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Introduction

Context. Self-stabilization is a general non-masking and lightweight fault tolerance paradigm [START_REF] Dijkstra | Self-stabilization in spite of distributed control[END_REF][START_REF] Altisen | Introduction to Distributed Self-Stabilizing Algorithms[END_REF]. Precisely, a distributed system achieving this property inherently tolerates any finite number of transient faults. 1Indeed, starting from an arbitrary configuration, which may be the result of such faults, a self-stabilizing system recovers within finite time, and without any external intervention, a so-called legitimate configuration from which it satisfies its specification.

The difficulty of achieving fault tolerance in distributed systems mainly relies on their asynchronous aspect. The impossibility of achieving consensus in an asynchronous system in spite of at most one process crash [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF] is a famous example illustrating this fact. Thus, fault tolerance, and in particular self-stabilization, often requires some kind of barrier synchronization to control the asynchronism of the system by making processes progress roughly at the same speed.

In that spirit, the asynchronous unison problem (unison for short) is a basic yet fundamental problem that helps the design of asynchronous distributed systems, especially self-stabilizing ones. The unison problem consists in maintaining a local clock at each node; the domain of clocks being infinite or bounded. Each node should increment its own clock infinitely often.2 Furthermore, the safety property of the unison requires the difference between the clocks of any two neighbors to always be at most one increment. Notice that this problem can be trivially generalized (as done here) by conditioning increments at each node p to the satisfaction of some local predicate P (p) (n.b., we retrieve the initial problem if P (p) ≡ true).

Unison has numerous applications, especially in self-stabilization. Among others, it can be used to simulate synchronous systems in asynchronous environments [START_REF] Altisen | On probabilistic snap-stabilization[END_REF][START_REF] Ajoy | A silent self-stabilizing algorithm for the generalized minimal k-dominating set problem[END_REF], free an asynchronous system from its fairness assumption (using the cross-over composition) [START_REF] Beauquier | Cross-over composition -enforcement of fairness under unfair adversary[END_REF], facilitate the termination detection [START_REF] Blin | Silent anonymous snap-stabilizing termination detection[END_REF], or achieve infimum computation and local resource allocation [START_REF] Boulinier | Self-stabilizing wavelets and rhohops coordination[END_REF].

In this paper, we consider the unison problem in the most commonly used model of the self-stabilizing area: the atomic-state model [START_REF] Dijkstra | Self-stabilization in spite of distributed control[END_REF][START_REF] Altisen | Introduction to Distributed Self-Stabilizing Algorithms[END_REF]. This model is a locally-shared memory model with composite atomicity: the state of each node is stored into registers and these registers can be directly read by neighboring nodes; moreover, in one atomic step, a node can read its state and that of its neighbors, perform some local computations, and update its state accordingly. In the atomic-state model, asynchrony is materialized by an adversary called daemon that restricts the set of possible executions. We consider here the weakest (i.e., the most general) daemon: the distributed unfair daemon.

Self-stabilizing algorithms are mainly compared according to their stabilization time, i.e., the worst-case time to reach a legitimate configuration starting from an arbitrary one. In the atomic-state model, stabilization time can be evaluated in terms of rounds and moves. Rounds [START_REF] Cournier | Snap-stabilizing PIF algorithm in arbitrary networks[END_REF] capture the execution time according to the speed of the slowest nodes. Moves count the number of local state updates. So, the move complexity is rather a measure of work than a measure of time.

It turns out that obtaining efficient stabilization time both in rounds and steps is a difficult issue. Usually, techniques to design an algorithm achieving a stabilization time polynomial in moves usually makes its rounds complexity inherently linear in n, the number of nodes; see, e.g., [CDV09, ACD + 17, DJ19, DIJ22]. Conversely, achieving the asymptotic optimality in rounds, i.e., O(D) where D is the network diameter, commonly makes the stabilization time in moves exponential; see, e.g., [START_REF] Devismes | Silent self-stabilizing BFS tree algorithms revisited[END_REF][START_REF] Glacet | Disconnected components detection and rooted shortest-path tree maintenance in networks[END_REF]. In a best-effort spirit, Cournier et al. [START_REF] Cournier | The first fully polynomial stabilizing algorithm for BFS tree construction[END_REF] have proposed to study what they call fully-polynomial self-stabilizing solutions, i.e., self-stabilizing algorithms whose round complexity is polynomial on the network diameter and move complexity is polynomial on the network size. 3 Contribution. We propose the first fully-polynomial self-stabilizing unison in the atomic-state model assuming a distributed unfair daemon. This algorithm works in an anonymous network of arbitrary topology. Moreover, it does not require any local port labeling at nodes. In that sense, the computational model we use is close to the stone age model of Emek and Wattenhofer [START_REF] Emek | Stone age distributed computing[END_REF].

To the best our our knowledge, this is a first fully-polynomial selfstabilizing algorithm solving a dynamic problem. 4 This is also the first self-stabilizing unison for arbitrary anonymous networks achieving an asymptotically optimal stabilization time in rounds (i.e., O(D)) using a bounded memory at each node.

In more detail, assuming a period B ≥ 2D + 2, our solution stabilizes in at most 2D -2 rounds and O(min(n 2 B, n 3 )) moves using O(log B) bits per node. Overall, our unison achieves an outstanding trade-off between time, workload, and space.

We also analyze the efficiency of our algorithm to simulate any synchronous self-stabilizing algorithm in an asynchronous environment (under the unfair daemon). If the input synchronous self-stabilizing algorithm is silent5 and stabilizes in at most T synchronous rounds, then its simulation is also silent and self-stabilizing; moreover, its stabilization time is at most 5D + 3T rounds and O(min(n 2 B, n 3 )) + nT moves using O(M + log(B)) bits per node, where M is the memory requirement of the input algorithm.

An important consequence of this latter result is that one can easily obtain the state-of-the-art leader election and BFS spanning tree construction of the literature for asynchronous identified and arbitrary connected networks simply by simulating the synchronous algorithm of Kravchik and Kutten [START_REF] Kravchik | Time optimal synchronous self stabilizing spanning tree[END_REF]. Precisely, by simulating this algorithm using our unison, we obtain a stabilization time in O(D) rounds and O(min(n 2 B, n 3 )) moves using O(log(N )) bits per node, where N is any upper bound on n. To the best of our knowledge, there was no such an efficient solution until now in the literature.

Related Work.

The asynchronous unison studied here is a variant of the synchronous unison problem proposed by Even and Rajsbaum [ER90]. This latter problem is dedicated to synchronous systems and requires all clocks increment infinitely often and become eventually fully synchronized. In [START_REF] Even | Unison in distributed networks[END_REF], Even and Rajsbaum consider this problem in a non-fault-tolerant context, yet assuming that nodes do not necessarily start at the same time.

Gouda and Herman [START_REF] Gouda | Stabilizing unison[END_REF] have proposed the first self-stabilizing synchronous unison. Their algorithm works in anonymous synchronous systems of arbitrary connected topology using infinite clocks. A solution working with the same settings, yet implementing bounded clocks, is proposed in [START_REF] Arora | Maintaining digital clocks in step[END_REF].

Johnen et al. investigated the asynchronous self-stabilizing unison in oriented trees in [START_REF] Johnen | Optimal snapstabilizing neighborhood synchronizer in tree networks[END_REF]. The first self-stabilizing asynchronous unison for general graphs was proposed by Couvreur et al. [START_REF] Couvreur | Asynchronous unison (extended abstract)[END_REF] in the link-register model (a locally-shared memory model without composite atomicity). However, no complexity analysis was given. Another solution which stabilizes in O(n) rounds has been proposed by Boulinier et al. [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF] in the atomicstate model assuming a distributed unfair daemon. Its move complexity is shown in [START_REF] Devismes | On efficiency of unison[END_REF] to be in O(Dn 3 + αn 2 ), where α is a parameter of the algorithm that should satisfies α ≥ L -2, where L is the length of the longest hole in the network. Boulinier proposes in his PhD thesis a parametric solution which generalizes both the solutions of [START_REF] Couvreur | Asynchronous unison (extended abstract)[END_REF] and [START_REF] Boulinier | When graph theory helps self-stabilization[END_REF]. In particular, the complexity analysis of this latter algorithm reveals an upper bound in O(D.n) rounds on the stabilization time of the atomic-state model version of the ) bits per nodes. Moreover, since node activations are assumed to be fair, the move complexity of their solution cannot be bounded.

