
HAL Id: hal-04173764
https://hal.science/hal-04173764v1

Submitted on 30 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Scalable Incremental Checkpointing using
GPU-Accelerated De-Duplication

Nigel Tan, Jakob Luettgau, Jack Marquez, Keita Terianishi, Nicolas Morales,
Sanjukta Bhowmick, Franck Cappello, Michela Taufer, Bogdan Nicolae

To cite this version:
Nigel Tan, Jakob Luettgau, Jack Marquez, Keita Terianishi, Nicolas Morales, et al.. Scalable Incre-
mental Checkpointing using GPU-Accelerated De-Duplication. ICPP’23: 52nd International Confer-
ence on Parallel Processing, Aug 2023, Salt Lake City, United States. �10.1145/3605573.3605639�.
�hal-04173764�

https://hal.science/hal-04173764v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Scalable Incremental Checkpointing
using GPU-Accelerated De-Duplication

Nigel Tan1, Jakob Luettgau1, Jack Marquez1, Keita Terianishi2, Nicolas Morales3,
Sanjukta Bhowmick4, Franck Cappello5, Michela Taufer1, Bogdan Nicolae5

1University of Tennessee Knoxville, 2Oak Ridge National Laboratory, 3 Sandia National Laboratories,
4University of North Texas, 5Argonne National Laboratory

ABSTRACT
Writing large amounts of data concurrently to stable storage is a
typical I/O pattern of manyHPCworkflows. This pattern introduces
high I/O overheads and results in increased storage space utiliza-
tion especially for workflows that need to capture the evolution of
data structures with high frequency as checkpoints. In this context,
many applications, such as graph pattern matching, perform sparse
updates to large data structures between checkpoints. For these
applications, incremental checkpointing techniques that save only
the differences from one checkpoint to another can dramatically
reduce the checkpoint sizes, I/O bottlenecks, and storage space uti-
lization. However, such techniques are not without challenges: it is
non-trivial to transparently determine what data has changed since
a previous checkpoint and assemble the differences in a compact
fashion that does not result in excessive metadata. State-of-art data
reduction techniques (e.g., compression and de-duplication) have
significant limitations when applied to modern HPC applications
that leverage GPUs: slow at detecting the differences, generate a
large amount of metadata to keep track of the differences, and
ignore crucial spatiotemporal checkpoint data redundancy. This
paper addresses these challenges by proposing a Merkle tree-based
incremental checkpointing method to exploit GPUs’ high memory
bandwidth and massive parallelism. Experimental results at scale
show a significant reduction of the I/O overhead and space utiliza-
tion of checkpointing compared with state-of-the-art incremental
checkpointing and compression techniques.

CCS CONCEPTS
• Software and its engineering→ Checkpoint / restart; • The-
ory of computation→Massively parallel algorithms.

KEYWORDS
Checkpointing, data versioning, incremental storage, de-duplication,
GPU parallelization
ACM Reference Format:
Nigel Tan1, Jakob Luettgau1, Jack Marquez1, Keita Terianishi2, Nicolas
Morales3,, Sanjukta Bhowmick4, Franck Cappello5, Michela Taufer1, Bogdan
Nicolae5. 2023. Scalable Incremental Checkpointing using GPU-Accelerated
De-Duplication. In 52nd International Conference on Parallel Processing (ICPP

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0843-5/23/08.
https://doi.org/10.1145/3605573.3605639

2023), August 7–10, 2023, Salt Lake City, UT, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3605573.3605639

1 INTRODUCTION
One fundamentally enabling I/O pattern of HPCworkflows is check-
pointing. It involves many processes, distributed in groups over a
large number of compute nodes (e.g., one process per GPU), that
need to simultaneously capture important data structures at critical
moments during runtime and save persistent checkpoints of these
data structures durably to revisit them later. Traditionally, check-
pointing has been the leading enabler of resilience for HPC work-
flows: applications take checkpoints periodically during runtime
and restart from the latest checkpoint in case of failures to minimize
the number of lost computations (at the expense of checkpointing
overheads). Over time, checkpointing has found broad applicability
in other scenarios: batch job preemption [7] (e.g., to make room
for higher priority on-demand jobs without losing computational
progress), job migration [27], adjoint computations and automated
differentiation methods that generate intermediate states during
a forward pass and revisit them in a backward pass [35], explor-
ing alternative computational paths (e.g., sensitivity analysis of AI
models using variations of training data starting from a common
initial training) [28], and the study of reproducibility by capturing
and comparing intermediate results during different runs. Under
such circumstances, checkpointing is more challenging for two rea-
sons: (1) there is a need to store the entire checkpoint record into a
lineage [18] (not just the latest checkpoint); and (2) the checkpoint-
ing frequency is significantly higher than in the case of resilience
(e.g., checkpoint intervals of 10ms are common in adjoint compu-
tations [13] and reproducibility, as opposed to resilience, where
checkpoint intervals are correlated with the mean time between
failures and are the order of hours).

The need to reduce I/O overheads and space utilization
of checkpointing:With the ever-increasing computational and
data processing capabilities of HPC workflows, the push towards
Exascale has resulted in HPC systems made of thousands of com-
pute nodes, each equipped with many-core CPUs and several GPUs.
Such systems are complemented by a heterogeneous storage stack
that includes deep local memory hierarchies (e.g., high bandwidth
memory, volatile host memory, persistent memory, NVMe-enabled
flash storage) and external data repositories (e.g., parallel file sys-
tems). Traditionally, checkpointing has been performed by direct
writes to the external repository, which blocks the application for
the duration of checkpointing. In this case, at a large scale, many
processes distributed on the compute nodes (typically one process
per GPU) compete for a limited I/O bandwidth. This introduces
large I/O overheads and therefore increases the end-to-end runtime.

https://doi.org/10.1145/3605573.3605639
https://doi.org/10.1145/3605573.3605639


ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Nigel Tan et al.

Even in the case of resilience, where the checkpointing frequency is
low, I/O overheads are significant enough to warrant asynchronous
multi-level checkpointing methods [21]: the processes write the
checkpoints to the fastest local memory (e.g., GPU memory), then
let the application continue running, while in the background they
flush the checkpoints asynchronously to slower memory tiers and
eventually the external repository. However, at high checkpointing
frequency, such methods have two limitations: (1) there is only
a limited amount of spare space available on the fastest memory
tiers to cache checkpoints, so the HPC workflow may be delayed
if it produces new checkpoints faster than they can be flushed to
slower memory tiers; and (2) since the entire checkpoint record
needs to be persisted, its accumulated size may quickly explode to
large sizes and produce unacceptable resource utilization, even if
performance considerations were not a concern. Thus, there is a
need to simultaneously reduce both the I/O overheads and space
utilization of checkpoints.

