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Abstract—The emergence of the Internet of Things (IoT)
model featuring different types of wireless networks made of
many different constrained devices conducts researchers to face
new security challenges to protect these networks. Indeed, they
need to build and evaluate dedicated monitoring tools and
Intrusion Detection Systems (IDSs). To succeed in these goals,
quality datasets including benign and under attack situations
are necessary for all IoT protocols. However, if we consider for
instance the smart-home sub-market dominated by Wi-Fi, Zigbee
and BLE, only complete Wi-Fi datasets can easily be found today.
To specifically overcome the lack of Zigbee datasets and contribute
to the development of related IDSs, this paper presents ZBDS2023,
a 10-day realistic Zigbee dataset made publicly available. Fully
documented with metadata, it has been collected from a real
populated smart home equipped with 10 recent Zigbee lighting
devices. Some periods of capture are free of attack, allowing to
build normality models, and some include various labelled attacks,
enabling the evaluation of different intrusion detection strategies.
Also, as an original second contribution, each emitted frame is
captured by one to four demodulating passive probes distributed
in the house. Besides providing redundancy concerning MAC
layer data, the corresponding values of Received Signal Strength
Indicator (RSSI) have also been made available. Being a physical
feature, RSSI cannot be easily impersonated and as such, it is a
priori a good candidate for participating in fingerprints feeding
spoofing detection systems. Moreover, its extraction is uncostly
and available in many wireless technologies. However, exploitation
of RSSI time series is not trivial, especially in populated buildings.
A third contribution using our dataset evaluates a naive attack
detection system to serve as a baseline for future works.

Index Terms—IoT security, Zigbee, dataset, Intrusion Detection
Systems, spoofing attacks, RSSI

I. INTRODUCTION

A. Context

Appeared with the 21st century, the Internet of Things (IoT)
introduced a new model in data processing by ensuring a bridge
between the physical world and the virtual one of supervision.
Used actuators and sensors are built upon MCUs featuring
modest processing and wireless communication resources so
that they can achieve their well-defined task and be organised
in networks of dedicated topologies and technologies. Most of
the time, these networks are connected to the Internet directly
or via gateways to ensure their supervision by different means
(website, cloud platform, smartphone application). Fostering
better comfort and fast decision making, IoT pervades not
surprisingly almost all sci-tech fields rendering them “smart”:
smart agriculture, smart city and smart home for instance [1].

Along with this huge deployment, security has often been
neglected. The famous CIA triad “Confidentiality, Integrity,
Availability” is certainly considered in IoT but to variable
degrees. Indeed, the heterogeneity and specificity of protocols
and topologies, the variety of deployed constrained devices, as
well as commercial pressures on manufacturers lead to solutions
that are less mature and less standardized than those available
in traditional Information Technologies (ITs). This exposes a
new and often targeted attack surface, potentially leading to
private data leaks, device takeovers and denies of service [2].
At last, in the IoT smart-home subdomain, the appropriation
of devices by users with no security culture, looking for new
functionalities deployed with low friction, is an aggravating
factor. So, even if all stakeholders in the IoT ecosystem are
more and more concerned with designing, selling and using
safe devices, there is a need in IoT for Intrusion Detection
Systems (IDSs) as a first line of defence.

B. Motivation

IDSs for IoT are an active research field in the cybersecurity
literature [3]. A realistic dataset shared and recognized as a
reference by researchers is a mandatory tool, first to design
and assess the IDS itself and then to compare it with existing
solutions. Trying to build an original IDS dedicated to Zigbee,
we faced the following paradox: although Zigbee, along with
the other Wireless Personal Area Networks (WPANs), like
BLE and Z-Wave, feature approximately the same number
of active connections than Wi-Fi devices1, it was impossible
to find a decent Zigbee dataset. By opposition, more and
more interesting Wi-Fi datasets are becoming available in the
literature. It seems there is a bias that makes IT researchers
choose Wi-Fi for their IoT security studies because they are
already comfortable with it and its TCP/IP environment. The
contributions of this paper are threefold:

• to design and assess Zigbee IDS in a reproducible research
spirit, we propose ZBDS2023, a 10-day realistic Zigbee
dataset featuring complete exchanges between 10 Zigbee
lighting devices deployed into a populated smart home,
featuring benign and under attack situations. The dataset
is provided with metadata detailing its elaboration and
labels concerning the injected attacks,

1https://iot-analytics.com/number-connected-iot-devices/



• each IEEE 802.15.4 frame emitted by a device is cap-
tured by one to four demodulating probes in the house
(depending on device coverage in a given environment),
providing some redundancy concerning MAC layer data
(source identifier, frame type and length, etc.). Moreover,
each device frame emission is also characterised by a set
of the corresponding values of Received Signal Strength
Indicators (RSSIs), measured by the probes. RSSI being a
location-dependant hence a physical feature, fingerprints
based on one or several of them are hard to imitate by an
attacker. This multiple RSSIs availability provides degrees
of freedom for study and makes our dataset an original
tool to assess innovative spoofing detection solutions,

• RSSI is a convenient, easy to extract physical feature. It is
also present in most wireless technology, giving hope for
cross-technology intrusion detectors. However, it varies
a lot inside buildings, especially if they are populated.
Illustrating that point and making a first usage of the
dataset, a simple RSSI-based IDS is proposed to serve as
a baseline that future works could refer to.

C. Paper organisation

The remainder of the paper is organised as follows: in
Section II, we present the fundamentals of Zigbee permitting
to understand the rest of the paper. Identically, Section III
provides insights regarding RSSI. Section IV comments the
architecture of our testbed and the data collection process. In
Section V, the injected attacks are documented. Section VI
presents a naive spoofing detection using our dataset. Works
related to Zigbee datasets are exposed in Section VII. At last,
Section VIII concludes this paper.

II. ZIGBEE AND ZLL PROFILE

A. Presentation

Appeared in 2005, Zigbee is a standard for IoT developed by
the Connectivity Standard Alliance (Samsung, Philips, Texas
Instruments, Ikea, etc.). It aims at providing a two-way, reliable
wireless communication protocol for devices within low-power
and low-cost WPANs, wherein the range is typically under 100
meters. Most of the time, it operates in the free licensing
2.4 GHz ISM band over one of the sixteen 2 MHz-wide
non overlapping channels; the modulation is O-QPSK and
the throughput is up to 250 kbps. To ensure interoperability
between devices issued from different manufacturers, some
public application profiles have been introduced, depending on
the use case Zigbee is intended for, e.g., Home Automation
or Industrial Plant Monitoring. The testbed from which our
dataset is extracted works with the Zigbee Light Link profile
(ZLL), dedicated to consumer lighting solutions: mood lighting,
energy monitoring and light management via occupancy sensors
are example of ZLL functionalities. ZLL is part of “Zigbee
Pro”, the Zigbee version dating 2007. A “Zigbee 3.0” version
appeared in 2015. Backward compatible, it aims at providing
safer device associations and unifying more Zigbee products.
However, we were able to check that the 10 Philips Hue
lighting devices we purchased between 2020 and 2022 to build

our dataset were still running the 2007 “Zigbee Pro” version.
Compared to other profiles like Home Automation, ZLL is
a simplified one. For instance, concerning security, a ZLL
network has neither “Trust Center” nor “Coordinator”. The
replacing “Control Bridge”, that is also an Internet bridge,
provides only a basic security key management, detailed
later. Also, to provide a simpler device installation experience,
“Touchlink commissioning” has been introduced in addition to
classical IEEE 802.15.4 association.

B. Zigbee stack

The Zigbee stack is constituted of 4 layers as indicated
on Figure 1: Lower ones are Physical (PHY) and Medium
Access Control (MAC) layers. Upper ones are Network and
Application layers.

