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Abstract

We present a self-stabilizing algorithm for the (asynchronous) unison problem
which achieves an efficient trade-off between time, workload and space in a
weak model. Precisely, our algorithm is defined in the atomic-state model
and works in anonymous networks in which even local ports are unlabeled.
It makes no assumption on the daemon and thus stabilizes under the weakest
one: the distributed unfair daemon.

In a n-node network of diameter D and assuming a period B ≥ 2D+2, our
algorithm only requires O(log B) bits per node to achieve full polynomiality
as it stabilizes in at most 2D − 2 rounds and O(min(n2B, n3)) moves. In
particular and to the best of our knowledge, it is the first self-stabilizing
unison for arbitrary anonymous networks achieving an asymptotically optimal
stabilization time in rounds using a bounded memory at each node.

Finally, we show that our solution allows to efficiently simulate syn-
chronous self-stabilizing algorithms in an asynchronous environment. This
provides a new state-of-the-art algorithm solving both the leader election
and the spanning tree construction problem in any identified connected
network which, to the best of our knowledge, beat all existing solutions of
the literature.
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1 Introduction
Context. Self-stabilization is a general non-masking and lightweight fault
tolerance paradigm [Dij74, ADDP19]. Precisely, a distributed system achiev-
ing this property inherently tolerates any finite number of transient faults.1
Indeed, starting from an arbitrary configuration, which may be the result of
such faults, a self-stabilizing system recovers within finite time, and without
any external intervention, a so-called legitimate configuration from which it
satisfies its specification.

The difficulty of achieving fault tolerance in distributed systems mainly
relies on their asynchronous aspect. The impossibility of achieving consensus
in an asynchronous system in spite of at most one process crash [FLP85] is a
famous example illustrating this fact. Thus, fault tolerance, and in particular
self-stabilization, often requires some kind of barrier synchronization to
control the asynchronism of the system by making processes progress roughly
at the same speed.

In that spirit, the asynchronous unison problem (unison for short) is
a basic yet fundamental problem that helps the design of asynchronous
distributed systems, especially self-stabilizing ones. The unison problem
consists in maintaining a local clock at each node; the domain of clocks being
infinite or bounded. Each node should increment its own clock infinitely
often.2 Furthermore, the safety property of the unison requires the difference
between the clocks of any two neighbors to always be at most one increment.
Notice that this problem can be trivially generalized (as done here) by
conditioning increments at each node p to the satisfaction of some local
predicate P (p) (n.b., we retrieve the initial problem if P (p) ≡ true).

Unison has numerous applications, especially in self-stabilization. Among
others, it can be used to simulate synchronous systems in asynchronous
environments [AD17, DDL19], free an asynchronous system from its fairness
assumption (using the cross-over composition) [BGJ01], facilitate the ter-
mination detection [BJLBP22], or achieve infimum computation and local
resource allocation [BP08].

In this paper, we consider the unison problem in the most commonly used
model of the self-stabilizing area: the atomic-state model [Dij74, ADDP19].
This model is a locally-shared memory model with composite atomicity: the

1A transient fault occurs at an unpredictable time, but does not result in a permanent
hardware damage. Moreover, as opposed to intermittent faults, the frequency of transient
faults is considered to be low.

2In case the clock values are bounded, increments are modulo some value B, called the
period.
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state of each node is stored into registers and these registers can be directly
read by neighboring nodes; moreover, in one atomic step, a node can read its
state and that of its neighbors, perform some local computations, and update
its state accordingly. In the atomic-state model, asynchrony is materialized
by an adversary called daemon that restricts the set of possible executions.
We consider here the weakest (i.e., the most general) daemon: the distributed
unfair daemon.

Self-stabilizing algorithms are mainly compared according to their sta-
bilization time, i.e., the worst-case time to reach a legitimate configuration
starting from an arbitrary one. In the atomic-state model, stabilization time
can be evaluated in terms of rounds and moves. Rounds [CDPV02] capture
the execution time according to the speed of the slowest nodes. Moves count
the number of local state updates. So, the move complexity is rather a
measure of work than a measure of time.

It turns out that obtaining efficient stabilization time both in rounds
and steps is a difficult issue. Usually, techniques to design an algorithm
achieving a stabilization time polynomial in moves usually makes its rounds
complexity inherently linear in n, the number of nodes; see, e.g., [CDV09,
ACD+17, DJ19, DIJ22]. Conversely, achieving the asymptotic optimality
in rounds, i.e., O(D) where D is the network diameter, commonly makes
the stabilization time in moves exponential; see, e.g., [DJ16, GHIJ19]. In a
best-effort spirit, Cournier et al. [CRV19] have proposed to study what they
call fully-polynomial self-stabilizing solutions, i.e., self-stabilizing algorithms
whose round complexity is polynomial on the network diameter and move
complexity is polynomial on the network size.3

Contribution. We propose the first fully-polynomial self-stabilizing unison
in the atomic-state model assuming a distributed unfair daemon. This
algorithm works in an anonymous network of arbitrary topology. Moreover,
it does not require any local port labeling at nodes. In that sense, the
computational model we use is close to the stone age model of Emek and
Wattenhofer [EW13].

To the best our our knowledge, this is a first fully-polynomial self-
stabilizing algorithm solving a dynamic problem.4 This is also the first

3Actually, in [CRV19], authors consider atomic steps instead of moves. However, these
two time units essentially measure the same thing: the workload. By the way, the number
of moves and the number of atomic steps are closely related: if an execution e contains x
steps, then the number y of moves in e satisfies x ≤ y ≤ n · x.

4As opposed to a static problem that defines a task of calculating a function that
depends on the system in which it is evaluated [Tix06].
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self-stabilizing unison for arbitrary anonymous networks achieving an asymp-
totically optimal stabilization time in rounds (i.e., O(D)) using a bounded
memory at each node.

In more detail, assuming a period B ≥ 2D + 2, our solution stabilizes in
at most 2D − 2 rounds and O(min(n2B, n3)) moves using O(log B) bits per
node. Overall, our unison achieves an outstanding trade-off between time,
workload, and space.

We also analyze the efficiency of our algorithm to simulate any syn-
chronous self-stabilizing algorithm in an asynchronous environment (under
the unfair daemon). If the input synchronous self-stabilizing algorithm is
silent5 and stabilizes in at most T synchronous rounds, then its simulation
is also silent and self-stabilizing; moreover, its stabilization time is at most
5D + 3T rounds and O(min(n2B, n3)) + nT moves using O(M + log(B)) bits
per node, where M is the memory requirement of the input algorithm.

An important consequence of this latter result is that one can easily
obtain the state-of-the-art leader election and BFS spanning tree construc-
tion of the literature for asynchronous identified and arbitrary connected
networks simply by simulating the synchronous algorithm of Kravchik and
Kutten [KK13]. Precisely, by simulating this algorithm using our unison,
we obtain a stabilization time in O(D) rounds and O(min(n2B, n3)) moves
using O(log(N)) bits per node, where N is any upper bound on n. To the
best of our knowledge, there was no such an efficient solution until now in
the literature.

Related Work. The asynchronous unison studied here is a variant of
the synchronous unison problem proposed by Even and Rajsbaum [ER90].
This latter problem is dedicated to synchronous systems and requires all
clocks increment infinitely often and become eventually fully synchronized.
In [ER90], Even and Rajsbaum consider this problem in a non-fault-tolerant
context, yet assuming that nodes do not necessarily start at the same time.

Gouda and Herman [GH90] have proposed the first self-stabilizing syn-
chronous unison. Their algorithm works in anonymous synchronous systems
of arbitrary connected topology using infinite clocks. A solution working with
the same settings, yet implementing bounded clocks, is proposed in [ADG91].

