Volterra system. In the field of mathematical ecology, Lotka-
Volterra (LV) systems of coupled differential equations are widely used to model the time evolution
of the abundances of N interacting species within an ecosystem [35]. Such systems take the form

(1)
dxN
dt
ptq “ xN ptq d prN ´ pIN ´ ΣN qxN ptqq , xN p0q P p0,8q

N ,

where the vector function xN : r0,8q Ñ RN` “ r0,8qN represents the abundances of the N

species, d is the componentwise product, rN P RN` is the so-called vector of intrinsic growth rates

of the species, and ΣN “ pΣijq P RNˆN represents the interaction matrix. More precisely Σij
represents the effect of species j on the growth of species i. Equivalently, (1) can be written as a
series of coupled ordinary differential equations:

dxi
dt
ptq “ xiptq pri ´ xiptq ` pΣNxN qi ptqq , xip0q ą 0 , 1 ď i ď N ,

where xN “ pxiq and rN “ priq.
In theoretical ecology, the interaction matrix ΣN and the vector rN are often modelled as

random when the number N of species is large, turning the ecological system into a large disordered
system. Such systems have aroused an important amount of research in the fields of mathematical
ecology, borrowing tools from statistical physics, high dimensional probability, or random matrix
theory [2].

In this paper, we shall be interested in the situation where the LV dynamical system is well-
defined for all t P R` and possesses an unique globally stable equilibrium vector:

x‹N “ px
‹
i q
N
i“1 with xN ptq ÝÝÝÑ

tÑ8
x‹N .

It is well-known that the property xN p0q P p0,8q
N is maintained for all t ą 0 and xN ptq P p0,8q

N .
However, in general, the equilibrium vector x‹N may lie at the boundary of RN` , i.e. may have
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2 AKJOUJ ET AL.

vanishing components. Moreover, assuming that ΣN and rN are random, the vector x‹N is random
as well.

When N becomes large, it is of interest to understand the statistical properties of x‹N such
as for example its proportion of non-zero components, or the distribution of x‹N ’s components,
encoded in the empirical probability measure

µx
‹
N “

1

N

N
ÿ

i“1

δx‹
i
,

where δa stands for the Dirac measure at a. Measure µx
‹
N is a random measure defined on the

probability space of rN and ΣN .
Among the classical interaction matrix models considered in the literature devoted to large LV

systems are the Gaussian Orthogonal Ensemble (GOE) model, the real Ginibre model (i.i.d. cen-
tered Gaussian entries for ΣN ), or the so-called elliptical model, that can be seen as an interpola-
tion between the GOE and the real Ginibre models [4]. For these models, feasible equilibria where
x‹i ą 0 for 1 ď i ď N are studied in [10, 16, 3, 17].

The large-N properties of x‹N were recently considered in the theoretical ecology literature.
In [12], Bunin considered a non-centered elliptical model with the help of the dynamical cavity
method. A similar result was obtained by Galla in [24] by means of generating functionals tech-
niques, see also [31, 36]. Many insights are provided by these techniques from a physicist point of
view. However, up to our knowledge, no rigorous method to describe the asymptotic properties
of x‹N can be found in the literature so far.

The purpose of this paper is to address this question in the case where the interaction matrix
is either taken from the GOE or follows a Wishart distribution. Our results on the asymptotics
of µx

‹
N mathematically confirm Bunin and Galla’s works.

Linear Complementarity Problem. When it exists, the globally stable equilibrium x‹N “ px
‹
i q

of the LV equation above is known to be the solution of a so-called Linear Complementarity
Problem (LCP), see for instance [35, Chap. 3], which consists in finding a vector with real entries
that satisfies a system of inequalities involving matrix ΣN and vector rN :

(2)

$

’

&

’

%

x‹i ě 0,

x‹i
`

ri ´ rpIN ´ ΣN qx
‹
N si

˘

“ 0,

ri ´ rpIN ´ ΣN qx
‹
N si ď 0,

for all i P t1, ¨ ¨ ¨ , Nu .

The two first conditions are natural for an equilibrium to system (1). The third one is necessary for
its stability and also admits an ecological interpretation related to the notion of non-invasibility.
Sufficient conditions on ΣN to ensure existence and uniqueness of the solution x‹N are known.
The problem boils down to the following question: how can we asymptotically extract statistical
information on x‹N , solution to the highly non-linear problem (2), given that ΣN and rN are
random?

The reader is referred to Section 3.3 below for a quick overview of the LCP theory, and to
[18, 30] for complete and comprehensive expositions.

Approximate Message Passing. The idea we develop in this paper is that the distribution
µx

‹
N can be estimated for large N by designing a proper Approximate Message Passing (AMP)

algorithm.
Approximate Message Passing (AMP) is a technique that has recently aroused an intense re-

search effort in the fields of statistical physics, machine learning, high-dimensional statistics and
communication theory. Among the many landmark articles, we can cite [20], [7], [11]. More
references can be found in the recent tutorial [23].

An AMP algorithm produces a sequence of RN–valued random vectors, say ξk “ pξki q, which
are iteratively built around a N ˆN random matrix, sometimes called the measurement matrix.
This algorithm is conceived in such a way that for any finite collection ξ1, ¨ ¨ ¨ , ξk of these vectors,
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the following joint empirical distribution:

1

N

N
ÿ

i“1

δξ1i ,¨¨¨ ,ξki

converges as N Ñ8 to a Gaussian distribution on Rk whose parameters can be fully characterized
by the so-called Density Evolution (DE) equations. In the context of our LV equilibrium problem, it
turns out that an AMP algorithm can be designed in such a way that the AMP iterates approximate
our LCP solution after an adequate transformation. Thanks to this approximation, the asymptotic
properties of µx

‹
N can be deduced from the DE equations.

Random matrix model and perspectives. Regarding the statistical model for ΣN , we shall
consider in this paper the GOE model [4], and the so-called Wishart model. The latter is a
particular case of a kernel matrix, which is considered when the interaction between two species
depends on a distance between the values of some functional traits attached to these species,
see [2, §4.6] and the references therein, or the recent paper [33]. Both models rely on Gaussian
random variables, see Assumptions 2-4, but we also provide results beyond the Gaussian case, see
Assumptions 8-9.

We believe that this LCP/AMP approach for studying µx
‹
N can be generalized and applied

to more complex models for the interaction matrix ΣN . For instance, the recent results of Fan
[22] might be used to cover the general rotationally invariant case; more general models are also
considered in [6, 38]. Matrices with a variance profile, possibly sparse [25], and non-symmetric
matrix models (i.i.d. elements, elliptical models) could also be considered as well. Some of these
generalizations are currently under investigation.

Outline of the article. The problem statement, the main results and simulations are presented
in Section 2. In Section 2.2 (resp. Section 2.3) Theorem 1 (resp. Theorem 2) describes the
statistical properties of the equilibrium for an interaction matrix drawn from the GOE (resp.
from the Wishart ensemble). In Section 2.4, we extend these results to matrix ensembles based
on non-Gaussian entries. Section 3 is devoted to the proof of Theorem 1, starting with an outline
of the proof in Section 3.1, while elements of proof of Theorem 2 are provided in Section 4.

Main notations. For x P R, let x` “ maxpx, 0q, x´ “ maxp´x, 0q and rN s “ t1, ¨ ¨ ¨ , Nu.
Vectors will be denoted by lowercase bold letters a “ paiq, b “ pbiq, etc. If f : R Ñ R is a real
function, vector fpaq is defined pointwise by fpaq “ pfpaiqqiPrNs. For vectors of same dimensions,
a d b “ paibiq denotes the componentwise (Hadamard) product. Vector 1N is the N ˆ 1 vector
of ones and x ÞÑ 1Spxq is the indicator function of set S. Transpose of matrix A is AJ and its
eigenvalues are λipAq.

For a “ paiq, a ě 0 (resp. a ą 0) refers to the pointwise inequalities ai ě 0 (resp. ai ą 0) for
all i P rN s. A positive (resp. negative) definite matrix A is denoted by A ą 0 (resp. A ă 0).