Figure 1. Zigbee stack [4]

1) Lower layers: Zigbee Pro relies on IEEE 802.15.4-2003
for the two lower layers of the stack. Security options of this
IEEE standard are not used with Zigbee, allowing an attacker to
get a lot of interesting information by a passive eavesdropping
on the used channel: number of devices and their identifiers,
length of their frames, inter-frame time interval, etc. There is
no authentication planned at these lower layers, which means
an attacker can spoof a legitimate node, forging repeated IEEE
802.15.4 frames with its source identifier to flood a victim
with inappropriate messages, causing to it and to the network
resource depletion.

2) Upper layers: the Zigbee standard defines the two upper
layers of the Zigbee stack. Relying on a modified AODV
protocol, the network layer allows self-organising networks,
in star, tree and mesh topologies. This latter, illustrated in
Figure 2, permits range extension and is self-healing. Routers
are plugged on mains, they are typically light bulbs, smart plugs
or the Internet Bridge. End devices like remotes or motion
sensors often run on batteries planned to last about 10 years.

C. Security

1) Description: security is introduced at Network layer.
With ZLL, to emit and receive Zigbee messages like routing
data or on/off commands, devices must possess an AES 128-
bit credential “network key” shared with all devices in the



Figure 2. A Zigbee Light Link network with a mesh topology

network. As depicted in Figure 3, on the transmitter side, data
confidentiality is ensured by its cyphering with the network
key and a “Nonce”, through an AES-CCM* block, that also
computes a “Message Integrity Code” (MIC), checked at
arrival. The Nonce features a 32-bit “Frame Counter” that
is incremented every time a frame is transmitted, constituting
an anti-replay protection. However, rigorous implementation
of all these protection mechanisms is only guaranteed with
high-end Zigbee devices and when low current consumption
is not a requirement [5].

Figure 3. Data integrity and data confidentiality in a Zigbee exchange [6]

2) MAC commissioning vulnerability: during the commis-
sioning phase, a device joins the network. We focus here only
on commissioning permitted by the still widespread IEEE
802.15.4 MAC association procedure. To get associated, a
device issues Beacon Request frames on all channels. The
first router in the vicinity to respond with a Beacon frame will
handle the association process. At this occasion, the device gets
a 16-bit logical identifier as well as the aforementioned network
key, ciphered by a symmetric “Light Link Commissioning key”
preinstalled on all ZLL devices in the world and available
on the web with a simple search. Passive listening of the
device association process (with Wireshark informed about
the commissioning key) provides easily the network key. This
is still used today to respect backward compatibility but it
constitutes a major security vulnerability because as soon as
an attacker gets this key, he has access to all messages or may
compromise the whole network [7]. Forcing a user to rerun a
device association can be achieved by jamming the device or
flooding it.

So, given the security context we exposed, it is crucial to

trust a device with more than an easy-to-forge identifier or
the effective possession of an easily obtainable key. Using
features extracted from the PHY layer will help building a
hard-to-mimic device fingerprint that can be used in an IDS
trying to defeat spoofing attacks. Our dataset offers this option
by capturing the frames from several locations providing a set
of several RSSIs per device for each frame it emits.

III. RSSI BACKGROUND

RSSI is a measure of the mean power arriving on a receiver,
for instance an IDS probe, converted to dBm [6]. In a naive
open free space approach, at a fixed frequency, the received
power is proportional to the emitting power and to the inverse
of the square of the emitter-receiver distance. If emitter and
receiver stay at their dedicated location and the emitter does
not vary its emitting power, the receiver measures an almost
constant RSSI value. Associating this latter with the emitter
logical identifier, we get an entry for a table that can be
further used for authentication purpose defeating intrusion
attempts. Contrary to features issued from MAC layer, RSSI is
a physical one and as such, it is difficult (but not impossible)
for an attacker to mimic the one of a legitimate node. A
frame with a certain identifier but with a non-related RSSI is
symptomatic of a masquerade attack. On the contrary, many
identifiers associated to a unique RSSI are symptomatic of a
sybil attack. RSSI has the advantage of taking the form of a
unique scalar, providing a costless and immediate access, not
needing any preliminary and heavy device characterization [8],
unaffordable in smart-home contexts. Also, RSSI is available in
many wireless technologies needing Clear Channel Assessment
and signal quality estimation, giving hope for generalizing a
RSSI-based IDS to other wireless technologies. Typical RSSI
parameters of a specific probe are given in Section IV-C.