Johnen et al. investigated the asynchronous self-stabilizing unison in
oriented trees in [JADT02]. The first self-stabilizing asynchronous unison
for general graphs was proposed by Couvreur et al. [CFG92] in the link-

5In the atomic-state model, a self-stabilizing algorithm is silent if all its executions
terminate.
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register model (a locally-shared memory model without composite atomicity).
However, no complexity analysis was given. Another solution which stabilizes
in O(n) rounds has been proposed by Boulinier et al. [BPV04] in the atomic-
state model assuming a distributed unfair daemon. Its move complexity
is shown in [DP12] to be in O(Dn3 + αn2), where α is a parameter of the
algorithm that should satisfies α ≥ L−2, where L is the length of the longest
hole in the network. Boulinier proposes in his PhD thesis a parametric
solution which generalizes both the solutions of [CFG92] and [BPV04]. In
particular, the complexity analysis of this latter algorithm reveals an upper
bound in O(D.n) rounds on the stabilization time of the atomic-state model
version of the Couvreur et al.’s algorithm.

Awerbuch et al. [AKM+93] proposes a self-stabilizing unison (called clock
synchronizer in their paper) that stabilizes in O(D) rounds using an infinite
state space. The move complexity of their solution is not analyzed. An
asynchronous self-stabilizing unison algorithm is given in [DJ19]. It stabilizes
in O(n) rounds and O(∆.n2) moves using unbounded local memories. Emek
and Keren present in the stone age model [EK21] a self-stabilizing unison
that stabilizes in O(B3) rounds, where B is an upper bound on D known
by all nodes. Their solution requires O(log(B)) bits per nodes. Moreover,
since node activations are assumed to be fair, the move complexity of their
solution cannot be bounded.

In [DIJM23], we propose an algorithm that transforms any terminating
synchronous algorithms into an asynchronous silent self-stabilizing fully-
polynomial algorithm. The memory requirement of the produced algorithm
is in O(T × M) bits per nodes, where T and M are the time and space
complexities of the input algorithm. This transformer thus cannot practically
build solutions for dynamic problems such as unison. Moreover, although
it works on a strictly smaller class of algorithms, the synchronizer of the
current paper has similar round and move complexities as the transformer
of [DIJM23] while achieving a much better memory requirement.

Roadmap. The rest of the paper is organized as follows. The next section
is dedicated to the computational model and basic definitions. In Section 3,
we present our unison algorithm, prove its self-stabilization, and study its
time complexity. In Section 4 deals with the simulation of synchronous
self-stabilizing algorithms in an asynchronous environment using our unison
algorithm.
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2 Preliminaries

2.1 Networks

We consider distributed systems made of n ≥ 1 interconnected nodes. Each
node can directly communicate through channels with a subset of other
nodes, called its neighbors. We assume that the network is connected and
that communication is bidirectional.

More formally, we model the topology by a connected simple graph
G = (V, E), where V is the set of nodes and E is the set of edges. If {p, q} is
an edge, then q is a neighbor of p. We denote by N(p) the set of neighbors
of p.

A path is a finite sequence P = p0p1 · · · pl of nodes such that consecutive
nodes in P are neighbors. We say that P is from p0 to pl. The length of the
path P is the number l. Since we assume that G is connected, then for every
pair of nodes p and q, there exists a path from p to q. We can thus define
the distance between two nodes p and q to be the minimum length of a path
from p to q. The diameter D of G is the maximum distance between nodes
of G.

2.2 Computational Model: the Atomic-state Model

Our algorithm runs on a variant of the atomic-state model [ADDP19] in
which nodes communicate using a finite number of locally shared registers,
called variables. The state of a node is defined by the values of its local
variables. A configuration of the system is a vector consisting of the states
of each node.

In one indivisible move, a node p reads its own variables and the set of
states of its neighbors. Our algorithm is described as a finite set of rules of
the form label : guard → action. Labels are only used to identify rules in
the reasoning. A guard is a Boolean predicate involving the state of the node
and the set of states of its neighbors. The action part of a rule updates the
state of the node. A rule can be executed only if its guard evaluates to true;
in this case, the rule is said to be enabled. By extension, a node is said to be
enabled if at least one of its rules is enabled. We denote by Enabled(γ) the
subset of nodes that are enabled in configuration γ.

In the model, executions proceed as follows. Given a configuration γ with
Enabled(γ) ̸= ∅, a so-called daemon selects a nonempty set X ⊆ Enabled(γ);
then every node of X atomically executes one of its enabled rules, leading
to a new configuration γ′. The atomic transition from γ to γ′ is called a
step. We also say that each node of X executes an action or simply a move
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during the step from γ to γ′. The possible steps induce a binary relation
over C, denoted by 7→. An execution is a maximal sequence of configurations
e = γ0γ1 · · · γi · · · such that γi−1 7→ γi for all i > 0. The term “maximal”
means that the execution is either infinite, or ends at a terminal configuration
γf with Enabled(γf ) = ∅. An algorithm which does not admit any infinite
execution is called silent.

As explained before, each step from a configuration to another is driven
by a daemon. We define a daemon as a predicate over executions. We say
that an execution e is an execution under the daemon S if S(e) holds. In
this paper we assume that the daemon is distributed and unfair, meaning
that it has no constraints, except that at each step it must select a nonempty
set of enabled nodes. It might, for example, never select a specific enabled
node unless it is the only enabled node.

We use two units of measurement to evaluate the time complexity: moves
and rounds. The definition of a round uses the concept of neutralization: a
node p is neutralized during a step γi 7→ γi+1, if p is enabled in γi but not
in configuration γi+1, and does not execute any action in the step γi 7→ γi+1.
Then, the rounds are inductively defined as follows. The first round of an
execution e = γ0γ1 · · · is the minimal prefix e′ such that every node that is
enabled in γ0 either executes a rule or is neutralized during a step of e′. If e′

is finite, then let e′′ be the suffix of e that starts from the last configuration
of e′; the second round of e is the first round of e′′, and so on and so forth.

The stabilization time of a self-stabilizing algorithm is the maximum
time (in moves or rounds) over every execution possible under the consid-
ered daemon (starting from any initial configuration) to reach a legitimate
configuration.

3 A unison algorithm

3.1 The algorithm

Data structures. Let B ≥ 2D + 2 be an integer. Each node p maintains a
single variable p.v of datatype Pairs = {(C, x) | x ∈ [−B, B[}∪{(E, x) | x ∈
[−B, 0[}. In the algorithm, p.v will be accessed and modified implicitly as
follows:

• p.s, called the status of p, will denote the left field of the pair p.v,

• p.c, called the clock of p, will denote the right field of the pair p.v.
For example, if p.v = (s, c), then p.s = s and p.c = c. Furthermore, any
assigment p.s := s (resp., p.c := c) should be understood as p.v := (s, p.c)
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(resp., p.v := (p.s, c)). Finally, a node p such that p.s = C is said to be
correct; otherwise it is an erroneous node (in other words, a node in error).

We define the infix function +B as follows:

B − 1 +B 1 = 0
n +B 1 = n + 1 if n ̸= B − 1

n +B (m + 1) = (n +B m) +B 1

We also define a distance δB:

δB(n, n) = 0
δB(n, n +B 1) = 1
δB(n +B 1, n) = 1

δB(n, m) = 2 otherwise.

If γ0γ1 · · · is an execution, we respectively denote by p.si and p.ci the
value of p.s and p.c in γi.

Some predicates. Although they are a bit misleading because they suggest
that a node can access its neighbors directly, we use the following notations:

Macro1 ∃q ∈ N(p), Pred(stq) := ∃st ∈ {stq | q ∈ N(p)}, Pred(st)
Macro2 ∀q ∈ N(p), Pred(stq) := ∀st ∈ {stq | q ∈ N(p)}, Pred(st)

root(p) :=
(
p.s = E ∧ ¬(∃q ∈ N(p), q.s = E ∧ q.c < p.c)

)
∨

(
p.s = C ∧ ∃q ∈ N(p), p.c < q.c ∧ δB(q.c, p.c) ≥ 2

)
activeRoot(p) := root(p) ∧ (p.c ̸= −B ∨ p.s = C)

errorPropag(p, i) := ∃q ∈ N(p), q.s = E ∧ q.c < i < p.c

canClearE(p) := p.s = E

∧ ∀q ∈ N(p),
(
q.c ∈ {p.c − 1, p.c, p.c + 1} ∧
(q.c ̸= p.c + 1 ∨ q.s = C)

)
unisonMove(p) := p.s = C ∧ ∀q ∈ N(p), q.c ∈ {p.c, p.c +B 1}
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The rules. We rarely use a unison algorithm alone. It is merely a tool to
help another algorithm. It thus makes sense that our algorithm depends on
some properties which are external to the unison algorithm and its variables.
Our algorithm uses a predicate Paux which is not defined. As a matter of
fact, its influence on the analysis of the algorithm is very limited. We will
specialize this predicate in Section 4 when using our unison algorithm as a
synchronizer.