In [START_REF] Devismes | Making local algorithms efficiently self-stabilizing in arbitrary asynchronous environments[END_REF], we propose an algorithm that transforms any terminating synchronous algorithms into an asynchronous silent self-stabilizing fullypolynomial algorithm. The memory requirement of the produced algorithm is in O(T × M ) bits per nodes, where T and M are the time and space complexities of the input algorithm. This transformer thus cannot practically build solutions for dynamic problems such as unison. Moreover, although it works on a strictly smaller class of algorithms, the synchronizer of the current paper has similar round and move complexities as the transformer of [START_REF] Devismes | Making local algorithms efficiently self-stabilizing in arbitrary asynchronous environments[END_REF] while achieving a much better memory requirement.

Roadmap. The rest of the paper is organized as follows. The next section is dedicated to the computational model and basic definitions. In Section 3, we present our unison algorithm, prove its self-stabilization, and study its time complexity. In Section 4 deals with the simulation of synchronous self-stabilizing algorithms in an asynchronous environment using our unison algorithm.

Preliminaries

Networks

We consider distributed systems made of n ≥ 1 interconnected nodes. Each node can directly communicate through channels with a subset of other nodes, called its neighbors. We assume that the network is connected and that communication is bidirectional.

More formally, we model the topology by a connected simple graph G = (V, E), where V is the set of nodes and E is the set of edges. If {p, q} is an edge, then q is a neighbor of p. We denote by N (p) the set of neighbors of p.

A path is a finite sequence P = p 0 p 1 • • • p l of nodes such that consecutive nodes in P are neighbors. We say that P is from p 0 to p l . The length of the path P is the number l. Since we assume that G is connected, then for every pair of nodes p and q, there exists a path from p to q. We can thus define the distance between two nodes p and q to be the minimum length of a path from p to q. The diameter D of G is the maximum distance between nodes of G.

Computational Model: the Atomic-state Model

Our algorithm runs on a variant of the atomic-state model [START_REF] Altisen | Introduction to Distributed Self-Stabilizing Algorithms[END_REF] in which nodes communicate using a finite number of locally shared registers, called variables. The state of a node is defined by the values of its local variables. A configuration of the system is a vector consisting of the states of each node.

In one indivisible move, a node p reads its own variables and the set of states of its neighbors. Our algorithm is described as a finite set of rules of the form label : guard → action. Labels are only used to identify rules in the reasoning. A guard is a Boolean predicate involving the state of the node and the set of states of its neighbors. The action part of a rule updates the state of the node. A rule can be executed only if its guard evaluates to true; in this case, the rule is said to be enabled. By extension, a node is said to be enabled if at least one of its rules is enabled. We denote by Enabled(γ) the subset of nodes that are enabled in configuration γ.

In the model, executions proceed as follows. Given a configuration γ with Enabled(γ) ̸ = ∅, a so-called daemon selects a nonempty set X ⊆ Enabled(γ); then every node of X atomically executes one of its enabled rules, leading to a new configuration γ ′ . The atomic transition from γ to γ ′ is called a step. We also say that each node of X executes an action or simply a move during the step from γ to γ ′ . The possible steps induce a binary relation over C, denoted by →. An execution is a maximal sequence of configurations

e = γ 0 γ 1 • • • γ i • • • such that γ i-1 → γ i for all i > 0.
The term "maximal" means that the execution is either infinite, or ends at a terminal configuration γ f with Enabled(γ f ) = ∅. An algorithm which does not admit any infinite execution is called silent.

As explained before, each step from a configuration to another is driven by a daemon. We define a daemon as a predicate over executions. We say that an execution e is an execution under the daemon S if S(e) holds. In this paper we assume that the daemon is distributed and unfair, meaning that it has no constraints, except that at each step it must select a nonempty set of enabled nodes. It might, for example, never select a specific enabled node unless it is the only enabled node.

We use two units of measurement to evaluate the time complexity: moves and rounds. The definition of a round uses the concept of neutralization: a node p is neutralized during a step γ i → γ i+1 , if p is enabled in γ i but not in configuration γ i+1 , and does not execute any action in the step γ i → γ i+1 . Then, the rounds are inductively defined as follows. The first round of an execution e = γ 0 γ 1 • • • is the minimal prefix e ′ such that every node that is enabled in γ 0 either executes a rule or is neutralized during a step of e ′ . If e ′ is finite, then let e ′′ be the suffix of e that starts from the last configuration of e ′ ; the second round of e is the first round of e ′′ , and so on and so forth.

The stabilization time of a self-stabilizing algorithm is the maximum time (in moves or rounds) over every execution possible under the considered daemon (starting from any initial configuration) to reach a legitimate configuration.

A unison algorithm

The algorithm

Data structures. Let B ≥ 2D + 2 be an integer. Each node p maintains a single variable p.v of datatype

P airs = {(C, x) | x ∈ [-B, B[} ∪ {(E, x) | x ∈ [-B, 0[}.
In the algorithm, p.v will be accessed and modified implicitly as follows:

• p.s, called the status of p, will denote the left field of the pair p.v,

• p.c, called the clock of p, will denote the right field of the pair p.v.

For example, if p.v = (s, c), then p.s = s and p.c = c. Furthermore, any assigment p.s := s (resp., p.c := c) should be understood as p.v := (s, p.c) (resp., p.v := (p.s, c)). Finally, a node p such that p.s = C is said to be correct; otherwise it is an erroneous node (in other words, a node in error).

We define the infix function + B as follows:

B -1 + B 1 = 0 n + B 1 = n + 1 if n ̸ = B -1 n + B (m + 1) = (n + B m) + B 1
We also define a distance δ B :

δ B (n, n) = 0 δ B (n, n + B 1) = 1 δ B (n + B 1, n) = 1 δ B (n, m) = 2 otherwise. If γ 0 γ 1 • •
• is an execution, we respectively denote by p.s i and p.c i the value of p.s and p.c in γ i . Some predicates. Although they are a bit misleading because they suggest that a node can access its neighbors directly, we use the following notations:

Macro1 ∃q ∈ N (p), Pred(st q ) := ∃st ∈ {st q | q ∈ N (p)}, Pred(st) Macro2 ∀q ∈ N (p), Pred(st q ) := ∀st ∈ {st q | q ∈ N (p)}, Pred(st) root(p) := p.s = E ∧ ¬(∃q ∈ N (p), q.s = E ∧ q.c < p.c) ∨ p.s = C ∧ ∃q ∈ N (p), p.c < q.c ∧ δ B (q.c, p.c) ≥ 2 activeRoot(p) := root(p) ∧ (p.c ̸ = -B ∨ p.s = C) errorP ropag(p, i) := ∃q ∈ N (p), q.s = E ∧ q.c < i < p.c canClearE(p) := p.s = E ∧ ∀q ∈ N (p), q.c ∈ {p.c -1, p.c, p.c + 1} ∧ (q.c ̸ = p.c + 1 ∨ q.s = C) unisonM ove(p) := p.s = C ∧ ∀q ∈ N (p), q.c ∈ {p.c, p.c + B 1}
The rules. We rarely use a unison algorithm alone. It is merely a tool to help another algorithm. It thus makes sense that our algorithm depends on some properties which are external to the unison algorithm and its variables. Our algorithm uses a predicate P aux which is not defined. As a matter of fact, its influence on the analysis of the algorithm is very limited. We will specialize this predicate in Section 4 when using our unison algorithm as a synchronizer.