Limitations of state-of-art: One strategy that simultaneously
achieves both goals is data reduction. The key idea is simple: if
we can reduce the sizes of the checkpoints, they are both faster to
flush to slower memory tiers, and they occupy less space simulta-
neously. In this regard, many compression techniques have been
proposed, both lossy [30] and lossless [9]. They aim to solve a trade-
off between fidelity compared with the original checkpoint data,
compression ratio, and compression throughout. Not all compres-
sion algorithms are feasible for reducing I/O overheads. In this case,
the I/O overhead is the sum between the compression and flush
overhead, which means that compression reduces the I/O overhead
only if it is faster than the duration of flushing the difference be-
tween the original and the compressed size. Even if compression
may effectively reduce the I/O overheads and space utilization of
individual checkpoints, in our case, we are interested in the en-
tire checkpoint record. Under such circumstances, it is often the
case that the checkpointed data changes only partially from one
checkpoint to another. For example, graph applications use data
structures that are very sparsely updated [16]. Thus, additional
opportunities exist to take advantage of specialized data reduc-
tion techniques for checkpoints that evolve in time. Incremental
checkpointing techniques aim to do so by means of dirty data track-
ing (i.e., detect what data was touched since the last checkpoint)
or de-duplication [2, 6, 17, 24, 29]: save a full checkpoint initially,
then save only the differences later. However, such techniques are
either slow at detecting the differences, generate a large amount
of metadata to keep track of the differences, or ignore important
spatiotemporal checkpoint data redundancy (e.g., checkpoint data
duplicated in a different checkpoint at a different position). Fur-
thermore, the checkpointed data is typically generated on GPU
memory, which has additional limitations compared with the host
memory of compute nodes, and therefore limits the applicability of
some incremental checkpointing techniques (e.g., based on dirty
memory page tracking).

Contributions: To address the limitations mentioned above, in
this paper, we propose a novel incremental checkpointing method
that: (1) identifies and de-duplicates repeating patterns across the
checkpoints of the entire checkpoint record; (2) extracts a compact
metadata representation of these repeating patterns; (3) serializes
the differences and the compact metadata representation efficiently

into host memory for asynchronous transfer to other storage tiers;
and (4) takes advantage of modern GPU accelerators to scale to
tens of thousands of GPU cores. To this end, we propose a Merkle
tree-based [15] de-duplication method that achieves a high data re-
duction throughput and rate, effectively reducing the I/O overheads
and space utilization.

We summarize our contributions as follows. First, we introduce a
series of design principles that are at the core of ourmethod: (1) iden-
tify repeating data chunks at fine granularity (hundreds of bytes)
through hashing that leverages spatial and temporal redundancy
across the entire checkpoint record; (2) coalesce such contiguous
chunks into a hierarchic set of repeating non-overlapping patterns
that are matched against the entire checkpoint record to obtain
a compact metadata representation; (3) collect and assemble the
compact metadata and unique chunks into a separate contiguous
GPU buffer that is optimized for transfer to the host memory; and
(4) leverage fused GPU kernels that feature massive parallelism
and low latency and synchronization overheads in order to achieve
high scalability (Section 2.1). Second, we propose highly parallel
algorithms based on the above design principles. In particular, we
zoom on the aspect of how to coalesce contiguous chunks into
a hierarchic set of repeating overlapping patterns efficiently in
parallel by leveraging the structure of Merkle trees (Section 2.2).
Third, we illustrate how to implement our algorithms by proposing
a research prototype that leverages Kokkos performance-portable
abstractions, which generalize our method to various GPU accelera-
tors (Section 2.4). We demonstrate the benefits of our solution for a
real-life graph application using extensive experiments at scale for
a variety of graphs. The results show our solution reduces the I/O
overhead and space utilization of checkpointing by up to orders of
magnitude compared with state-of-art incremental checkpointing
and compression techniques (Section 3).

2 SYSTEM DESIGN
This section introduces our approach. A high-level overview is
depicted in Figure 1.

Figure 1: Our method in a nutshell: each process performs
de-duplication on its own GPU.

2.1 Design Principles
De-duplication of data chunks using fine-grain hashing that
is spatiotemporal agnostic: We assume an HPC workflow in
which processes are co-located on the same compute node, each
assigned to a dedicated GPU. In this case, each process produces
a checkpoint record with high frequency directly into the GPU



Scalable Incremental Checkpointing using GPU-Accelerated De-Duplication ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

memory. Since the spare GPU memory available for checkpointing
is limited, we cannot afford to hold the entire checkpoint record in
the GPU memory, even if we apply an incremental checkpointing
technique that stores only the differences. Furthermore, even if
we had enough free space on the GPU memory to hold the entire
checkpoint record, it is not feasible to compare a new checkpoint
with all previous checkpoints in the historical record to identify the
differences. Thus, we propose a hash-based method that splits a new
checkpoint into fine-grain chunks (in the order of tens or hundreds
of bytes), then hashes each chunk to produce a set of unique chunk
hashes, which can be compared with the accumulated set of unique
chunk hashes of the checkpoint record to identify the data chunks
that are unique to the new checkpoint. Using this method, a chunk
must be stored only the first time it is encountered, regardless of
how many times it appears again in the same checkpoint (spatial
duplication) or future checkpoints (temporal duplication). Although
such methods have been proposed before in the context of incre-
mental block storage [14], we operate directly in the memory of
GPU accelerators, which introduces additional challenges. First, un-
like storage systems, we cannot afford to access a separate metadata
repository with a historical record of unique hashes due to high I/O
latency. Therefore, we propose to keep a distinct record for each
process in the GPU memory. Second, as the historical record of
unique hashes grows over time, there is a need for efficient indexing
and lookup techniques that are GPU-optimized. To this end, we
leverage specialized hash tables, as detailed in Section 2.4.

Compact hierarchic representation of contiguous repeat-
ing patterns usingMerkle tree-basedmetadata:AGPU-optimized
data structure that holds the entire checkpoint record of unique
chunk hashes enables us to identify a minimal set of chunks repre-
senting the difference between new and older checkpoints. How-
ever, this set may be very large since we are using fine-grain chunk
sizes. Consequently, storing naive metadata about the chunks (e.g.,
an entry for each chunk that identifies the checkpoint ID and offset
where it first occurred) quickly leads to an explosion of the meta-
data size, which may dramatically reduce the space savings, even if
the difference is negligible. On the other hand, it is essential to note
that the chunks may form large contiguous regions that repeat both
within the same checkpoint and across past checkpoints. Therefore,
there is an opportunity to reduce the metadata sizes by identifying
and leveraging such contiguous regions directly. To this end, we
propose a hierarchical Merkle tree-based [15] method that stores
hashes corresponding to different arrangements of non-overlapping
adjacent regions in the historical record of unique hashes (bound
by up to two times more hashes than the naive method) to identify
a close to a minimum number of contiguous regions that cover the
difference. Using this method, the metadata size can be dramati-
cally reduced under the right circumstances, as we only need to
store the difference between the checkpoint ID and offset where an
entire region appeared the first time. To this end, we introduce a
specialized algorithm detailed in Section 2.2.

Efficient combined serialization of metadata and unique
chunks as a consolidated difference optimized for transfer
to host memory: Once we have identified the smallest set of re-
gions and unique chunks that make up the difference, we need to
consolidate the data and metadata into the host memory to obtain

a single checkpoint object that can be flushed asynchronously fur-
ther down the storage hierarchy. However, these unique chunks
may be scattered all over the GPU memory, especially if the de-
duplication is effective and the difference is negligible. Therefore,
a naive strategy that initiates transfers of individual chunks from
the GPU memory to the host memory suffers significant I/O band-
width degradation since it involves non-trivial latencies to set up
the transfer, not to mention cache misses. Therefore, we propose
serializing the metadata and the unique chunks into a consolidated
difference directly on the GPU memory. Then, for the consolidated
difference, initiating a single device-to-host data transfer is enough,
which can take advantage of the full PCIe bandwidth that links
the GPU memory with the host memory. Even if the consolidation
leverages high GPU-to-GPU memory bandwidth, it is non-trivial
because it needs to consider coalesced memory accesses that occur
when concurrently running threads access memory close to each
other. Doing so allows the hardware to predict and retrieve data
ahead of time. Cache hierarchies are also better utilized. To this end,
we design a specialized serialization method that pre-calculates
offsets in the consolidated difference and assigns GPU threads to
parallelize the data transfers by the observations above.

