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Magneto-Inertial Dead-Reckoning Navigation with
Walk Dynamic Model in Indoor Environment

Raphaël Neymann1,2, Alexis Berthou2, Jean-François Jourdas2,
Hugo Lhachemi1, Christophe Prieur3, and Antoine Girard1

Abstract—We tackle the problem of pedestrian indoor naviga-
tion with Magneto-Inertial Dead Reckoning technology (MIDR)
with the integration of the data provided by a Magneto-Inertial
Measurement Unit (MIMU). This method is well-known in the
literature and very efficient if the spatial distribution of the
magnetic field is nonuniform and the gradient of sufficiently high
magnitude. However, the quality of the magnetic information
decreases as the pedestrian moves toward a weak magnetic zone.
We propose, characterize and test a new correction technique of
the MDIR velocity based on the detection of walking steps and
dynamical modeling of the walk itself.

I. INTRODUCTION

Dead-Reckoning navigation (DR) consists in the estima-
tion of the dynamics of a system moving in an unknown
environment. It requires the measurements of inertial data
: acceleration and angular velocity. Dead-Reckoning navi-
gation are generally updated with an outer correction term,
which can be coming from an optical information, a direct
velocity measurement – e.g. GNSS – or the measurement
of a characteristic physical field. Optical information and
GNSS measurements are not reliable indoor where GNSS
signals can be blocked, and good lightning conditions are not
guaranteed. However, indoor, the magnetic field is high and the
instantaneous measurement of the magnetic field and its time
and space variations provide important information about the
motion of the body. The principle of Magneto-Inertial Dead-
Reckoning (MIDR) is to combine inertial data with a spatial
mapping of the magnetic environment. During the last past
decade, MIDR has been widely improved and explained in the
literature for any indoor navigation [2], [5], [14] or odometry
[12], in particular the modelling of Maxwell’s fields equations
in the dynamic equations. This method is especially interesting
for the estimation of the heading in an indoor environment [3]
and has the property to naturally bound the divergence due to
the instability of inertial sensors linearly in time.

However, if the magnetic field is spatially uniform, a loss
of observability occurs. Weak magnetic gradient phases can
no longer be handled by the magnetic corrections. Moreover,
miscalibration effects can be amplified during a low-gradient
phase [4]. Therefore, another correction term shall be added
to the MIDR model. Artificial Neural Networks (ANN) have
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been used as a complement of magnetic data [18], e.g. with
the use of BiLSTM in the determination of the different phases
of walk with learning; as well as infrastructured ways such as
Ultra-Wide Band (UWB) or WLAN. However, a more com-
mon approach is to add a Zero Velocity Update (Zupt) term to
the dynamic system [11], [17]. In this situation, if a motionless
phase is detected in the inertial data – accelerometric and
gyrometric – through a threshold fast test – e.g. a comparison
with the noise rate of these sensors –, the velocity is forced
to be zeros during this period.

For pedestrian indoor navigation, it is then interesting
to consider an additional velocity information through step-
detection. However, Zupt is often too restrictive as it requires
to put the navigation device at a specific location on the foot
and is very sensible to shocks. As a result, a more generic
approach was developed and patented in [15], [16]: the phases
of a typical walk pattern are detected and the velocity is
computed from a walk model eliminating the part due to the
leg or body relative motion. Contrarily to the Zupt approach,
the walk pattern does not force the velocity to be zeros but
is modeled by a formula that involves the angular velocity
and a geometric parameter determined by the position of the
accelerometer relatively to the ankle of the pedestrian operator.
Therefore, the Zupt becomes a particular situation of this walk
model when the angular velocity tends to vanish.

This paper proposes a fusion between classic MIDR and the
velocity issued from step-detection and walk specific motions.
First, we recall important notions of inertial and magnetic
navigation (Section II), which are useful to the design of an
Extended Kalman Filter and its theoretical analysis (EKF)
(Section III). We derive the conditions of observability and
good performance of the MIDR technology, which highlights
the interest of an additional velocity measurement to cover
some weak observability conditions occurring in practice. We
then recall the principles of a velocity estimation technique
based on step-detection and walk specific motion. Finally,
we present a novel fusion scheme between MIDR and the
velocity derived from the walk motion (Section IV) and
present improved navigation results obtained on a typical
indoor scenario (Section V).

