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Selecting feed-efficient sheep could improve the sustainability of this livestock production. However,
most sheep breeding companies cannot afford to record feed intake to select feed-efficient animals.
Past studies underlined the potential of omics data, including microbiota metabarcoding data, as proxies
for feed efficiency. The study involved 277 Romane lambs from two lines divergently selected for residual
feed intake (RFI). There were two objectives: check the consequences of selecting for feed efficiency over
the rumen microbiota, and assess the predictive ability of the rumen microbiota for host traits. The study
assessed two contrasting diets (concentrate diet and mixed diet) and two microbial groups (prokaryotes
and eukaryotes). Discriminant analyses did not highlight any significant effect of sheep selection for
residual feed intake on the rumen microbiota composition. Indeed, prokaryotic and eukaryotic micro-
biota compositions poorly discriminated the RFI lines, with averaged balanced error rates ranging from
45% to 55%. Correlations between host traits (feed efficiency and production traits) and their predictions
from microbiota data varied between �0.07 and 0.56, depending on the trait, diet and sequencing. Feed
intake was the most accurately predicted trait. However, predictions from fixed effects and BW were
more accurate than or as accurate as predictions from the microbiota. Environmental effects can greatly
affect the variability of microbiota compositions. Considering batch and environmental effects should be
paramount when the predictive ability of the microbiota is assessed. This study argues why metabarcod-
ing the rumen microbiota is not the best way to predict meat sheep production traits: fixed effects and
BW were more cost-effective proxies and they led to similar or better predictive accuracies than micro-
biota metabarcoding (16S and 18S sequencing).
� 2023 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

Selecting sheep for feed efficiency is often impossible for small
companies because phenotyping of individual feed intake is expen-
sive: search for predictors of efficiency is therefore crucial. In this
study, the predictive ability of rumen microbiota for feed intake
and in a lesser extend for efficiency was proven using 277 growing
Romane lambs under two diets. But metabarcoding the rumen
microbiota is not the best way to predict feed efficiency traits: pre-
dictions from BW and systematic effects were as much or more
accurate. Selection for feed efficiency did not seem to modify the
microbiota abundancies.
Introduction

Feed efficiency is a key factor in the livestock industry, which
encompasses many environmental, economic and societal stakes.
Improving ruminant feed efficiency can decrease feed inputs, help
limit feed-food competition and mitigate environmental impacts
from sheep breeding. Additionally, lowering feed intake and feed-
ing costs can improve farmers’ profitability (Cruz et al., 2010; Lima
et al., 2017). Thus, selecting feed-efficient animals is one way to
improve sheep industry sustainability.

Residual Feed Intake (RFI) is a feed efficiency criterion proposed
by Koch et al. (1963). This criterion is commonly used in genetics
as RFI is a heritable trait: the pooled RFI heritability over five stud-
ies in small ruminants has been estimated at 0.32 ± 0.15 (Mucha
et al., 2022). But whatever the feed efficiency criteria, it requires
knowing the amount of ingested feed at the individual level, which
remains too expensive for most sheep breeding companies.
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Identifying proxies could be a solution to circumvent the expen-
sive feed intake recording in order to widen the selection of feed-
efficient sheep. In cattle or sheep, ruminal or blood metabolites are
associated with feed efficiency (Artegoitia et al., 2017; Goldansaz
et al., 2020; Touitou et al., 2022). Previous studies also relied on
metabarcoding data: both 18S (Zhang et al., 2020; Clemmons
et al., 2021) and 16S sequencing (Ellison et al., 2019; Marie-
Etancelin et al., 2021) allowed to pinpoint microbial clusters as
biomarkers for ruminant feed efficiency.

While looking for sheep feed efficiency biomarkers with micro-
biota data (16S or 18S), most studies included few animals (<50).
These were often selected from a larger population, according to
their feed efficiency phenotype. A gap of knowledge remains
around the accuracy of feed efficiency predictions from microbiota
data when a large number of lambs are used, rather than a small
subset having extreme phenotypes. Feed efficiency prediction
accuracies may also vary with the diet (concentrate or mixed, for
instance). Furthermore, whether a generalisable microbial signa-
ture can be identified when sheep are raised across different years
is unclear. A study over several years is paramount to assess the
generalisability of predictors: environmental effects, such as diet,
farming practices, or climate conditions can affect the microbiota
composition (Henderson et al., 2015; Belanche et al., 2019; Li
et al., 2019; Anderson et al., 2021; Marie-Etancelin et al., 2021;
Wei et al., 2021).

The present study focused on male lambs from two Romane
lines divergently selected on RFI under a concentrate diet. In this
population, the heritability of RFI was found to be moderate
(h2 = 0.45 ± 0.08, Tortereau et al., 2020).