This approach remains valid inside static buildings, even if
obstacles create signal reflection, absorption and diffraction,
inducing multipath fading. To introduce robustness and com-
pensate for nodes (devices or attacker) having too close RSSI
values and thus preventing efficient authentication, one can
consider a distribution of several probes to characterize each
emitter by a tuple of RSSIs, an approach deeply explored in [9].
Sadly, the environment test of this work is necessarily static and
as such not representative of a populated smart home where
inabitants, doors and furniture move frequently, constantly
redrawing the environment. As shown in Figure 5 that depicts
the RSSI associated with 0x0A12 identifier, captured from
a single probe on a whole day, environment changes cause
across time great RSSI volatility, preventing to easily associate
an RSSI value to a device identifier (RSSI is steady only
when the house is asleep). Besides, in case of spoofing attacks,
additional RSSI values due to the attacker are merged with the
volatile RSSI values of the legitimate node, making difficult to
guess what is responsible for what in the global RSSI profile.
However, with the help of the proposed dataset, the security
community will be able to design some IDSs with appropriate
algorithms that circumvent these difficulties.



IV. DATASET AND TESTBED

A. Dataset characteristics

Guided by the criteria of datasets exposed in [10] and [11],
we then designed a Zigbee dataset presenting the following
characteristics and qualities:

1) length: 10 days; the capture started June 30, 2022 at
17:00 (CEST) and ended July 11, 2022 around 09:00 (CEST);

2) place of capture: to build a realistic smart-home Zigbee
dataset, the capture occurred in a 100 m2 two-storey house
where people were normally evolving and where doors were
regularly opened and closed. With walls, it formed an always
changing set of obstacles. Also, a microwave oven was used
in the kitchen and Wi-Fi and BLE networks were coexisting
with the main Zigbee experience. The devices were left at their
dedicated location emitting with constant power, the probes
used for captures were not moved either;

3) devices: 10 Philips Hue lighting devices (dating 2020 to
2022) were used; 4 types of devices among 6 are represented
each by two instances;

4) captures: thanks to 4 passive probes distributed in the
house, the frames are captured up to 4 times, giving beyond
classical MAC layer data up to 4 RSSI information; the dataset
is organised in mergeable elementary PCAP files sorted per
probe and hour; with approximately 1000 frames per minute,
it is about 2.8 GB uncompressed;

5) accurately labelled attacks: the traffic is mostly benign
allowing to build a traffic background profile but 50 attacks
documented in Section V have been injected to assess IDS
strategies;

6) security assessment: on July 9, 2022 at 15:39 (CEST),
a second dimmer switch (DS2, see Table I) was associated
to the Zigbee network. The whole association is captured in
the dataset. Knowing the Light Link Commissioning key and
using Wireshark, the network key is easily obtained, giving
access to deciphered messages of upper layers (see Section
II-C2); also, with that vulnerability knowledge, one may now
consider building a malicious device that can get authenticated
in real ZLL networks;

7) metadata: the whole dataset constitution and use are
documented in this paper;

8) availability: the ZBDS2023 dataset is publicly available
along with a Gitlab “Resources Repository” to get started [12].

B. Testbed

Figure 4 shows the location of the 4 probes and 10 devices
used in the testbed enabling the dataset. The following sections
detail both types of resources.

C. Probes

Captures are made from 4 different locations in the house
thanks to 4 probes referenced in Figure 4 as RPI1, RPI2, RPI3
and RPI4. Each one is built upon a low-cost CC2531 USB
dongle2 providing demodulated data, connected to a Raspberry
Pi. The Texas Instruments firmware fw_cc2531.hex we

2RSSI sensitivity=-97dBm, range=100dB, accuracy=±4dB, step size=1dB

Figure 4. Location of probes and devices in the house of test: ground floor
(left) and first floor (right)

flashed to the four dongles replaces the two Frame Check
Sequence (FCS) bytes of each IEEE 802.15.4 frame by a
single bit of FCS correctness and an 8-bit signed RSSI value.
A −73 dB offset must be added to this latter to get the actual
RSSI value3. To benefit from this FCS replacement and hence
accessing to RSSI values with tools relying on Wireshark
(Pyshark library, etc.), one must tell Wireshark in its IEEE
802.15.4 preferences that this Texas Instruments specificity is
set, otherwise all FCSs will be indicated as bad.