II. PRELIMINARIES
A. Frames and rotations

A vector u ∈ R3 expressed in the navigation frame Rn are
denoted by an upperscript n, i.e. un. Conversely, this latter is
expressed in the body frame Rb are denoted by an upperscript



b, i.e. ub. The rotation rate, provided by the gyrometer, from
the body frame Rb to the navigation frame Rn is denoted by
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element of the tangent space of the rotation group SO(3). By
convention, the attitude R ∈ SO(3) maps a vector in the body
frame ub to its equivalent in the navigation frame un = Rub.

B. Magneto-Inertial Measurement Unit (MIMU)

The MIDR technology requires the measurement of the
local magnetic field Bb and its space gradient
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in the body frame [5]. Magnetic raw data are sensed through
a space array of n magnetometers, disposed with a given and
known geometry relatively to the position of the accelerometer
on the sensors board [2], [4], [7], providing vector mea-
surements M1,M2, . . . ,Mn ∈ R3. The sensors composing the
array are also supposed to be calibrated with a linear model
correcting scale factors and misalignments – expressed in a
nonsingular matrix Ak ∈ GL(3) – and biases – wrapped in
vectors bk ∈ R3 –

Bb
k = AkMk +bk, (3)

where Bb
k is the calibrated data of sensor k [4], [9]. This

model describes the contributions of soft and hard iron for each
individual 3D magnetometer. The fusion of all calibrated data
is thereafter achieved by a linear combination of these data
to estimate the values of the components of Bb and ∇Bb [5],
ending the complete process of calibration. In the following,
we denote by miscalibration any error in the identification of
the calibration parameters – e.g. in biases or scale factors.

The magnetic data are completed with inertial measure-
ments sensed by an Inertial Measurement Unit (IMU). An
accelerometer provides the measurement of the proper acceler-
ation γγγb ∈R3. The constant gravity acceleration is denoted by
gn ∈ R3 and is expressed in the navigation frame. Moreover,
a gyrometer – which provides the angular velocity ΩΩΩb/n –
is supposed to be located at a position `̀̀b relatively to the
accelerometer. The IMU data are assumed to be also well
calibrated with a specific model.

The MIMU is embedded in a hardware device – produced
and developed by the company Sysnav – which is attached
to the ankle of a pedestrian operator by straps, as shown on
Fig. 1. The position near the ankle is necessary for the step
detection and the use of a walk dynamic model.

C. Magnetic field structure

In this paper, we assume a static magnetic field B, i.e.
which is time-independent: ∂B/∂ t = 0. In indoor conditions,
the MIDR device moves within a space region in which it
is assumed that there is no electric current J nor electric

Fig. 1: Sysnav’s MIMU attached to the ankle of a pedestrian.

field E. This hypothesis yields important properties due to
static Maxwell’s equations, which are equivalent to the ones
expressed in vacuum1:

∇ ·B = 0, ∇×B = 0. (4)

Proposition 1: The magnetic gradient ∇B can be orthogo-
nally decomposed in eigenvectors and real eigenvalues [5]

∇B = U

λ 0 0
0 µ 0
0 0 −λ −µ

U>, λ ,µ ∈ R, U ∈ SO(3).

(5)

III. THEORY OF MAGNETO-INERTIAL DEAD
RECKONING

A. Kinematics of the magnetic field

The kinematic equation of the MIDR is based on the space
and time variations of the magnetic field in an inhomogeneous
field – i.e. in the presence of a gradient [3], [14]:

Ḃb =−
(

ΩΩΩ
b/n−ΩΩΩ

b/n
b

)
Bb +∇Bbvb. (6)

Definition 1: Magnetic velocity. The magnetic velocity
consists in the velocity isolated from Eq. (6)

vb
mag =

(
∇Bb

)−1 [
ΩΩΩ

b/nBb + Ḃb
]
, (7)

provided the nonsingularity of the magnetic gradient ∇Bb.

1Maxwell’s equations in vacuum are invariant by translations and rotations,
so these results either hold in the body or the navigation frame.