We hypothesised that selecting for feed efficiency might shape
the rumen microbiota since it contributes to lamb’s digestion and
that the rumen microbiota can be considered as a proxy for feed
efficiency. Therefore, our objectives were to determine whether
selecting RFI modified the rumen microbiota of lambs and whether
rumen microbiota can be considered as a reasonable proxy of feed
efficiency. These investigations were conducted under two con-
trasting diets.
Material and methods

Animals

The present study was conducted from 2018 to 2020 on
Romane male lambs, at the INRAE Experimental Unit P3R (UE
332 agreement D18-174-01; Osmoy, France, https://doi.org/10.
15454/1.5483259352597417E12).
Divergent lines
The studied animals were part of a larger design of divergent

selection on RFI. Since 2009, feed efficiency was phenotyped in
Romane male lambs under a 100% concentrate diet. In 2015, a
divergent selection experiment started: two divergent lines were
selected for an increased RFI (least feed-efficient line, RFI+) or a
decreased RFI (most efficient line, RFI-) as described in Tortereau
et al. (2020). Briefly, animals were divergently selected for RFI
under a 100% concentrate diet. For the genetic evaluation, the RFIs
of 1900 male and female lambs phenotyped since 2009 were calcu-
lated according to Tortereau et al. (2020). Estimated breeding val-
ues (EBVs) were then computed with PEST software (Groeneveld
et al., 1990), considering a heritability of 0.45 (Tortereau et al.,
2020) and a pedigree of 6 419 sheep. The mixed model accounted
for the pen, suckling method (maternal or artificial), litter size, year
of phenotyping and sex as fixed effects.

Every year since 2015, ten to fourteen rams with the lowest and
highest RFI breeding values under a concentrate diet were selected
2

for breeding to produce the next generation of selection. Mating
was planned within divergent lines: rams with extreme RFI values
were selected and mated with ewes chosen to minimise inbreed-
ing. Two years were necessary to complete one generation of
selection.

Husbandry and phenotyping protocol
The present study focused only on a subset of Romane male

lambs from the divergent lines described above. Part of the second
generation was phenotyped in 2018 (103 lambs), while the third
generation was phenotyped in 2019 (101 lambs) and 2020 (73
lambs). Part of the lambs phenotyped in 2018 sired lambs studied
in 2020. On average, 7.7 male lambs shared the same sire in the
study.

The experimental design is illustrated in Fig. 1. Animals were
reared indoors with wood chip litter and fed successively with
two different diets: the first one with concentrates exclusively
and the second one with a mixed diet.

Phenotyping under a concentrate diet – Every year, lambs born in
the experimental unit were gathered in the experimental barn at
approximately 10 weeks of age. Then, lambs were adapted to a
100% concentrate ad libitum diet and to its distribution by auto-
matic feeders (for feed nutritional values, see Supplementary
Table S1-A).

Feed intake was recorded using automatic concentrate feeders
during six weeks, between 17 and 23 weeks of age on average
(Fig. 1). Depending on the year, lambs were grouped into four to
six pens of approximately 20 lambs with homogeneous BWs to
prevent fights. One concentrate feeder was available per pen. From
2018 to 2020, a total of 277 lambs were phenotyped under a con-
centrate diet.

To account for annual variations in feed compositions, net
energy intake was computed from feed intake and feed energy
densities. Energy densities of feed were estimated with the INRA
2007 system (Baumont et al., 2007) in megajoules of net energy.
The average daily energy intake of concentrate (ADEIC) was calcu-
lated as the average of daily energy intakes over the six-week per-
iod. At the end of the recording period, back ultrasound
measurements were carried out to assess the longissimus dorsi
muscle depth (MDC) and back fat thickness (BFTC). Starting and
final BWs were recorded and used to compute the average daily
gain (ADGC) over six weeks. Two feed efficiency traits were com-
puted: the feed conversion ratio (FCRC) as the ratio of ADEIC over
ADGC and, REIC as the residuals of the linear regression of ADEIC
over characterised energy sinks (Eq. (1)):

ADEIC ¼ lC þ b1;C ADGC þ b2;C final BWC
0:75 þ b3;C MDC

þ b4;C BFTc þ REIC ð1Þ
where lC is the mean ADEIC. b1;C to b4;C respectively stand for the
four following covariate effects: ADGC, final metabolic weight
(final BWC

0:75), MDC and BFTC. Finally, REIc is the residual energy
intake expressed as megajoules of ingested net energy per day.

Phenotyping under a mixed diet – After the first six-week trial,
animals were adapted for 6 weeks to a mixed diet delivered by
automatic feeders. In 2018, no restricted concentrate feeder was
available; thus, forage feeders delivered an ad libitum total mixed
ration (33% concentrates, 67% hay). In 2019 and 2020, automatic
concentrate feeders ensured restricted access to concentrates (up
to 700 g/day), and forage feeders delivered ad libitum hay sepa-
rately (see Supplementary Table S1-B for feed nutritional values).