• RR : activeRoot(p) −→ p.c := −B ; v.s := E

• RP (i) : errorPropag(p, i) −→ p.c := i ; p.s := E

• RC : canClearE(p) −→ p.s := C

• RU : unisonMove(p) ∧
(Paux(p) ∨ ∃q ∈ N(p), q.c = p.c +B 1) −→ p.c := p.c +B 1

We set the following priorities:

• RR has the highest priority.

• RP (i) has a higher priority than RP (i + l) for l > 0.

• RC and RU have the lowest priority.

A node p is a root if root(p). In the following, an error rule is either the
rule RR or a rule RP (i).

The legitimate configurations are the configurations in which the only rule
which can be executed is the rule RU . Another equivalent characterization
of legitimate configurations will be given in Section 3.3.

The following remark is quite important. Since, when encountering an
error, the clock of a node becomes negative, and since no nodes in error can
have a non-negative clock, it is natural to expect the “error recovery phase”
to correspond to the time zone [−B, 0[, and the interval [0, B[ to correspond
to the “legitimate configurations”. This would suggest a round complexity of
Ω(B). But this intuition is false. If a configuration γ is such that p.s = C
and p.c = −B for every node p, then γ is a legitimate configuration.

3.2 Preliminary results

Lemma 1. Let γa 7→ γb be a step. If p is a root in γb, then it also is in γa.

Proof. Suppose by contradiction that p is a root in γb and not a root in γa.
We consider two cases.
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• Suppose that p.sb = E. Thus there exists no q ∈ N(p) such that
q.sb = E and q.cb < p.cb.
If p.sa = E and no q ∈ N(p) is such that q.sa = E and q.ca < p.ca,
then p is a root in γa, a contradiction.
We claim that in all remaining cases, p executes an error rule in γa 7→ γb.
Indeed,

– if p.sa = E and there exists q ∈ N(p) such that q.sa = E and
q.ca < p.ca, then p cannot execute the rule RU , q cannot execute
the rules RU or RC , and thus q.sb = E. We have q.cb ≤ q.ca < p.ca.
So if p.cb ≥ p.ca, then p is not a root in γb. Thus p must execute
an error rule in γa 7→ γb.

– if p.sa = C, then p must also execute an error rule in γa 7→ γb.

Now two cases arise.

– If p executes the rule RR, then p is a root in γa, a contradiction.
– If p executes a rule RP (i) in γa 7→ γb, then there exists r ∈ N(p)

such that r.ca = i − 1 and r.sa = E. But since r.sa = E, r
cannot execute the rule RU , and because of p, r cannot execute
the rule RC . Thus r.sb = E and r.cb < p.cb, which contradicts
the hypothesis.

• Suppose that p.sb = C. Thus, there exists q ∈ N(p) such that p.cb <
q.cb and δB(p.cb, q.cb) ≥ 2. Note that this implies that q.cb ≥ p.cb + 2.
Since p does not execute an error rule in γa 7→ γb, either p.cb = p.ca or
p.cb = p.ca +B 1.

– Suppose that p.cb = p.ca. Let us study what happens during
γa 7→ γb.

∗ If q executes the rule RR, then q.cb = −B, which contradicts
the fact that p.cb < q.cb.

∗ If q executes the rule RU , then it means that q.ca ≤ p.ca.
And since p.sb = C, p does not execute an error rule and thus
q.cb ≤ p.cb + 1, a contradiction.

∗ If q executes no rules or the rule RC , then q.ca = q.cb, and
since q.ca ≥ p.ca + 2, p cannot execute the rule RC . Thus,
we have p.sa = C, which implies that p is also a root in γa, a
contradiction.
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∗ If q executes a rule RP , then q.ca > q.cb ≥ p.cb + 2 = p.ca + 2.
Thus, we have q.ca > p.ca+2, which prevents p from executing
the rule RC . Thus p.sa = C, and since p is not a root in γa,
δB(p.ca, q.ca) ≤ 1, a contradiction.

– Suppose that p.cb = p.ca +B 1. Since B − 1 ≥ q.cb ≥ p.cb + 2,
p.cb = p.ca + 1. This implies that p executes the rule RU during
γa 7→ γb, and thus q.ca ∈ {p.ca, p.ca +B 1} = {p.ca, p.ca + 1}. If
q executes the rule RU during γa 7→ γb, then q.ca = p.ca. In this
case, we have q.cb = p.cb, a contradiction. Otherwise, we have
q.cb ≤ p.ca + 1 = p.cb, again a contradiction.

Lemma 2. Let γa 7→ γb be a step, and let r be a root in γa which executes
the rule RC during γa 7→ γb. Then r.ca = −B and r is not a root in γb.

Proof. Since RR has a higher priority than RC , the guard of RR is false at r
in γa. So, as r is a root in γa, we necessarily have r.ca = −B.

Then, since r executes the rule RC during γa 7→ γb, we have r.sb = C.
Moreover, to allow r to execute the rule RC , every q ∈ N(r) should satisfy
q.ca ≤ −B + 1. Now, as r.ca = −B, no q ∈ N(r) with q.ca = −B + 1 can
execute the rule RU in γa 7→ γb. All this implies that r.sb = C, and for every
q ∈ N(p), δB(q.cb, p.cb) ≤ 1. So, root(r) is false in γb, i.e., r is not a root in
γb.

A path P = p0p1 · · · pl in G is decreasing in a configuration γ if for each
0 ≤ i < l, pi.c > pi+1.c. Moreover, P is an E-path if it is decreasing, all its
nodes are in error, and its last node is a root.

Lemma 3. Let γ be a configuration. Any node p in error is the first node
of an E-path.

Proof. We prove our lemma by induction on p.c. If p.c = −B, then p is a
root and P = p0 satisfies the required conditions.

Suppose that p.c > −B. If p is a root, then P = p0 satisfies the required
conditions. Otherwise, there exists q ∈ N(v) such that q.c < p.c and q.s = E.
By induction, there exists an E-path P ′ starting at q. We can add p at the
beginning of P ′ to obtain a path P which satisfies all required conditions.

3.3 Legitimate configurations

A configuration γ is said to be almost clean if
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• every root r satisfies r.c = −B and r.s = E, and

• every two neighbors p and q satisfy δB(p.c, q.c) ≤ 1.

Lemma 4. A configuration is almost clean if and only if no nodes can
execute an error rule.

Proof. Suppose that γ is almost clean. Since every root r is such that
r.c = −B and r.s = E, no nodes can execute the rule RR, and since every
neighbors p and q are such that δB(p.c, q.c) ≤ 1, no nodes can execute a rule
RP .

Conversely, suppose that γ is not almost clean. A root r verifying
r.c > −B or r.s = C can execute the rule RR. Let p and q be two neighbors.
Assume, without loss of generality, that p.c ≤ q.c. If δB(p.c, q.c) ≥ 2, then
either p.s = E and q can execute a rule RP , or p.s = C and p can execute
the rule RR.

Lemma 5. Let γa 7→ γb be a step. If γa is almost clean, then so is γb.

Proof. Assume, for the purpose of contradiction, that γa is almost clean and
γb is not.

At least one of the following two cases occurs, by Lemma 4.

• Some root r can execute the rule RR in γb (i.e., r.cb > −B or r.sb = C).
First, by Lemma 1, r is a root in γa, and since γa is almost clean,
r.ca = −B and r.sa = E. Thus, either r executes no rules in γa 7→ γb,
which is a contradiction with r.cb > −B or r.sb = C, or r executes the
rule RC and r is not a root in γb by Lemma 2, which also leads to a
contradiction.