Given a vector a and a matrix A, }a} denotes the Euclidian norm of a and }A} the spectral
norm of A. For a vector a, }a}0 is the number of its non-zero elements and supppaq is its support,
that is the set of indices of non-zero elements.

Given vectors a “ paiq, a
1 “ pa1

i q, ¨ ¨ ¨ ,a
k “ paki q of the same size N , we denote as µa and

µa
1,¨¨¨ ,ak

the probability measures

µa “
1

N

ÿ

iPrNs

δai and µa
1,¨¨¨ ,ak

“
1

N

ÿ

iPrNs

δpa1i ,¨¨¨ ,aki q .

We call µa the empirical distribution of the components of a and µa
1,¨¨¨ ,ak

the joint empirical
distribution of the components of a1, ¨ ¨ ¨ ,ak.

If µN , µ are probability measures over Rd then µN
w

ÝÝÝÝÑ
NÑ8

µ stands for the weak convergence of

probability measures. The distribution of a random variable X is denoted by LpXq and we express

that two random variables X,Y have the same distribution by X
L
“ Y . As usual, abbreviation

a.s. stands for almost sure/surely.
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2. Problem statement, assumptions, and main results

2.1. Equilibria, Wasserstein space and pseudo-Lipschitz functions. Independently of the
struture of ΣN , it is known that if }ΣN } ă 1, then the ODE (1) admits a unique solution pxN ptq, t ě
0q with a bounded trajectory, for any arbitrary initial value xN p0q ą 0, see [27]. Moreover the
same condition }ΣN } ă 1 guarantees, as we shall recall in more detail in Section 3, the existence
of a globally stable equilibrium point x‹N in the classical sense of the Lyapounov theory [35,
Chapter 3].

Given k P N˚, the Wasserstein space PkpRdq is defined as the set of probability measures µ
over Rd with finite kth moment:

ş

Rd }x}
kµpdxq ă 8. Given µ, ν P PkpRdq, we denote by Mkpµ, νq

the set of probability measures in PkpRd ˆ Rdq with marginals µ and ν, i.e.

η PMkpµ, νq ñ

#

ηpAˆ Rdq “ µpAq ,

ηpRd ˆBq “ νpBq ,

for all A,B Borel sets in Rd. We can endow the space PkpRdq with the distance:

dkpµ, νq “ inf
ηPMkpµ,νq

"
ż

RdˆRd

}x´ y}kηpdxdyq

*1{k

.

A function ϕ : Rd Ñ R is pseudo-Lipschitz with constant L and degree k ě 2 if for all x,y P Rd,
the following inequality holds:

|ϕpxq ´ ϕpyq| ď L}x´ y}
`

1` }x}k´1 ` }y}k´1
˘

.

We denote by PLkpRdq this set of functions. We will rely on the following classical lemma in the
sequel, see for instance [23, Section 1.1 and 7.4] and [37].

Lemma 1. Let µN , µ P PkpRdq for k ě 2. The following conditions are equivalent:

(i) dkpµN , µq ÝÝÝÝÑ
NÑ8

0,

(ii) For all ϕ P PLkpRdq,
ş

ϕdµN ÝÝÝÝÑ
NÑ8

ş

ϕdµ,

(iii) µN
w

ÝÝÝÝÑ
NÑ8

µ and
ş

Rd }x}
kµN pdxq ÝÝÝÝÑ

NÑ8

ş

Rd }x}
kµpdxq.

If one of the equivalent conditions of Lemma 1 is satisfied, we say that the sequence pµN q
converges in PkpRdq to µ and denote it by

µN
PkpRd

q
ÝÝÝÝÑ
NÑ8

µ .

If not misleading, we will occasionally drop Rd and simply write Pk, PLk.
Let rN be a random vector of dimension N ˆ 1 that satisfies the following assumption.

Assumption 1. The following hold true.

(i) For all N ě 1, rN ě 0 is defined on the same probability space as matrix ΣN and is
independent of ΣN .

(ii) There exists a probability measure µ̄ P P2pR`q such that µ̄ ‰ δ0 and

pa.s.q µrN
P2pRq
ÝÝÝÝÑ
NÑ8

µ̄ .
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2.2. The GOE case. We first define rigorously the symmetric interaction matrix ΣN and express
sufficient conditions for the existence of a unique global equilibrium x‹N to (1).

Assumption 2. Let AN be a N ˆN matrix from the Gaussian Orthogonal Ensemble. Namely,
considering that XN is a real N ˆN matrix with independent N p0, 1q elements,

AN
L
“
XN `X

J
N?

2
.

Let κ be a positive real number. Then,

(3) ΣN “
AN

κ
?
N
.

Remark 1. Denote by A
pNq
ij the element pi, jq of AN , then A

pNq
ij “ A

pNq
ji and LpApNqij q “ N p0, 1`

δijq where δij is the Kronecker symbol with value 1 if i “ j, zero else. Much is known about

this model, in particular the asymptotic behaviour of the spectral measure of AN{
?
N (Wigner’s

theorem) and its spectral norm, see for instance [5, 32] and the references therein:

(4) pa.s.q
1

N

ÿ

iPrNs

δλipAN {
?
Nq

w
ÝÝÝÝÑ
NÑ8

a

p4´ x2q`

2π
dx and

›

›

›

›

AN
?
N

›

›

›

›

ÝÝÝÝÑ
NÑ8

2 .

We shall consider the following assumption:

Assumption 3. The normalizing factor κ in (3) satisfies κ ą 2.

Combining Assumption 3 and the a.s. convergence of }AN{
?
N} toward 2, we get that with

probability one, eventually

}ΣN } ă 1 .

Formally, this property means that there exists a set rΩ with probability one such that

@ω P rΩ , DN‹pωq , @N ě N‹pωq , }ΣN } ă 1 .

As a consequence, for every ω P rΩ, the existence and uniqueness of x‹N is granted for N large

enough. We can now describe the behaviour of the empirical distribution µx
‹
N as N Ñ 8 and

state the main result of this section.

Theorem 1. (i) Let r̄ ě 0 be a real valued random variable with finite second moment and
Lpr̄q ‰ δ0. Let Z̄ be a N p0, 1q random variable independent of r̄. Then, for any κ ą

?
2,

the system of equations

κ “ δ `
γ

δ
,(5a)

σ2 “
1

δ2
E
`

σZ̄ ` r̄
˘2

`
,(5b)

γ “ P
”

σZ̄ ` r̄ ą 0
ı

,(5c)

admits an unique solution pδ, σ, γq in p1{
?

2,8q ˆ p0,8q ˆ p0, 1q.
(ii) Let rN ě 0 and let Assumptions 2 and 3 hold true. Then, }ΣN } ă 1 eventually with

probability one. For such N ’s, the ODE (1) is defined for all t P R` and has a globally
stable equilibrium x‹N . For the other N ’s, let x‹N “ 0.

(iii) Let Assumptions 1, 2 and 3 hold. Define x‹N as previously. The distribution µx
‹
N is a

P2pRq–valued random variable on the probability space where AN and rN are defined.
Assume that r̄ is a r.v. with Lpr̄q “ µ̄, independent of Z̄ „ N p0, 1q. Then, the convergence

(6) pa.s.q µx
‹
N

P2pRq
ÝÝÝÝÑ
NÑ8

L
´

`

1` γ{δ2
˘ `

σZ̄ ` r̄
˘

`

¯

holds true, where δ, σ, γ are defined as solutions of system (5).

This theorem, which proof is postponed to Section 3, calls for some remarks.
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Remark 2. Equations (5a)-(5c) have already been obtained1 at a physical level of rigor by Bunin
[12] and Galla [24]. Up to our knowledge, Theorem 1 is the first rigorous statement to describe
the asymptotic properties of x‹N .

Remark 3. Notice that system (5) admits an unique solution for κ ą
?

2 while Convergence (6)
is only established for κ ą 2.