It follows from the previous Def. (1) that vb
mag is conditioned

by the gradient ∇Bb, and especially its conditioning number
κ = maxi |λi|/mini |λi| which quantifies the observability of
the motion. The structure of the magnetic gradient devel-
oped in II-C implies that the eingenvectors and values are
interdependent. Different configurations can then happen up
to a multiplication by κ , the situation where the eigenvalues
are (1|1| − 2) is favorable due to the observability of each
direction but only if the lowest eingenvalue is not to small;
the situation (1|−1|0) is contrarily not desirable because the
magnetic field is constant toward the weakest direction, which
is consequently not observable.2

B. Extended Kalman Filter design

The equation of motion Eq. (6) can be plugged into an Ex-
tended Kalman Filter (EKF) [2], [5], [8], [13], [14], combined
with the estimation of the attitude R ∈ SO(3) and the inertial
biases Ω̂ΩΩ

b/n
b and γ̂γγ

b
b:

˙̂R = R̂
(

ΩΩΩb/n−Ω̂ΩΩ
b/n
b

)
˙̂vb =−

(
ΩΩΩb/n−Ω̂ΩΩ

b/n
b

)
v̂b +γγγb− γ̂γγ

b
b + R̂>gn

˙̂Bb =−
(

ΩΩΩb/n−Ω̂ΩΩ
b/n
b

)
B̂b +∇Bbv̂b

˙̂
ΩΩΩ

b/n
b = 0

˙̂γγγb
b = 0.

(8)

The value ∇Bb of the magnetic gradient comes from the
magnetic measurement unit. This filter is corrected through
the outer observation of the magnetic field z = Bb measured
from the magnetometer array. This observation is compared
with the measurement of the magnetic field y = B̂b through
the projector h

(
R̂, v̂b, B̂b,Ω̂ΩΩ

b/n
b , γ̂γγb

b

)
= B̂b.

The filter of Eq. (8) provides an estimation of the inertial
velocity smoothened by the magnetic measurement and conse-
quently the magnetic velocity. This smoothing is conditioned
by the observability of the gradient, i.e. the larger the gradient,
the better the filtering. Moreover, the magnetic information is
a strong help in the estimation of the inertial biases.

The usable output of this algorithm is the velocity of the
device. Indeed, the position or relative displacement is not
observable and consists, in this case, of a direct integration of
the velocity through the differential equation ˙̂xn = R̂v̂b.

C. Derivation of the error model

We aim to quantify the performances of the filter designed
in III-B in a comprehensive analytical formula. To do so, we
design an equivalent one-dimensional toymodel filter modeling
a MIDR device moving toward the curvilinear coordinate
within the direction of an eigenvalue λ of the magnetic
gradient. In particular, this simplification implies that the
motion is nonrotative – i.e. there is no gyrometric data, and

2These situations are schematic. In practice, due to the noise of the sensors,
we do not have a eigenvalue perfectly equal to 0, but a small ε > 0 which is
determined by the sensitivity of the sensors.

then no attitude3 nor gyrometric bias to estimate. We assume
two parallel single-axis magnetometers sensing data B1 and B2,
separated by a distance L > 0 and symmetrically disposed at a
distance L/2 to the center – position of the accelerometer. The
gradient λ is then processed by (B2−B1)/L at each instant
and the central field B is simply the average (B1+B2)/2. The
magnetic velocity is given by vmag = Ḃ/λ . Denote by σ2

mag
the variance of the white noise of a single-axis magnetometer.
The EKF (8) becomes:

˙̂v = γ− γ̂b
˙̂B = λ v̂
˙̂γb = 0

, h
(
v̂, B̂, γ̂b

)
= B̂. (9)

This more simple models allows to derive analytical error
models. To do so, we need to state some hypotheses:

Hypothesis 1: The motion is uniform, i.e. the actual
velocity v is constant, and a fortiori the acceleration γ consists
in a zeros-mean white noise of variance σ2

acc.
Hypothesis 2: The directional gradient λ is also constant,

up to a zeros-mean white noise of variance 2σ2
mag/L2. Hence,

the space model of the magnetic field is linear toward the
direction of λ : B(x) = B0 +λx, with a constant B0 ∈ R.

The errors in the estimation of the velocity can be modeled
by two different sources of disturbances: static errors, e.g.
miscalibration of the sensors; and dynamic, mainly due to
noise aliasing.

The velocity error δ v̂noise due to noise aliasing is derived
from the standard deviation of the gaussian part of vmag = Ḃ/λ :

δ v̂noise

v
=

2σ2
mag

λ 2L2 , (10)

while the error δ v̂calib in the estimation of the velocity due
to a global static miscalibration delta δB comes from the
differentiation of the kinetic equation ˙̂B = λ v̂ from Eq. (9),

δ v̂calib

v
=−δB

λL
, (11)

for δλ = δB/L.
If the kinetic equation is completed by the knowledge of a

gyrometric information – with an additional term −ΩB in the
right-hand side of the kinetic equation –, then

δ v̂calib

v
=−δB

λL
+

δ Ḃ
λv

=
−δB/L+δ Ḃ/v

λ
, (12)

with δ Ḃ = ΩδB is an instationarity amplified by the miscali-
bration.