• Some node p can execute a rule RP in γb. There exists q ∈ N(p)
such that B − 1 ≥ p.cb ≥ q.cb + 2 and q.sb = E. Since γa is almost
clean, no error rules are executed in the step γa 7→ γb. Thus q.sa =
E and q executes no rules in γa 7→ γb, so q.ca = q.cb. Moreover,
δB(p.ca, q.ca) ≤ 1. This implies that p must execute the rule RU . But
then p.ca ≥ q.ca + 1 as p.cb = p.ca + 1 ≥ q.cb + 2 = q.ca + 2. Thus
q.ca /∈ {p.ca, p.ca +B 1}, which forbids p from executing the rule RU , a
contradiction.

Lemma 6. In any almost clean configuration γ, there exists c ∈ [0, B[ such
that for any p, p.c ̸= c.
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Proof. Suppose that for all c ∈ [0, B[, there exists p such that p.c = c. Hence,
there is a node p whose clock value is D (p.c = D) in γ. We can prove by
induction on l that any node q at distance at most l from p has a clock value
in [D−l, D+l]. We conclude that no node p is such that p.c = 2D+1 ≤ B−1,
a contradiction.

Lemma 7. Let γ be an almost clean configuration. There exists cmin ∈
[−B, B[ and ∆c ≤ D such that {p.c | p ∈ V } = {cmin +B i | 0 ≤ i ≤ ∆c}.

Proof. We consider two cases.

• Suppose that there exists p such that p.c < 0. Let cmin = min(p.c | p ∈
V ), and let ∆c be the minimum natural integer such that no node q is
such that q.c = cmin + ∆c + 1 (∆c exists by Lemma 6).

• Suppose that no node p is such that p.c < 0. By Lemma 6, there exists
c ∈ [0, B[ which is not the clock value of any node. Since clock values
are non-negative, there exists a minimum i such that cmin = c +B i is
a clock value of a node p. We choose ∆c minimum such that no node
q is such that q.c = cmin +B (∆c + 1).

Clearly, {cmin +B i | 0 ≤ i ≤ ∆c} ⊆ {p.c | p ∈ V }. Now, equality and the fact
that ∆c ≤ D follow from the fact that G is connected and that, between two
consecutive nodes of any path, the clock value can only change by one.

A configuration is said to be clean if it contains no roots. Lemma 1
implies that being clean is a closed property. The following lemma gives an
alternative definition of being clean, and as a direct consequence, it implies
that clean configurations are also almost clean. It also implies that the
legitimate configurations are the clean ones.

Lemma 8. A configuration is clean if and only if nodes can only execute
the rule RU .

Proof. Suppose that γ is clean. Since it contains no roots, then no nodes can
execute the rule RR. Since there are no roots, then, by Lemma 3, there are
no nodes in error, and thus no nodes can execute a rule RP or the rule RC .

Conversely, suppose that nodes can only execute the rule RU . Then by
Lemma 4, γ is almost clean. Therefore γ contains no roots having the status
C. To prove that γ does not contain any root in error, it is enough to show
that γ contains no nodes in error (Lemma 3). Suppose that in γ one or
several nodes are in error. Let p be a node in error having the largest clock
value. Since γ is almost clean, every neighbor q of p satisfies δB(p.c, q.c) ≤ 1.

13



By definition of p, a neighbor of p in error has a clock value smaller than or
equal to p.c. Hence, p can execute the rule RC , a contradiction.

Lemma 9. Let e = γ0γ1 · · · be an execution such that γ0 is clean. In any
configuration γi of e, if a node p satisfies Paux, then at least one node q can
execute the rule RU in γi 7→ γi+1.

Proof. By Lemma 1, the configuration γi is also clean (and almost clean as
well by Lemma 8). According to Lemma 7, in γi, there exists cmin ∈ [−B, B[
and ∆c ≤ D such that {p.c | p ∈ V } = {cmin +B l | 0 ≤ l ≤ ∆c}. Moreover,
in γi, the clock value of every neighbor of any node p such that p.c = cmin

belongs to {cmin, cmin +B 1}. If ∆c = 0, then any node which satisfies Paux
can execute the rule RU as all nodes have the same clock value and have
status C. Otherwise, there exists a node p with p.c = cmin which has a
neighbor q such that q.c = cmin +B 1, and so p can execute the rule RU

in γi.

3.4 D-paths

Recall that a path P = p0p1 · · · pl in G is decreasing in a configuration γ if
for each 0 ≤ i < l, pi.c > pi+1.c and that P is an E-path if it is decreasing,
all its nodes are in error, and its last node is a root.

We extend these definitions in the following way. A path P is gently
decreasing if, for each 0 ≤ i < l, we have pi.c = pi+1.c + 1. It is a D-path if
it is decreasing and there exists 0 ≤ j ≤ l such that

• PC = p0 · · · pj−1 is a (possibly empty) gently decreasing path of nodes
in C,

• PE = pj · · · pl is an E-path.

We call PC and PE the correct and error parts of P .

Lemma 10. Let γa 7→ γb be a step, and let P be a D-path in γa. For any
p ∈ P , node p does not execute the rule RU at that step, and thus p.cb ≤ p.ca.
Moreover, if p ∈ P is such that p.sb = C, then we have equality.

Proof. Let p ∈ P . Recall that p.c only increases if p executes the rule RU .

• If p is the last node of P , then in γa, p is a root such that p.sa = E.
Thus p cannot execute the rule RU in γa 7→ γb.
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• If p is not the last node of P , let q be the next node after p on P . Since
P is decreasing in γa, q.ca < p.ca. To be able to execute the rule RU ,
we must have q.ca ∈ {p.ca, p.ca +B 1}, which is only possible if q.ca = 0
and p.cb = B − 1. But then the definition of a D-path requires that
q.sa = E, and p can execute the rule RP (1) and thus cannot execute
the rule RU in γa 7→ γb.

The first part of the lemma follows. Now if p.sb = C, then p does not execute
an error rule in γa 7→ γb, and thus p.cb ≥ p.ca, which completes the proof.

Lemma 11. Let γa 7→ γb be a step, let P = p0 · · · pl be a decreasing path
in γa such that

• apart from pl which satisfies pl.s
a = E and pl.s

b = C, all the nodes of
P are in C in both γa and γb;

• in γa, p0 · · · pl−1 is gently decreasing.

Then P is gently decreasing in γb.

Proof. The assumptions imply that pl executes the rule RC in the step
γa 7→ γb. Thus pl.c

b = pl.c
a.

We claim that, for any 0 ≤ i < l, pi.c
b = pi.c

a. Indeed, since pl.s
a = E,

by Lemma 3, pl is the first node of an E-path in γa that we use to extend P
into a D-path P ′. The claim then follows by Lemma 10 applied to P ′.

The path P is decreasing in γa, and in particular pl−1.ca > pl.c
a. More-

over, pl executes the rule RC , and thus we have pl−1.ca = pl.c
a + 1. As

the beginning of the path is gently decreasing by hypothesis, P is gently
decreasing in γa. Finally, since the clock values of nodes of P are the same
in γa and in γb, the lemma follows.

Lemma 12. Let γa 7→ γb be a step. Let p be the first node of a D-path P
in γa. If at least one node of P is in error in γb, then p is the first node of a
D-path in γb.

Proof. Let P = p0 · · · pl be a D-path in γa and let p = p0. Assume that P
contains at least one node in error in γb, and let 0 ≤ i ≤ l be minimal such
that pi.s

b = E.
Let P ′ be the possibly empty path p0 · · · pi−1. Since pi.s

b = E, there
exists an E-path Q = piq1 · · · qh in γb, by Lemma 3. We now claim that
P ′′ = p0 · · · piq1 · · · qh is a D-path in γb whose first node is p.