Remark 4 (behavior of surviving species proportion). Theorem 1 sheds some light on the pro-
portion of surviving species at equilibrium : inspecting (5c) and (6), the parameter γ can be
interpreted as the limiting proportion of surviving species }x‹N }0{N. Simulations in Fig. 1a con-
firm this fact.

One can see from Equation (5c) that γ ą 1{2, which means that in this model, more than half
the species survive.

Furthermore, an easy calculation involving Equations (5b) and (5c) shows that γ does not
change if we replace r̄ with Kr̄ where K ą 0 is an arbitrary constant.

Nevertheless, on a rigorous level, one can only deduce from Theorem 1 that

sup
ϕ

$

&

%

pa.sq lim
NÑ8

1

N

ÿ

iPrNs

ϕpx‹i q

,

.

-

“ γ,

where supϕ is taken on the set of functions tϕ : RÑ r0, 1s continuous, ϕp0q “ 0u.
Since the function 1txą0u is not continuous, the convergence (6) does not imply that }x‹N }0{N

converges to γ, for any type of convergence. Up to our knowledge, the study of the asymptotic
behavior of }x‹N }0{N is an open question.

(a) Proportion of surviving species (GOE) (b) Density of a surviving species

Figure 1. Subplot 1a represents the proportion of surviving species, that is the
proportion of positive components of the equilibrium x‹ (star), versus the theo-
retical value of γ (solid line), given the parameter κ which varies from 2 to 3.75.
In the plot, N “ 1000 and each point (star) is the mean of proportions obtained
out of 100 Monte-Carlo simulations. Subplot 1b represents the distribution of a
surviving species (N “ 1000 and 100 Monte-Carlo simulations). The solid line
represents the theoretical value of the density fZ|Zą0 where Z is the random

variable with limiting distribution of µx
‹
N given in (6) - cf. Theorem 1.

1Notice that in [12, 24], the authors consider more general models such as the elliptical model, which in particular

captures the Wigner model.
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2.3. The Wishart case. Wishart matrices are interesting in theoretical ecology to model inter-
actions between two species which depend on the distance between values of some given functional
traits, see for instance [2, § 4.6] or [34].

Assumption 4. Let BN be a P ˆN matrix with i.i.d. Gaussian N p0, 1q entries. Let κ be a real
positive number and define the N ˆN matrix ΣN as:

(7) ΣN “
BJNBN
κP

.

For this model, the ith column of matrix BN is a vector modelling the traits of species i.
We will be interested in the specific regime where N,P go to infinity at the same pace:

Assumption 5. Let N “ NpP q and assume that

N

P
ÝÝÝÝÑ
PÑ8

c P p0,8q .

This regime will be denoted by N,P Ñ8 in the sequel.

Model (7) has been thoroughly studied under Assumption 5. Marchenko-Pastur’s theorem
describes the asymptotic behaviour of the spectral limit of BJNBN{P . The limiting spectral norm
has been studied by Bai and Yin, see for instance [5, 32] and the references therein:

pa.s.q

›

›

›

›

BJNBN
P

›

›

›

›

ÝÝÝÝÝÑ
N,PÑ8

p1`
?
cq2 .

Assumption 6. The normalizing factor in (7) satisfies κ ą p1`
?
cq2.

We can now state the main result of this section.

Theorem 2. (i) Let r̄ ě 0 be a real valued r.v. with Lpr̄q ‰ δ0. Let Z̄ be a N p0, 1q r.v.

independent of r̄. Then, for every κ ą
`

1`
a

c
2

˘2
, the system of equations

κ “ pδ ` cγq

ˆ

1`
1

δ

˙

,(8a)

τ2 “
c

δ2
E
”

`

τZ̄ ` r̄
˘2

`

ı

,(8b)

γ “ P
”

τZ̄ ` r̄ ą 0
ı

,(8c)

admits an unique solution pδ, τ, γq in p
a

c{2,8q ˆ p0,8q ˆ p0, 1q.
(ii) Let rN ě 0 and let Assumptions 4, 5 and 6 hold. Then, }ΣN } ă 1 eventually with

probability one. For such N ’s, the LV ODE solution is defined for all t P R` and has a
globally stable equilibrium x‹N . For the other N , set x‹N “ 0.

(iii) Let Assumptions 1, 4, 5 and 6 hold. Define x‹N as previously. The distribution µx
‹
N is

a P2pRq–valued random variable on the probability space where AN and rN are defined.
Assume that r̄ is a r.v. with Lpr̄q “ µ̄, independent of Z̄ „ N p0, 1q. The following
convergence holds true:

(9) pa.s.q µx
‹
N

P2pRq
ÝÝÝÝÝÑ
N,PÑ8

L
´

p1` 1{δq
`

τZ̄ ` r̄
˘

`

¯

,

where δ, τ and γ are defined as solutions of system (8).

There is a strong matching between the parameters obtained by solving system (8) and their
empirical counterparts obtained by Monte-Carlo simulations, as illustrated in Fig. 2.

The proof of this theorem relies on an asymmetric version of the AMP algorithm and is otherwise
very close to the proof of Theorem 1. We provide some details in Section 4.
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(a) Proportion of surviving species (GOE)
(b) Density of a surviving species

Figure 2. Subplot 2a represents the proportion of surviving species, that is
the proportion of positive components of the equilibrium x‹ (star), versus the
theoretical value of γ (solid line), given the parameter κ which varies from 2 to
3.75. In the plot, N “ 1000, P “ 300 and each point (star) is the mean of
proportions obtained out of 100 Monte-Carlo simulations. Subplot 2b represents
the distribution of a surviving species (N “ 1000, P “ 300 and 100 Monte-Carlo
simulations). The solid line represents the theoretical value of the density fZ|Zą0

where Z is the random variable with limiting distribution of µx
‹
N given in (9) -

cf. Theorem 2.

2.4. Towards universality. We mentionned in the introduction that AMP techniques have been
generalized to matrices with non-necessarily Gaussian entries, see [6, 14, 21, 38]. It is possible, at
low cost, to relax the Gaussiannity assumption of the entries in Assumptions 2 and 5.

We first strenghten Assumption 1 and replace it by the following stronger assumption:

Assumption 7. The following holds true:

(i) For all N ě 1, rN ě 0 is defined on the same space as matrix ΣN and is independent of
ΣN .

(ii) There exists a probability measure µ̄ P PpR`q such that µ̄ ‰ δ0, the moment generating
function of µ̄ is analytical near zero (which implies that µ̄ has all its moments finite), and

pa.s.q µrN
PkpRq
ÝÝÝÝÑ
NÑ8

µ̄ for all k ě 1 .

We now relax the GOE assumption (Assumption 2).

Assumption 8. Let AN “
´

A
pNq
ij

¯

be a N ˆN symmetric matrix where the A
pNq
ij ’s are centered

independent random variables satisfying

EpApNqij q
2 “ 1 pi ă jq , sup

N
max
i

EpApNqii q
2 ă C ,

and

max
i,j

N1´k{2E
ˇ

ˇ

ˇ
A
pNq
ij

ˇ

ˇ

ˇ

k

ÝÝÝÝÑ
NÑ8

0 pk ě 3q .

Moreover, the following holds true:

(10) }AN }
a.s.
ÝÝÝÝÑ
NÑ8

2.

Denote by ΣN “ AN{pκ
?
Nq.

Remark 5 (Wigner matrices). The standard example of a matrix AN that generalizes the GOE

model and that complies with Assumption 8 corresponds to the case where A
pNq
ij

L
“ χ for i ‰ j
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and A
pNq
ii

L
“ χ1, where the centered random variables χ and χ1 do not depend on N , Eχ2 “ 1, and

χ and χ1 have all their moments finite. Note that in this case, the convergence (10) is a standard
result in Random Matrix theory [5, 32].

Remark 6 (Sparse models). Sparsity of the food interactions is often justified from an ecological
point of view, see [13].