D. Discussion

Overall, the error of the velocity estimated from magnetic
data can be represented by the following relationship

Velocity error
Actual velocity

=
Gradient perturbation

Actual gradient
.

3This implies that there is no rotation between navigation and body frames,
excepted a change of the origin by translation. The upperscripts n and b are
hence dropped.



The depedency of this law in the gradient inverse means that
the performance increases as the magnitude of the gradient
grows. Therefore, what is important is the evaluation of a
signal-to-noise ratio in magnetic gradient: the larger is the
magnitude of the magnetic gradient, the lower the calibration
errors and noise disturbs the system. Hence, in rich magnetic
environments – e.g. industries, hospitals, airports, etc. – the
behavior of the magnetic correction of the MIDR technology
is good. However, in poor magnetic environments – e.g. old
buildings or even for outdoor navigation – the perturbations
become of the same order of magnitude as the gradient,
resulting in a loss of accuracy. Moreover, the size L of the
device is also important. Due to the term λL in the error law of
Eq. (11), there is a direct proportionality between the magnetic
gradient and the size of the device: a device twice as big, as
another one, will estimate the velocity with the same accuracy
in magnetic gradient twice as low.

Finally, the dimensionless parameter v∆λ/∆vλ , which al-
ways equals −1 due to Eq. (11), links the performance of
navigation δv to the miscalibration error δλ = δB/L and the
trajectory set up (λ ,v). Therefore, knowing the ratio δλ/λ , it
is possible to predict the ratio δv/v and vice versa and then
to design a test trajectory set up.

IV. STEP DETECTION ALGORITHM
The velocity issued from the magnetic measurement is

useful to bound the drift of an inertial navigation to an error
growing only linearly in time. However, when the pedestrian
moves towards a low magnetic gradient area, the magnetic
velocity is too degraded. In these particular situation, the
MIDR technology needs a new measurement to stabilize the
velocity. Another infrastucture-free correction is used : it is an
extension of the Zupt [11], [17], [18], which is too restrictive
as it requires to put the navigation device at a specific location
on the foot and is very sensible to shocks.

First, step detection is performed by identifying an 8 steps
pattern in a typical walk motion from the inertial sensors.
Then, the velocity is estimated through a walk model elim-
inating the part due to the leg/body relative motion [11], [15],
[16].

A. Principle

The step detection with gyrometric and accelerometric data
is explained in the patents [15], [16]. This technique assumes
the MIDR device to be positioned at the ankle of the pedes-
trian.

During the "ground phase", i.e. when the heel is on the
ground, the ankle velocity can be considered null. Conse-
quently, the velocity is given by the cross product of the
angular velocity ΩΩΩb/n with the lever arm `̀̀b

WDM between the
position of the navigation point (accelerometer) and the ankle.
The velocity being purely rotation-induced, its "linear" part is
zero.

Definition 2: Walk Dynamic Model (WDM). The step
detection velocity is defined as

vb
WDM =ΩΩΩ

b/n`̀̀b
WDM, (13)

where `̀̀b
WDM is the lever arm vector from the position of the

accelerometer to the ankle of the pedestrian. Moreover, the
angular velocity ΩΩΩb/n is assumed to be debiased.

B. Theory

We consider now a 3D dynamic system in which the
velocity vb is estimated with a velocity measurement given
at each step detection. The estimation system becomes

˙̂R = R̂
(

ΩΩΩb/n−Ω̂ΩΩ
b/n
b

)
˙̂vb =−

(
ΩΩΩb/n−Ω̂ΩΩ

b/n
b

)
v̂b +γγγb− γ̂γγ

b
b + R̂>gn

˙̂
ΩΩΩ

b/n
b = 0

˙̂γγγb
b = 0.

(14)

with a direct correction y = h(v̂b) = v̂b thanks to an outer
measurement vb

out of the velocity.
Similarly as in section III-C and for theoretical purposes,

we also analyze the equivalent one-dimensional problem{ ˙̂v = γ− γ̂b
˙̂γb = 0

, h(v̂, γ̂b) = v̂, (15)

for an outer measurement vout, supposed unbiased and known
with a white noise of variance r > 0.