We first prove that P ′′ is decreasing. Indeed, by Lemma 10, pi.c
b ≤ pi.c

a

and, for 0 ≤ j < i, pj .cb = pj .ca. Since P is decreasing in γa, so is P ′pi in γb.
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Now piq1 · · · qh is an E-path in γb and is thus also decreasing which implies
that so is P ′′.

To finish the proof, we must show that P ′ is gently decreasing in γb. Let
Pc be the correct part of P in γa. Since both P ′ and PC are prefixes of P ,
we have 2 cases:

• Assume that P ′ is a prefix of PC . Since PC is gently decreasing in γa,
so is P ′. And since all nodes of P ′ are still correct in γb, Lemma 10
implies that P ′ is gently decreasing in γb.

• Otherwise, PC is a strict prefix of P ′. Since, in a D-path, at most one
node can execute the rule RC , we have P ′ = PCpi−1. The fact that P ′

is gently decreasing in γb follows from Lemma 11.

Lemma 13. Let γa 7→ γb be a step, let p be the first node of a D-path, and
let r be its root in γa. If r is still a root in γb, then p is the first node of a
D-path in γb.

Proof. If r executes the rule RC during γa 7→ γb, then Lemma 2 implies that
r is not a root in γb, which is a contradiction. Thus r is in error in γb, and
the lemma follows from Lemma 12.

Lemma 14. Let γa 7→ γb be a step. Let p be the first node of a D-path in γa.
If no D-paths in γb contain p, then p.cb ≤ −B + n.

Proof. Let p be the first node of a D-path P , and let r be the root of P
in γa.

We claim that, in γb, P contains no nodes in error. Indeed, otherwise
Lemma 12 implies that p is the first node of a D-path in γb, which is a
contradiction.

Since, in a D-path, at most one node can execute the rule RC during
a step, then in γa, all the nodes of P but r have status C. We can thus
apply Lemma 11 and obtain that P is gently decreasing in γb, and thus
p.cb = length(P ) + r.cb. Since no nodes can appear twice in P , we have
p.cb ≤ r.cb + n.

Now since r.sb = C, r executes the rule RC in γa 7→ γb. But then
Lemma 2 implies that r.ca = −B, and thus r.cb = −B, and the lemma
follows.
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3.5 Bounds on the clock values

Lemma 15. If i < j and p satisfies p.cj > p.ci + 2D, then for any q, there
exists i ≤ h < j such that q.ch = p.ci + D and q executes the rule RU in the
step γh 7→ γh+1.

Proof. First, notice that p.ci + 2D < B − 1 by hypothesis. Then, we
prove by induction on d(q, p) that there exist i ≤ i′ < j′ ≤ j such that
q.ci′ ≤ p.ci + d(q, p) and p.cj − d(q, p) ≤ q.cj′ .

• If d(q, p) = 0, then q = p and i′ = i and j′ = j do the trick.

• If d(q, p) > 0 then let q′ ∈ N(q) be such that d(q′, p) = d(q, p) − 1. By
induction, there exists i ≤ i1 < j1 ≤ j such that q′.ci1 ≤ p.ci+d(q, p)−1
and p.cj − d(q, p) + 1 ≤ q′.cj1 .
Now q′.cj1 −q′.ci1 ≥ p.cj −p.ci −2(d(q, p)−1) > 2D−2(d(q, p)−1). So,
q′.cj1 −q′.ci1 > 2. Thus, there exists i1 ≤ i′ < j1 such that q′.ci′ = q′.ci1

and q′ executes the rule RU in γi′ 7→ γi′+1. Since q is a neighbor of q′,
we have q.ci′ ≤ q′.ci′ + 1 = q′.ci1 + 1 ≤ p.ci + d(q, p).
Now since q′.ci′+1 + 2 ≤ q′.cj1 , there exists i′ < j′ < j1 such that q′

executes the rule RU in γj′ 7→ γj′+1 and q′.cj′+1 = q′.cj1 . Since q is a
neighbor of q′, we have q.cj′ ≥ q′.cj′ = q′.cj1 − 1 ≥ p.cj − d(q, p), which
finishes the proof of our induction.

Let q be any node. Let i ≤ i′ < j′ ≤ j such that q.ci′ ≤ p.ci + d(q, p) ≤
p.ci + D and q.cj′ ≥ p.cj − d(q, p) ≥ p.cj − D > p.ci + D. There exists
i′ ≤ h < j′ such that q.ch = p.ci + D and q executes the rule RU in the step
γh 7→ γh+1.

Lemma 16. Suppose that γh is not clean. For any node p and any i < j ≤ h,
p.cj − p.ci ≤ 2D.

Proof. Let r be a root in γh and let i < j ≤ h. By Lemma 1, r is a root in
every configuration γl with l ≤ h, and since no roots can execute the rule
RU , the lemma follows from Lemma 15.

3.6 Move complexity

In this section, we analyze the move complexity of our algorithm. To do so,
we fix an execution e = γ0γ1 · · · and study the rules a given node executes
in it. Since these rules do not appear explicitly in an execution, we propose
to use a proxy for them.
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A pair (p, i) is a move if p executes a rule in γi 7→ γi+1. This move is a
U -move if the rule is RU , a C-move if the rule is RC , a R-move if the rule is
RR, and a P (i)-move if the rule is RP (i). Since a node p executes at most
one rule in a given step, the number of steps in which a given node executes
a rule is the number of its moves.

Let Si be the set of roots in γi. Lemma 1 states that for each i > 0, Si ⊆
Si−1. Since γ0 contains at most n roots, there are l ≤ n steps γi−1 7→ γi for
which Si ⊂ Si−1. Let r1, r2, . . . , rl be the sequence of increasing indices such
that ∀i ∈ [1, l], Sri ⊂ Sri−1. This sequence gives the following decomposition
of e into segments.

• The first segment is the sequence γ0 · · · γr1 .

• For 1 < i ≤ l the i-th segment is the sequence γri−1 · · · γri .

• The last segment is the sequence γrl · · · .

A segment is said to be clean if its first configuration is clean. If the
first configuration of a segment has a root, then the segment is said to be
unclean. According to Lemma 1, if the first configuration of a segment is
clean then the other configurations of the execution are clean. So, there is at
most one clean segment, the last one, in any execution.

R-moves.

Lemma 17. A node p executes at most one R-move.

Proof. Let p be a node. We have three cases.

• If p executes no R-moves, it executes at most one R-move.

• If p executes a R-move and no moves after the first R-move, then p
executes only one R-move.

• Otherwise, let (p, i) be the first R-move (thus p.ci+1 = −B and p.si+1 =
E), and let (p, j) be the first move which follows. Consequently, (p, j)
is necessarily a C-move. The result then follows from Lemmas 2 and 1.

18



U-moves. Note here that the predicate Paux can only prevent a node from
executing the rule RU . Hence, since we consider distributed unfair daemons,
an execution with any predicate Paux is a valid execution with the predicate
Paux = true while the configuration is not clean. We therefore consider in
this part of the analysis that Paux = true.

Lemma 18. Let s be a segment. All U -moves done by p during s are done
consecutively before the first error rule executed by p during s (if it exists).

Proof. By definition of the rules RU and RC , U -moves of p are done con-
secutively before the first error rule executed by p. According to Lemma 3,
after p executes an error rule, p is the first node of an E-path, and thus of a
D-path, by definition. Lemma 13 implies that p remains in a D-path until
the end of s. Hence, p no more executes the rule RU in s, by Lemma 10, and
we are done.

To compute the move complexity, we must, in particular, compute the
total number of moves in unclean segments. By definition, the rules RR, RP

and RC can only appear in unclean segments.

Lemma 19. Let s be an unclean segment. A node p executes the rule RU at
most 2D times during s.

Proof. By definition of s, there is a node r that is a root all along s. We
now show, by induction on d, that every node p at distance d ≤ D from r
executes at most 2d U -moves in s.

Base Case: If d = 0, then p = r. Now, r cannot execute a U -move during s.