Beyond the model described in Remark 5, some sparse models can also be covered by Assump-
tion 8, as the following example shows: Let pN P p0, 1q, and

A
pNq
ij “

$

&

%

1{
?
pN with probability pN{2

´1{
?
pN with probability pN{2

0 with probability 1´ pN .

Since E
ˇ

ˇA
pNq
ij

ˇ

ˇ

k
“ p

1´k{2
N , the moment condition in Assumption 8 is satisfied as soon as NpN ÝÝÝÝÑ

NÑ8

8. Furthermore, the spectral norm convergence condition (10) is satisfied when NpN
logN ÝÝÝÝÑ

NÑ8
8,

as shown in [9], see also [8]. Therefore, according to this model, a species within our LV system
can interact with an average number of species much smaller than N but of an order " logN .

We are now in position to state a non-Gaussian version of Theorem 1:

Theorem 3 (Non-Gaussian symmetric matrix). All the conclusions of Theorem 1 remain true
if Assumptions 1 and 2 in the statement of this theorem are replaced with Assumptions 7 and 8
respectively.

Elements of proof are provided in Appendix B.
We now provide the proper assumption to state a non-Gaussian version of Theorem 2.

Assumption 9. ‚ The P ˆN random matrix BN “
´

B
pNq
ij

¯P,N

i,j“1
is such that the random

variables B
pNq
ij for i P rP s and j P rN s are centered, independent, with variance one and

satisfy

max
i,j

P 1´k{2E
ˇ

ˇB
pNq
ij

ˇ

ˇ

k
ÝÝÝÝÑ
NÑ8

0 , pk ě 3q .

We denote by

ΣN “
BJNBN
κP

.

‚ Moreover, N “ NpP q, and there exists c ą 0 such that

NpP q

N
ÝÝÝÝÑ
PÑ8

c.

‚ Finally, in this asymptotic regime, the convergence

(11)

›

›

›

›

BJNBN
P

›

›

›

›

a.s.
ÝÝÝÝÑ
PÑ8

p1`
?
cq2

holds true.

Remark 7. The standard model for a matrix BN satisfying this assumption is the model for

which B
pNq
ij

L
“ χ, where χ is a centered random variable with unit variance having all its moments

finite. In this case, the convergence (11) is a standard random matrix theory result [5, 32].

With this assumption at hand, we are in position to provide a counterpart to Theorem 2.

Theorem 4 (Non-Gaussian Wishart matrices). All the conclusions of Theorem 2 remain true if
Assumption 1 is replaced with Assumption 7 and Assumptions 4 and 5 are replaced with Assump-
tion 9 in the statement of this theorem.

Elements of proof are provided in Appendix B.

3. Proof of Theorem 1

3.1. Outline of the proof. There are four steps in the proof.
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Step 1. In Section 3.2, we establish the uniqueness and existence of parameters δ, σ and γ, solutions
to system (5). These parameters will play a crucial role to design an AMP algorithm fitted for
our purpose. Equations (5a)-(5c) will progressively appear during the proof.

Step 2. In Section 3.3, we characterize the stable equilibrium x‹N of (1) as the solution of a Linear
Complementarity Problem (LCP). We give an equivalent formulation of the solution of a LCP as
the solution of a fixed-point equation, see Proposition 4.

Step 3. In Section 3.4, we first recall some general facts about Approximate Message Passing
(AMP) algorithms and present a specific algorithm (19) whose output pξkN q` will converge toward
x‹N , characterized as the solution of the fixed-point equation associated to the corresponding LCP.

The approximate fixed-point equation satisfied by ξkN is given in (22), see also (24).

Step 4. The strength of the AMP procedure is that we can track down via the Density Evolution
(DE) equations the asymptotic distribution of pξkN q`’s empirical measure for any k. We can then
transfer if to x‹N by using a perturbation result by Chen and Xiang in [15], see (32). A central

argument borrowed from Montanari and Richard [28] is that vectors ξkN tend to be aligned for
large k.

3.2. Existence and uniqueness of the solution of system (5). We begin with the following
technical lemma, the third part of which will be used in Section 3.4. To avoid any ambiguity, we
shall always refer to σ as the unique positive root of σ2 ą 0.

Lemma 2. Let r̄ be a non negative r.v. with Lpr̄q ‰ δ0.

(i) For a given δ ą 0, Equation (5b) admits a solution σ2 if and only if δ ą 1{
?

2. In this
case, this solution is unique, and is denoted by σ2pδq.

(ii) Let δ ą 1{
?

2 then

PtσpδqZ̄ ` r̄ ě 0u ă δ2 .

(iii) Assume δ ą 1{
?

2. Starting with an arbitrary σ0 ě 0, consider the iterative scheme:

σ2
t`1 “

1

δ2
E
`

σtZ̄ ` r̄
˘2

`
, then σ2

t ÝÝÝÑ
tÑ8

σ2pδq .

Proof of Lemma 2 is postponed to Appendix A.1.

We now establish that system (5) has a unique solution

pδ, σ, γq P p1{
?

2,8q ˆ p0,8q ˆ p0, 1q .

Let δ ą 1{
?

2, σ2pδq be defined by (5b), and γpδq by (5c). Setting fpσ2q “ EpσZ̄ ` r̄q2`, we have
established in the proof of Lemma 2-(i) that

γpδq “
df

dσ2

ˇ

ˇ

ˇ

ˇ

σ2“σ2pδq

.

Moreover γpδq ă δ2 by Lemma 2-(ii). All what remains to show is that the equation

(12) κ “ δ `
γpδq

δ

has a unique solution δ ą 1{
?

2. We thus need to study the behavior of γpδq. In all the remainder,
differentiability issues can be easily checked and are skipped.

Recall that dfpσ2q{dσ2 decreases asymptotically to 1{2 as σ2 increases from 0 to 8, from which
we can deduce that σ2pδq Ñ 8 as δ Ó 1{

?
2 by Lemma 2-(ii). Using the fact that

σ2pδq “
fpσ2pδqq

δ2

and taking the derivatives with respect to δ, we get that

dσ2pδq

dδ

´

1´
1

δ2

dfpσ2q

dσ2

ˇ

ˇ

ˇ

ˇ

σ2“σ2pδq

¯

“ ´
2fpσ2pδqq

δ3
,



EQUILIBRIA OF LARGE RANDOM LOTKA-VOLTERRA SYSTEMS 11

which shows that σ2pδq is a decreasing function. Hence γpδq is increasing since σ ÞÑ PtσZ̄` r̄ ě 0q
is decreasing (cf. proof of Lemma 2).

We can now conclude. For δ Ó 1{
?

2, σ2pδq Ñ 8 by what precedes, thus, γpδq Ó 1{2, and
δ ` γpδq{δ Ñ

?
2 ă κ. Near infinity, δ ` γpδq{δ „ δ ą κ. Consequently, Eq. (12) has a solution

by continuity. To establish uniqueness, we prove that the function δ ÞÑ δ ` γpδq{δ is increasing.
Indeed,

d

dδ

ˆ

δ `
γpδq

δ

˙

“ 1`
γ1pδq

δ
´
γpδq

δ2
ě 1´

γpδq

δ2
ą 0

as shown by Lemma 2-(ii), and we are done. Proof of Theorem 1-(i) is completed.

3.3. Characterization of x‹N through a LCP. In this section, we recall the connection between
the possible stable equilibrium of the ODE (1) and the solution of an underlying LCP in the theory
of mathematical programming. We mainly rely on chapter 3 of Takeuchi’s book [35].

Given a matrix M P RNˆN and a vector c P RN , the LCP problem, denoted as LCPpM, cq,
consists in finding couples of vectors py,wq P RN ˆ RN satisfying

(13)

$

&

%

w “ My ` c ě 0 ,
y ě 0 ,
wJy “ 0 .

Notice that the last condition can be written equivalently either wiyi “ 0 for all i P rN s or
supppwq X supppyq “ H. When a solution py,wq exists we write y P LCPpM, cq. If a solution
exists and is unique, we write

y “ LCPpM, cq .