However, it is very important to notice that, after con-
vergence to its steady-state regime, the filter is still very
sensitive to a static error δvout of vout.Hence, it is crucial to
choose an unbiased outer observation, otherwise the filter will
converge to this static offset. This requirement is especially
fulfilled by the step-detection velocity of Def. 2.

C. Correction design

We add the observation of vout = vb
WDM to the correc-

tion model of the EKF (8) in addition to the observa-
tion of the magnetic field. Hence, the observation becomes
y =

(
v̂b

WDM, B̂b
)

and the state measurement is provided by

h
(

R̂, v̂b, B̂b,Ω̂ΩΩ
b/n
b , γ̂γγb

b

)
=
(
v̂b, B̂b

)
.

The global designed MIDR-EKF with WDM correction is
presented on Fig. 2.

D. Expected behaviors and results

The WDM works as an additional velocity sensor (on top
of magnetic velocity), with a much lower frequency but also
a more consistent - and often better - accuracy, since it does
not depend on the magnetic environment.

Therefore, it is most useful in low-gradient areas, preventing
the filter from diverging when magnetic measurements are not
reliable enough.

In more favorable magnetic environments, it also leads to
better convergence.

In terms of filter states, since it has the same observation
matrix as the magnetic velocity – identity along velocity –,
given sufficient time it also enables the convergence of the
IMU biases states and consequently the estimated attitude.
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Fig. 2: Global MIDR-EKF with velocity correction through
walk dynamic model. The dynamic inputs – i.e. sensors data –
are provided in orange, whereas constant input – the lever arm
– is in green. The algorithmical block is in purple, wrapping
the correction term in magnetic field and in velocity. The
outputs, in blue, consist in the velocity and the magnetic field
only.

V. FUSION OF CORRECTION METHODS

A. Experiments

This section presents the results of a series of experi- ments
comparing the performance of the classic MIDR algorithms
with the improved version proposed here relying on a velocity
derived from a walk motion model at each step detected.

Both use exactly the same set of sensors, i.e. accelerometers,
gyrometers and magnetometers. In order to obtain the trajecto-
ries from both algorithms, we first recorded the measurements
in real time, before replaying them with each algorithm
separately.

The studied trajectory starts with a specifically designed
challenging outdoor phase with low magnetic gradient to
assess classical MIDR navigation in the worst case. Starting
from a car park, the user walks 100 m on the sideway until he
reaches the entrance of a building. The user then proceeds to
walk for a few minutes inside the building, on three different
levels.

Several precisely geolocalized tags are present inside and

oustide the building4; a trajectory consists in a series of seg-
ment between two of these tags. Each time the person wearing
the navigation system reaches one of them, the timetag is
saved, enabling a precise a posteriori evaluation of the position
error from our navigation system.

The MDIR navigation being relative (no absolute position
observation), the first tag serves as the trajectory initialization
point. While the measurement of the magnetic North gives a
good approximation of the trajectory absolute orientation, here
the initial heading is also provided so that the ground trace can
be adjusted to the building map.

Since the trajectory is a series of segments between known
points, the performance evaluation measurements used to track
the navigation performance will revolve around per-segment
position errors, both absolute and relative to the walked
distance. In order to track the accuracy on longer periods and
provide a global evaluation of the navigation performance, the
cumulated error will also be evaluated.

Finally, the indoor/outdoor distinction is not important in
terms of "physical" environment, but it rather marks an impor-
tant change of magnetic environment. Thus, as the test building
contains numerous metallic parts, the magnetic gradient is
quite high inside, while it tends to be very low outside.

Therefore, the subsequent analysis can be interpreted in
terms of favourable/unfavourable magnetic environment rather
than indoor/outdoor navigation.

B. Qualitative trajectories analyses

Fig. 3 compares the trajectories obtained with the MIDR
navigation and the step-detection aided WDM-MIDR. As
expected, both look very similar inside the building, which
is recent and full of metallic materials, providing a favorable
magnetic environment: the magnetic velocity by itself is there-
fore already of high quality5 However, one can clearly see that,
outside the building, the classic MIDR navigation struggles
to keep a consistent course, alternating between stable and
unstable phases in the intentionally challenging environment
chosen for the experiments. On the other hand, the step-
detection keeps the navigation point on track, and seems to
accurately follow the sidewalk, not intersecting the building
on its way. The main objective of the step-detection aided
MIDR algorithm is hence to improve the travelled distance
estimation. In itself, the heading remains similar to the classic
MIDR algorithm.