• R R :

activeRoot(p) -→ p.c := -B ; v.s := E • R P (i) : errorP ropag(p, i) -→ p.c := i ; p.s := E • R C : canClearE(p) -→ p.s := C • R U : unisonM ove(p) ∧ (P aux (p) ∨ ∃q ∈ N (p), q.c = p.c + B 1) -→ p.c := p.c + B 1
We set the following priorities:

• R R has the highest priority.

• R P (i) has a higher priority than R P (i + l) for l > 0.

• R C and R U have the lowest priority.

A node p is a root if root(p). In the following, an error rule is either the rule R R or a rule R P (i).

The legitimate configurations are the configurations in which the only rule which can be executed is the rule R U . Another equivalent characterization of legitimate configurations will be given in Section 3.3.

The following remark is quite important. Since, when encountering an error, the clock of a node becomes negative, and since no nodes in error can have a non-negative clock, it is natural to expect the "error recovery phase" to correspond to the time zone [-B, 0[, and the interval [0, B[ to correspond to the "legitimate configurations". This would suggest a round complexity of Ω(B). But this intuition is false. If a configuration γ is such that p.s = C and p.c = -B for every node p, then γ is a legitimate configuration.

Preliminary results

Lemma 1. Let γ a → γ b be a step. If p is a root in γ b , then it also is in γ a .

Proof. Suppose by contradiction that p is a root in γ b and not a root in γ a .

We consider two cases.

• Suppose that p.s b = E. Thus there exists no q ∈ N (p) such that q.s b = E and q.c b < p.c b .

If p.s a = E and no q ∈ N (p) is such that q.s a = E and q.c a < p.c a , then p is a root in γ a , a contradiction.

We claim that in all remaining cases, p executes an error rule in γ a → γ b . Indeed, -if p.s a = E and there exists q ∈ N (p) such that q.s a = E and q.c a < p.c a , then p cannot execute the rule R U , q cannot execute the rules R U or R C , and thus q.s b = E. We have q.c b ≤ q.c a < p.c a . So if p.c b ≥ p.c a , then p is not a root in γ b . Thus p must execute an error rule in γ a → γ b .

if p.s a = C, then p must also execute an error rule in γ a → γ b . Now two cases arise.

-If p executes the rule R R , then p is a root in γ a , a contradiction.

-If p executes a rule R P (i) in γ a → γ b , then there exists r ∈ N (p) such that r.c a = i -1 and r. 

γ a → γ b . * If q executes the rule R R , then q.c b = -B, which contradicts the fact that p.c b < q.c b . * If q executes the rule R U , then it means that q.c a ≤ p.c a .
And since p.s b = C, p does not execute an error rule and thus q.c b ≤ p.c b + 1, a contradiction. * If q executes no rules or the rule R C , then q.c a = q.c b , and since q.c a ≥ p.c a + 2, p cannot execute the rule R C . Thus, we have p.s a = C, which implies that p is also a root in γ a , a contradiction. * If q executes a rule R P , then q.c a > q.c b ≥ p.c b + 2 = p.c a + 2. Thus, we have q.c a > p.c a +2, which prevents p from executing the rule R C . Thus p.s a = C, and since p is not a root in γ a , δ B (p.c a , q.c a ) ≤ 1, a contradiction.

-Suppose that p.c b = p.c a + B 1. Since B -1 ≥ q.c b ≥ p.c b + 2, p.c b = p.c a + 1.
This implies that p executes the rule R U during γ a → γ b , and thus q.c a ∈ {p.c a , p.c a + B 1} = {p.c a , p.c a + 1}. If q executes the rule R U during γ a → γ b , then q.c a = p.c a . In this case, we have q.c b = p.c b , a contradiction. Otherwise, we have q.c b ≤ p.c a + 1 = p.c b , again a contradiction.

Lemma 2. Let γ a → γ b be a step, and let r be a root in γ a which executes the rule R C during γ a → γ b . Then r.c a = -B and r is not a root in γ b .

Proof. Since R R has a higher priority than R C , the guard of R R is false at r in γ a . So, as r is a root in γ a , we necessarily have r.c a = -B.

Then, since r executes the rule R C during γ a → γ b , we have r.s b = C. Moreover, to allow r to execute the rule R C , every q ∈ N (r) should satisfy q.c a ≤ -B + 1. Now, as r.c a = -B, no q ∈ N (r) with q.c a = -B + 1 can execute the rule R U in γ a → γ b . All this implies that r.s b = C, and for every q ∈ N (p), δ B (q.c b , p.c b ) ≤ 1. So, root(r) is false in γ b , i.e., r is not a root in γ b .

A path P = p 0 p 1 • • • p l in G is decreasing in a configuration γ if for each 0 ≤ i < l, p i .c > p i+1 .c. Moreover, P is an E-path if it is decreasing, all its nodes are in error, and its last node is a root. Lemma 3. Let γ be a configuration. Any node p in error is the first node of an E-path.

Proof. We prove our lemma by induction on p.c. If p.c = -B, then p is a root and P = p 0 satisfies the required conditions. Suppose that p.c > -B. If p is a root, then P = p 0 satisfies the required conditions. Otherwise, there exists q ∈ N (v) such that q.c < p.c and q.s = E. By induction, there exists an E-path P ′ starting at q. We can add p at the beginning of P ′ to obtain a path P which satisfies all required conditions.

Legitimate configurations

A configuration γ is said to be almost clean if • every root r satisfies r.c = -B and r.s = E, and • every two neighbors p and q satisfy δ B (p.c, q.c) ≤ 1.

Lemma 4. A configuration is almost clean if and only if no nodes can execute an error rule.

Proof. Suppose that γ is almost clean. Since every root r is such that r.c = -B and r.s = E, no nodes can execute the rule R R , and since every neighbors p and q are such that δ B (p.c, q.c) ≤ 1, no nodes can execute a rule R P .

Conversely, suppose that γ is not almost clean. A root r verifying r.c > -B or r.s = C can execute the rule R R . Let p and q be two neighbors. Assume, without loss of generality, that p.c ≤ q.c. If δ B (p.c, q.c) ≥ 2, then either p.s = E and q can execute a rule R P , or p.s = C and p can execute the rule R R .

Lemma 5. Let γ a → γ b be a step. If γ a is almost clean, then so is γ b .
Proof. Assume, for the purpose of contradiction, that γ a is almost clean and γ b is not.

At least one of the following two cases occurs, by Lemma 4.

• Some root r can execute the rule R R in γ b (i.e., r.c b > -B or r.s b = C).

First, by Lemma 1, r is a root in γ a , and since γ a is almost clean, r.c a = -B and r.s a = E. Thus, either r executes no rules in γ a → γ b , which is a contradiction with r.c b > -B or r.s b = C, or r executes the rule R C and r is not a root in γ b by Lemma 2, which also leads to a contradiction.

• Some node p can execute a rule R P in γ b . There exists q ∈ N (p) such that B -1 ≥ p.c b ≥ q.c b + 2 and q.s b = E. Since γ a is almost clean, no error rules are executed in the step γ a → γ b . Thus q.s a = E and q executes no rules in γ a → γ b , so q.c a = q.c b . Moreover, δ B (p.c a , q.c a ) ≤ 1. This implies that p must execute the rule R U . But then p.c a ≥ q.c a + 1 as p.c b = p.c a + 1 ≥ q.c b + 2 = q.c a + 2. Thus q.c a / ∈ {p.c a , p.c a + B 1}, which forbids p from executing the rule R U , a contradiction. Proof. Suppose that for all c ∈ [0, B[, there exists p such that p.c = c. Hence, there is a node p whose clock value is D (p.c = D) in γ. We can prove by induction on l that any node q at distance at most l from p has a clock value in [D-l, D+l]. We conclude that no node p is such that p.c = 2D+1 ≤ B -1, a contradiction.