A necessary and sufficient condition for the existence of a unique solution to the LCP problem
has been given by Murty [29], see also [18]. For a symmetric matrix, this condition is simply to
be positive definite.

The following proposition establishes a connection between the solution of an LCP problem
and globally stable equilibrium for a LV system .

Proposition 3 (Lemma 3.2.2 and Theorem 3.2.1 of [35]). Given a symmetric matrix B P RNˆN
and a vector c P RN , consider the following LV system of ODE:

(14)
dy

dt
ptq “ yptq d pc`Byptqq , yp0q ą 0 .

for all t ě 0. Then, the LCP problem LCPp´B,´cq has an unique solution for each c P RN if
and only if B ă 0, i.e. B is negative definite. On the domain where B ă 0, c P RN , the function
x “ LCPp´B,´cq is measurable. Moreover, if B ă 0, then for every c P RN , the ODE (14) has a
globally stable equilibrium y‹ given by y‹ “ LCPp´B,´cq.

Indeed, the equilibrium is characterized by the conditions y‹ ě 0 and for all i P rN s, y‹i pc `
pBy‹qiq “ 0 whereas the condition ´c ´ By‹ ď 0 (with the obvious meaning of ď) turns out to
be a necessary condition for the equilibrium y‹ to be stable in the classical sense of Lyapounov
theory (see [35, Chapter 3] to recall the different notions of stability, and [35, Theorem 3.2.5] for
this result).

Going back to system (1), a potential equilibrium x‹N should satisfy

x‹N ě 0 and x‹i pri ´ rpIN ´ ΣN qx
‹
N siq “ 0 for all i P rN s

and
rN ` pΣN ´ IN qx

‹
N ď 0,

which means that the couple px‹N ,w
‹
N q solves the problem LCPpIN ´ ΣN ,´rN q.

Applying the reminder (4) and Assumption 3, matrix IN ´ ΣN is eventually positive definite
with probability one. Define now the vector x‹N by

(15) x‹N “

"

LCPpIN ´ ΣN ,´rN q if }ΣN } ă 1,
0 otherwise .

Then, from Proposition 3, we get that vector x‹N satisfies the statement of Theorem 1-(ii).
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We end this section by providing an alternative expression of the LCP problem as the solution
of a fixed point equation.

Alternative expression for the LCP solution. This fact will be useful in the next section.

Proposition 4. Let z “ pziq P RN and consider the fixed-point equation:

(16) z “ ΥNz` ` ρN

where z` “ ppziq`q. Then z is a solution of (16) iff z` P LCPpIN ´ΥN ,´ρN q.

Proof. Suppose that z is a solution of (16) and write z “ z` ´ z´. Then

z`, z´ ě 0 , pz`q
Jz´ “ 0 and z´ “ pIN ´ΥN qz` ´ ρN .

Hence z` P LCPpIN ´ΥN ,´ρN q.
To establish the converse, let py,wq a solution of LCPpIN ´ΥN ,´ρN q. Define z “ y´w then

#

z` “ y

z´ “ w
and w “ pIN ´ΥN qy ´ ρN ñ z “ ΥNz` ` ρN .

�

3.4. Design of an AMP algorithm to approximate the LCP solution.

The AMP principles in a nutshell. We begin with some of the fundamental results of the AMP
theory. The now classical form of an AMP iterative algorithm, as formalized in the article [7] of
Bayati and Montanari based in part on a result of Bolthausen [11], can be presented as follows. Let
phkqkě0 be a sequence of Lipschitz R2 Ñ R functions. By the Lipschitz assumption, the derivative

Bhkpu, aq

Bu

is defined almost everywhere and the function B1h
kpu, aq is any function that coincides with this

derivative where it is defined. For x “ pxiqiPrNs, define by xxyN the scalar quantity:

xxyN :“
1

N

ÿ

iPrNs

xi .

Let aN P RN be a random vector of so-called auxiliary information. Recall that AN is the
GOE matrix introduced in Assumption 2. Starting with a vector u0

N P RN , the AMP recursion is
written

(17) uk`1
N “

AN
?
N
hkpukN ,aN q ´ xB1h

kpukN ,aN qyN hk´1puk´1
N ,aN q ,

where hkpu,aq “
`

hkpui, aiq
˘

iPrNs
.

From this recursion, it is possible to precisely evaluate the asymptotic behavior of the empirical
measures

µaN ,u
1
N ,¨¨¨ ,u

k
N

as N Ñ8 for any k, and to prove that µaN ,u
1
N ,¨¨¨ ,u

k
N converges toward a centered Gaussian vector

whose covariance structure is defined by the so-called Density Evolution (DE). The term

xB1h
kpukN ,aN qyN hk´1puk´1

N ,aN q

(equal to zero for k “ 0) is referred to as the Onsager term and plays a crucial role in making
possible this convergence. For a detailed exposition of the AMP theory, along with the description
of many of its applications, the reader is referred to the recent tutorial [23].
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A specific AMP algorithm for the LCP. To establish Theorem 1, we design the following AMP
algorithm and study its properties. For each N , let pu0

N ,aN q P RN ˆ RN be a couple of random
vectors independent of AN , with aN ě 0. Assume that there exists a couple of L2 random variables
pū, āq such that

(18) pa.s.q µu
0
N ,aN

P2pR2
q

ÝÝÝÝÑ
NÑ8

L ppū, āqq , ā ‰ 0 .

Vectors u0
N and aN will be specified later, see (23). Notice that ā ě 0. By Assumption 3, κ is

larger than
?

2 hence (5) admits an unique solution pδ, σ2, γq by the first part of the theorem. Let
ht ” h for all k ě 0, where

hpu, aq “
pu` aq`

δ
and B1hpu, aq “

1tu`aą0u

δ
.

The AMP iteration 17 now reads

(19) uk`1
N “

AN

δ
?
N

`

ukN ` aN
˘

`
´
x1tuk

N`aNą0uyN
`

uk´1
N ` aN

˘

`

δ2
.

The DE equations for this algorithm are provided by the following proposition, which is a direct
application of [23, Theorem 2.3] (see also [7, Theorem 4]):

Proposition 5. For N ě 1, Let AN be a GOE matrix and let pu0
N ,aN q P RN ˆ RN be a couple

of random vectors independent of AN , with aN ě 0. Assume (18) and consider the recursion (19).
Then, for every k ě 1,

pa.s.q µaN ,u
1
N ,¨¨¨ ,u

k
N

P2pRk`1
q

ÝÝÝÝÝÝÑ
NÑ8

L ppā, Z1, . . . , Zkqq ,

where
`

Z1, ¨ ¨ ¨ , Zk
˘

is a centered Gaussian vector, independent of pū, āq. The k ˆ k covariance

matrix Rk of the random vector
`

Z1, ¨ ¨ ¨ , Zk
˘

is defined recursively in k as follows:

R1 “ EpZ1q2 “
1

δ2
Epū` āq2` ,

and given Rk, matrix Rk`1’s first principal submatrix is Rk,

“

Rk`1
‰

ij
“

“

Rk
‰

ij
for i, j P rks ,

whereas the last row and column of Rk`1 are defined via the equations:

“

Rk`1
‰

k`1,`
“ EZk`1Z` “

1

δ2

$

’

’

&

’

’

%

EpZk ` āq`pZ`´1 ` āq` if ` P t2, . . . , k ` 1u ,

EpZk ` āq`pū` āq` if ` “ 1 .

Notice that by writing αk`1 “
`

pū` āq`, pZ
1 ` āq`, ¨ ¨ ¨ , pZ

k ` āq`
˘J

, we see that Rk`1 “

Eαk`1pαk`1qJ, which immediately shows that Rk`1 is a positive semidefinite matrix (actually,
one can prove that it is definite, see [23]).

Denote by

ξkN “ u
k
N ` aN .