C. Quantitative trajectories analyses

Fig. 4 shows the segment by segment error and cumulated
errors. Apart from the first segment, ranging from the parking
(common initialization tag) to the building north side for an
approximate 80m length, each segment has a length of around
5 to 20 m. The performance gain between step-detection aided

4The positions of these tags have been accurately determined by topograph-
ical methods.

5The zoomed trajectories were adjusted to the building map, such that it is
possible to see the relative accuracy for the indoor phase, independently from
the outdoor navigation drift.



Fig. 3: Outdoor + Indoor trajectory using classic magneto-
inertial (blue) and step-detection aided (red) navigation.
Above: full trajectory, below: zoom on building plan (with
cancelled outdoor drift).

and nonaided navigations is significant during the first three
segments, which correspond to the outdoor phase, for which
the magnetic gradient was purposely chosen to be low. The
improvement is in particular noticeable for segment #2, which
was specifically designed to be a worst case scenario for
classic MIDR navigation. Indeed, MIDR yields an error of
about 6 m while a WDM aided one dramatically reduces the
error to about 0.5 m in this particular instance.

Several indoor/outdoor trajectories, comparable in size to
the one presented above (from 200 m to 300 m), were
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classic MIDR with WDM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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classic MIDR with WDM

Fig. 4: 3D error norm per trajectory segment (up), and cumu-
lated error divided by total distance (down)

performed with 4 different MIMU devices on various magnetic
environments. The outdoor parts last about 100 s and the
indoor sections roughly 150 s.

Table I presents the performance of both algorithms (with
and without Walk Dynamic Model – WDM), averaged on 2
categories of magnetic environments (12 runs each): both cate-
gories contain trajectories with indoor/outdoor segments. The
"low gradient" category contains trajectories with a specific
outdoor phase along very low magnetic areas, materializing a
worst case scenario for MDIR navigation. However, it is not
representative of a nominal indoor pedestrian trajectory.

These results again point out that the WDM-MIDR al-
gorithm significantly improves the results for low average
magnetic gradient (panel #1) by a factor 7. The results of
panel #2 are naturally better due to higher gradients, and the
WDM-MIDR maintain the navigation accuracy.

D. Discussion

In a "model-based" measurement such as the WDM we
are using here, the main limitation usually comes from the
accuracy of the model itself. Thus, while the ankle-navigation
movement was considered to be purely angular, this was not
exactly correct as the foot never reaches a perfectly zero-



TABLE I: Cumulated 3D error norm as a percentage of the
total walked distance, for the classic MIDR and Walk Dynamic
Model MIDR (WDM-MIDR) algorithms.

Panel MIDR WDM-MIDR Average gradient
(G/m)

Low gradient6 6.9% 0.9% 0.02
High gradient 0.7% 0.7% 0.13

velocity stationary state on the ground. This inaccuracy is
especially emphasized if the person walks very quickly – i.e.
with the heel "bouncing" on the ground –, or worse, runs. The
second source of error comes from the knowledge of the terms
ΩΩΩb/n`̀̀b

WDM and particularly the identification and measurement
of the lever arm `̀̀b

WDM. While the angular velocity is relatively
well-known thanks to the gyrometers, the lever arm is roughly
estimated with standard values, leading to a constant error on
the velocity "measurement".

These imperfections do not prevent us from reaching a 1%
accuracy in position, but a more complex walk model or a
better knowledge of the lever arm would allow for even more
precise navigation.

VI. CONCLUSIONS

This article proposed a major improvement of magneto-
inertial dead reckoning navigation. It defined a new velocity
update step of the MIDR Kalman filter based on the detec-
tion of walking steps and dynamical modelling of the walk
itself (WDM). The new fusion algorithm was implemented
and experimented with real magneto-inertial devices on out-
door/indoor trajectories. The results showed that the new step-
detection aided MIDR algorithm yields a reduction by a factor
about 7 of the travelled distance estimation error in poor
magnetic environments.

Outdoor navigation is generally the first step to initialize
indoor navigation, and the addition of a walk model to the
MIDR will improve the transitions between indoor and outdoor
phases. The WDM aided navigation is thus a significant
stepforward for resilient pedestrian navigation in diverse en-
vironments.
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