Fused GPU kernels for optimal massive GPU parallelism: Without
taking advantage of the massive parallelism of GPUs, even simple
steps in our method, such as hashing the data chunks or performing
GPU memory accesses and GPU-to-GPU data transfers, are time-
consuming and lead to large overheads. Therefore, our method
needs to scale to a large number of GPU cores, which are on the
order of ten thousand on modern GPUs. However, this is non-trivial
because hashing of data chunks, indexing, and lookup in the hash
historical record, generating compact metadata representations,
and consolidating checkpoint differences are complex operations
with tight dependencies. Therefore, it is not enough to reason about
these aspects as independent steps that can be parallelized using
separate GPU kernels, as such a naive method would introduce
unacceptable latencies associated with submitting and executing
new kernels. To address this issue, we propose to use a single
fused kernel that takes advantage of containers and abstractions
offered by performance portability abstractions such as Kokkos to
parallelize the execution into related “waves” that ensure the work
is evenly distributed and maximizes coalesced memory accesses
without delays between waves, as detailed in Section 2.4.

2.2 Zoom on Merkle Tree-based Compact
Metadata

We propose a heuristic algorithm to identify a close to a minimal
number of non-overlapping contiguous regions that fully describe
the difference between a new checkpoint and all previous check-
points in the checkpoint record. Using this method, in addition to
the unique chunks encountered in the latest checkpoint, we only
need to store a small amount of enough metadata to restore the
checkpoint later fully.

Specifically, we assume the fine-grain chunks are the leaves of a
(potentially incomplete) binary tree. Then, we compute the hashes
not only for the leaves but also in a bottom-up fashion for the
intermediate tree nodes by hashing the left child’s hash with the
right child’s hash, similar to Merkle trees. We only go one level up



ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Nigel Tan et al.

if the hash of the left and right child were found in the historical
record of unique hashes and represent a contiguous region that can
be consolidated. If this is the case, the new region is added to the
historical record of unique hashes. Then, we collect the intermediate
nodes that were touched by this process and are the closest to the
tree’s root. This yields a compact representation of the checkpoint
difference, both with respect to the new chunks encountered the
first time and the reused chunks from previous checkpoints.

Figure 2: Example of compact metadata representation. Our
method reduces the metadata amount from 7 entries to 3
entries compared with a naive method.

To understand why the method works, consider an example
depicted in Figure 2. The checkpoint historical record includes
a single first checkpoint that was taken fully and the historical
record of unique hashes consists of all possible non-overlapping
regions corresponding to the intermediate nodes 0-14. Then, a
second checkpoint is taken, and the new chunk 11 is identical to
the previous chunk 11 (which we refer to as fixed duplicate). In
contrast, chunk 12 is identical to another previous chunk from the
first checkpoint other than 12 (whichwe refer to as shifted duplicate).
All other chunks between the first and second checkpoints are
different.

The algorithm works as follows. First, we hash the chunks of
the second checkpoint and insert any new hashes into the histori-
cal record of unique hashes, which results in four inserts 𝐼 , 𝐽 , 𝐾, 𝐿,
referred to as first-time occurrences. Note that chunks 13 and 14
are identical to chunks 7 and 8. Even though they belong to the
second checkpoint, they are still marked as shifted duplicates, just
like chunk 12. Chunks 11 and 12 are the only ones that form two
non-contiguous regions that cannot be consolidated. Therefore,
we stop. For all other leaves, we go one level up. We consolidate
chunks 7 and 8 into region 3 and chunks 9 and 10 into region 4.
Both region 3 and region 4 are added to the historical record of
unique hashes. Then we consolidate chunks 13 and 14 into region
6. Since the hash of region 6 is identical to the hash of region 3,
which already is in the historical record of unique hashes, the entire
region 6 is marked as a shifted duplicate. The process continues
only for regions 3 and 4, which can now be consolidated into re-
gion 1, also inserted in the historical record of unique hashes. We
obtain the compact metadata representation of the difference as a
set of three non-overlapping regions: 1, 12, 6. We can omit chunk

11 from the difference since it remains unchanged from the first
checkpoint. Finally, we obtain a mix of metadata describing the
first-time occurrences and shifted duplicates, followed by the chunk
content corresponding only to the first-time occurrences. Using
this method, we save only three metadata entries compared with
the naive method that saves a metadata entry for each non-fixed
duplicate chunk (referred to as the List method). Now the compact
metadata and new unique chunks are ready to be serialized and
transferred to the host memory.