What is going to drive the following computations is the fact that the vectors ξkN and ξk`1
N will

tend to be aligned as N Ñ 8 then k Ñ 8. This will be formalized and proved in Lemma 6.
Denote by γkN “

@

1tξkNą0u

D

N
and recall the expression of γ given in (5c). With these notations
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at hand, the AMP recursion (19) reads:

ξk`1
N “

AN

δ
?
N

`

ξkN
˘

`
´
γkN
δ2

`

ξk´1
N

˘

`
` aN ,

“
AN

δ
?
N

`

ξkN
˘

`
´
γ

δ2

`

ξk´1
N

˘

`
` aN `

γ ´ γkN
δ2

`

ξk´1
N

˘

`
,

“
AN

δ
?
N

`

ξkN
˘

`
´
γ

δ2

`

ξkN
˘

`
` aN `

γ ´ γkN
δ2

`

ξk´1
N

˘

`
`
γ

δ2

´

`

ξkN
˘

`
´
`

ξk´1
N

˘

`

¯

.

Replacing now ξk`1
N by ξkN , we end up with:

(20) ξkN “
AN

δ
?
N

`

ξkN
˘

`
´
γ

δ2

`

ξkN
˘

`
` aN ` ε

k
N ,

where

(21) εkN “
γ ´ γkN
δ2

`

ξk´1
N

˘

`
` ξkN ´ ξ

k`1
N `

γ

δ2

´

`

ξkN
˘

`
´
`

ξk´1
N

˘

`

¯

.

Massaging (20) and relying on (5a) we obtain:

(22)
`

ξkN
˘

`
´

`

ξkN
˘

´

1` γ{δ2
“

AN

κ
?
N

`

ξkN
˘

`
`
δpaN ` ε

k
N q

κ
.

Denote by

z “
`

ξkN
˘

`
´

`

ξkN
˘

´

1` γ{δ2
.

Notice that z` “
`

ξkN
˘

`
and set finally

(23) u0
N “ 1N and aN “

κ

δ
rN .

With these notations, (22) is rewritten

(24) z “ ΣNz` ` rN `
δ

κ
εkN .

Relying on Proposition 4 and on the fact that }ΣN } ă 1 eventually, we conclude that z` “
`

ξkN
˘

`

is the unique solution of

LCP

ˆ

IN ´ ΣN ,´rN ´
δ

κ
εkN

˙

for N large enough, which is almost what is aimed, up to the term δ
κε

k
N - see Eq. (15).

Remark 8. Retrospectively, notice that with the choice (23), assumptions of Proposition 5 are
satisfied: pu0

N ,aN q is independent of AN and (18) holds thanks to Assumption 1 with ā “ κ
δ r̄.

Before bounding εkN , let us first study the behavior of µ

`

ξkN

˘

` . Applying Proposition 5, we get
that for all k ě 2:

µu
k
N

P2pRq
ÝÝÝÝÑ
NÑ8

L pZkq ,

where Zk
L
“ θkZ̄ with Z̄

L
“ N p0, 1q and θk satisfying the following DE equation:

(25) θ2
k`1 “

1

δ2
EpθkZ̄ ` āq2` .

Since function ϕpu, aq “ pu` aq` is Lipschitz, it is clear that

(26) µpξ
k
N q`

P2pRq
ÝÝÝÝÑ
NÑ8

L
`

pθkZ̄ ` āq`
˘

.

Furthermore, since the distribution function of θkZ̄` ā has no discontinuity, the following conver-
gence holds:

pa.s.q γkN ÝÝÝÝÑ
NÑ8

P
`

θkZ̄ ` ā ą 0
˘

where γkN “
@

1tξkNą0u

D

N
.
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Introduce the quantity:

(27) σk “
δ

κ
θk .

Following (25), the recursive equation satisfied by σk is

σ2
k`1 “

1

δ2
E
`

σkZ̄ ` r̄
˘2

`

which is precisely the equation appearing in Lemma 2-(ii). As a conclusion, σk ÝÝÝÑ
kÑ8

σ, where σ

satisfies (5b). This convergence has two interesting consequences:

P
`

θkZ̄ ` ā ą 0
˘

“ P
`

σkZ̄ ` r̄ ą 0
˘

ÝÝÝÑ
kÑ8

P
`

σZ̄ ` r̄ ą 0
˘

“ γ ,

where γ satisfies (5c), and

L
`

pθkZ̄ ` āq`
˘

“ L
``

1` γ{δ2
˘

pσkZ̄ ` r̄q`
˘ P2pRq

ÝÝÝÝÑ
kÑ8

L
``

1` γ{δ2
˘

pσZ̄ ` r̄q`
˘

,

the latter being the distribution appearing in Theorem 1-(iii).

Control of the error term εkN . Recall the expression of εkN given in (21):

εkN “
γ ´ γkN
δ2

`

ξk´1
N

˘

`
` ξkN ´ ξ

k`1
N `

γ

δ2

´

`

ξkN
˘

`
´
`

ξk´1
N

˘

`

¯

.

A direct consequence of (26) yields that

}pξk´1
N q`}

2

N
a.s.
ÝÝÝÝÑ
NÑ8

E
`

θk´1Z̄ ` ā
˘2

`
“ θ2

kδ
2 .

In particular, the sequence
´

}pξk´1
N q`}

2

N

¯

N
is bounded. Furthermore, limkpa.s.q limN pγ ´ γ

k
N q “ 0.

We thus have

(28) lim
kÑ8

pa.s.q lim
NÑ8

pγ ´ γkN q
2

δ4

}pξk´1
N q`}

2

N
“ 0 .

The main idea to control the two remaining terms ξkN´ξ
k`1
N and

`

ξkN
˘

`
´
`

ξk´1
N

˘

`
is to establish

that the correlation coefficient

(29) Qk :“
EZk´1Zk

θk´1θk

converges to 1 as k Ñ8. This can be interpreted as an alignement of vectors ξkN and ξk´1
N . This

argument was developed in a similar context in [28], see also [19]. For self-containedness, we state
and prove the following lemma:

Lemma 6. The sequence pQkqkě2 defined in (29) satisfies Qk ÝÝÝÑ
kÑ8

1.

Proof of Lemma 6 is postponed to Appendix A.2.

We now conclude the proof of Theorem 1. Consider ϕpx1, x2q “ px1 ´ x2q
2 P PL2pR2q. By

Proposition 5, we have

pa.s.q
}ξkN ´ ξ

k`1
N }2

N
“

1

N

N
ÿ

i“1

ϕpuki , u
k`1
i q ÝÝÝÝÑ

NÑ8
E
`

Zk`1 ´ Zk
˘2
“ θ2

k`1 ` θ
2
k ´ 2θk`1θkQk`1 .

Applying Lemma 6, we get that:

(30) lim
kÑ8

pa.s.q lim
NÑ8

}ξkN ´ ξ
k`1
N }2

N
“ 0 .

A similar argument applies to the last term.

1

N
}
`

ξkN
˘

`
´
`

ξk´1
N

˘

`
}2 “

1

N
}
`

ukN ` aN
˘

`
´
`

uk´1
N ` aN

˘

`
}2

a.s.
ÝÝÝÝÑ
NÑ8

E
`

pZk ` āq` ´ pZ
k´1 ` āq`

˘2
“ E

`

Zk`1 ´ Zk
˘2
.



16 AKJOUJ ET AL.

Finally, using that

}εkN }
2

N
ď

3

N

ˆ

pγ ´ γkN q
2

δ4
}pξk´1

N q`}
2 ` }ξkN ´ ξ

k`1
N }2 `

γ2

δ4
}
`

ξkN
˘

`
´ pξk´1

N q`}
2

˙

,

we conclude that

(31) lim
kÑ8

pa.s.q lim
NÑ8

}εkN }
2

N
“ 0 .

Notice that the fact that the a.s. limN at the left hand side exists can be deduced again from
Proposition 5.

From the approximated LCP to the genuine LCP. Recall that whenever }ΣN } ă 1, which happens
eventually,

x‹N “ LCPpIN ´ ΣN ,´rN q and
`

ξkN
˘

`
“ LCP

ˆ

IN ´ ΣN ,´rN ´
δ

κ
εkN

˙

.

