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Abstract: This review presents the state of the art of interactions between two different families of
nanoobjects: nanoparticles—mainly metal nanoparticles, and dendrimers—mainly phosphorhydra-
zone dendrimers (or dendrons). The review firstly presents the encapsulation/protection of existing
nanoparticles (organic or metallic) by phosphorus-based dendrimers and dendrons. In the second
part, several methods for the synthesis of metal nanoparticles, thanks to the dendrimer that acts as a
template, are presented. The properties of the associations between dendrimers and nanoparticles
are emphasized throughout the review. These properties mainly concern the elaboration of diverse
types of hybrid materials, some of them being used as sensitive chemosensors or biosensors. Several
examples concerning catalysis are also given, displaying in particular the efficient recovery and reuse
of the catalytic entities.
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1. Introduction

Nanoparticles are defined as matter that has at least one dimension between 1 and
100 nm, and that generally has different properties from its bulk. This is particularly the
case for metal nanoparticles, such as gold nanoparticles (NPs), which have a different color
depending on their size and differs from the color of bulk gold, in connection with their
surface plasmon resonance [1]. Gold NPs are widely used for diagnostics and therapy [2].
Dendrimers are monodisperse hyperbranched polymers of nanometric size, very different
from classical polymers, as they are synthesized step-by-step and not by bulk polymeriza-
tion reactions [3]. Most dendrimers are synthesized by a divergent process, starting from a
multifunctional core, possessing 2 to 8 functions in most cases. Such a divergent process
frequently involves two steps. The first step is the modification of the core functionalities
to allow them to react with a branched monomer, used in the second step. The branched
monomers generally have either a 1→ 2 [4] or 1→ 3 branching motif [5], which allows
the multiplication of the number of terminal functions by either two or three. The repeti-
tion of both steps—the modification of the terminal functions and the reaction with the
branched monomer—induces the growth of the dendrimer size and the multiplication of
the terminal functions. Each time the number of terminal functions is increased, a new
“generation” is created. It is necessary to use only quantitative reactions for both steps, as it
becomes rapidly impossible to separate a pure dendrimer from a dendrimer with one or a
few missing branches. There is a theoretical limit for the growth of pure dendrimers [6],
which depends essentially on the branch length. The highest generations reached were
generation 11 [7] with polyamidoamine (PAMAM) dendrimers, created by Tomalia [8],
generation 12 with polyphosphorhydrazone (PPH) dendrimers created by Caminade [9],
and generation 13 with triazine dendrimers created by Simanek [10]. Another family of
dendritic molecules are dendrons (dendritic wedges), which were first synthesized by
convergent methods [11], but they can also be synthesized by divergent methods, such as
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dendrimers. The main difference between dendrimers and dendrons lies in the presence
of one function at the core of dendrons, and not at the core of dendrimers. This single
function can be used for the grafting of several dendrons to another core to produce a
dendrimer [12], or for grafting a long alkyl chain for producing amphiphilic dendrons able
to self-assemble [13].

Metal nanoparticles and dendrimers are hard and soft nanomaterials, respectively.
They are both included in a theory proposed by Tomalia for unifying nanosciences and their
complex relationships, directed accordingly by their analogous critical nanoscale design
parameters (CNDPs). Such parameters concern (1) sizes, (2) shapes, (3) surface chemistries,
(4) rigidity/flexibility, (5) architecture, and (6) elemental compositions [14]. Metal nanopar-
ticles and dendrimers may have analogous sizes, shapes, and surface chemistries, but
they have different rigidity/flexibility, architecture, and elemental composition. For these
reasons, the interplay between both types of nanoobjects appears as a promising topic,
which was studied for the first time by three different groups 25 years ago (in 1998) [15–17].
The three groups used PAMAM dendrimers as templates and hosts of metal nanoparticles.
The structure of the fourth-generation PAMAM dendrimer is shown in Figure 1, with a
different color for the core, the branching points of the different generations, and the surface
functionalities. Two forms of the PAMAM dendrimer are represented in this figure, i.e.,
the developed structure, in which a dotted oval approximately encircles each generation,
and the linear structure, with parentheses after each branching point, with a number indi-
cating the number of branches emanating from each layer of branching points. This linear
representation of dendrimers is used in most of the following figures and schemes.
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Figure 1. Fourth-generation PAMAM dendrimer having NH2 terminal functions [8]. Both the full
(expanded) structure (each generation approximately encircled by a dotted oval) and the linear
representation of the same dendrimer, with parentheses after each branching points, are represented.