Lemma 7. Let γ be an almost clean configuration. There exists c min ∈ [-B, B[ and

∆ c ≤ D such that {p.c | p ∈ V } = {c min + B i | 0 ≤ i ≤ ∆ c }.
Proof. We consider two cases.

• Suppose that there exists p such that p.c < 0. Let c min = min(p.c | p ∈ V ), and let ∆ c be the minimum natural integer such that no node q is such that q.c = c min + ∆ c + 1 (∆ c exists by Lemma 6).

• Suppose that no node p is such that p.c < 0. By Lemma 6, there exists c ∈ [0, B[ which is not the clock value of any node. Since clock values are non-negative, there exists a minimum i such that c min = c + B i is a clock value of a node p. We choose ∆ c minimum such that no node q is such that q.c = c min + B (∆ c + 1).

Clearly, {c min

+ B i | 0 ≤ i ≤ ∆ c } ⊆ {p.c | p ∈ V }.
Now, equality and the fact that ∆ c ≤ D follow from the fact that G is connected and that, between two consecutive nodes of any path, the clock value can only change by one.

A configuration is said to be clean if it contains no roots. Lemma 1 implies that being clean is a closed property. The following lemma gives an alternative definition of being clean, and as a direct consequence, it implies that clean configurations are also almost clean. It also implies that the legitimate configurations are the clean ones.

Lemma 8. A configuration is clean if and only if nodes can only execute the rule R U .

Proof. Suppose that γ is clean. Since it contains no roots, then no nodes can execute the rule R R . Since there are no roots, then, by Lemma 3, there are no nodes in error, and thus no nodes can execute a rule R P or the rule R C .

Conversely, suppose that nodes can only execute the rule R U . Then by Lemma 4, γ is almost clean. Therefore γ contains no roots having the status C. To prove that γ does not contain any root in error, it is enough to show that γ contains no nodes in error (Lemma 3). Suppose that in γ one or several nodes are in error. Let p be a node in error having the largest clock value. Since γ is almost clean, every neighbor q of p satisfies δ B (p.c, q.c) ≤ 1. By definition of p, a neighbor of p in error has a clock value smaller than or equal to p.c. Hence, p can execute the rule R C , a contradiction. Lemma 9. Let e = γ 0 γ 1 • • • be an execution such that γ 0 is clean. In any configuration γ i of e, if a node p satisfies P aux , then at least one node q can execute the rule R U in γ i → γ i+1 . Proof. By Lemma 1, the configuration γ i is also clean (and almost clean as well by Lemma 8). According to Lemma 7, in γ i , there exists

c min ∈ [-B, B[ and ∆ c ≤ D such that {p.c | p ∈ V } = {c min + B l | 0 ≤ l ≤ ∆ c }.
Moreover, in γ i , the clock value of every neighbor of any node p such that p.c = c min belongs to {c min , c min + B 1}. If ∆ c = 0, then any node which satisfies P aux can execute the rule R U as all nodes have the same clock value and have status C. Otherwise, there exists a node p with p.c = c min which has a neighbor q such that q.c = c min + B 1, and so p can execute the rule R U in γ i .

D-paths

Recall that a path P = p 0 p 1 • • • p l in G is decreasing in a configuration γ if for each 0 ≤ i < l, p i .c > p i+1 .c and that P is an E-path if it is decreasing, all its nodes are in error, and its last node is a root.

We extend these definitions in the following way. A path P is gently decreasing if, for each 0 ≤ i < l, we have p i .c = p i+1 .c + 1. It is a D-path if it is decreasing and there exists 0 ≤ j ≤ l such that

• P C = p 0 • • • p j-1
is a (possibly empty) gently decreasing path of nodes in C,

• P E = p j • • • p l is an E-path.
We call P C and P E the correct and error parts of P .

Lemma 10. Let γ a → γ b be a step, and let P be a D-path in γ a . For any p ∈ P , node p does not execute the rule R U at that step, and thus p.c b ≤ p.c a . Moreover, if p ∈ P is such that p.s b = C, then we have equality.

Proof. Let p ∈ P . Recall that p.c only increases if p executes the rule R U .

• If p is the last node of P , then in γ a , p is a root such that p.s a = E. Thus p cannot execute the rule R U in γ a → γ b .

• If p is not the last node of P , let q be the next node after p on P . Since P is decreasing in γ a , q.c a < p.c a . To be able to execute the rule R U , we must have q.c a ∈ {p.c a , p.c a + B 1}, which is only possible if q.c a = 0 and p.c b = B -1. But then the definition of a D-path requires that q.s a = E, and p can execute the rule R P (1) and thus cannot execute the rule

R U in γ a → γ b .
The • in γ a , p 0 • • • p l-1 is gently decreasing.

Then P is gently decreasing in γ b .

Proof. The assumptions imply that p l executes the rule R C in the step

γ a → γ b . Thus p l .c b = p l .c a .
We claim that, for any 0 ≤ i < l, p i .c b = p i .c a . Indeed, since p l .s a = E, by Lemma 3, p l is the first node of an E-path in γ a that we use to extend P into a D-path P ′ . The claim then follows by Lemma 10 applied to P ′ .

The path P is decreasing in γ a , and in particular p l-1 .c a > p l .c a . Moreover, p l executes the rule R C , and thus we have p l-1 .c a = p l .c a + 1. As the beginning of the path is gently decreasing by hypothesis, P is gently decreasing in γ a . Finally, since the clock values of nodes of P are the same in γ a and in γ b , the lemma follows.

Lemma 12. Let γ a → γ b be a step. Let p be the first node of a D-path P in γ a . If at least one node of P is in error in γ b , then p is the first node of a D-path in γ b .

Proof. Let P = p 0 • • • p l be a D-path in γ a and let p = p 0 . Assume that P contains at least one node in error in γ b , and let 0 ≤ i ≤ l be minimal such that p i .s b = E.

Let P ′ be the possibly empty path

p 0 • • • p i-1 . Since p i .s b = E, there exists an E-path Q = p i q 1 • • • q h in
γ b , by Lemma 3. We now claim that

P ′′ = p 0 • • • p i q 1 • • • q h is a D-path in γ b whose first node is p.
We first prove that P ′′ is decreasing. Indeed, by Lemma 10, p i .c b ≤ p i .c a and, for 0 ≤ j < i, p j .c b = p j .c a . Since P is decreasing in γ a , so is

P ′ p i in γ b . A pair (p, i) is a move if p executes a rule in γ i → γ i+1 . This move is a U -move if the rule is R U , a C-move if the rule is R C , a R-move if the rule is R R ,
and a P (i)-move if the rule is R P (i). Since a node p executes at most one rule in a given step, the number of steps in which a given node executes a rule is the number of its moves.

Let S i be the set of roots in γ i . Lemma 1 states that for each i > 0, S i ⊆ S i-1 . Since γ 0 contains at most n roots, there are l ≤ n steps γ i-1 → γ i for which S i ⊂ S i-1 . Let r 1 , r 2 , . . . , r l be the sequence of increasing indices such that ∀i ∈ [1, l], S r i ⊂ S r i -1 . This sequence gives the following decomposition of e into segments.

• The first segment is the sequence

γ 0 • • • γ r 1 . • For 1 < i ≤ l the i-th segment is the sequence γ r i-1 • • • γ r i . • The last segment is the sequence γ r l • • • .
A segment is said to be clean if its first configuration is clean. If the first configuration of a segment has a root, then the segment is said to be unclean. According to Lemma 1, if the first configuration of a segment is clean then the other configurations of the execution are clean. So, there is at most one clean segment, the last one, in any execution.

R-moves.

Lemma 17. A node p executes at most one R-move.

Proof. Let p be a node. We have three cases.

• If p executes no R-moves, it executes at most one R-move.

• If p executes a R-move and no moves after the first R-move, then p executes only one R-move.