Induction Step: Assume that p is at distance d > 0 from r. Let q ∈ N(p)
such that q is at distance d − 1 from r. By Lemma 18, if p, resp.
q, changes its clock value during s, it does so by first executing a
(possibly empty) sequence of U -moves, and then by executing a (possibly
empty) sequence of error moves. By induction hypothesis, q executes
x ≤ 2(d − 1) U -moves in s. To prove the induction step, it is sufficient
to prove that p does not execute more than x + 2 steps during s.
For the purpose of contradiction, assume that p executes at least x + 3
U -moves in s. Let cp be the clock value of p just before its first U -move
in s. There are x + 3 integers t1 < t2 · · · < tx+3 such that (p, ti) is
a U -move in s setting p.c to the value cp +B i. By definition of the
rule RU , we must have q.cti ∈ {cp +B (i − 1), cp +B i}.
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We claim that for any 1 ≤ i ≤ x + 3, node q has executed at least i − 2,
resp. i − 1, U -moves between the beginning of the segment and γti

when q.cti = cp +B (i − 1), resp. q.cti = cp +B i. We prove this claim by
induction on i. The base case i = 1 is trivial. Assume that the property
holds for i ≥ 1 and let us consider the different cases. If q.cti+1 = q.cti ,
then q.cti = cp +B i and we immediately have the desired property by
induction hypothesis. Otherwise, we have q.cti+1 = q.cti +B j, with j
being 1 or 2. Since B ≥ 4, the value q.cti+1 is either non-negative, or
larger than q.cti . Since executing an error rule always decreases the
clock value, and sets it to a negative value, q cannot use any error rule
to obtain for the first time the clock value q.cti+1 from configuration γti .
Therefore, q must perform at least j U -moves between γti and γti+1 .
Still by induction hypothesis, we thus obtain the desired property also
in this case, which concludes the proof of the claim. Using it with
i = x + 3 allows us to obtain the expected contradiction, hence proving
the overall induction step.

The lemma directly follows from the overall induction.

Lemma 20. A node p has at most 2Dn U -moves in the unclean segments.

Proof. By Lemma 19, p executes the rule RU at most 2D times in an unclean
segment. Since there are at most n unclean segments (Lemma 1), the lemma
follows.

P -moves with B. We bound the number of P moves in 2 ways: using B,
and without using B.

Lemma 21. A node can have at most nB P -moves.

Proof. Let p be a node. In a clean segment, p cannot execute a rule RP .
In an unclean segment, by Lemma 18, once p executes a P -move, it cannot
execute the rule RU anymore. Each time p executes the rule RP , the variable
p.c decreases by at least one and takes a value in [−B, 0[ . Hence, p can
only execute B P -moves in an unclean segment. Since there are at most n
unclean segments (Lemma 1), the lemma follows.

P -moves without B. We now need several definitions.
We say that a P -move (p, t) causes another P -move (p′, t′) if

• p′ ∈ N(p), t′ > t,
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• for some l, (p′, t′) is a P (l)-move and (p, t) is a P (l − 1)-move, and

• for any t < k < t′, (p, k) is not a move.

If a node p is in error in some configuration γi, this often happens
because of some previous P -move (p, t). Moreover, what allowed (p, t) is
some q ∈ N(p) which is in error in γt−1. Finally, the reason why q is in error in
γt−1 is because of some previous move and so on. This motivates the following
definition: a causality chain is a sequence C = (p0, t0)(p1, t1) . . . (pl, tl) such
that

• for each 0 ≤ i < l, (pi, ti) causes (pi+1, ti+1);

• no (p, t) causes (p0, t0).

By construction, any P -move is the last element of a causality chain but
the causality chain may not be unique.

We classify the P -move of p in 3 types.

• (p, i) is of Type 1 if there exists a P -move (p, j) with j > i such that
p.ci+1 = p.cj+1.

• (p, i) is of Type 2 otherwise. And we subdivide Type 2 P -moves in

– Type 2a. if at least one causality chain C = (p0, t0) . . . (pl, tl)
ending in (p, i) does not contain a repeated node. More formally,
for any 0 ≤ i < j ≤ l, pi ̸= pj .

– Type 2b. otherwise.

Our goal is to separately bound the number of P -moves of each type that
a node can execute.

Lemma 22. There are at most as many P -moves of type 1 as there are
U -moves in the unclean segments.

Proof. Suppose that (p, i) and (p, j) are both P (l)-moves with i < j. This
means that p.ci+1 = p.cj+1 = l. For (p, j) to be possible, p.c has to go from
l in γi+1 to being strictly greater than l in γj . This implies that there exists
i < k < j such that (p, k) is a U -move with p.ck = l.

Thus, if we associate to each (p, i) of type 1 the U -move (p, j) such that
p.ci+1 = p.cj with j > i minimum, then no 2 distinct P -moves correspond to
the same U -move. This implies that p has at most as many P -moves of type
1 as it has U -moves in unclean segments.
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Remark that, by definition, two P -moves (p, i) and (p, j) of type 2 are
such that p.ci+1 ̸= p.cj+1. To count the number of P -moves (p, i) of type 2,
we thus count the number of values that p.ci+1 can take.

Lemma 23. A node p can have at most n(n + 1) P -moves of type 2a.

Proof. Let (p, i) be a P -move of type 2a, and let C = (p0, t0) . . . (pl, tl) be a
corresponding causality chain. We have

• (p, i) = (pl, tl)

• for any 0 ≤ i < j ≤ l, pi ̸= pj .

Clearly, l < n and pl.c
tl+1 = l + p0.ct0+1. Let r ∈ N(p0) be such that

r.st0 = E and p0.ct0+1 = r.ct0 + 1. Since no P -move causes (p0, t0), two cases
arise:

• the last move of r before t0 is an R-move in which case r.ct0 = −B,

• r executes no rule before t0 in which case r.ct0 = r.c0.

Thus p0.ct0+1 can take at most n + 1 distinct values. The lemma now follows
from the fact that l can take at most n distinct values.

Lemma 24. A node p can have at most 2n + 2D type 2b P -moves.

Proof. Let (p, i) be a P -move of type 2b, and let C = (p0, t0) . . . (pl, tl) be a
causality chain such that (p, i) = (pl, tl).

By definition, there exists 0 ≤ i < j ≤ l such that pi = pj . Choose
such a i0 = i and j0 = j with j0 maximum. We thus have that for any
j0 ≤ i < j ≤ l, pi ̸= pj and thus l − j0 < n. Let q = pj0 = pi0 .

Now pl.c
l+1 = q.cj0+1 + (l − j0). To prove the lemma, it is thus enough

to show that q.cj0+1 ≤ n + 2D.
We have that q.si0+1 = E, thus, by Lemma 3, q is the first node of an

E-path, and thus of a D-path in γi0+1.
Since q.cj0+1 > q.ci0+1, q executes a U -move (q, k) for i0 < k < j0. By

Lemma 10, q belongs to no D-path in γk. There thus exists i0 ≤ k′ < k such
that q belongs to a D-path in γk′ and to no D-path in γk′+1. By Lemma 14,
q.ck′+1 ≤ n.

Since q is in error in γj0 , by Lemma 3, q belongs to an E-path in j0.
There thus exists a root r in γj0 . By Lemma 16, q.cj0+1 ≤ n + 2D. The
lemma follows.

Lemmas 21-24 directly imply the following lemma.

Lemma 25. During an execution, there are at most O(n3) P -moves.

22



C-moves.

Lemma 26. During an execution, the number of C-moves is at most the
number of P -moves plus n.

Proof. Between two C-moves, a node p must execute an error move.
But since, after a C-move, p is can no longer be a root (by Lemmas 1

and 2), p cannot execute a C-move before an R-move. Thus p can execute
at most one more C-move than its number of P -moves.

The move complexity theorem. The following theorem is a direct
corollary of Lemmas 17, 20, 25, and 26.

Theorem 1. Our algorithm converges in O(min(n2B, n3)) moves.

3.7 Round complexity

Throughout this section, we consider an arbitrary execution e = γ0 · · · . For
all i ≥ 1, we denote by γhi the last configuration of the ith round (n.b., e
is finite, by Theorem 1, so there is no infinite round in e and from the last
configuration of e, rounds are empty). We also let γh0 = γ0.