One of the three first examples of dendrimers interacting with nanoparticles was
proposed by Zhao et al. [15]. They used hydroxyl-terminated fourth-generation PAMAM
dendrimers (G4-OH) to trap up to 16 Cu2+ ions inside the structure, and the same gen-
eration terminated with amines (G4-NH2) to trap up to 36 Cu2+. It was proposed by the
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authors that, on average, each Cu2+ was coordinated to two primary amine groups on
the surface. Chemical reduction with NaBH4 resulted in both cases in intra-dendrimer
Cu clusters, having a diameter less than 1.8 nm with G4-OH, and >5 nm in diameter with
G4-NH2. In the second example, Balogh et al. [16] used PAMAM G4-NH2 and PAMAM
G5-NH(CH2)2NHCO(CH3)3 (pivalate) for the complexation of Cu2+, followed by the reduc-
tion using aqueous hydrazine, to afford nanoclusters of Cu. These clusters inside PAMAM
dendrimers have been stored for more than 90 days at room temperature and found to
be stable in the absence of oxygen. In the third example, Esumi et al. [17] described the
preparation of Au colloids by the reduction of the metal salt HAuCl4 with UV irradiation
in the presence of PAMAM-NH2 dendrimers of generations 0, 1, 2, 3, 4, and 5. The aver-
age particle sizes decreased with an increase in the number of surface amino groups of
the PAMAM dendrimers. Au colloids with a diameter less than 1 nm were obtained in
the presence of the largest dendrimers (G3–G5), indicating that the dendrimers have an
effective protective action for the formed Au colloids. Indeed, particle growth would be
prevented by the three-dimensional structure as the generation of the dendrimers increases,
resulting in a smaller particle size.

After these pioneering works [15–17], many publications and different reviews have
been published about the association of dendrimers with nanoparticles [18,19]. Different
specialized fields of use have also been reviewed, in particular, catalysis [20–22] and
biomedical applications [23], including bioimaging and drug delivery [24].

This review describes the use of a special class of dendrimers, phosphorus den-
drimers of type polyphosphorhydrazone (PPH), for trapping or synthesizing nanopar-
ticles. Such a type of PPH dendrimers is synthesized by a divergent process, using
4-hydroxybenzaldehyde as the linker and the phosphorhydrazide H2NNMe-P(S)Cl2 as
the branched monomer. Two different cores have been essentially used, the trifunctional
P(S)Cl3 [25] and the hexafunctional (P=N)3Cl6 [26]. Figure 2 displays the full structure and
the linear structure of second-generation phosphorhydrazone dendrimers built from both
types of cores. Such dendrimers are very modular [27] and display multiple properties,
particularly in the fields of catalysis [28], materials [29], and biology/nanomedicine [30],
for which it has been shown that the internal structure of the dendrimers plays a key
role [31]. This review is organized depending on the role of the dendrimers, either the
encapsulation/covering of existing nanoparticles, or the generation of the nanoparticles,
and their protection.
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2. Interaction between Phosphorus Dendrimers and Organic Nanoparticles

The very first example of phosphorus dendrimers interacting with (large) nanopar-
ticles concerned organic particles consisting in poly(styrene/acrolein/divinylbenzene)
microspheres with a narrow-diameter distribution (D = 300 nm). Quartz plates were se-
quentially modified with γ-aminopropyltriethoxysilane (APTS), followed by the covalent
attachment of a single layer of the fifth-generation phosphorus PPH dendrimer, bearing
aldehyde terminal functions. In a further step, a layer of PAMAM dendrimer of genera-
tion 4, bearing primary amine terminal functions, was covalently grafted to the layer of
phosphorus dendrimers. Poly(styrene/acrolein/divinylbenzene) microspheres were then
deposited and penetrated inside the soft layers of both types of dendrimers. In the last
step, another layer of the fourth-generation PAMAM dendrimers was deposited. Surface
layers were characterized through X-ray photoelectron spectroscopy (XPS) to determine
the thickness of the layers and through contact angle measurements. The fabrication and
the average thickness of each layer are reported in Scheme 1 [32]. In a related paper [33],
the same plates were analyzed through atomic force microscopy (AFM) to measure the
roughness of the surface of the modified plates, which displayed a uniform covering of
the plates with the fifth-generation phosphorus dendrimer (PPH-G5-CHO) and with the
second layer of the PAMAM dendrimer (PAMAM-G4-NH2).
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Scheme 1. Structure of the 5th-generation phosphorus dendrimer, of the 4th-generation PAMAM
dendrimer, and their use for the covalent decoration of a quartz plate, followed by the penetration of
poly(styrene/acrolein/divinylbenzene) microspheres, and finally the deposition of a second layer of
PAMAM-G4-NH2 dendrimers [32,33].