On the software side, ccsniffpiper4 is a tool compatible with
the aforementioned firmware, allowing to trig captures and
obtain PCAP files. We automated by a bash file the process of
starting new captures every hour and naming them accordingly.
Once unzipped, the dataset is made of 4 folders named rpi1,
rpi2, rpi3 and rpi4 containing the one-hour captures made
respectively by the probes RPI1, RPI2, RPI3 and RPI4. Each
elementary capture is a PCAP file named like this one:

rpi2-2022-07-01-18-00-00.pcap
This name means that the capture has been made from RPI2

probe and that it started at 18:00:00, on the 1st of July 2022
(CEST). All PCAP files cover one hour of capture. They may
be merged together, for instance with Wireshark, to obtain
captures of the desired duration.

To date, there is no tool to regroup the 4 frames of each
emission but building it should not be a complex task: Before
starting the capture, the four probes were synchronized using
NTP and the 4 different epoch times of arrival are available
in the PCAP files (the magnitude order of times of arrival
differences is 10-4 s). Moreover, most of the time monitoring
systems compute statistics on sliding windows of several
seconds and correlations start only from those aggregated
values. Also, determining the best located probe among the 4
in terms of frame capture efficiency should be considered to
design a practical and low-cost single probe IDS.

D. Devices

1) Description: characteristics of devices exposed in Fig-
ure 4 are given in Table I. The IEEE 802.15.4 short 16-bit

3https://www.ti.com/lit/ug/swru191f/swru191f.pdf, pages 230 and 233
4https://github.com/andrewdodd/ccsniffpiper



identifier is the one obtained after an association procedure.
All devices already had such an identifier when the capture
session started, except DS2 that got associated later to capture
its association process. Some devices are Reduced Function
Devices (RFDs), they can only be end-devices in the Zigbee
network (see Figure 2). They run on battery, so they sleep
most of the time but wake up on specific events, making an
IEEE 802.15.4 Data Request frame to their parent for getting
data arrived at their intention during their sleep. The other
devices are Full Function Devices (FFDs), they are powered
from mains and have router capabilities.

For all devices, PAN ID is 0xB7C5 and Extended PAN ID is
47:4D:CE:61:BF:05:E6:EF. The used channel number
is 20.

2) Bindings: The following binding relationships (that
may be different from parent-child ones) were set with the
Philips Hue smartphone companion application. These bindings
provide interactions between devices, participating to a realistic
dataset:

• WB1 lights up when MS1 detects a movement,
• CB2 is voice-controlled by a Google Home thanks to IB1,
• DS1 controls CB1,
• DS2 controls WB2 (after DS2 joined the network).

Besides, the Philips Hue companion application for smartphone
was widely used to control all devices, from inside and outside
the house, thanks to IB1.

V. INJECTED ATTACKS, THREAT MODEL

To foster the development of Zigbee-dedicated IDSs and
also spoofing detection systems, the proposed dataset includes
different types of attacks. These ones have been chosen
as representative of what an attacker may undertake with
little expertise and resources. Most attack shapes are based
on message flooding. The resulting resource depletion and
unresponsiveness shown by devices and network may be a
prejudice sufficient by itself or it may be a first step in
a sequence of attacks like the one leading to network key
disclosure, detailed in Section II-C2, or like others described
in [13]. Since we used high-end Zigbee devices, not all attacks
ended up being successful but their detection is nevertheless a
crucial point and this is what our dataset is intended for. The
following conditions were observed:

• like devices and probes, the “neighbor” attacker remains
at his fixed position, indicated in Figure 4. He is able to
take several identities by forging malicious packets that
are injected at constant emitting power using Killerbee
offensive framework5 on an Ubuntu laptop, the transceiver
being a fifth CC2531 USB dongle, flashed this time with
Bumblebee offensive firmware6,

• the attacker has no knowledge of the network key. He
can only eavesdrop the network to gain knowledge on it
or inject some IEEE 802.15.4 messages to perform for
instance flood-based attacks or replay ones.