• Otherwise, let (p, i) be the first R-move (thus p.c i+1 = -B and p.s i+1 = E), and let (p, j) be the first move which follows. Consequently, (p, j) is necessarily a C-move. The result then follows from Lemmas 2 and 1.

U -moves. Note here that the predicate P aux can only prevent a node from executing the rule R U . Hence, since we consider distributed unfair daemons, an execution with any predicate P aux is a valid execution with the predicate P aux = true while the configuration is not clean. We therefore consider in this part of the analysis that P aux = true.

Lemma 18. Let s be a segment. All U -moves done by p during s are done consecutively before the first error rule executed by p during s (if it exists).

Proof. By definition of the rules R U and R C , U -moves of p are done consecutively before the first error rule executed by p. According to Lemma 3, after p executes an error rule, p is the first node of an E-path, and thus of a D-path, by definition. Lemma 13 implies that p remains in a D-path until the end of s. Hence, p no more executes the rule R U in s, by Lemma 10, and we are done.

To compute the move complexity, we must, in particular, compute the total number of moves in unclean segments. By definition, the rules R R , R P and R C can only appear in unclean segments.

Lemma 19. Let s be an unclean segment. A node p executes the rule R U at most 2D times during s.

Proof. By definition of s, there is a node r that is a root all along s. We now show, by induction on d, that every node p at distance d ≤ D from r executes at most 2d U -moves in s.

Base Case: If d = 0, then p = r. Now, r cannot execute a U -move during s.

Induction

Step: Assume that p is at distance d > 0 from r. Let q ∈ N (p) such that q is at distance d -1 from r. By Lemma 18, if p, resp. q, changes its clock value during s, it does so by first executing a (possibly empty) sequence of U -moves, and then by executing a (possibly empty) sequence of error moves. By induction hypothesis, q executes x ≤ 2(d -1) U -moves in s. To prove the induction step, it is sufficient to prove that p does not execute more than x + 2 steps during s.

For the purpose of contradiction, assume that p executes at least x + 3 U -moves in s. Let c p be the clock value of p just before its first U -move in s. There are x + 3 integers

t 1 < t 2 • • • < t x+3 such that (p, t i ) is a U -move in s setting p.c to the value c p + B i.
By definition of the rule R U , we must have q.c t i ∈ {c p + B (i -1), c p + B i}.

• for some l, (p ′ , t ′ ) is a P (l)-move and (p, t) is a P (l -1)-move, and

• for any t < k < t ′ , (p, k) is not a move.
If a node p is in error in some configuration γ i , this often happens because of some previous P -move (p, t). Moreover, what allowed (p, t) is some q ∈ N (p) which is in error in γ t-1 . Finally, the reason why q is in error in γ t-1 is because of some previous move and so on. This motivates the following definition: a causality chain is a sequence C = (p 0 , t 0 )(p 1 , t 1 ) . . . (p l , t l ) such that

• for each 0 ≤ i < l, (p i , t i ) causes (p i+1 , t i+1 ); • no (p, t) causes (p 0 , t 0 ).
By construction, any P -move is the last element of a causality chain but the causality chain may not be unique.

We classify the P -move of p in 3 types.

• (p, i) is of Type 1 if there exists a P -move (p, j) with j > i such that p.c i+1 = p.c j+1 .

• (p, i) is of Type 2 otherwise. And we subdivide Type 2 P -moves in -Type 2a. if at least one causality chain C = (p 0 , t 0 ) . . . (p l , t l ) ending in (p, i) does not contain a repeated node. More formally, for any 0 ≤ i < j ≤ l, p i ̸ = p j .

-Type 2b. otherwise.

Our goal is to separately bound the number of P -moves of each type that a node can execute.

Lemma 22. There are at most as many P -moves of type 1 as there are U -moves in the unclean segments.

Proof. Suppose that (p, i) and (p, j) are both P (l)-moves with i < j. This means that p.c i+1 = p.c j+1 = l. For (p, j) to be possible, p.c has to go from l in γ i+1 to being strictly greater than l in γ j . This implies that there exists i < k < j such that (p, k) is a U -move with p.c k = l.

Thus, if we associate to each (p, i) of type 1 the U -move (p, j) such that p.c i+1 = p.c j with j > i minimum, then no 2 distinct P -moves correspond to the same U -move. This implies that p has at most as many P -moves of type 1 as it has U -moves in unclean segments.

C-moves.

Lemma 26. During an execution, the number of C-moves is at most the number of P -moves plus n.

Proof. Between two C-moves, a node p must execute an error move.

But since, after a C-move, p is can no longer be a root (by Lemmas 1 and 2), p cannot execute a C-move before an R-move. Thus p can execute at most one more C-move than its number of P -moves.

The move complexity theorem. The following theorem is a direct corollary of Lemmas 17,20,25,and 26.

Theorem 1. Our algorithm converges in O(min(n 2 B, n 3 )) moves.

Round complexity

Throughout this section, we consider an arbitrary execution e = γ 0 • • • . For all i ≥ 1, we denote by γ h i the last configuration of the i th round (n.b., e is finite, by Theorem 1, so there is no infinite round in e and from the last configuration of e, rounds are empty). We also let γ h 0 = γ 0 .

In the first D + 1 rounds, nodes execute error rules to "correct" the initial configuration. During the D + 1 next rounds, all nodes go back to the correct state. The predicate P aux has no influence on results of this section as R U executions along e do not impact our analysis.

The "error broadcast phase". Lemma 27. For any h ≥ h D+1 , in γ h , for any root r, we have r.S = E and p.c ≤ -B + d(r, p), for any node p.

Proof. If γ h contains no root, then the lemma holds. Otherwise, let r be any such root. By Lemma 1, r is also a root in all γ i with i ≤ h.

We first prove that r.c h ′ = -B and r.s h ′ = E for any h ′ with h 1 ≤ h ′ ≤ h. This claim will establish the first part of the lemma and the base case of the next induction.

First, during the first round, while r.c ̸ = -B or r.s ̸ = E, r is enabled for R R . Hence, by definition of a round and Rule R R , there is a configuration in the first round where r.c = -B and r.s = E. From such a configuration, the next rule r may execute is R C . Now, by executing R C , r is not a root anymore, by Lemmas 1-2. So, r cannot execute R C before the system reaches Configuration γ h . Hence, for any h ′ with h 1 ≤ h ′ ≤ h, r.c h ′ = -B and r.s h ′ = E.

We now prove by induction on j ≥ 1 that for all nodes p such that d(p, r) < j, p.c h ′ ≤ -B + d(r, p) with h j ≤ h ′ ≤ h.

If j = 1, then p = r and the base case is trivial from the previous claim. Suppose now that j > 1. Let p be such that d(r, p) = j, and let q ∈ N (p) be such that d(r, q) = j -1. By induction hypothesis, we have q.c h ′ ≤ -B +j -1

with h j-1 ≤ h ′ ≤ h.
We first prove that there exists h ′ such that h j-1 ≤ h ′ ≤ h j such that p.c h ′ ≤ -B +j. To do so, assume, by the contradiction, that for every h ′ with h j-1 ≤ h ′ ≤ h j , p.c h ′ > -B + j, which implies that p.c h ′ ≥ q.c h ′ + 2. From the previous claim, we also know that p is not a root in any γ h ′ . Assume that q.s h ′ = C for some h ′ with h j-1 ≤ h ′ ≤ h j . Then, q is a root in γ h ′ and in γ 0 , by Lemma 1. From the previous claim, we know that q.s h ′′ = E for any h ′′ such that h 1 ≤ h ′′ ≤ h. Now, since j -1 ≥ 1, we obtain a contradiction. Thus, q.s h ′ = E and p.c h ′ ≥ q.c h ′ + 2 for any h ′ with h j-1 ≤ h ′ ≤ h j . Hence, p is enabled for executing R P (i) with i ≤ q.c h ′ + 1 ≤ -B + j in every configuration γ h ′ . By definition of a round and Rules R P (i), there exists a configuration h ′′ with h j-1 ≤ h ′′ ≤ h j , where p.c h ′ ≤ -B + j, a contradiction.