Latex nanoparticles, with an average diameter of 15 nm, were obtained by copoly-
merization of styrene and 4-vinylbenzyl chloride, followed by post functionalization with
cyclam. These organic nanoparticles were reacted with phosphorus dendrons of different
generations, having an activated vinyl group at the core and Girard’s reagent T (trimethy-
lammonium) terminal functions. The average number of dendrons grafted per cyclam
residue was 1 for generation 0, and approximately 0.7 and 0.4 for generations 1 and 2, re-
spectively (Scheme 2). The dendronized nanolatexes at 2 to 4% in water formed translucent
hydrogels upon standing at room temperature for one week. Approximately 105 × 103,
185 × 103, and 345 × 103 water molecules were estimated to be gelled by each dendron of
generations 0, 1, and 2, respectively [34]. The gelation is due to the terminal functions, as
this gelation phenomenon was already observed with the same type of terminal functions
on the surface of a dendrimer [35]. Indeed, electron micrographs of the dendrimer gels
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revealed a network of aggregated dendrimers trapping large quantities of water. Inter-
molecular hydrogen bonding, face-to-face π–π aromatic stacking, and hydrophobic effects
of the internal backbone of the dendrimers were considered as the main factors explaining
the creation of the network and the gelation properties [35].
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3. Interaction of Dendrimers with Pre-Existing Metal Nanoparticles
3.1. Gold Nanoparticles

Gold nanoparticles display a wide range of properties, depending on their size and
the stabilizer used, and have been reviewed [36,37]. They have been used as catalysts [38];
as chemical and biological sensors [39]; and in medicine [40–42] for diagnosis, imaging,
therapy [43], and drug delivery [44]. Two types of functionalized commercially available
gold nanoparticles have been used in the interaction with phosphorus PPH dendrimers. A
review has gathered the examples of the interplay of gold with phosphorus dendrimers,
but focusing essentially on discrete complexes [45].

In relation to the work shown in Scheme 1, a fourth-generation phosphorhydrazone
dendrimer has been covalently grafted to a piezoelectric membrane, preliminarily func-
tionalized with APTS; then, a single-stranded oligonucleotide functionalized on one end
with a primary amine was covalently grafted, using a known procedure [46,47]. The re-
sulting imine bonds were reduced with NaBH4 to afford stable secondary amines, and
the remaining aldehydes on the surface of the dendrimers were reduced to alcohols. A
complementary oligonucleotide functionalized on one end with biotin was then hybridized.
The presence of dendrimers as 3D linkers between a solid surface and an oligonucleotide is
known to favor the hybridization, as it occurs away from the solid surface, almost like in
solution, contrarily to classical linkers that fall onto the surface [48]. This system was used
as a very sensitive sensor for monitoring the real-time kinetics of the absorption of gold
colloids functionalized with streptavidin (diameter 40 nm) on the functionalized membrane
(Scheme 3) [49]. This method was chosen to profit from the well-known strong associa-
tion of biotin with streptavidin [50–52]. The mass sensitivity of the device, estimated as
−3.9 Hz/pg, was better than state-of-the-art values for piezoelectric mass-sensing devices
by a factor of several hundred at that time (2005) [49].
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Scheme 3. Step-by-step modification of a piezoelectric membrane for sensing gold nanoparticles [49].
Covalent bonding between dendrimer and oligonucleotide shown inside the magnifying glass.