Statistical properties have been established for
`

ξkN
˘

`
via the AMP procedure, see for instance

(26). Using LCP perturbation results, we shall identify the limiting empirical distribution of x‹N .
Let us introduce:

µ‹ “ L
`

p1` γ{δ2qpσZ̄ ` r̄q`
˘

“ L
´κ

δ
pσZ̄ ` r̄q`

¯

In [15, Th. 2.7, Th. 2.8], Chen and Xiang provide the following bound:

(32) }x‹N ´ pξ
k
N q`} ď

›

›

›
pIN ´ ΣN q

´1
›

›

›
ˆ
κ

δ

›

›εkN
›

› “ bN
›

›εkN
›

›

where bN :“
›

›

›
pIN ´ ΣN q

´1
›

›

›
ˆ
κ

δ
.

Let ϕ : RÑ R be an arbitrary function in PLpR2q with Lipschitz constant Lϕ. For a given positive
integer k, we have

1

N

N
ÿ

i“1

ϕpx‹i q ´

ż

ϕdµ‹ “
1

N

N
ÿ

i“1

`

ϕpx‹i q ´ ϕppξ
k
i q`q

˘

`
1

N

N
ÿ

i“1

ϕppξki q`q ´

ż

ϕdµ‹

:“ ε1N pkq ` ε
2
N pkq.

We first handle ε2N pkq. By Proposition 5, we have:

ε2N pkq
a.s.
ÝÝÝÝÑ
NÑ8

Eϕ
´κ

δ
pσkZ̄ ` r̄q`

¯

´ Eϕ
´κ

δ
pσZ̄ ` r̄q`

¯

.

The r.h.s. is easily bounded by a constant Cpkq which converges to zero as k Ñ8, using the fact
that limk σk “ σ.

We now turn to ε1N pkq. By Cauchy-Schwarz inequality

1

N

N
ÿ

i“1

ˇ

ˇϕpx‹i q ´ ϕppξ
k
i q`q

ˇ

ˇ ď
Lϕ
N

ÿ

iPrNs

ˇ

ˇx‹i ´ pξ
k
i q`

ˇ

ˇ

`

1` |x‹i | ` |pξ
k
i q`|

˘

ď
Lϕ
N

›

›

›
x‹N ´ pξ

k
N q`

›

›

›

¨

˝

ÿ

iPrNs

p1` |x‹i | ` |ξ
k
i q`|q

2

˛

‚

1{2

ď 3Lϕ

›

›

›
x‹N ´ pξ

k
N q`

›

›

›

?
N

˜

1`
}x‹N }?
N
`
}pξkN q`}?

N

¸

.

Recall the bound (32) and the definition of bN , then

|ε1N pkq| ď 3LϕbN
}εkN }?
N

˜

1` 2
}pξkN q`}?

N
` bN

}εkN }?
N

¸

.
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By Assumption 3, bN a.s. converges to a positive constant. By Proposition 5, we furthermore
have

}pξkN q`}?
N

a.s.
ÝÝÝÝÑ
NÑ8

`

EpθkZ̄ ` āq2`
˘1{2

,

which is bounded in k. Using (31), we obtain that lim supN |ε
1
N pkq| is bounded with probability

one by a constant C1pkq which converges to zero as k Ñ8. Finally,

pa.s.q lim sup
N

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

ÿ

iPrNs

ϕpx‹i q ´

ż

ϕdµ‹

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cpkq ` C1pkq .

Since Cpkq ` C1pkq can be made arbitrarily small, we have

pa.s.q
1

N

N
ÿ

i“1

ϕpx‹i q ÝÝÝÝÑ
NÑ8

ż

ϕdµ‹,

which ends the proof of Theorem 1.

4. Elements of proof of Theorem 2

The strategy of proof is similar to that of Theorem 1. The Wishart model induces differences
for the design of the AMP algorithm that we describe hereafter. The full mathematical proof is a
matter of careful bookkeeping of Section 3. We provide the main steps of the proof but skip many
mathematical details which can be found in [1].

4.1. Existence and uniqueness of the solution of system (8). This can be established as in
the case of the GOE model with minor modifications and is hence skipped.

4.2. Design of an AMP algorithm to approximate the LCP solution. We shall rely on
the framework of asymmetric AMP as presented in [23, Section 2.2]. Suppose that for a given κ
satisfying Assumption 6, pδ, τ2, γq is the unique solution of (8). Consider the following recursive
system:

uk`1
N “

BJN?
P
vkP ´

pukN ` aN q`
δ

(33a)

vkP “
BN

δ
?
P
pukN ` aN q` ´

N

P

x1tuk
N`aNą0uyN

δ
vk´1
P(33b)

where ukN ,u
k`1
N are N ˆ 1 vectors and and vk´1

P ,vkP , P ˆ 1 vectors with initial conditions

u0
N “ 1N and v0

P “
BN

δ
?
P
pu0

N ` aN q` .

The following proposition is the counterpart of Proposition 5 for asymmetric AMP.

Proposition 7 (consequence of Theorem 2.5 of [23]). For N,P ě 1, let Assumptions 4, 5 and 6
hold true. Suppose that aN ě 0 is a random vector independent of AN satisfying

pa.s.q µaN NÑ8
ÝÝÝÝÑ
P2pRq

Lpāq

and consider the recursions (33). Then for every fixed k ě 1,

pa.s.q µaN ,u
1
N ,¨¨¨ ,u

k
N

P2pRk`1
q

ÝÝÝÝÝÝÑ
N,PÑ8

L
`

pā, U1, ¨ ¨ ¨ , Ukq
˘

,

pa.s.q µv
0
N ,¨¨¨ ,v

k´1
N

P2pRk
q

ÝÝÝÝÝÑ
N,PÑ8

L
`

pā, V 0, ¨ ¨ ¨ , V k´1q
˘

,
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where pU1, ¨ ¨ ¨ , Ukq is a centered Gaussian random vector independent of ā with covariance T rks,
and pV 0, ¨ ¨ ¨ , V k´1q is a centered Gaussian random vector with covariance matrix Σrks. More
precisely the covariance matrices

T rks “ pTijqi,jPrks ; Tij “ EU iU j ,

Σrks “ pΣi´1,j´1qi,jPrks ; Σi´1,j´1 “ EV i´1V j´1

are defined inductively. First, let Z̄ „ N p0, 1q and introduce τk, θk such that

V k
L
“ θkZ̄ and Uk

L
“ τkZ̄ ,

so that θ2
k “ Σk,k and τ2

k “ Tkk. We define these quantities by induction:

θ2
0 “ Ep1` āq2` , τ2

k`1 “ EV 2
k “ θ2

k , θ2
k`1 “

c

δ2
EpUk`1 ` āq

2
` .

Now given Σrks “ pΣi´1,j´1q, Σrk`1s is defined by

Σ`,k “
c

δ2
EpU ` ` āq`pUk ` āq` for ` P rks ,

Σ0,k “
c

δ2
Ep1` āq`pUk ` āq` .

Given T rks “ pTijq, T
rk`1s is defined by

T`,k`1 “ EV `´1V k “ Σ`´1,k for ` P rk ` 1s .

From AMP recursions to an approximate LCP solution. We introduce the following notations:

ξkN “ u
k
N ` aN , γkN “ x1tξkNą0uyN .

Recall the definition of γ solution to (8). Performing similar computations as in Section 3.4, we
obtain:

(34) ξkN `

`

ξkN
˘

`

δ
“

BJNBN
`

1` cγ
δ

˘

δP
pξkN q` ` aN ` rεkN

where

rεkN “
BJN

`

1` cγ
δ

˘
?
P

ˆ

cγ ´N{PγkN
δ

vk´1
P `

cγ

δ

`

vkP ´ v
k´1
P

˘

˙

` ξkN ´ ξ
k`1
N .

We introduce the following notations:

z “ pξkN q` ´
pξkN q´
1` 1{δ

, rN “
aN

1` 1{δ
, εkN “

rεkN
1` 1{δ

.