Algorithm 1 De-duplication using compact metadata.
Input: 𝐶ℎ𝑢𝑛𝑘𝑠,𝑇𝑟𝑒𝑒, 𝐿𝑒𝑎𝑣𝑒𝑠, 𝐿𝑎𝑏𝑒𝑙𝑠, 𝑀𝑎𝑝
1: for all 𝑙𝑒𝑎𝑓 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠 do in parallel
2: 𝑑𝑖𝑔𝑒𝑠𝑡 ← Hash(𝐶ℎ𝑢𝑛𝑘 (𝑙𝑒𝑎𝑓 ))
3: if 𝑑𝑖𝑔𝑒𝑠𝑡 == 𝑇𝑟𝑒𝑒 (𝑙𝑒𝑎𝑓 ) then
4: 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑙𝑒𝑎𝑓 ) ← FIXED_DUPL
5: else
6: 𝑒𝑛𝑡𝑟𝑦 ← (𝑙𝑒𝑎𝑓 , 𝑐ℎ𝑘𝑝𝑡𝐼𝐷)
7: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ←𝑀𝑎𝑝 .insert(𝑑𝑖𝑔𝑒𝑠𝑡 ,𝑒𝑛𝑡𝑟𝑦)
8: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
9: 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑙𝑒𝑎𝑓 ) ← FIRST_OCUR
10: else if not 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
11: (𝑙𝑒𝑎𝑓𝑜𝑙𝑑 , 𝑐ℎ𝑘𝑝𝑡𝐼𝐷𝑜𝑙𝑑 ) ←𝑀𝑎𝑝[𝑑𝑖𝑔𝑒𝑠𝑡]
12: 𝑠𝑎𝑚𝑒𝐼𝐷 ← 𝑐ℎ𝑘𝑝𝑡𝐼𝐷𝑜𝑙𝑑 == 𝑐ℎ𝑘𝑝𝑡𝐼𝐷
13: if 𝑙𝑒𝑎𝑓 < 𝑙𝑒𝑎𝑓𝑜𝑙𝑑 && 𝑠𝑎𝑚𝑒𝐼𝐷 then
14: 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑙𝑒𝑎𝑓𝑜𝑙𝑑 ) ← SHIFT_DUPL
15: 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑙𝑒𝑎𝑓 ) ← FIRST_OCUR
16: 𝑙𝑒𝑎𝑓𝑜𝑙𝑑 ← 𝑙𝑒𝑎𝑓
17: else
18: 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑙𝑒𝑎𝑓 ) ← SHIFT_DUPL
19: end if
20: end if
21: 𝑇𝑟𝑒𝑒 (𝑙𝑒𝑎𝑓 ) ← 𝑑𝑖𝑔𝑒𝑠𝑡
22: end if
23: end for
24: for 𝑙𝑒𝑣𝑒𝑙 ∈ 𝑇𝑟𝑒𝑒 do
25: for all 𝑛𝑜𝑑𝑒 ∈ 𝑙𝑒𝑣𝑒𝑙 do in parallel
26: if 𝑐ℎ𝑖𝑙𝑑𝑙 and 𝑐ℎ𝑖𝑙𝑑𝑟 are FIRST_OCUR then
27: 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑛𝑜𝑑𝑒) ← FIRST_OCUR
28: 𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒) ← Hash((𝑇𝑟𝑒𝑒 (𝑐ℎ𝑖𝑙𝑑𝑙 , 𝑐ℎ𝑖𝑙𝑑𝑟 ))
29: 𝑀𝑎𝑝 [𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒)] ← (𝑛𝑜𝑑𝑒, 𝑐ℎ𝑘𝑝𝑡𝐼𝐷)
30: end if
31: end for
32: end for
33: for 𝑙𝑒𝑣𝑒𝑙 ∈ 𝑇𝑟𝑒𝑒 do
34: for all 𝑛𝑜𝑑𝑒 ∈ 𝑙𝑒𝑣𝑒𝑙 do in parallel
35: if 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑐ℎ𝑖𝑙𝑑𝑙 ) ≠ 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑐ℎ𝑖𝑙𝑑𝑟 ) then
36: save roots 𝑐ℎ𝑖𝑙𝑑𝑙 and 𝑐ℎ𝑖𝑙𝑑𝑟
37: else if 𝑐ℎ𝑖𝑙𝑑𝑙 and 𝑐ℎ𝑖𝑙𝑑𝑟 are SHIFT_DUPL then
38: 𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒) ← Hash(𝑇𝑟𝑒𝑒 (𝑐ℎ𝑖𝑙𝑑𝑙 ), 𝑡𝑟𝑒𝑒 (𝑐ℎ𝑖𝑙𝑑𝑟 ))
39: if 𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒) ∈ 𝑀𝑎𝑝 then
40: 𝐿𝑎𝑏𝑒𝑙𝑠 (𝑛𝑜𝑑𝑒) ← SHIFT_DUPL
41: else
42: save roots 𝑐ℎ𝑖𝑙𝑑𝑙 and 𝑐ℎ𝑖𝑙𝑑_𝑟
43: end if
44: end if
45: end for
46: end for

Algorithm 1 lists the pseudocode corresponding to our metadata
compactionmethod in greater detail. The historical record of unique
hashes is denoted𝑀𝑎𝑝 [ℎ𝑎𝑠ℎ], while 𝑇𝑟𝑒𝑒 [𝑛𝑜𝑑𝑒] and 𝐿𝑎𝑏𝑒𝑙 [𝑛𝑜𝑑𝑒]
are temporary data structures that hold the hashes of leaves (inter-
mediate nodes) and, respectively the type of the region covered by



Scalable Incremental Checkpointing using GPU-Accelerated De-Duplication ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

each leaf (intermediate node). Identical labels mean a region can be
consolidated.

According to the design principle that aims at leveraging the
massive parallelism offered by GPUs, we parallelize this algorithm
level-by-level. However, to avoid a situation where shifted dupli-
cates are hashed faster than first-time occurrences (which leads to a
missing entry in the historical record of unique hashes and therefore
missed de-duplication opportunities), we perform the paralleliza-
tion in two stages: first, we process the sub-trees corresponding
to the first-time occurrences, then we process the sub-trees corre-
sponding to the shifted duplicates.

To restore a checkpoint from the differences, it is enough to
start from the first-time occurrences, then fill the fixed duplicates
and finally assemble the shifted duplicates from the corresponding
checkpoint ID (which can be a previous checkpoint or the current
checkpoint to be restored).

2.3 Architecture

Figure 3: Architecture of multi-level asynchronous check-
pointing that integrates our GPU-accelerated de-duplication.

Figure 3 depicts the general architecture of an asynchronous
checkpointing that integrates with our GPU-accelerated method.
Each compute node features multiple GPUs. A large number of
compute nodes compete for the I/O bandwidth of an external repos-
itory, typically a parallel file system. Each application process uses
a dedicated GPU and stops during checkpointing to perform the
de-duplication on the GPU according to the steps illustrated in
Figure 1. Then, it transfers the consolidated difference to the host
memory and resumes the computations. From this point forward,
an asynchronous multi-level checkpointing runtime flushes the
differences stored in the host memory down the storage hierarchy
(local storage, parallel file system). Since each process maintains its
own record of unique hashes on its GPU, the only bottleneck is the
competition for PCIe bandwidth between the GPUs when transfer-
ring the differences. This competition is nevertheless much lower
compared with the case when the full checkpoints are transferred
to the host memory, in which case much larger sizes are involved.
Furthermore, intermediate storage tiers like host memory and local
SSDs are filling up slower, which helps amortize the competition
for the I/O bandwidth of the parallel file system. Ultimately, this
leads to better utilization of the entire storage hierarchy and lower
I/O overheads, in addition to storage space savings.

2.4 Implementation
Our implementation builds on performance portable abstractions
that enable efficient massive parallelization into fused kernels while
offering optimized implementations of GPU-aware hash tables
(used to maintain the historical record of unique hashes).

Parallelization with Kokkos:We implement our method us-
ing the Kokkos performance portability framework [32] for par-
allel execution on CPUs and GPUs. Kokkos includes several ex-
ecution and data structure abstractions for developing scalable
applications. We use the UnorderedMap provided by Kokkos. The
UnorderedMap is designed to handle thousands of concurrent in-
sertions. The map is lock-free and minimizes the use of atomic
operations. This performance-focused design is important for cal-
culating and identifying differences between thousands of hashes.
Kokkos provides flexible parallel execution constructs that allow
direct control of work division. The ability to control which chunks
are assigned to which threads and in what order greatly impacts
performance, as outlined in the subsequent sections. Merkle trees
are complete binary trees, so we store them in a flattened array and
identify parent-child relationships using simple formulas based on
the offset in the array. This simplifies tree search and management
on the GPU, as the array format does not waste space on unused
pointers.