Besides the covalent grafting of dendrimers to the surface shown in the previous
paragraphs, they can also be deposited layer-by-layer by electrostatic interactions on posi-
tively charged surfaces. Such positive surfaces were obtained by first coating the surface
with 3-(diethoxymethylsilyl) propylamine (3-APDMES). Using alternate negatively and
positively charged dendrimers, both of generation 4, enabled the step-by-step increase in
the thickness of the coating by electrostatic interactions [53]. An analogous process was
carried out with anionic gold nanoparticles (Au NPs), instead of the anionic dendrimers.
These Au NPs equipped with anionic carboxyl functional groups were synthesized ac-
cording to published procedures [54,55], and had diameters of approximately either 3 or
16 nm, as determined by TEM (transmission electron microscopy). These Au NPs and
fourth-generation cationic phosphorus dendrimers (48 ammonium terminal functions)
were deposited alternately on 3-APDMES-coated substrates (silicon wafer or quartz of
a micro-balance) [56]. The deposition was carried out by immersing the substrates into
Au NP colloidal suspensions for several minutes, followed by a rinsing step to remove
any physically adsorbed NPs, and blow-drying with nitrogen. The same process was
also carried out with the positively charged dendrimers, and each step was monitored
by UV-vis spectroscopy. Up to 10 bilayers (Au NPs/dendrimers) were deposited. Upon
addition of salt (NaCl), the dendrimers were swollen, probably due to reduced electrostatic
repulsion between neighboring identically charged species [57], leading to an increase in
the average distance between Au layers. The films were also exposed to deep UV light
with a wavelength of 254 nm for 24 h, with the aim of removing the dendrimers (Scheme 4).
Indeed, the dendrimer strongly absorbs at this wavelength and is destroyed by prolonged
irradiation, as already observed in MALDI-Tof spectrometry, which used a UV-laser for
desorption [58]. These films composed of Au nanoparticles (and a few remaining dendritic
residues) were investigated in the sensing of five alcohols with different refractive indices,
which were methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, whose refractive
indices are 1.329, 1.361, 1.385, 1.399, and 1.410, respectively. The absorbance peak (λmax) of
Au multilayer films exhibited a moderate red-shift as the refractive index of the solvents
increased, showing their potential as chemical sensors [56].
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3.2. ZnCdSe Quantum Dots

Based on the method shown in Scheme 4, layer-by-layer electrostatic deposition inside
the porous alumina membrane, of 400 nm in diameter with a pore depth of 80 µm, was
carried out with positively and negatively charged phosphorus dendrimers. After removal
of the template, such a process afforded nanotubes made of dendrimers [53]. The same
process inside porous alumina was applied to quantum dots (QDs), which are fluorophores
based on metallic nanoparticles such as ZnCdSe alloys, instead of the negatively charged
dendrimers. In fact, three bilayers of positively and negatively charged dendrimers were
first deposited inside the pores, previously functionalized with 3-APDMES (Figure 3). Five
bilayers of positively charged dendrimers and negatively charged QDs with a luminescence
maximum at λ = 561 nm (QD561, green) were then deposited, followed by five bilayers
of the same type, based on QD594 (orange), and finally five analogous bilayers based
on QD614 (red). A graded-bandgap was observed with these nanotubes composed of
dendrimers and quantum dots, as they exclusively show an emission peak centered at
λ = 614 nm, originating from QD614. On the top of this perfectly controlled multilayer,
a 15-mer probe DNA (p-DNA) was immobilized and used for hybridization with Cy5-
labeled complementary DNA (t-DNA) (Figure 3). Detection through fluorescence/Förster
resonance energy transfer (FRET) displayed an increase in the Cy5 emission, which received
an energy transfer of approximately 3.2% from the quantum dots. Although the energy
transfer efficiency from the QDs to Cy5 is relatively low, it is sufficient to ensure the sensitive
detection of DNA hybridization, with an enhancement factor of, ca. 15, indicating that such
devices have potential utility for the detection of trace amounts of DNA [59]. Such devices
were also elaborated on Au-coated glass surfaces, but not tested for DNA hybridization [60].
The work concerning the layer-by-layer modification of materials with dendrimers has
been reviewed [61].
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3.3. Cobalt Nanoparticles

Cobalt nanoparticles covered by a few layers of graphene were used as support for
catalysts [62]. Cobalt nanoparticles (Co NPs) are magnetic; thus, they can be easily recov-
ered using a magnet [63]. In the first experiment, two phosphorus dendrons (generations 0
and 1) bearing a pyrene at the core and 5 or 10 triphenyl phosphines as terminal functions
were used for complexing palladium, as previously reported [64]. The specific reaction of
one of the chlorides of the cyclotriphosphazene N3P3Cl6, affording one function different
from the five others, has been used for the synthesis of these dendrons. Such a possibility
was previously used for the synthesis of dendritic structures, and has been reviewed [65].
The dendrons shown in Scheme 5 cover the Co-NPs at room temperature by π-stacking
interactions between the pyrene at the core of the dendrons and the graphene layers on the
NPs. Heating in solution fragilizes this interaction, and the dendrons go inside the solution,
where they can perform catalysis. At the end of catalysis, cooling the reaction medium
permits the dendrons to interact again by π-stacking with the NPs, which can be taken off
the reaction medium using a magnet. In this way, the dendron can be easily recovered and
reused. The concept was applied to the synthesis of Felbinac (an anti-inflammatory drug)
by Suzuki coupling [66], using the zeroth-generation dendron (five phosphine complexes)
(Scheme 5). The catalytic dendrons were recovered eleven times, displaying even at run 12
a 100% yield in Felbinac [62].