Finally, recall that q.c h ′′ ≤ -B + j -1 for every h ′′ such that h ′ ≤ h ′′ ≤ h D+1 , by induction hypothesis. So, p.c h ′′ ≤ -B + j since p cannot execute R U . Hence, we are done with the induction and the lemma holds.

Lemma 28. For any

h ≥ h D+1 , γ h is almost clean.
Proof. By Lemma 5, we only need to show that γ h D+1 is almost clean. To do so and according to Lemma 4, we now show that no node can execute an error rule in γ h D+1 . The fact that no node can execute the rule R R in h D+1 follows from Lemma 27. Assume that in γ h D+1 a node p verifies errorP ropag(p, i). There exists q ∈ N (p) such that q.c < p.c -1 and q.s = E. By Lemma 3, there exists a E-path P of length l from q to a root r. This path implies that q.c ≥ r.c + l ≥ r.c + d(r, q). But then p.c > q.c + 1 ≥ r.c + d(r, q) + 1 ≥ r.c + d(r, p), which contradicts Lemma 27. Hence, we conclude that no node verifies errorP ropag(p, i) in γ h D+1 , and we are done.

The "error cleaning phase".

Lemma 29. For any

h ≥ h 2D+2 , γ h is clean.
of p is time 0 (p) = i -∆ where i satisfies p.c 0 = c min + B i. Moreover, time j+1 (p) := time j (p) + 1 whenever p executes the rule R U in γ j → γ j+1 (otherwise, time j+1 (p) := time j (p)).

An important remark is that if time(p) = time(q), then p.c = q.c. Moreover, unisonM ove(p) is true if and only if time(p) is a local minimum. Note that the birth time of a node is in [-D, 0].

The algorithm

We consider a synchronous self-stabilizing algorithm Alg I which runs in a variant of the atomic-state model which is at least as expressive as the model of our unison algorithm. This means that we should be able to encode the macros Macro1 and Macro2 (defined page 8) in the model of Alg I . In the following, we denote by T the stabilization time of Alg I (in synchronous settings) and by T rans(Alg I ) the simulation of Alg I using our unison algorithm.

The basic idea of the simulation is that the execution of Alg I is driven by the unison algorithm. To that goal, each node p stores its last two states in Alg I using two additional variables: p.old and p.curr. Once the unison algorithm has stabilized, if p is a local minimum (w.r.t. the time of the unison) and is about to increase its clock (by performing Rule R U ), it computes its next state Alg I (p) in Alg I . It does so by selecting for each neighbor q the variable q.curr if p.c = q.c, and q.old otherwise (i.e., when q.c = p.c + B 1).

We thus modify the rule R U in the following way: Let us consider the execution after the unison has stabilized (i.e., the suffix of the execution starting from the first clean configuration). The time of each node is thus defined. If time(p) i = t, then we set st t p = p.curr. Since the state of p changes if and only if its time does, this is well defined. For any positive t, we can then define the configuration η t of Alg I in which the state of each node p is st t p . The folklore claim is that the sequence η 0 • • • is a synchronous execution of Alg I .

When P aux (p) is always true, the clocks of the unison constantly change. Therefore, even if Alg I is silent, its simulation is not. In order to obtain a Because of the previous lemma, in lazy mode, if Alg I is silent, then all executions of T rans(Alg I ) are finite. The round analysis is a bit more involved. We split the analysis in two parts: the number of rounds so that all nodes have positive time, and the additional number of rounds to reach silence.

In the following, we consider a (finite) execution e = γ 0 • • • γ f be an execution where γ 0 clean. As previously, we denote by γ h i the last configuration of the i th round of e, for any i ≥ 1, and we let γ h 0 = γ 0 . Lemma 32. In lazy mode, the time of all nodes is positive after at most 2D rounds.

Proof. Let s be a node with birth time zero. Let λ(p, i) := 2i + D + d(p, s). We prove by induction on 0 ≤ j ≤ 2D that if i ≤ 0 and λ(p, i) ≤ j, then time h j (p) ≥ i.

Suppose that j = 0. If λ(p, i) ≤ 0, then i ≤ -d(p, s). As γ 0 is clean, we have time h 0 (p)time 0 (p) ≥ -d(p, s) ≥ i . So, the base case holds.

Suppose that j > 0. Let (p, i) be such that λ(p, i) = j. For any q ∈ N [p], λ(p, i) -λ(q, i -1) = 2 + d(p, s) -d(q, s) > 0. So λ(q, i -1) < j and, by induction hypothesis, time h j-1 (q) ≥ i -1.

Two cases now arise:

• If time h j-1 (p) ≥ i, then we are done.

• If time h j-1 (p) = i -1, then p ̸ = s (recall that time 0 (s) = 0, and so time h j-1 (s) ≥ 0 ≥ i). Then let q ∈ N (p) be such that d(q, s) < d(p, s).

We have λ(q, i) < j, and thus, by induction hypothesis, time h j-1 (q) ≥ i. This implies that p can execute the rule R U in γ h j-1 , and thus will have done at last at γ h j .

We now focus on the part of the execution e in which all nodes have a positive time. We denote by e ′ = ρ 0 • • • ρ f this part. From now on, we denote by ρ r i the last configuration of the i th round in e ′ , for any i ≥ 1, and we let ρ r 0 = ρ 0 .

We do not know how these times evolve during the rounds of e ′ , nevertheless we know that if no nodes have time l + 1 in ρ i but time i+1 (p) = l + 1, then p is enabled in Alg I at η l . We thus say that any such a node p may start time l + 1.

If no node are enabled for Alg I in η i , then in in η i+j with j > 0, no node are enabled in Alg I . Therefore, if p may start time i + 1, then either i = 0 or there exists q ∈ N [p] which may start time i. This motivates the following definition. A starting sequence for ρ f is a sequence of nodes s 1 s 2 • • • s H such that each s i starts time i, and s i-1 ∈ N [s i ] if i > 1. Note that if ρ 0 contains no node which may start time 1, then the algorithm is already silent. Otherwise, ρ f must contain a starting sequence.

Lemma 33. e ′ reaches a terminal configuration in at most D + 3T -2 rounds in lazy mode.

Proof. If ρ f contains no starting sequence, then ρ f = ρ 0 , and e ′ indeed reaches a terminal configuration in at most (D + 3T -2) rounds.

Assume now that ρ f contains the starting sequence s 1 • • • s T . We also let s i = s 1 , for any i < 1. For any node p and 0 ≤ i ≤ T , we let λ(p, i) = 3i -2 + d(p, s i ). The lemma is a direct consequence of the following induction.

We now prove by induction on 0 ≤ j ≤ 3T + D -2 that for every p and i such that λ(p, i) ≤ j, we have time r j (p) ≥ i.

If j = 0, then i = 0 and the result is clear. Suppose that j > 0. If no (p, i) such that λ(p, i) = j exists, then we are done. Otherwise, let (p, i) be such a pair. For any q ∈ N [p], λ(p, i)λ(q, i -1) = 3 + d(p, s i ) -d(q, s i-1 ), and thus λ(p, i) -λ(q, i -1) ≥ 3 -|d(p, s i ) -d(p, s i-1 )| -|(d(p, s i-1 ) -d(q, s i-1 )|. Now |d(p, s i ) -d(p, s i-1 )| ≤ 1 because s i-1 ∈ N [s i ], and |(d(p, s i-1 ) -d(q, s i-1 )| ≤ 1 because q ∈ N [p]. We thus have λ(q, i -1) < j. By induction hypothesis, for any q ∈ N [p], time r j-1 (q) ≥ i -1.

Three cases now arise:

• If time r j-1 (p) ≥ i, then we are done.

• If time r j-1 (p) = i -1 and p = s i . Then, since s i may start time i, p can execute the rule R U in ρ r j-1 , and thus will have done at last at ρ r j .