Then (34) can be rewritten as

z “ ΣNz` ` rN ` ε
k
N ,

where ΣN is given by (7). Applying Proposition 4, we finally obtain that

z` “ LCP
`

IN ´ ΣN ,´rN ´ ε
k
N

˘

.

The rest of the proof closely follows the corresponding part in the proof of Theorem 1 and is
omitted.
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Appendix A. Theorem 1: remaining proofs

A.1. Proof of Lemma 2. Consider the function fpσ2q “ EpσZ̄ ` r̄q2`. Then, Equation (5b) is
equivalent to the fixed-point equation:

(35)
fpσ2q

δ2
“ σ2.

We can prove by elementary means that

df

dσ2
pσ2q “

1

2σ

df

dσ
pσ2q “

1

σ
EZ̄pσZ̄ ` r̄q` .

Moreover, conditioning on r̄ and applying the integration by parts formula for the Gaussian r.v.
Z̄ we get

1

σ
E
`

Z̄pσZ̄ ` r̄q` | r̄
˘

“ E
`

1tσZ̄`r̄ě0u | r̄
˘

.

Hence
df

dσ2
pσ2q “ PtσZ̄ ` r̄ ě 0u “ PtZ̄ ` r̄{σ ě 0u .

Notice that df
dσ2 is a decreasing function since

σ ă σ1 ñ tZ̄ ` r̄{σ1 ě 0u Ă tZ̄ ` r̄{σ ě 0u ,

with

lim
σ2Ñ8

df

dσ2
pσ2q “

1

2
.

We now introduce function gpσ2q “
fpσ2

q

δ2 ´ σ2. Notice that gp0q “ Er̄2{δ2 ą 0 and that

(36)
dg

dσ2
pσ2q “

PtZ̄ ` r̄{σ ě 0u

δ2
´ 1 ą

1

2δ2
´ 1 .

If 1
2δ2 ´ 1 ě 0 which is equivalent to the condition δ ă p

?
2q´1 then g’s derivative is positive

hence g is increasing with a positive starting point and never vanishes.
Suppose now that δ ą 1{

?
2. We shall prove that g vanishes at a unique point σ2pδq:

(37) gpσ2pδqq “ 0 for σ2pδq ą 0 .

Notice that the derivative dg{dσ2 is decreasing with a negative limit at infinity

lim
σ2Ñ8

dg

dσ2
pσ2q “

1

2δ2
´ 1 ă 0 .

Depending on the sign of the value of dg{dσ2 at zero, either g is constantly decreasing from the
positive value gp0q or g is first increasing then eventually decreasing. We now prove that

(38) lim
σ2Ñ8

gpσ2q ă 0 .

This will yield (37).

gpσ2q

σ2
“

EpσZ̄ ` r̄q2`
δ2σ2

´ 1 “
EpZ̄ ` r̄{σq2`

δ2
´ 1 ÝÝÝÝÑ

σ2Ñ8

1

2δ2
´ 1 ă 0 .

Hence g’s limit is ´8 at infinity. Eq. (38) is proved, so is (37). The first statement of the lemma
is proved.

We now address the second point of the lemma. Let δ ą 1{
?

2 be fixed. From the previous
analysis, we know that

dg

dσ2

ˇ

ˇ

ˇ

ˇ

σ2“σ2pδq

ă 0.

From (36), one can compute

dg

dσ2

ˇ

ˇ

ˇ

ˇ

σ2“σ2pδq

“
PtσpδqZ̄ ` r̄ ě 0u

δ2
´ 1,
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and this gives the second point :

PtσpδqZ̄ ` r̄ ě 0u ă δ2 .

We now address the third point of the lemma. Consider a sequence pσtq such that

σ2
0 ą 0 and σ2

p`1 “
1

δ2
fpσ2

pq .

One can easily prove that σ2
p Òp σ

2pδq (resp. σ2
p Ó σ

2pδq) if σ2
0 ă σ2pδq (resp. σ2

0 ą σ2pδq). The

sequence remains constant if σ2
0 “ σ2pδq. Lemma 2 is proved.

A.2. Proof of Lemma 6.

Proof. Let pX1, X2q be a centered Gaussian vector with covariance matrix ΓpX1, X2q given by

ΓpX1, X2q “

ˆ

1 q
q 1

˙

with q P r0, 1s .

Let W be a (real) random variable independent of pX1, X2q with finite second moment EW 2 ă 8.
Consider the function H : r0, 1s Ñ r0, 1s defined as

q ÞÝÑ Hpqq “ EpX1 `W q`pX2 `W q`
EpX1 `W q2`

.

It is shown in [28, Lemma 38 and proof of Lemma 37] that H is a continuous increasing function
on r0, 1s such that

Hpqq ą q for all q ă 1 and Hp1q “ 1 .

Let Zk be defined in Proposition 5, θk in (25) and Qk in (29). Writing Zk “ θkZ̄
k where

L
`

Z̄k
˘

“ N p0, 1q, notice that

Cov
`

Z̄k, Z̄k´1
˘

“ Qk .

We have

Qk`1 “
EZkZk`1

θkθk`1
“

Epθk´1Z̄
k´1 ` āq`pθkZ̄

k ` āq`
b

Epθk´1Z̄k´1 ` āq2`EpθkZ̄k ` āq2`
,

“
EpZ̄k´1 ` ā{θk´1q`pZ̄

k ` ā{θkq`
b

EpZ̄k´1 ` ā{θk´1q
2
`EpZ̄k ` ā{θkq2`

.

Notice that the last expression only depends on θk´1, θk and Qk, the covariance between Z̄k and
Z̄k´1. We thus introduce the following function

HpQk, θk´1, θkq “
EpZ̄k´1 ` ā{θk´1q`pZ̄

k ` ā{θkq`
b

EpZ̄k´1 ` ā{θk´1q
2
`EpZ̄k ` ā{θkq2`

.

The function H is continuous. Combining Eq. (27) and the convergence of σk, denote by θ8 “
κ
δ σ

where σ satisfies (5b). If we set W “ ā{θ8 in the definition of H above, then

Hpqq “ Hpq, θ8, θ8q .

The lemma is established if we prove that Q‹ :“ lim infkQk satisfies Q‹ “ 1. Let us first
show that lim inf HpQkq ě HpQ‹q. If Q‹ “ 0, then Qk ě Q‹ and since H is increasing we
have lim inf HpQkq ě HpQ‹q. It is thus sufficient to assume that Q‹ ą 0. For each ε ą 0,
Qk ě Q‹ ´ ε for all k large enough. Thus, HpQkq ě HpQ‹ ´ εq for all k large, which implies that
lim inf HpQkq ě HpQ‹ ´ εq. Since ε ą 0 is arbitrary, we have lim inf HpQkq ě HpQ‹q. With this,
we have

Q‹ “ lim inf
k

HpQk, θk´1, θkq
paq
“ lim inf

k
HpQk, θ8, θ8q “ lim inf

k
HpQkq ,

ě HpQ‹q,

where paq follows from the continuity of H. By H’s properties, this implies that Q‹ “ 1. �
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Appendix B. Elements of proof for Theorems 3 and 4 (universality)

We provide hereafter arguments to complete proofs of Theorems 3 and 4 based on what has
already been developed in the proofs of Theorems 1 and 2 and on various results available in the
literature.

Proof of Theorem 3. We just need to prove that Proposition 5 above remains true when Assump-
tions 2 and 1 are replaced with Assumptions 8 and 7 respectively. This is a direct application of
[38, Theorem 2.4]. �

Proof of Theorem 2. We only need to prove that Proposition 7 remains true with the assumptions
of Theorem 4. To that end, it is enough to notice that [23, Theorem 2.5], from which Proposition 7
follows directly, can in turn be cast in the framework of the AMP algorithm for GOE matrices (17),
thanks to the embedding of Javanmard and Montanari described in [26]. Indeed, Assumptions 9
and 7 used in conjuction with this embedding provide a version of Algorithm (17) that enters the
framework of [38, Theorem 2.4]. This leads to Proposition 7. �
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