A related work was carried out with a small dendron functionalized with a pyrene
at the core and five terpyridines on the surface, suitable for the complexation of ruthe-
nium. This complex was used for catalyzing the hydrogenation of nitrobenzene to aniline,
using 2-propanol as the transfer hydrogen source (Scheme 6). In that case also, the den-
dron onto the cobalt NPs could be recovered using a magnet and reused at least seven
times [67]. The efficiency of magnetic nanoparticles as versatile supports for catalysts has
been reviewed [68].
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NPs [67].

The same type of π-stacking interaction was also applied to a dendron bearing a
pyrene moiety at the core and 10 poly(vinylidene fluoride) (PVDF) chains on the surface.
In order to maximize the efficiency of interaction with the Co-NPs, a long linker was used
between the pyrene and the cyclotriphosphazene (Figure 4). The stability of the π-stacking
interactions when the temperature increased and the reversibility of the process when the
temperature decreased were studied. A partial release of the dendron from the surface of
the Co-NPs was observed at 60 ◦C, but a partial reversibility to the π-stacking was observed
on cooling to 20 ◦C. [69].
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4. Dendrimers for the Synthesis of Metal Nanoparticles

All the above-mentioned experiments concerned the use of commercially available
or pre-existing nanoparticles. However, poly(phosphorhydrazone) dendrimers are also
suitable templates for the synthesis of diverse metal nanoparticles.

4.1. Synthesis of Gold and Silver Nanoparticles

The first example with phosphorus dendrimers concerned a thiol-terminated fourth-
generation dendrimer, equipped with 96 thiol (SH) functions, interacting with the gold clus-
ter Au55(PPh3)12Cl6 obtained by reduction of PPh3AuCI in benzene at 50 ◦C by B2H6 [70].
The first experiments were carried out in solution in dichloromethane, and resulted for
the first time in the formation of bare Au55 clusters, which self-associated in microcrystals
of (Au55)∞ [71]. The dendrimer played two roles in this experiment: first, it removed the
triphenylphosphine and chlorine ligands; then, it acted as a template for growing the
crystals of Au55, as illustrated in Scheme 7A. Characterization by transmission electron
microscopy (TEM), small-angle X-ray diffraction (SAXRD), wide-angle X-ray diffraction
(WAXRD), X-ray absorption fine structure (EXAFS), energy-dispersive X-ray spectroscopy
(EDX), and IR analyses confirmed the absence of ligands, and the preservation of the Au55
cluster structure in the crystals [71].