• If time r j-1 (p) = i -1 and p ̸ = s i . Then, let q ∈ N (p) be such that d(q, s i ) < d(p, s i ). We have λ(q, i) < j, and thus, by induction hypothesis, time(q) ≥ i in ρ r j-1 . This implies that p can execute the rule R U in ρ r j-1 , and thus will have done at last at ρ r j . Since λ(p, i) ≤ 3T + D -2, the lemma follows.

By Theorems 1 and 2 and Lemmas 32-33, follows.

Theorem 3. Assumes that Alg I reaches a terminal configuration in at most T rounds and requires O(M ) bits per node. In lazy mode, T rans(Alg I ) reaches a terminal configuration in O(min(n 2 B, n 3 )) + nT moves and at most

  s a = E. But since r.s a = E, r cannot execute the rule R U , and because of p, r cannot execute the rule R C . Thus r.s b = E and r.c b < p.c b , which contradicts the hypothesis. • Suppose that p.s b = C. Thus, there exists q ∈ N (p) such that p.c b < q.c b and δ B (p.c b , q.c b ) ≥ 2. Note that this implies that q.c b ≥ p.c b + 2. Since p does not execute an error rule in γ a → γ b , either p.c b = p.c a or p.c b = p.c a + B 1. -Suppose that p.c b = p.c a . Let us study what happens during

Lemma 6 .

 6 In any almost clean configuration γ, there exists c ∈ [0, B[ such that for any p, p.c ̸ = c.

  first part of the lemma follows. Now if p.s b = C, then p does not execute an error rule in γ a → γ b , and thus p.c b ≥ p.c a , which completes the proof. Lemma 11. Let γ a → γ b be a step, let P = p 0 • • • p l be a decreasing path in γ a such that • apart from p l which satisfies p l .s a = E and p l .s b = C, all the nodes of P are in C in both γ a and γ b ;

R

  U : unisonM ove(p) ∧ (P aux (p) ∨ ∃q ∈ N (p), q.c = p.c + B 1) -→ p.old := p.curr; p.curr := Alg I (p); p.c := p.c + B 1

  Couvreur et al.'s algorithm. Awerbuch et al. [AKM + 93] proposes a self-stabilizing unison (called clock synchronizer in their paper) that stabilizes in O(D) rounds using an infinite state space. The move complexity of their solution is not analyzed. An asynchronous self-stabilizing unison algorithm is given in [DJ19]. It stabilizes in O(n) rounds and O(∆.n 2 ) moves using unbounded local memories. Emek and Keren present in the stone age model [EK21] a self-stabilizing unison that stabilizes in O(B 3 ) rounds, where B is an upper bound on D known by all nodes. Their solution requires O(log(B)

A transient fault occurs at an unpredictable time, but does not result in a permanent hardware damage. Moreover, as opposed to intermittent faults, the frequency of transient faults is considered to be low.

In case the clock values are bounded, increments are modulo some value B, called the period.

Actually, in[START_REF] Cournier | The first fully polynomial stabilizing algorithm for BFS tree construction[END_REF], authors consider atomic steps instead of moves. However, these two time units essentially measure the same thing: the workload. By the way, the number of moves and the number of atomic steps are closely related: if an execution e contains x steps, then the number y of moves in e satisfies x ≤ y ≤ n • x.

As opposed to a static problem that defines a task of calculating a function that depends on the system in which it is evaluated[START_REF] Tixeuil | Vers l'auto-stabilisation des systèmes à grande échelle[END_REF].

In the atomic-state model, a self-stabilizing algorithm is silent if all its executions terminate.

Now p i q 1 • • • q h is an E-path in γ b and is thus also decreasing which implies that so is P ′′ .

To finish the proof, we must show that P ′ is gently decreasing in γ b . Let P c be the correct part of P in γ a . Since both P ′ and P C are prefixes of P , we have 2 cases:

• Assume that P ′ is a prefix of P C . Since P C is gently decreasing in γ a , so is P ′ . And since all nodes of P ′ are still correct in γ b , Lemma 10 implies that P ′ is gently decreasing in γ b .

• Otherwise, P C is a strict prefix of P ′ . Since, in a D-path, at most one node can execute the rule R C , we have P ′ = P C p i-1 . The fact that P ′ is gently decreasing in γ b follows from Lemma 11.

Lemma 13. Let γ a → γ b be a step, let p be the first node of a D-path, and let r be its root in γ a . If r is still a root in γ b , then p is the first node of a D-path in γ b .

Proof. If r executes the rule R C during γ a → γ b , then Lemma 2 implies that r is not a root in γ b , which is a contradiction. Thus r is in error in γ b , and the lemma follows from Lemma 12. Proof. Let p be the first node of a D-path P , and let r be the root of P in γ a . We claim that, in γ b , P contains no nodes in error. Indeed, otherwise Lemma 12 implies that p is the first node of a D-path in γ b , which is a contradiction.

Since, in a D-path, at most one node can execute the rule R C during a step, then in γ a , all the nodes of P but r have status C. We can thus apply Lemma 11 and obtain that P is gently decreasing in γ b , and thus 

Bounds on the clock values

Lemma 15. If i < j and p satisfies p.c j > p.c i + 2D, then for any q, there exists i ≤ h < j such that q.c h = p.c i + D and q executes the rule R U in the step γ h → γ h+1 .

Proof. First, notice that p.c i + 2D < B -1 by hypothesis. Then, we prove by induction on d(q, p) that there exist i ≤ i ′ < j ′ ≤ j such that q.c i ′ ≤ p.c i + d(q, p) and p.c j -d(q, p) ≤ q.c j ′ .

• If d(q, p) = 0, then q = p and i ′ = i and j ′ = j do the trick.

• If d(q, p) > 0 then let q ′ ∈ N (q) be such that d(q ′ , p) = d(q, p) -1. By induction, there exists i ≤ i 1 < j 1 ≤ j such that q ′ .c i 1 ≤ p.c i +d(q, p)-1 and p.c j -d(q, p)

Now since q ′ .c i ′ +1 + 2 ≤ q ′ .c j 1 , there exists i ′ < j ′ < j 1 such that q ′ executes the rule R U in γ j ′ → γ j ′ +1 and q ′ .c j ′ +1 = q ′ .c j 1 . Since q is a neighbor of q ′ , we have q.c j ′ ≥ q ′ .c j ′ = q ′ .c j 1 -1 ≥ p.c j -d(q, p), which finishes the proof of our induction.

Let q be any node. Let i ≤ i ′ < j ′ ≤ j such that q.c i ′ ≤ p.c i + d(q, p) ≤ p.c i + D and q.c j ′ ≥ p.c j -d(q, p) ≥ p.c j -D > p.c i + D. There exists i ′ ≤ h < j ′ such that q.c h = p.c i + D and q executes the rule R U in the step γ h → γ h+1 . Lemma 16. Suppose that γ h is not clean. For any node p and any i < j ≤ h, p.c j -p.c i ≤ 2D.

Proof. Let r be a root in γ h and let i < j ≤ h. By Lemma 1, r is a root in every configuration γ l with l ≤ h, and since no roots can execute the rule R U , the lemma follows from Lemma 15.

Move complexity

In this section, we analyze the move complexity of our algorithm. To do so, we fix an execution e = γ 0 γ 1 • • • and study the rules a given node executes in it. Since these rules do not appear explicitly in an execution, we propose to use a proxy for them.