5https://github.com/riverloopsec/killerbee
6https://github.com/virtualabs/cc2531-killerbee-fw

Frames are captured from several locations. First, it brings an
appreciable redundancy when designing monitoring systems
exploiting MAC layer data like in [14] and secondly, one RSSI
or a correlation of several of these PHY layer features should
be an interesting starting point to build spoofing detection
systems.

During the 10 days of capture, we initiated on 6 of them
10 sessions of 5 attack types, each session being numbered
between 1 and 10 and each attack type being labelled from
A to E. Performing several times the same attacks is justified
because the house environment is constantly changing. Table II
gives the description of attack types.

Attacks are characterized by their session, their type and
their date of start. In Python, using Pandas library, the following
dictionary defines for example the E-type attack that occurred
during the 9th session:
{
’sess’: ’09’,
’type’: ’E’,
’start’: pandas.Timestamp(’2022-07-08 20:25:10+02:00’)

}

The complete list of attacks presented that way is provided
in the file attacks_references.py in the “Resources
Repository”, accessible from [12].

VI. USE CASE

To illustrate the use of the dataset, we propose in this section
a naive RSSI threshold-based IDS aiming at detecting spoofing
attacks. On the day of July 8, 2022, the attacks 8C, 9C, 10C, 8E,
9E, 10E (cf. Table II) were injected into the network besides
its normal activities. During these latter, the attacker used the
identifier of the legitimate child (MS1) to issue Data Requests
to WB1, the parent of MS1. Both types of attacks last one
minute but the “C” ones have a low rate (12/min) whereas the
“E” ones have a high rate (500/min). To proceed, we made a
24-hour PCAP file from data captured by only the RPI2 probe.
First, we pre-processed the file, excluding malformed frames,
ACK frames, frames with bad FCS and frames with outliers
concerning RSSI. Then, we just kept the frames associated
with the 16-bit identifier of MS1, i.e., 0x0A12. To set up a
basis for the reference RSSI value of MS1, we used the relative
stability presented by the RSSI during night hours where the
environment is stable. So, we computed the mean of the RSSI
during 12PM and 6AM (-86 dBm).

As depicted in Figure 5, instant RSSI is volatile and appears
inappropriate for simple models based on thresholds. To
circumvent this and also to take into account the temporal
dimension of RSSI series, we computed the RSSI moving
average using sliding windows of 30 values, a number sufficient
to smooth RSSI but small enough to remain sensitive to abrupt
changes. The resulting plot is given by Figure 5. Then we had
to choose a pair of thresholds around the previously computed
RSSI night mean; concerning attack detection, if the RSSI
moving average goes out of the band limited by the thresholds,
we consider there is an attack and we raise an alarm. The width
of the band was chosen manually to ±4 dBm as it gives the
best detection metrics. This is a non-realistic approach but the



Table I
LIST OF DEVICES PRESENT IN THE ZIGBEE DATASET

Ref. Type 16-bit id. MAC address RFD/FFD

MS1 Motion Sensor 0x0A12 00:17:88:01:0B:CD:0C:32 RFD
SP2 Smart Plug 0x0C06 00:17:88:01:08:D8:9B:69 FFD
IB1 Internet Bridge 0x22FD 00:17:88:01:05:11:BD:4A FFD
DS1 Dimmer Switch 0x46EA 00:17:88:01:08:F0:4C:D7 RFD
CB2 Color Bulb 0x5EBA 00:17:88:01:06:A1:66:0B FFD
WB2 White Bulb 0x7B9E 00:17:88:01:08:B6:20:FE FFD
WB1 White Bulb 0x7C77 00:17:88:01:08:BF:D3:B7 FFD
DS2 Dimmer Switch 0x88C2 00:17:88:01:0B:DA:40:CE RFD
SP1 Smart Plug 0xA2AB 00:17:88:01:08:D8:B9:B8 FFD
CB1 Color Bulb 0xA8DF 00:17:88:01:06:A1:5A:00 FFD