Efficient hash calculation using GPUs: We use the 128-bit
Murmur3 [1] hash function for comparing chunks. Murmur3 is a
common non-cryptographic hash function used for hash tables. A
fast hash function such as Murmur3 is necessary to maximize de-
duplication throughput. Slow cryptographic hash functions such
as MD5 [26] would introduce a bottleneck. To efficiently leverage
the GPUs hardware, we structure the code such that successive
threads compute hashes for successive chunks. By doing so, we
ensure that the stride between memory accesses is reduced. Reduc-
ing the stride decreases the number of memory accesses to global
memory, speeding up the hash calculation. Optimized memory ac-
cess patterns are necessary to utilize the GPU’s bandwidth and
computational capabilities fully. This is particularly true for hash-
ing data since the computational cost of Murmur3 is already low.
Our method may compute and store up to twice the number of
hashes in the historical record of unique hashes since the number
of intermediate nodes is equal to the number of leaves minus one.
However, this is a worst-case scenario encountered only when the
checkpointed data fully changes during the checkpoint interval.
This can be easily detected, and incremental checkpointing can
be deactivated accordingly. Conversely, when the checkpointed
data remains unchanged between checkpoints, our method may
calculate intermediate nodes unnecessarily. This may be mitigated
by adopting a top-down method. Another important aspect is the
size of the chunks, which needs to be larger than double the size of
the hash values. In our case, each Murmur3 hash digest is 16 bytes:
so long as the chunk size exceeds 32 bytes, the cost of computing
an inner node is lower than that of a leaf node. This represents a
trade-off: hashing smaller chunks of data improves the memory
access pattern by reducing the stride between memory accesses, but
increases the number of inner nodes. Thanks to compact metadata
representation, the latter aspect is of lesser concern. Finally, we did
not consider hash collisions. If hash collisions are a concern, they



ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Nigel Tan et al.

can be mitigated by using a cache of chunks that can be directly
compared in parallel with the metadata compaction.

High throughput serialization of scattered chunks: As with
hash calculation, optimizing memory accesses for gathering scat-
tered chunks is important in order to obtain high GPU-to-GPU
transfer throughput for the serialization of the consolidated check-
point difference. Rather than having each thread copy a different
chunk, we use a team of threads to copy each chunk into the con-
tiguous buffer. This ensures that memory accesses coalesce and
memory bandwidth utilization is maximized. Without such opti-
mizations, even if the transfer from the GPU to the host memory
is accelerated due to contiguity, this benefit would be negated by
poor serialization throughput.

3 EVALUATION
3.1 Setup
We perform our tests on two supercomputers at Argonne National
Laboratory’s Leadership Computing Facility (ALCF): ThetaGPU
and Polaris. Theta GPU is a DGX A100-based system comprised of
24 NVIDIA DGX A100 nodes, each with eight NVIDIA A100 Tensor
Core GPUs and two AMD EPYC 7742 64-core CPUs. Memory-wise,
each node is equipped with 1 TB of DDR4 and 320 GB GPUmemory
for 24 TB DDR4 and 7.6 TB GPU memory. The nodes are intercon-
nected using 20 Mellanox QM9700 HDR200 40-port switches wired
in a fat-tree topology. External storage is provided by a Lustre
parallel file system, which is mounted using POSIX and provides
an aggregated I/O bandwidth of 250 GB/s. Polaris is a 560-node
HPE Apollo 6500 Gen 10+ system. Each node consists of an AMD
32-core EPYC 7543P CPU, 4 A100 GPUs, 512 GB of DDR4, two 1.6
TB SSDs, and 4 A100 GPUs. The nodes are connected using the
Slingshot 10 network. The number of processes tested ranges from
a single process to 64 processes. Each process has its own GPU and
is isolated from the other processes.

3.2 Methodology
This section outlines the experimental procedures for evaluating
our work. The use case, state-of-the-art, performance metrics, ex-
perimental scenarios, and input data are shown in detail.

Application use case: Our driver application for the experi-
mental evaluation is ORbit ANd Graphlet Enumeration at Scale
(ORANGES), a parallel graph application that takes a graph as an
input and computes each vertex’s graphlet degree vector (GDV) in
order to enable graph matching. A graphlet is an induced subgraph
of a small number of vertices. A graphlet degree vector can be
seen as a generalization of the degree concept [31]. The degree of a
vertex represents the number of times a vertex is part of an edge.
The graphlet degree vector represents the number of times a ver-
tex is part of different graphlets, with one entry for each graphlet.
GDVs are used for graph-matching applications, such as in compar-
ing phylogenetic networks in bioinformatics and comparing event
graphs in large-scale HPC applications. We create the GDV on all
two to five vertices graphlets. Each vertex in the graph is associated
with a vector of size 72, representing the different positions (or or-
bits) of the vertex in the 30 possible graphlets (more details on the
graphlets and orbits are given in [10]). For each vertex in the graph,
we identify the graphlets associated with it and its different orbits

in the graphlets. Based on this calculation, we increase the count of
each orbit in GDV associated with the vertex. If the graph is sparse,
then the GDV is also sparse, as not all graphlets are formed. For
example, triangles are rarely formed in event graphs representing
communications in HPC simulations and in almost planar road
graphs. Due to this, only 10 possible 30 graphlets are formed fre-
quently, and the remaining 20 very rarely, if at all. Graphs will also
have repeated substructures which can result in some GDVs being
similar to others. The updated pattern depends on the input graph,
simplifying the exploration of different patterns. These characteris-
tics make ORANGES a good candidate to showcase the benefits of
our work.

Compared state-of-the-artmethods:We compare ourmethod
(henceforth denoted Tree) with a baseline checkpointing method
that always stores a full checkpoint (denoted Full). Additionally,
we implemented a Basic incremental checkpointing method that
breaks the checkpoint into chunks, hashes the chunks, then builds
a bitmap to indicate what chunks are new and what chunks remain
unchanged. It saves the bitmap and the new chunks. Furthermore,
we implemented a List method that is identical to ourmethod except
for the metadata compaction, which is omitted. Instead, a full list of
all first-time occurrences and shifted duplicates is stored along the
new chunks. For fairness, both the Basic and List methods benefit
from the same massive parallelization optimizations introduced
by our method. Furthermore, we use several lossless compression
algorithms included with the open-source nvCOMP [22] library
provided by NVIDIA. Since our application counts graphlets and
needs an exact output for correctness, lossy compression is not
applicable.

Metrics:We focus on two metrics when evaluating our work;
data de-duplication ratio and de-duplication throughput. The de-
duplication ratio is measured as the size of the full checkpoints
divided by the size of the de-duplicated checkpoints. Higher ratios
indicate greater space savings. Throughput is calculated as the size
of the original data divided by the time it takes to create and copy
the incremental checkpoint from the GPU to the host memory. In
the case of Full, this measures the GPU to host flush throughput.
In the case of the other methods, the de-duplication throughput
includes both the overhead of compression/de-duplication and the
overhead of GPU-to-host transfers.

Experimental scenarios:We present three scenarios that exam-
ine different factors affecting our method versus existing methods.
The first scenario studies the impact of chunk size on de-duplication
performance. Chunk size determines the de-duplication granularity,
which directly affects checkpoint size reduction and the computa-
tional overhead of checkpointing. We vary the chunk size from 32
to 512 bytes and compare our method with the Full, Basic, and List
method in terms of data de-duplication ratio and de-duplication
throughput. This scenario leverages a single GPU. The second sce-
nario investigates how the benefits of de-duplication accumulate as
the checkpointing frequency increases. Specifically, we capture a
full initial checkpoint, then another 𝑁 − 1 incremental checkpoint
that is evenly distributed during the runtime 𝑅 (i.e., we use a fixed
checkpoint interval 𝑅/𝑁 ). We vary 𝑁 from 5 to 20 and aggregate
the metrics for all captured checkpoints (excluding the first check-
point). Using this method, we can compare the results for different



Scalable Incremental Checkpointing using GPU-Accelerated De-Duplication ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

input graphs that produce different runtimes (in the order of min-
utes). This scenario again leverages a single GPU. The last scenario
performs strong scaling tests. We vary the number of GPUs from 1
to 64 and take checkpoints every 10 minutes. At scale, for larger
dense graphs, the number of iterations rapidly increases, hence the
longer checkpoint interval. We focus on the comparison between
our Tree method and the Full method.