In the first D +1 rounds, nodes execute error rules to “correct” the initial
configuration. During the D + 1 next rounds, all nodes go back to the correct
state. The predicate Paux has no influence on results of this section as RU

executions along e do not impact our analysis.

The “error broadcast phase”.

Lemma 27. For any h ≥ hD+1, in γh, for any root r, we have r.S = E and
p.c ≤ −B + d(r, p), for any node p.

Proof. If γh contains no root, then the lemma holds. Otherwise, let r be any
such root. By Lemma 1, r is also a root in all γi with i ≤ h.

We first prove that r.ch′ = −B and r.sh′ = E for any h′ with h1 ≤ h′ ≤ h.
This claim will establish the first part of the lemma and the base case of the
next induction.

First, during the first round, while r.c ̸= −B or r.s ̸= E, r is enabled for
RR. Hence, by definition of a round and Rule RR, there is a configuration
in the first round where r.c = −B and r.s = E. From such a configuration,
the next rule r may execute is RC . Now, by executing RC , r is not a root
anymore, by Lemmas 1-2. So, r cannot execute RC before the system reaches
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Configuration γh. Hence, for any h′ with h1 ≤ h′ ≤ h, r.ch′ = −B and
r.sh′ = E.

We now prove by induction on j ≥ 1 that for all nodes p such that
d(p, r) < j, p.ch′ ≤ −B + d(r, p) with hj ≤ h′ ≤ h.

If j = 1, then p = r and the base case is trivial from the previous claim.
Suppose now that j > 1. Let p be such that d(r, p) = j, and let q ∈ N(p) be
such that d(r, q) = j −1. By induction hypothesis, we have q.ch′ ≤ −B +j −1
with hj−1 ≤ h′ ≤ h.

We first prove that there exists h′ such that hj−1 ≤ h′ ≤ hj such that
p.ch′ ≤ −B +j. To do so, assume, by the contradiction, that for every h′ with
hj−1 ≤ h′ ≤ hj , p.ch′

> −B + j, which implies that p.ch′ ≥ q.ch′ + 2. From
the previous claim, we also know that p is not a root in any γh′ . Assume that
q.sh′ = C for some h′ with hj−1 ≤ h′ ≤ hj . Then, q is a root in γh′ and in
γ0, by Lemma 1. From the previous claim, we know that q.sh′′ = E for any
h′′ such that h1 ≤ h′′ ≤ h. Now, since j − 1 ≥ 1, we obtain a contradiction.
Thus, q.sh′ = E and p.ch′ ≥ q.ch′ + 2 for any h′ with hj−1 ≤ h′ ≤ hj . Hence,
p is enabled for executing RP (i) with i ≤ q.ch′ + 1 ≤ −B + j in every
configuration γh′ . By definition of a round and Rules RP (i), there exists a
configuration h′′ with hj−1 ≤ h′′ ≤ hj , where p.ch′ ≤ −B + j, a contradiction.

Finally, recall that q.ch′′ ≤ −B + j − 1 for every h′′ such that h′ ≤ h′′ ≤
hD+1, by induction hypothesis. So, p.ch′′ ≤ −B + j since p cannot execute
RU . Hence, we are done with the induction and the lemma holds.

Lemma 28. For any h ≥ hD+1, γh is almost clean.

Proof. By Lemma 5, we only need to show that γhD+1 is almost clean. To
do so and according to Lemma 4, we now show that no node can execute
an error rule in γhD+1 . The fact that no node can execute the rule RR

in hD+1 follows from Lemma 27. Assume that in γhD+1 a node p verifies
errorPropag(p, i). There exists q ∈ N(p) such that q.c < p.c − 1 and
q.s = E. By Lemma 3, there exists a E-path P of length l from q to
a root r. This path implies that q.c ≥ r.c + l ≥ r.c + d(r, q). But then
p.c > q.c + 1 ≥ r.c + d(r, q) + 1 ≥ r.c + d(r, p), which contradicts Lemma 27.
Hence, we conclude that no node verifies errorPropag(p, i) in γhD+1 , and
we are done.

The “error cleaning phase”.

Lemma 29. For any h ≥ h2D+2, γh is clean.
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Proof. We prove by induction on 0 ≤ i ≤ D + 1 that for any j ≥ hD+1+i, γj

contains no E-path of length > D − i. According to Lemma 28, γj is almost
clean.

Suppose that i = 0. In γhD+1 , a root is in a E-path (by definition of
almost clean). If γhD+1 contains no E-path, then γhD+1 is clean as it contains
no root. Otherwise, let P be a E-path. Let p and r be its first and last node,
and let l be its length. By definition of a E-path, p.c − r.c ≥ l ≥ d(p, r). By
Lemma 27, p.c − r.c ≤ d(p, r). We thus have that l = d(p, r) ≤ D. The base
case thus holds.

Suppose that the hypothesis holds for i ≥ 0. Again, if γhD+1+i contains
no E-path, then it is clean. Let P be an E-path in γhD+1+i . Let p be the
first node of P . Since no nodes can execute an error rule during the round
D +1+ i, then P is also an E-path in γhD+i . Moreover, RC is not enabled on
p in γhD+i ; otherwise, p would have done a move during the round D + i + 1,
and p would not been in a E-path in γhD+i+1 .

There thus exists q ∈ N(p) such that q.c > p.c which is in error in γhD+i .
The path qP is a E-path in γhD+i . By induction, the length of qP is at most
D − i, and thus the length of P is at most D − (i + 1). The hypothesis thus
holds for i + 1.

For h ≥ h2D+2, γh contains no E-path, which implies that γh is clean.

The round complexity proof. Lemmas 28 and 29 directly imply that

Theorem 2. Our algorithm converges in 2D + 2 rounds.

4 Synchronizer
Using folklore ideas (see, e.g., [AKM+93] and [EK21]), we can use our
unison algorithm to simulate any synchronous self-stabilizing algorithm in
an asynchronous environment under an unfair daemon. We now study such
a simulation.

4.1 Time definition

In everyday life, we have a distinction between the value of a clock (modulo
24 hours) and the time. Both are obviouly linked. We would like to make a
similar distinction here.

Let e = γ0 · · · be an execution such that γ0 is clean, and so almost
clean too. According to Lemma 7, there exists cmin ∈ [−B, B[ and ∆ ≤ D
such that {p.c0 | p ∈ V } = {cmin +B i | 0 ≤ i ≤ ∆}. The birth time
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of p is time0(p) = i − ∆ where i satisfies p.c0 = cmin +B i. Moreover,
timej+1(p) := timej(p) + 1 whenever p executes the rule RU in γj 7→ γj+1

(otherwise, timej+1(p) := timej(p)).
An important remark is that if time(p) = time(q), then p.c = q.c.

Moreover, unisonMove(p) is true if and only if time(p) is a local minimum.
Note that the birth time of a node is in [−D, 0].

4.2 The algorithm

We consider a synchronous self-stabilizing algorithm AlgI which runs in
a variant of the atomic-state model which is at least as expressive as the
model of our unison algorithm. This means that we should be able to
encode the macros Macro1 and Macro2 (defined page 8) in the model of
AlgI . In the following, we denote by T the stabilization time of AlgI (in
synchronous settings) and by Trans(AlgI) the simulation of AlgI using our
unison algorithm.

The basic idea of the simulation is that the execution of AlgI is driven
by the unison algorithm. To that goal, each node p stores its last two
states in AlgI using two additional variables: p.old and p.curr. Once the
unison algorithm has stabilized, if p is a local minimum (w.r.t. the time
of the unison) and is about to increase its clock (by performing Rule RU ),
it computes its next state ÂlgI(p) in AlgI . It does so by selecting for each
neighbor q the variable q.curr if p.c = q.c, and q.old otherwise (i.e., when
q.c = p.c +B 1).