We claim that for any 1 ≤ i ≤ x + 3, node q has executed at least i -2, resp. i -1, U -moves between the beginning of the segment and γ t i when q.c t i = c p + B (i -1), resp. q.c t i = c p + B i. We prove this claim by induction on i. The base case i = 1 is trivial. Assume that the property holds for i ≥ 1 and let us consider the different cases. If q.c t i+1 = q.c t i , then q.c t i = c p + B i and we immediately have the desired property by induction hypothesis. Otherwise, we have q.c t i+1 = q.c t i + B j, with j being 1 or 2. Since B ≥ 4, the value q.c t i+1 is either non-negative, or larger than q.c t i . Since executing an error rule always decreases the clock value, and sets it to a negative value, q cannot use any error rule to obtain for the first time the clock value q.c t i+1 from configuration γ t i . Therefore, q must perform at least j U -moves between γ t i and γ t i+1 . Still by induction hypothesis, we thus obtain the desired property also in this case, which concludes the proof of the claim. Using it with i = x + 3 allows us to obtain the expected contradiction, hence proving the overall induction step.

The lemma directly follows from the overall induction.

Lemma 20. A node p has at most 2Dn U -moves in the unclean segments.

Proof. By Lemma 19, p executes the rule R U at most 2D times in an unclean segment. Since there are at most n unclean segments (Lemma 1), the lemma follows.

P -moves with B. We bound the number of P moves in 2 ways: using B, and without using B.

Lemma 21. A node can have at most nB P -moves.

Proof. Let p be a node. In a clean segment, p cannot execute a rule R P . In an unclean segment, by Lemma 18, once p executes a P -move, it cannot execute the rule R U anymore. Each time p executes the rule R P , the variable p.c decreases by at least one and takes a value in [-B, 0[ . Hence, p can only execute B P -moves in an unclean segment. Since there are at most n unclean segments (Lemma 1), the lemma follows.

P -moves without B. We now need several definitions.

We say that a P -move (p, t) causes another P -move (p ′ , t ′ ) if

Remark that, by definition, two P -moves (p, i) and (p, j) of type 2 are such that p.c i+1 ̸ = p.c j+1 . To count the number of P -moves (p, i) of type 2, we thus count the number of values that p.c i+1 can take. Lemma 23. A node p can have at most n(n + 1) P -moves of type 2a.

Proof. Let (p, i) be a P -move of type 2a, and let C = (p 0 , t 0 ) . . . (p l , t l ) be a corresponding causality chain. We have

Clearly, l < n and p l .c t l +1 = l + p 0 .c t 0 +1 . Let r ∈ N (p 0 ) be such that r.s t 0 = E and p 0 .c t 0 +1 = r.c t 0 + 1. Since no P -move causes (p 0 , t 0 ), two cases arise:

• the last move of r before t 0 is an R-move in which case r.c t 0 = -B,

• r executes no rule before t 0 in which case r.c t 0 = r.c 0 . Thus p 0 .c t 0 +1 can take at most n + 1 distinct values. The lemma now follows from the fact that l can take at most n distinct values.

Lemma 24. A node p can have at most 2n + 2D type 2b P -moves.

Proof. Let (p, i) be a P -move of type 2b, and let C = (p 0 , t 0 ) . . . (p l , t l ) be a causality chain such that (p, i) = (p l , t l ).

By definition, there exists 0 ≤ i < j ≤ l such that p i = p j . Choose such a i 0 = i and j 0 = j with j 0 maximum. We thus have that for any j 0 ≤ i < j ≤ l, p i ̸ = p j and thus l -j 0 < n. Let q = p j 0 = p i 0 . Now p l .c l+1 = q.c j 0 +1 + (l -j 0 ). To prove the lemma, it is thus enough to show that q.c j 0 +1 ≤ n + 2D.

We have that q.s i 0 +1 = E, thus, by Lemma 3, q is the first node of an E-path, and thus of a D-path in γ i 0 +1 . Since q.c j 0 +1 > q.c i 0 +1 , q executes a U -move (q, k) for i 0 < k < j 0 . By Lemma 10, q belongs to no D-path in γ k . There thus exists i 0 ≤ k ′ < k such that q belongs to a D-path in γ k ′ and to no D-path in γ k ′ +1 . By Lemma 14, q.c k ′ +1 ≤ n.

Since q is in error in γ j 0 , by Lemma 3, q belongs to an E-path in j 0 . There thus exists a root r in γ j 0 . By Lemma 16, q.c j 0 +1 ≤ n + 2D. The lemma follows.

Lemmas 21-24 directly imply the following lemma.

Lemma 25. During an execution, there are at most O(n 3 ) P -moves.

Proof. We prove by induction on 0 ≤ i ≤ D + 1 that for any j ≥ h D+1+i , γ j contains no E-path of length > D -i. According to Lemma 28, γ j is almost clean.

Suppose that i = 0. In γ h D+1 , a root is in a E-path (by definition of almost clean). If γ h D+1 contains no E-path, then γ h D+1 is clean as it contains no root. Otherwise, let P be a E-path. Let p and r be its first and last node, and let l be its length. By definition of a E-path, p.c -r.c ≥ l ≥ d(p, r). By Lemma 27, p.c -r.c ≤ d(p, r). We thus have that l = d(p, r) ≤ D. The base case thus holds.

Suppose that the hypothesis holds for i ≥ 0. Again, if γ h D+1+i contains no E-path, then it is clean. Let P be an E-path in γ h D+1+i . Let p be the first node of P . Since no nodes can execute an error rule during the round D + 1 + i, then P is also an E-path in γ h D+i . Moreover, R C is not enabled on p in γ h D+i ; otherwise, p would have done a move during the round D + i + 1, and p would not been in a E-path in γ h D+i+1 .

There thus exists q ∈ N (p) such that q.c > p.c which is in error in γ h D+i . The path qP is a E-path in γ h D+i . By induction, the length of qP is at most D -i, and thus the length of P is at most D -(i + 1). The hypothesis thus holds for i + 1.

For h ≥ h 2D+2 , γ h contains no E-path, which implies that γ h is clean.

The round complexity proof. Lemmas 28 and 29 directly imply that Theorem 2. Our algorithm converges in 2D + 2 rounds.

Synchronizer

Using folklore ideas (see, e.g., [AKM + 93] and [START_REF] Emek | A thin self-stabilizing asynchronous unison algorithm with applications to fault tolerant biological networks[END_REF]), we can use our unison algorithm to simulate any synchronous self-stabilizing algorithm in an asynchronous environment under an unfair daemon. We now study such a simulation.

Time definition

In everyday life, we have a distinction between the value of a clock (modulo 24 hours) and the time. Both are obviouly linked. We would like to make a similar distinction here. Let e = γ 0 • • • be an execution such that γ 0 is clean, and so almost clean too. According to Lemma 7, there exists

silent simulation in such a case, we instantiate the predicate P aux (p) such that p increments its clock (and thus performs a simulation step) only if the simulation step makes its state change. More precisely, we define two possible predicates as follows: P greedy (p) = true P lazy (p) = p is enabled in Alg I and say that our synchronizer runs in greedy mode if P aux = P greedy , and that it runs in lazy mode if P aux = P lazy .

Complexity analysis

Greedy mode. In greedy mode, Lemma 9 implies that the algorithm is never silent. Nevertheless, it is easy to see that, once unison has been reached, all nodes with minimum time can be activated. And since nodes cannot be deactivated unless executing R U , after one round, the minimum time of a node has increased by at least one. Thus, after O(D) rounds (and O(min(n 2 B, n 3 )) steps), each round of T rans(Alg I ) simulates at least one round of Alg I .

Lazy mode.

Lemma 30. In lazy mode, the maximum time of each node is at most T .

Proof. Let T η 0 ≤ T be the number of rounds that Alg I takes to be silent from the clean configuration η 0 . Let e = η 0 • • • be an execution starting from η 0 . We claim that no node p has the time T η 0 + 1 along e. Let p be any node. By time definition, time 0 (p) ≤ 0.

Suppose that η i → η i+1 is such that no node has a time greater than T η 0 in η i . If time i (p) ≤ T η 0 -1, then time i+1 (p) ≤ T η 0 . Otherwise, time i (p) = T η 0 and no neighbor q of p is such that q.c = p.c + B 1. Moreover, by definition of T η 0 , p is not enabled in Alg I . So p cannot execute the rule R