Input data: For the scenarios mentioned above, we use a set of
graphs with different complexities in terms of vertices and edges
(Tab. 1). Message Race, Unstructured Mesh, Asia OSM, and Huge-
bubbles are used for the single process tests, and Delaunay is used
for the scaling test. The Message Race and Unstructured Mesh sce-

Graph ∥𝑉 ∥ ∥𝐸∥ GDV size
Message Race 11,174,336 16,761,248 3.26 GB

Unstructured Mesh 14,418,368 21,627,296 4.21 GB
Asia OSM 11,950,757 25,423,206 3.49 GB

Hugebubbles 18,318,143 54,940,162 5.35 GB
Delaunay N24 16,777,216 100,663,202 4.9 GB

Table 1: Input graphs used for our tests. Delaunay N24 is used
for the scaling test.

narios are event graphs representing communication patterns in
HPC benchmarks. Asia OSM, Hugebubbles, and Delaunay N24 are
graphs from the SuiteSparse collection [3]. The event graphs are
more sparse than the graphs from SuiteSparse, with fewer dense
subgraphs. As noted later, this leads to improved results for the
event graphs.

Before running ORANGES, we pre-process the graphs by reorder-
ing the vertices using Gorder [36]. Gorder is a graph reordering
application that relabels a graph’s vertices to improve cache perfor-
mance while maintaining the graph’s topological structure. Gorder
uses an approximate greedy algorithm with a priority queue to
find a graph ordering where connected vertices are stored close
together. Keeping the vertices close together improves cache reuse
when operating on graphs and is a typical optimization applied by
the graph community.

3.3 Results
Figure 4 shows the impact of chunk size on the de-duplication ratio
and throughput for our Tree method versus Full, Basic, and List.

Figure 4a highlights the trade-offs when deciding chunk size
for the Message Race graph. With 64-byte chunks, our method
achieves a 5 times better de-duplication ratio than List (the best
among the compared methods). The List method sees a decline in
ratio with chunks smaller than 256 bytes—large amounts of meta-
data cause the decrease. As the chunk size shrinks, more of the
checkpoint comprises metadata for tracking duplicate chunks. Our
method compacts the metadata, which allows smaller chunk sizes
without performance degradation. The throughput values suggest
that significant reductions in checkpoint sizes can overcome the
additional overheads of identifying compact metadata. Specifically,
our method shows superior throughput, matching the improved
de-duplication ratio performance. Throughput performance starts
to degrade with chunks smaller than 256 bytes, where the additional
overhead exceeds the benefits of smaller checkpoints. This behav-
ior is typical of all compared methods. Our Tree method benefits

the most from small chunk sizes, allowing smaller chunks without
decreasing throughput performance. Figure 4b shows similar per-
formance characteristics for the Unstructured Mesh graph as the
Message Race graph.

Figure 4c shows that it is more challenging to de-duplicate the
checkpoints for Asia OSM than Message Race or Unstructured
Mesh. The de-duplication ratio is lower for all methods. Our Tree
method only shows notable improvements with 32-byte chunks,
outperforming the other methods. Figure 4d shows the samemetrics
for Hugebubbles. Similar to Asia OSM, the Hugebubbles graph is
more challenging to de-duplicate. Despite the difficulty, we see
significant improvements with our Tree method with chunk sizes
of less than 128 bytes. With 64-byte chunks and smaller ones, we see
a 37% improvement in the de-duplication ratio and a 13% increase
in throughput.

Figure 5 shows how checkpoint frequency affects our method’s
de-duplication ratio and throughput compared with the state-of-art
techniques. We capture 5, 10, or 20 checkpoints at moments evenly
distributed during the runtime. The de-duplication ratio results in
Figures 5a- 5c demonstrate the benefits of using temporal informa-
tion for de-duplicating data. Increasing the checkpoint frequency
reduces the number of updates at each checkpoint. Fewer updates
and frequent checkpoints increase the temporal information our
method can leverage. However, this does not always compare fa-
vorably with compression. For example, our method has worse
de-duplication ratios than Zstd for all four graphs. Increasing the
number of checkpoints to 20 allows our Tree method to outperform
Zstd for all input data, even with the more difficult Asia OSM and
Hugebubbles graphs. This behavior is expected, as the compression
techniques are limited to individual checkpoints. We are using our
Tree method; taking 20 checkpoints results in a smaller total check-
point size for all graphs except Asia OSM, which sees only a 2%
Figures 5d- 5f show that throughput performance is less impacted
by increasing checkpoint frequency. Throughput increases for our
Tree method as well as for the List, and Basic methods, while the
compression techniques are unaffected. The improvements to the
Tree method range from 1.37×with the UnstructuredMesh to 2.77×
with the Hugebubbles graph.

Figure 6 shows the strong scaling results of the Full method
compared with our Tree method. The Delaunay N24 graph is the
input, and the number of GPUs varies from 1 to 64. Each process
checkpoints independently, but multiple GPUs copying data to a
shared CPU can impact performance. We measure the sum of the
first ten checkpoints for all processes. Throughput is measured by
taking the sum of 10 checkpoints and dividing it by the maximum
runtime spent on de-duplication across all processes. Figure 6a
shows the sum of total checkpoint sizes for ORANGES running the
Delaunay N24 graph. As the number of processes increases expo-
nentially, so does the checkpointed data. At 64 processes, we see a
215× reduction in total checkpoint size compared with Full: 4.33 TB
of checkpoints is reduced to 20 GB. The de-duplication through-
put is shown in Figure 6b. This indicates that our Tree method
has greater throughput than Full, and the throughput maintains or
improves as the number of processes increases. Since ORANGES
is embarrassingly parallel (it finishes with a reduction of the inde-
pendently obtained results on each GPU), we did not perform a



ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Nigel Tan et al.

(a) Message Race (b) Unstuctured Mesh

(c) Asia OSM (d) Hugebubbles
Figure 4: Impact of chunk size on de-duplication ratio and throughput for our method (Tree) vs. other incremental methods
(i.e., Full, Basic, and List) for the Message Race, Unstructured Mesh, Asia OSM, and Hugebubbles input graphs. Chunk size
ranges from 32 to 512 bytes.

full comparison at scale between all methods. We anticipate similar
trends compared with the single GPU experiments.

4 RELATEDWORK
Incremental storage is a well-known technique to accelerate I/O
and to reduce storage space utilization. In addition to checkpoint-
ing, it is applied in many other scenarios: versioning and incre-
mental snapshots of file systems, virtual machine images, and
block devices. They use either dirty page (block) tracking or de-
duplication [6, 17, 33, 34] to identify incremental differences. Dirty
page tracking for host memory can be accelerated by the OS and
hardware using techniques such as user-level faults that avoid ex-
pensive context switches triggered by more conventional methods
that trap the SEGFAULT signal. However, dirty-page tracking re-
quires specialized kernel support and is unavailable on all platforms.
Furthermore, they are typically limited to memory page granularity
(e.g., 4 KB), which limits their de-duplication potential (e.g., single-
byte changes or writing identical data to the same address can mark
an entire page dirty). Such techniques are unavailable on GPUs
because the GPU drivers handle the memory virtualization fully
transparently [11, 12]. Complementary to incremental storage is
the problem of how to re-assemble checkpoints from differences,
which involves metadata organization, indexing and search tech-
niques [19, 20]. Several works focus on enabling checkpointing
for GPU applications [5, 8, 23, 25]. However, each has drawbacks.