We thus modify the rule RU in the following way:

RU : unisonMove(p) ∧ (Paux(p) ∨ ∃q ∈ N(p), q.c = p.c +B 1)
−→ p.old := p.curr;

p.curr := ÂlgI(p);
p.c := p.c +B 1

Let us consider the execution after the unison has stabilized (i.e., the
suffix of the execution starting from the first clean configuration). The time
of each node is thus defined. If time(p)i = t, then we set stt

p = p.curr. Since
the state of p changes if and only if its time does, this is well defined. For
any positive t, we can then define the configuration ηt of AlgI in which the
state of each node p is stt

p. The folklore claim is that the sequence η0 · · · is
a synchronous execution of AlgI .

When Paux(p) is always true, the clocks of the unison constantly change.
Therefore, even if AlgI is silent, its simulation is not. In order to obtain a
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silent simulation in such a case, we instantiate the predicate Paux(p) such
that p increments its clock (and thus performs a simulation step) only if
the simulation step makes its state change. More precisely, we define two
possible predicates as follows:

Pgreedy(p) = true

Plazy(p) = p is enabled in AlgI

and say that our synchronizer runs in greedy mode if Paux = Pgreedy, and
that it runs in lazy mode if Paux = Plazy.

4.3 Complexity analysis

Greedy mode. In greedy mode, Lemma 9 implies that the algorithm
is never silent. Nevertheless, it is easy to see that, once unison has been
reached, all nodes with minimum time can be activated. And since nodes
cannot be deactivated unless executing RU , after one round, the minimum
time of a node has increased by at least one. Thus, after O(D) rounds (and
O(min(n2B, n3)) steps), each round of Trans(AlgI) simulates at least one
round of AlgI .

Lazy mode.

Lemma 30. In lazy mode, the maximum time of each node is at most T .

Proof. Let Tη0 ≤ T be the number of rounds that AlgI takes to be silent
from the clean configuration η0. Let e = η0 · · · be an execution starting from
η0. We claim that no node p has the time Tη0 + 1 along e. Let p be any
node. By time definition, time0(p) ≤ 0.

Suppose that ηi 7→ ηi+1 is such that no node has a time greater than Tη0 in
ηi. If timei(p) ≤ Tη0 − 1, then timei+1(p) ≤ Tη0 . Otherwise, timei(p) = Tη0

and no neighbor q of p is such that q.c = p.c +B 1. Moreover, by definition
of Tη0 , p is not enabled in AlgI . So p cannot execute the rule RU and
timei+1(p) = Tη0 in ηi+1.

Lemma 31. If AlgI reaches a terminal configuration in at most T syn-
chronous rounds, then Trans(AlgI) reaches a terminal configuration in at
most nT + nD moves from a clean configuration.

Proof. Let e = γ0 · · · be an execution starting from a clean configuration.
The birth time of a node p is in [−D, 0]. No node has a time greater than T
along e. So a node executes the rule RU at most T + D times along e.
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Because of the previous lemma, in lazy mode, if AlgI is silent, then
all executions of Trans(AlgI) are finite. The round analysis is a bit more
involved. We split the analysis in two parts: the number of rounds so that
all nodes have positive time, and the additional number of rounds to reach
silence.

In the following, we consider a (finite) execution e = γ0 · · · γf be an exe-
cution where γ0 clean. As previously, we denote by γhi the last configuration
of the ith round of e, for any i ≥ 1, and we let γh0 = γ0.

Lemma 32. In lazy mode, the time of all nodes is positive after at most 2D
rounds.

Proof. Let s be a node with birth time zero. Let λ(p, i) := 2i + D + d(p, s).
We prove by induction on 0 ≤ j ≤ 2D that if i ≤ 0 and λ(p, i) ≤ j, then
timehj (p) ≥ i.

Suppose that j = 0. If λ(p, i) ≤ 0, then i ≤ −d(p, s). As γ0 is clean, we
have timeh0(p)time0(p) ≥ −d(p, s) ≥ i . So, the base case holds.

Suppose that j > 0. Let (p, i) be such that λ(p, i) = j. For any q ∈ N [p],
λ(p, i) − λ(q, i − 1) = 2 + d(p, s) − d(q, s) > 0. So λ(q, i − 1) < j and, by
induction hypothesis, timehj−1(q) ≥ i − 1.

Two cases now arise:

• If timehj−1(p) ≥ i, then we are done.

• If timehj−1(p) = i − 1, then p ̸= s (recall that time0(s) = 0, and so
timehj−1(s) ≥ 0 ≥ i). Then let q ∈ N(p) be such that d(q, s) < d(p, s).
We have λ(q, i) < j, and thus, by induction hypothesis, timehj−1(q) ≥ i.
This implies that p can execute the rule RU in γhj−1 , and thus will
have done at last at γhj .

We now focus on the part of the execution e in which all nodes have a
positive time. We denote by e′ = ρ0 · · · ρf this part. From now on, we denote
by ρri the last configuration of the ith round in e′, for any i ≥ 1, and we let
ρr0 = ρ0.

We do not know how these times evolve during the rounds of e′, never-
theless we know that if no nodes have time l + 1 in ρi but timei+1(p) = l + 1,
then p is enabled in AlgI at ηl. We thus say that any such a node p may
start time l + 1.

If no node are enabled for AlgI in ηi, then in in ηi+j with j > 0, no node
are enabled in AlgI . Therefore, if p may start time i + 1, then either i = 0
or there exists q ∈ N [p] which may start time i.
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This motivates the following definition. A starting sequence for ρf is a
sequence of nodes s1s2 · · · sH such that each si starts time i, and si−1 ∈ N [si]
if i > 1. Note that if ρ0 contains no node which may start time 1, then the
algorithm is already silent. Otherwise, ρf must contain a starting sequence.

Lemma 33. e′ reaches a terminal configuration in at most D + 3T − 2
rounds in lazy mode.

Proof. If ρf contains no starting sequence, then ρf = ρ0, and e′ indeed
reaches a terminal configuration in at most (D + 3T − 2) rounds.

Assume now that ρf contains the starting sequence s1 · · · sT . We also
let si = s1, for any i < 1. For any node p and 0 ≤ i ≤ T , we let λ(p, i) =
3i−2+d(p, si). The lemma is a direct consequence of the following induction.

We now prove by induction on 0 ≤ j ≤ 3T + D − 2 that for every p and
i such that λ(p, i) ≤ j, we have timerj (p) ≥ i.

If j = 0, then i = 0 and the result is clear.
Suppose that j > 0. If no (p, i) such that λ(p, i) = j exists, then we

are done. Otherwise, let (p, i) be such a pair. For any q ∈ N [p], λ(p, i) −
λ(q, i − 1) = 3 + d(p, si) − d(q, si−1), and thus λ(p, i) − λ(q, i − 1) ≥ 3 −
|d(p, si)−d(p, si−1)|− |(d(p, si−1)−d(q, si−1)|. Now |d(p, si)−d(p, si−1)| ≤ 1
because si−1 ∈ N [si], and |(d(p, si−1) − d(q, si−1)| ≤ 1 because q ∈ N [p].
We thus have λ(q, i − 1) < j. By induction hypothesis, for any q ∈ N [p],
timerj−1(q) ≥ i − 1.

Three cases now arise:

• If timerj−1(p) ≥ i, then we are done.

• If timerj−1(p) = i − 1 and p = si. Then, since si may start time i, p
can execute the rule RU in ρrj−1 , and thus will have done at last at
ρrj .

• If timerj−1(p) = i − 1 and p ̸= si. Then, let q ∈ N(p) be such
that d(q, si) < d(p, si). We have λ(q, i) < j, and thus, by induction
hypothesis, time(q) ≥ i in ρrj−1 . This implies that p can execute the
rule RU in ρrj−1 , and thus will have done at last at ρrj .

Since λ(p, i) ≤ 3T + D − 2, the lemma follows.

By Theorems 1 and 2 and Lemmas 32-33, follows.

Theorem 3. Assumes that AlgI reaches a terminal configuration in at most
T rounds and requires O(M) bits per node. In lazy mode, Trans(AlgI)
reaches a terminal configuration in O(min(n2B, n3))+nT moves and at most
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5D + 3T rounds. Moreover, Trans(AlgI) requires O(M + log(B)) bits per
node.
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