The same thiol-terminated dendrimer was then used in an analogous experiment but
carried out in the solid state. A solution of dendrimer in dichloromethane was deposited on
a 9 × 9 mm silicon wafer fixed onto a spin-coater, rotating at 100 rpm, to produce a single
layer of dendrimers. The wafer was then washed with dichloromethane to eliminate the
unbound dendrimers. Analysis by atomic force microscopy (AFM) indicated a thickness of
1.5–2.0 nm of the almost-defect-free layer. Interaction with the gold clusters was carried
out by dipping the wafer platelet for a short time into a solution of the gold clusters.
After washing with dichloromethane and drying, if the wafer was kept in an atmosphere
of dichloromethane for about one week, nanosized crystals of bare Au55 clusters were
observed on the dendrimer surface, as illustrated in Scheme 7B. This process taking place in
two-dimensional reactant arrays is analogous to the process observed in three dimensions
in solution [72].
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A small water-soluble phosphorus-containing dendrimer, functionalized with four
Girard’s reagents T (acethydrazide trimethylammonium chloride) and two P=N-P=S link-
ages, was especially synthesized for obtaining gold crystals from AuCl(tht) (tht = tetrahy-
drothiophene). AuCl(tht) was synthesized by the reaction of tht with HAuCl4 in wa-
ter/methanol [73]. This dendrimer was especially engineered for reacting with AuCl(tht).
Indeed, it was previously shown that the sulfur atom included in P=N-P=S linkages is
specifically suitable for the complexation of AuCl, whereas the other P=S groups included
in the dendrimers, but not in P=N-P=S linkages, do not react [74]. In addition, a reac-
tion was rapidly observed at room temperature in water between Girard’s reagent T and
AuCl(tht), leading to a black precipitate, showing that this reagent is indeed able to reduce
gold, but not in the form of nanoparticles. With the hydrazone bond being slightly in
equilibrium with the aldehyde and hydrazine forms, the dendrimer functionalized with
this reagent should release a small quantity of Girard’s reagent T in water. This dendrimer
acted first as a complexing agent for AuCl. The complex was stable in many types of
solvents, but when adding water, the small quantity of released Girard’s reagent T acted as
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a mild reducer, and the structure of the dendrimer was finally a template for the formation
of gold nanocrystals (Scheme 8). Shape-controlled Au nanoparticles in the form of triangles
and associated triangles were obtained [75].
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Besides gold, silver nanoparticles were also obtained from phosphorus dendrimers.
In the first step, a first-generation dendrimer functionalized with aldehydes was grafted
to silica nanoparticles (mean diameter 12 nm), bearing amine surface functions issued
from aminopropyltriethoxysilane (APTES) [76]. In the second step, polyethylene glycol
(ca., 11 CH2CH2O units) having an amine at one end was reacted with the remaining
aldehyde functions of the grafted dendrimers. To stabilize the imine functions, a hy-
drophosphorylation with dimethyl phosphite was carried out, producing a secondary
amine and a dimethyl phosphite in place of all the imine groups. The reaction was in
particular characterized by IR, which showed the disappearance of the aldehyde functions.
The addition of silver acetate in a water suspension of the modified silica induced the
darkening of the suspension, inducing the formation of silver nanoparticles on the surface
of silica, both with and without a reducing agent (NaBH4) (Scheme 9) [77]. A typical
plasmon absorption band centered between 394 and 416 nm was observed only when using
the reducing agent. Evolution with time produced various silver oxide nanoparticles (AgO,
Ag2O, Ag3O. . .). The antibacterial properties of silver NPs are well known [78,79]; thus,
the properties of these materials were estimated by determining the minimal inhibitory
concentration (MIC) and the minimal bactericidal concentration (MBC) on four typical
bacterial strains (Gram+: S. aureus and E. hirae; Gram−: E. coli and P. aeruginosa). The
silver-loaded silica NPs exhibited bacteriostatic activities against all bacterial strains in the
25–500 ppm range (silver equivalents), as shown in Table 1 [77].
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Table 1. MIC and MBC of silica NPs functionalized with pegylated dendrimers hosting silver NPs
determined on 4 typical bacterial strains.

Materials
MIC 1/MBC 1 of

S. aureus CIP 4.83
(Gram+)

MIC 1/MBC 1 of
E. hirae CIP 58.55

(Gram+)

MIC 1/MBC 1 of
E. coli CIP 103571

(Gram−)

MIC 1/MBC 1 of
P. aeruginosa CIP

104116
(Gram−)

Ag0@SidendriPEG 500/>500 250/>500 250/500–1000 250/>500
Ag0@SidendriPEG 50–62.5/>500 25–31.25/>500 50–62.5/250 25–31.25/250

1 in ppm (silver equivalents).