Some works [8, 23] only perform essential temporal de-duplication.
Others [5, 25] only perform de-duplication at the page or variable
level. Methods such as libhashckpt [4] use a hybrid method with
multiple change detection systems to reduce the checkpoint size.
Another alternative to incremental checkpointing is checkpoint
compression, both lossless [9] and lossy [30]. Typical compression
algorithms prioritize decompression performance, assuming that
compression is a relatively infrequent operation, which does not
hold in our high-frequency checkpointing scenario. Furthermore,
many compression algorithms cannot leverage the temporal redun-
dancy of data that evolves in time.

5 CONCLUSIONS
This paper presents a scalable GPU-aware Merkle tree-based in-
cremental checkpointing method leveraging de-duplication to re-
duce the checkpoint sizes and increase the checkpointing through-
put simultaneously. To this end, we identify contiguous repeating
patterns across the entire checkpoint record, for which we elim-
inate the redundancy both at the data and metadata levels. We
use these fundamental ideas to improve the de-duplication ratio
and de-duplication throughput for graph-matching applications
by significant margins (up to orders of magnitude) compared with
other incremental checkpointing methods. Unlike high-throughput
compression techniques, our method improves the de-duplication
ratio and throughput for an increasing checkpointing frequency,



Scalable Incremental Checkpointing using GPU-Accelerated De-Duplication ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

(a) De-duplication ratio for 5 checkpoints (b) De-duplication ratio for 10 checkpoints (c) De-duplication ratio for 20 checkpoints

(d) Throughput for five checkpoints (e) Throughput for 10 checkpoints (f) Throughput for 20 checkpoints
Figure 5: Impact of checkpoint frequency on de-duplication ratio and throughput for our method (Tree) vs. state-of-art (i.e.,
Full, Basic, and List) and several nvCOMP compression algorithms. Results are shown for 𝑁 = 5, 10, 20 checkpoints evenly
distributed during the runtime (which varies for each input graph).

(a) Total checkpoint size (b) De-duplication throughput
Figure 6: Strong scaling results with up to 64 GPUs using the Delaunay N24 input graph. Our method (Tree) achieves over two
orders of magnitude reduction in checkpoint size compared with Full and retains a high throughput at scale.

resulting in a size of the checkpoint record up to 67× smaller. Fur-
thermore, our method shows excellent scalability for large graphs,
reducing the checkpoint sizes by two orders of magnitude and
increasing the checkpointing throughput by almost an order of
magnitude compared with full checkpoints. Such benefits are sig-
nificantly impacted in non-resilience scenarios where incremental
checkpoints are used to analyze intermediate results (e.g., repro-
ducibility efforts) or make progress (e.g., adjoint computations).

Encouraged by these results, in future work, we plan to address
several directions: evaluating the benefits of our method for other
classes of applications, such as adjoint computations; combining
our method with compression techniques to further reduce the
checkpoint sizes and increase the data reduction throughput (e.g.,
by compressing the first-time occurrences in the difference); stream-
ing methods that overlap de-duplication with transfers to the host



ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Nigel Tan et al.

memory; and scalable reconstruction techniques that efficiently col-
lect scattered compact regions from multiple previous checkpoints.

ACKNOWLEDGMENTS
This material is based uponwork supported by: the U.S. Department
of Energy (DOE), Office of Science, Office of Advanced Scientific
Computing Research, under Contract DE-AC02-06CH11357; the
National Science Foundation under Grants #1900888 and #1900765;
and the IBM Shared University Research Award at the University
of Tennessee. This manuscript has been authored by UT-Battelle
LLC under contract DE-AC05-00OR22725 with the US Department
of Energy (DOE). Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology & En-
gineering Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department of En-
ergy’s National Nuclear Security Administration under contract
DE-NA0003525.

REFERENCES
[1] Austin Appleby. 2012. SMHasher & MurmurHash. Retrieved from

https://code.google.com/p/smhasher.
[2] Iván Cores, Gabriel Rodríguez, Mará J Martín, Patricia González, and Roberto R

Osorio. 2013. Improving Scalability of Application-Level Checkpoint-Recovery
by Reducing Checkpoint Sizes. New Generation Computing 31 (2013), 163–185.

[3] Timothy A Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1–25. https://doi.org/10.1145/2049662.2049663

[4] Kurt B Ferreira, Rolf Riesen, Ron Brighwell, Patrick Bridges, and Dorian Arnold.
2011. libhashckpt: Hash-based Incremental Checkpointing Using GPU’s. In
European MPI Users’ Group Meeting. Springer, Santorini, Greece, 272–281.

[5] Rohan Garg, Apoorve Mohan, Michael Sullivan, and Gene Cooperman. 2018.
CRUM: Checkpoint-Restart Support for CUDA’s Unified Memory. In 2018 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE, Belfast, United
Kingdom, 302–313.

[6] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, and Fabrizio Petrini. 2005.
Transparent, Incremental Checkpointing at Kernel Level: a Foundation for Fault
Tolerance for Parallel Computers. In SC’05: Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing. IEEE, Seattle, WA, USA, 9–9.

[7] Paul H Hargrove and Jason C Duell. 2006. Berkeley Lab Checkpoint/Restart
(BLCR) for Linux Clusters. In Journal of Physics: Conference Series, Vol. 46. IOP
Publishing, Denver, USA, 494.

[8] Sudarsun Kannan, Naila Farooqui, Ada Gavrilovska, and Karsten Schwan. 2014.
Heterocheckpoint: Efficient Checkpointing for Accelerator-based Systems. In
2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. IEEE, Atlanta, USA, 738–743.

[9] Fabian Knorr, Peter Thoman, and Thomas Fahringer. 2021. ndzip: A High-
Throughput Parallel Lossless Compressor for Scientific Data. In 2021 Data Com-
pression Conference (DCC). IEEE, Snowbird, USA, 103–112.

[10] Oleksii Kuchaiev, Tijana Milenković, Vesna Memišević, Wayne Hayes, and Nataša
Pržulj. 2010. Topological network alignment uncovers biological function and
phylogeny. Journal of the Royal Society Interface 7, 50 (2010), 1341–1354.

[11] Kyushick Lee, Michael B Sullivan, Siva Kumar Sastry Hari, Timothy Tsai,
Stephen W Keckler, and Mattan Erez. 2019. GPU Snapshot: Checkpoint Offload-
ing for GPU-Dense Systems. In Proceedings of the ACM International Conference
on Supercomputing. Association for Computing Machinery, Phoenix, AZ, USA,
171–183.

[12] Jiacheng Ma, Xiao Zheng, Yaozu Dong, Wentai Li, Zhengwei Qi, Bingsheng
He, and Haibing Guan. 2018. gMig: Efficient GPU Live Migration Optimized
by Software Dirty Page for Full Virtualization. In Proceedings of the 14th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments.
Association for Computing Machinery, New York, NY, USA, 31–44.