Table II
TYPES OF CONDUCTED ATTACKS AND THEIR DESCRIPTION

Type Attack shape Attack details Comments

A and B Assoc. Request Flood By emitting a Beacon request frame, the at-
tacker asks all routers to inform him about the
characteristics of the network they belong to.
The one responding first, generally the Internet
Bridge, will handle the association process. At
this occasion, the attacker adopts a random 64
bits MAC address and gets eventually a 16-bit
identifier. A flood of such actions is a sybil
spoofing attack consuming the available pools
of RFD and FFD 16-bit identifiers.

Duration ≈ 30 s.
Between 35 and 50 Association Requests.
A Permit Join message of duration 30 s was
previously sent to all routers by the smartphone
companion application.

C Replay Attack In this attack, the attacker masquerades the
Internet Bridge IB1 to achieve a device takeover
that may be successful in case of degraded
implementation of security mechanisms (no frame
counter).
An elementary PCAP file captured during 10 s
several orders from IB1 to power on and off CB2,
among other normal exchanges. This elementary
file is replayed 6 times in a row by the attacker.
In the 10-second elementary PCAP file, frames
having other purpose than powering on and off
CB2 were captured too. For instance, in this
elementary file, MS1 performs 2 normal Data
Request to WB1, so that makes 12 Data Request
issued from the attacker during the attack. This
side effect induces a kind of low-rate type “E”
attack.

Duration ≈ 1 min.
The power-on and power-off orders were issued
from the smartphone companion application.

D Data Request Flood In this masquerade attack, the attacker takes
the identifier of DS1 to forge hundreds of Data
Requests frames targeting CB1. This latter is not
the parent of DS1, so it will issue “Leave” frames
to DS1. If DS1 is configured to respond to “Leave”
orders, it is a mean for the attacker to make it
leave the network.

Duration ≈ 1 min.
About 500 Data Requests.

E Data Request Flood In this masquerade attack, the attacker takes the
identifier of MS1 to forge hundreds of Data
Requests frames targeting WB1, the legitimate
parent of MS1.

Duration ≈ 1 min.
About 500 Data Requests.



Figure 5. Test of July 8, 2022: Instant RSSI and RSSI moving average related to 0x0A12 identifier, seen from RPI2 probe

goal here is to establish a baseline that more subtle algorithms
will compare to.

To establish the detection metrics, we sliced the 24 hours
in 10-minute periods to correlate in each of them effective
attacks and raised alarms (several alarms in a period occur
for just one), establishing the numbers of True Negative (TN),
True Positive (TP), False Negative (FN) and False Positive
(FP) and the classical metrics Accuracy (Acc), Precision (Prec),
Recall (Rec), True Negative Rate (TNR) and False Positive
Rate (FPR) given by the following formulas:

Acc =
TP + TN

TP + TN + FP + FN
(1)

Prec =
TP

TP + FP
(2)

Rec =
TP

TP + FN
(3)

TNR =
TN

TN + FP
(4)

FPR =
FP

TN + FP
(5)

Displayed in Table III, the results are quite interesting
despite the simplicity and cheapness of the detector. We
detected five attacks out of six performed. Of course, there
is room for improvement concerning the False Positives but
our dataset revealed that using RSSI for spoofing detection
is a promising approach. Metrics should be improved with
no doubt using more sophisticated algorithms that take into
account the temporal essence of RSSI, e.g., Recursive Neural
Networks, and that possibly integrates more features as well.