4.2. Synthesis of Palladium, Platinum, and Ruthenium Nanoparticles

Triaza triolefinic 15-membered macrocycles functionalized with a diamine (Scheme 10)
were reacted with the aldehyde terminal functions of generations 0, 1, and 4 of phosphorhy-
drazone dendrimers, followed by the reduction of the imine bonds with NaBH3CN to obtain
stable compounds. Reaction with the palladium complex Pd2(dba)4 (dba = dibenzylidene
acetone) afforded discrete complexes when using a strict stoichiometry of reagents (one Pd
per macrocycle), or Pd nanoparticles when using an excess (Scheme 10A) [80]. Both the
discrete complexes and the Pd NPs stabilized by the dendrimers were used as catalysts
in Mizoroki–Heck reactions, monitored by 1H NMR [81]. Both types of catalysts could
be recovered and reused several times. The catalytic efficiency of the discrete complexes
did not change with the number of reuses (four times), whereas the nanoparticles became
more and more efficient with the number of reuses, particularly when stabilized with the
zeroth-generation dendrimer (Scheme 10B). This result can be explained by a decrease
in the size of the nanoparticles with recycling, as they were less stabilized by the small
zeroth-generation dendrimer than by the large fourth-generation dendrimer [80].
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the complexation of Pd and of Pd NPs [80]. (B) Both types of materials were suitable catalysts in
Mizoroki–Heck reactions. The run numbers indicate the number of recovery and reuse cycles of
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The same type of macrocycles was also grafted to the P(S)Cl2 terminal functions of
phosphorhydrazone dendrimers (Figure 2, R = Cl). Two Cl were needed for grafting one
macrocycle, by the formation of a five-membered phosphadiaza heterocycle. A monomer
and generations 1, 2, and 4 were synthesized (Figure 5), and they were reacted with the
platinum complex Pt2(dba)3 [82]. Platinum nanoparticles were obtained in all cases, which
organized in dendritic networks when using the dendrimers. The mean length of the
dendritic branches composed of Pt NPs surprisingly increased with the generation of the
dendrimers, with the longest branches being obtained with generation 4, as shown by
the image in Figure 5, obtained using high-resolution transmission electron microscopy
(HRTEM). No network was observed when using the monomer. It was proposed that large
dendrimers having numerous macrocycles as terminal groups should wrap Pt NPs more
efficiently and produce longer ribbons than the smaller ones [83,84].
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Another family of phosphorhydrazone dendrimers was built from the same type of
15-membered triazatriolefinic macrocycle, which was used as the core instead of as terminal
functions [85]. The dendrimers were built up to generation 3 and were functionalized on
the P(S)Cl2 terminal functions with a phenol bearing an iminophosphine, at the level of the
second and third generations (Scheme 11). The phosphines on the surface were suitable for
the complexation of palladium dichloride PdCl2 from PdCl2(COD) (COD: cyclooctadiene),
as shown previously [86], but not the macrocycle at the core. Indeed, these macrocycles
are suitable for the complexation of Pd0, but not PdII [87]. However, the single macrocycle
at the core of these dendrimers was suitable for the complexation of Pd0, and for the
elaboration of palladium nanoparticles from Pd2(dba)4 and of platinum nanoparticles from
Pt(PPh3)4, using an excess of metal in both cases. It was shown in these latter cases that the
phosphines on the surface were not involved in the complexation of the nanoparticles [85].
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Scheme 11. Dendrimers built from a 15-membered macrocycle core and functionalized with
iminophosphines on the surface, forming discrete Pd complexes on the surface by reaction with
PdCl2(COD), and Pd or Pt nanoparticles, by reaction with Pd2(dba)4 or Pt(PPh3)4, respectively [85].

Besides palladium and platinum, ruthenium nanoparticles were also elaborated. In
that case, dendrons having one, two, or four triphenylphosphine functions on their surface
were used for milling under air with a mixture of ruthenium trichloride RuCl3 and sodium
borohydride NaBH4 as reducing agent. Ruthenium nanoparticles (Ru NPs) having a
diameter in the 2 to 3 nm range and protected by the dendrons were obtained in this way. It
should be noted that the largest dendrons afforded the less hindered nanoparticles. Indeed,
a smaller number of large dendrons was grafted per Ru NP, compared to the large number
of small dendrons, as illustrated in Scheme 12A. These Ru NPs were air-stable upon storage,
and all of them efficiently catalyzed hydrogenation of styrene. The best catalytic results
were obtained with the largest dendron, which facilitates access of the reagents to the less
protected Ru NPs (Scheme 12B) [88].
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4.3. Synthesis of Titanium Nanoparticles