[13] Avinash Maurya, Mustafa Rafique, Thierry Tonellot, Hussain AlSalem, Franck
Cappello, and Bogdan Nicolae. 2023. GPU-Enabled Asynchronous Multi-level
Checkpoint Caching and Prefetching. In HPDC’23: The 32nd International Sympo-
sium on High-Performance Parallel and Distributed Computing. Association for
Computing Machinery, Orlando, FL, USA.

[14] Dirk Meister, Jurgen Kaiser, Andre Brinkmann, Toni Cortes, Michael Kuhn, and
Julian Kunkel. 2012. A Study on Data Deduplication in HPC Storage Systems. In
SC’12: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. IEEE, Salt Lake City, UT, USA, 1–11.

[15] Ralph C Merkle. 1988. A Digital Signature Based on a Conventional Encryption
Function. In Advances in Cryptology—CRYPTO’87: Proceedings 7. Springer, Santa

Barbara, CA, USA, 369–378.
[16] Lifeng Nai, Yinglong Xia, Ilie G Tanase, Hyesoon Kim, and Ching-Yung Lin.

2015. GraphBIG: Understanding Graph Computing in the Context of Industrial
Solutions. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. Association for Computing Ma-
chinery, Austin, TX, USA, 1–12.

[17] Bogdan Nicolae. 2013. Towards Scalable Checkpoint Restart: A Collective Inline
Memory Contents Deduplication Proposal. In IPDPS ’13: The 27th IEEE Interna-
tional Parallel and Distributed Processing Symposium. Association for Computing
Machinery, Boston, USA, 19–28.

[18] Bogdan Nicolae. 2020. DataStates: Towards Lightweight Data Models for Deep
Learning. In SMC’20: The 2020 Smoky Mountains Computational Sciences and
Engineering Conference. Springer, Nashville, United States, 117–129. https://doi.
org/10.1007/978-3-030-63393-6_8

[19] Bogdan Nicolae. 2022. Scalable Multi-Versioning Ordered Key-Value Stores with
Persistent Memory Support. In IPDPS 2022: The 36th IEEE International Parallel
and Distributed Processing Symposium. IEEE, Lyon, France, 93–103.

[20] Bogdan Nicolae, Gabriel Antoniu, Luc Bouge, Diana Moise, and Alexandra
Carpen-Amarie. 2011. BlobSeer: Next-generation data management for large
scale infrastructures. J. Parallel Distrib. Comput. 71, 2 (2011), 169–184.

[21] Bogdan Nicolae, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and Franck
Cappello. 2019. VeloC: Towards High Performance Adaptive Asynchronous
Checkpointing at Large Scale. In 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, Rio de Janiero, Brazil, 911–920.

[22] NVIDIA. 2023. nvCOMP: A library for fast lossless compression/decompression on
the GPU. Nvidia. https://developer.nvidia.com/nvcomp

[23] Konstantinos Parasyris, Kai Keller, Leonardo Bautista-Gomez, and Osman Unsal.
2020. Checkpoint Restart Support for Heterogeneous HPC Applications. In 2020
20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
(CCGRID). IEEE, Melbourne, Australia, 242–251.

[24] James S Plank, Jian Xu, and Robert HB Netzer. 1995. Compressed Differences: An
Algorithm for Fast Incremental Checkpointing. Technical Report. Citeseer.

[25] Behnam Pourghassemi and Aparna Chandramowlishwaran. 2017. cudaCR: An
In-kernel Application-level Checkpoint/Restart Scheme for CUDA-enabled GPUs.
In 2017 IEEE International Conference on Cluster Computing (CLUSTER). IEEE,
Honolulu, USA, 725–732.

[26] Ronald L. Rivest. 1992. The MD5 Message-Digest Algorithm. RFC 1321. https:
//doi.org/10.17487/RFC1321

[27] Manuel Rodríguez-Pascual, Jiajun Cao, José A Moríñigo, Gene Cooperman, and
Rafael Mayo-García. 2019. Job Migration in HPC Clusters by Means of Check-
point/Restart. The Journal of Supercomputing 75 (2019), 6517–6541.

[28] Elvis Rojas, Diego Pérez, Jon C Calhoun, Leonardo Bautista Gomez, Terry Jones,
and Esteban Meneses. 2021. Understanding Soft Error Sensitivity of Deep Learn-
ing Models and Frameworks through Checkpoint Alteration. In 2021 IEEE Inter-
national Conference on Cluster Computing (CLUSTER). IEEE, Portland, OR, USA,
492–503.

[29] Jose Carlos Sancho, Fabrizio Petrini, Greg Johnson, and Eitan Frachtenberg. 2004.
On the Feasibility of Incremental Checkpointing for Scientific Computing. In 18th
International Parallel and Distributed Processing Symposium, 2004. Proceedings.
IEEE, Santa Fe, NM, USA, 58.

[30] Naoto Sasaki, Kento Sato, Toshio Endo, and Satoshi Matsuoka. 2015. Exploration
of Lossy Compression for Application-level Checkpoint/Restart. In 2015 IEEE
International Parallel and Distributed Processing Symposium. IEEE, Hyderabad,
India, 914–922.

[31] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten
Borgwardt. 2009. Efficient Graphlet Kernels for Large Graph Comparison. In 12th
International Conference on Artificial Intelligence and Statistics (AISTATS), Society
for Artificial Intelligence and Statistics, 488-495 (2009). Proceedings of Machine
Learning Research, Clearwater beach, USA, 488–495.

[32] Christian R Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang,
Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S Hollman, Dan
Ibanez, et al. 2021. Kokkos 3: Programming Model Extensions for the Exascale
Era. IEEE Transactions on Parallel and Distributed Systems 33, 4 (2021), 805–817.

[33] Manav Vasavada, Frank Mueller, Paul H Hargrove, and Eric Roman. 2011. Com-
paring Different Approaches for Incremental Checkpointing: The Showdown. In
Linux Symposium, Vol. 69. Ottowa, Canada, 69–80.

[34] Dirk Vogt, Armando Miraglia, Georgios Portokalidis, Herbert Bos, Andy Tanen-
baum, and Cristiano Giuffrida. 2015. Speculative Memory Checkpointing. In
Proceedings of the 16th Annual Middleware Conference. Association for Computing
Machinery, New York, NY, USA, 197–209.

[35] Qiqi Wang, Parviz Moin, and Gianluca Iaccarino. 2009. Minimal Repetition
Dynamic Checkpointing Algorithm for Unsteady Adjoint Calculation. SIAM
Journal on Scientific Computing 31, 4 (2009), 2549–2567.

[36] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup Graph Pro-
cessing by Graph Ordering. In Proceedings of the 2016 International Conference
on Management of Data. Association for Computing Machinery, New York, NY,
USA, 1813–1828.

https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/978-3-030-63393-6_8
https://doi.org/10.1007/978-3-030-63393-6_8
https://developer.nvidia.com/nvcomp
https://doi.org/10.17487/RFC1321
https://doi.org/10.17487/RFC1321

	Abstract
	1 Introduction
	2 System Design
	2.1 Design Principles
	2.2 Zoom on Merkle Tree-based Compact Metadata
	2.3 Architecture
	2.4 Implementation

	3 Evaluation
	3.1 Setup
	3.2 Methodology
	3.3 Results

	4 Related work
	5 Conclusions
	Acknowledgments
	References