Table III
DETECTION METRICS OF THE USE CASE

TN TP FN FP Acc Prec Rec TNR FPR

127 5 1 11 91.7% 31.2% 83.3% 92.0% 8.0%

VII. EXISTING ZIGBEE DATASETS

Zigbee datasets featuring benign and attacking phases are
not represented in the literature in proportion of this standard
diffusion. As a consequence, many papers with “IoT” in their
title only consider Wi-Fi devices, missing the IoT heterogeneity.
For example, the authors of [15] propose a popular fully
annotated “IoT” network traffic dataset including attacks and
permitting the fine security evaluation of 45 devices. Sadly,
they are all Wi-Fi-based. Likewise, the authors of [16] released
a consequent dataset to evaluate how “IoT” devices expose
private data to the Internet but here again the authors chose
exclusively Wi-Fi devices.

On the contrary, some works like [14] and [17] considered
IoT heterogeneity, manipulating big amounts of Wi-Fi, BLE
and Zigbee traffic in order to build monitoring systems and
IDSs. But unfortunately, their datasets have not been publicly
released preventing their experiments to be reproduced.

In [18], the authors released an interesting IoT dataset
caring about more than Wi-Fi as they implemented a testbed
with 60 Wi-Fi, Z-Wave and Zigbee devices. Moreover, they
systematically collected data from each device in several
stages, for instance powering, associating and interacting as
far as Zigbee is concerned. Hence, it tends to reproduce a
collection of the different elementary behaviors occurring in
a populated smart home. Also, they captured several IEEE
802.15.4 associations that allowed us to recover some of their
Zigbee network keys. However, active attacks were again only
conducted on Wi-Fi devices preventing to use their dataset for
building a Zigbee monitoring tool or an IDS.

Another ambitious project, is described in [19]. Featuring
raw IQ and demodulated BLE and Zigbee traffic, it is oriented
toward fingerprinting and localization but makes no mention
of conducted attacks.

Dataset generation with use of deep learning [20] or attack
injection on a still background of PCAP files [10] could
compensate for the absence of datasets or their non-practical
implementation in case of large networks. These are active



topics in IT security and the possibility of their adaptation to
IoT dedicated standards should be investigated without delay.

Confronted with this lack of complete Zigbee datasets, we
decided to build our own, respecting quality criteria exposed
in Section IV-A. We also had in mind to make it feature
several times two instances of the same <brand, device type>
pair7 to foster identification not only at a device type level
but also at a device instance level. Many experiments in the
literature often settle just one item per device type, a non-
realistic situation in case of lights for example, and as soon
as the device type is detected, the authors announce it for a
device instance identification. Proposing for each device some
additional physical data, our dataset enables works aiming
at differentiating device instances one from another [8]. At
last, filling the lack of complete Zigbee datasets by creating
ZBDS2023 allowed us to present a baseline IDS that will foster
future works in the field of attack detection.

VIII. CONCLUSION AND FUTURE WORKS

Benefiting from complete and accurate datasets is important
for the security community to assess new ideas in the intrusion
detection topic and to compare results with each other. In
this paper, we presented ZBDS2023, a public and realistic
dataset filling the lack of Zigbee datasets in the literature,
featuring large benign periods but also various documented
attacks. Offering access to MAC layer data of each emitted
frame, it may also deal with spoofing detection as it makes
RSSI data available from four distributed probes, allowing to
establish physical fingerprints of all devices in the presented
testbed. However, if RSSI is easily accessible in many IoT
wireless technologies, one of its intrinsic characteristics is
its dependency to relative positions and power of emitters.
To free from it, we designed a Zigbee testbed with static
devices (emitting at constant power) and static probes, a choice
remaining realistic in Zigbee smart-home contexts. That said,
we made the attacker static and with constant emitting power as
well, an option that can be discussed as basic attacker strategies
to evade detection is to move and vary emitting power. That
should be taken into account for a future version of the dataset.
At last, in a simple but promising IDS study that can serve
as a baseline for future works, we exposed the complexity
of differentiating RSSI variations due to attacks and those
due to the “natural” RSSI volatility that occurs in populated
buildings. We make the wish our dataset will be helpful for
the community to develop relevant detection algorithms facing
the security challenges we exposed.
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