The possibility of phosphorus dendrimers to react with metal alkoxides was demon-
strated early with the elaboration of hybrid materials, from dendrimers with carboxylic acid
end groups and either titanium oxo clusters [89] or cerium or titanium alkoxides [90]. On
the other hand, a dendron functionalized with phosphonates was able to strongly interact
with the surface of nanocrystalline mesoporous titania thin film [91]. Thus, dendrimers
of generations 1 to 4, functionalized with phosphonic acids on the surface, were reacted
with titanium tetraisopropoxide Ti(OiPr)4. Stable porous hybrid materials based on a tita-
nium oxo network entrapping the dendrimers were obtained, which surprisingly included
nanocrystals of anatase TiO2 (ca., 5 nm). Furthermore, the anatase structure was stable up
to 800 ◦C and did not transform to the brookite or rutile phase, commonly observed at this
temperature range [92]. Anatase, rutile, and brookite are three crystalline forms of TiO2. The
anatase-to-rutile transformation occurs in the temperature range of 700–1000 ◦C, whereas
brookite is converted into rutile by heating to temperatures above 700 ◦C [93]. Other
fourth-generation phosphorus dendrimers equipped with ammoniums or diketone termi-
nal functions were also reacted with Ti(OiPr)4 at mild temperature (60 ◦C) and also afforded
materials including anatase nanocrystals (4.8 to 5.2 nm in size). Small-angle X-ray diffrac-
tion studies (SAXD) indicated that the material was organized as an ordered mesoporous
network. Heating the materials at 500 ◦C induced the ring opening of the cyclotriphosp-
hazene core of the dendrimers, and the cleavage of the dendrimer branches, to afford a
linear polyphosphazene polymer bridged mineral phase, as illustrated in Scheme 13 [94].
The dendritic structure provides a confined medium for the low-temperature crystallization
of TiO2, and the heteroatoms of the core and the branches (P, N, S) passivate the surface
of the anatase nanocrystals. The phase transformation is generally initiated at the anatase
surface; thus, its passivation prevents its transformation. Finally, the ring opening polymer-
ization of the cyclophosphazene core restricts the anatase growth and affords thermally
stable, interpenetrating mesoporous polyphosphazene–anatase networks [93]. Later on, the
materials obtained after calcination at 500 ◦C were used as catalysts in photocatalytic water
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splitting for hydrogen production [95]. A recent paper reported the hemolytic activity and
cytotoxicity of related dendrimer-TiO2 materials [96].
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5. Conclusions

This review has displayed the usefulness of poly(phosphorhydrazone) PPH den-
drimers for both the encapsulation/protection of pre-existing nanoparticles and for the
synthesis of nanoparticles, for which the dendrimers act as three-dimensional templates.
The presence of heteroelements such as phosphorus, sulfur, and nitrogen in the structure
of phosphorhydrazone dendrimers, and also of unsaturated macrocycles in some cases, is
particularly suitable for interacting with metals and for the stabilization of metal nanopar-
ticles by passivation of their surface. The generation of the dendrimer is also important,
as metal NPs are surrounded by several molecules of small dendrimers, whereas NPs
are encapsulated inside large dendrimers. Such a difference generally has an influence
on the stability of the NPs, with the encapsulation inside the large dendrimers inducing
a better stability. The nature of the terminal functions of the dendrimers can also play
an important role in the interactions with the NPs. The role of phosphines or olefinic
macrocycles has to be particularly emphasized for their strong associations with metal
NPs. Covalent grafting, electrostatic interactions, and π-stacking interactions have all been
used to produce dendrimer/NP interactions. Various techniques have been used for the
characterization of the dendrimer/NP associations. These methods mainly concerned the
characterization of solid matter, in particular by AFM, TEM and HRTEM, SAXRD, WAXRD,
EXAFS, EDX, XPS, and IR.

Most of the properties that have been found for these associations of hard nanoparticles
(metal) and soft nanoparticles (phosphorhydrazone dendrimers) concerned nanomaterials.
The elaboration of multilayers associating dendrimers and metal NPs, and also the fabrica-
tion of sensitive chemical or biological sensors, or the stabilization of metal NPs, even at
very high temperatures are the main topics displayed in the field of nanomaterials. Several
examples in the field of catalysis have been also reported, with emphasis on the efficient
recovery and reuse of the associated dendrimers/NPs. The field of biology has not really
been investigated up to now, with only two examples concerning the antibacterial proper-
ties of silver NPs hosted by a small dendrimer associated with silica NPs, and the hemolytic
activity and cytotoxicity of TiO2/dendrimers networks. This field certainly needs to be
developed, as illustrated by gold nanoparticles encapsulated not in PPH dendrimers but
in PAMAM dendrimers functionalized on the surface with β-cyclodextrin, for improved
delivery of small interfering RNA (siRNA) to glioblastoma cells [97].
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Searching the keywords “dendrimer” and “nanoparticle” generates over 10,000 an-
swers in the Web of Sciences, including over 2000 reviews, in which phosphorhydrazone
PPH dendrimers occupy a small but original place. This is due to the unique characteristics
of their structure, which includes a large number of heteroatoms (P, S, N), contrarily to all
the other types of dendrimers. It should be emphasized that the most cited papers in the
field of dendrimers/NPs concern catalysis [18,20] and biology [98], two fields that should
be more developed with the phosphorhydrazone dendrimers.
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