Due to facility limitations (maximum of 35–40 lambs simulta-
neously), only lambs having extreme RFI EBVs under a concentrate
diet were then phenotyped under a mixed diet. In 2018 and 2019,
animals were split during two different periods per year: during
summer (period 1, from 29 to 35 weeks of age) or during fall (pe-
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Fig. 1. Experimental design of lamb phenotyping. Abbreviations: C-diet: 100% concentrate diet; EBV: estimated breeding value; M-diet: mixed diet including 2/3 of forages
and 1/3 of concentrates; RFI: residual feed intake; RFI-: efficient line with a low residual feed intake; RFI+: inefficient line with a high residual feed intake; w: weeks. Animals
were successively phenotyped under the concentrate and mixed diets. Under a mixed diet, two groups of animals were phenotyped at two different periods each year. EBVs of
RFI were computed under the concentrate diet. Rams having low RFI EBVs under a concentrate diet were bred to obtain the RFI- line, while rams with high RFI EBVs were
selected to obtain the RFI+ line. Average ages are expressed in weeks.
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riod 2, from 37 to 43 weeks of age) (Fig. 1). In 2020, only one group
was phenotyped during fall (period 2). Within one period, animals
were allocated by BW into two pens with 16 animals per pen, on
average. Each pen was equipped with two forage feeders and one
concentrate feeder in 2019 and 2020. Over the three years, 166
lambs were phenotyped under a mixed diet.

ADEIM, ADGM and REIM were estimated under the mixed diet as
it was done under the concentrate diet before. However, no FCRM

was calculated under the mixed diet because some individuals
had a null or negative ADGM over this 6-week period.

Data cleaning and overview of host phenotypes
Under one diet, outliers were identified based on feed efficiency

(REI, FCR), energy intake (ADEI), growth rate (ADG) and body com-
position (MD, BFT) traits. The animal was removed from the diet
data subset when one of the phenotypes was outside the range
[l � 3 SD; l + 3 SD], where l is the mean phenotype. Eight animals
were filtered out under a concentrate diet (out of 277 lambs), and
three were filtered out under a mixed diet (out of 166 animals).

Linear regressions were fitted with the lm function included in
R software (version 4.1.2) (R Core Team, 2021). All traits recorded
under a concentrate diet (TraitC) were regressed as follows (Eq.
(2)):

TraitC ¼ lTraitC
þ b1;C line þ b2;C age þ b3;C suckling

þ b4;C year þ b5;C penjyear þ eC ð2Þ
where lTraitC

denotes the trait mean. b1;C to b5;C respectively stand
for the effects of the line, age, suckling, year and pen nested in
the year. Finally, eC denotes the model residuals.

Traits recorded under a mixed diet were regressed similarly (Eq.
(3)):

TraitM ¼ lTraitM
þ b1;M lineþ b2;M age þ b3;M year

þ b4;M periodjyear þ b5;M penjperiodjyear þ eM ð3Þ
3

where lTraitM
denotes the trait mean. b1;M to b5;M respectively stand

for the effects of the line, age, year, period nested in the year, and
pen nested in the period and the year. eM denotes the model resid-
uals. Then, regression solutions (Eqs. (2) and (3)) were used to com-
pute least square means per line and host trait with the emmeans R
package (version 1.7.3) (Lenth, 2022). Comparison of traits between
RFI lines were carried out with the Tukey test. To account for mul-
tiple testing, P-values were corrected per diet with Benjamini–
Hochberg procedure (Benjamini and Hochberg, 1995) (seven traits
under a concentrate diet, six under a mixed diet).

16S and 18S ribosomal RNA gene sequencing

Every year, rumen fluid samples were collected at the end of
each feed intake recording trial. Sampling was carried out by
trained staff, with a medical gastric tube coupled to a vacuum
pump. Ruminal samples were immediately frozen in liquid
nitrogen.

DNA extraction and sequencing
DNA extraction, amplification and sequencing of microbial fluid

samples were carried out in two different batches: one batch with
2018 and 2019 samples and another with 2020 samples. Within
each batch, a bead-beating step was carried out with a FastPrep
device (MP Biomedicals, Illkirch, France). Then, DNA was extracted
with the QIAamp DNA Stool Mini Kit (Qiagen Ltd, West Sussex, UK)
from 85 lL of ruminal fluid.

The V4-V5 region of the 16S ribosomal RNA gene was amplified
with the forward 515F (50-CTTTCCCTACACGACGCTCTTCCGATCTGT
GYCAGCMGCCGCGGTA-30) and reverse 928R primers (50-GGAGTT
CAGACGTGTGCTCTTCCGATCTCCCCGYCAATTCMTTTRAGT-30)
(Wang and Qian, 2009) for 30 PCR cycles. To barcode samples, an
index of six base pairs was added to 928R primers during a second
amplification (12 cycles) with forward (50-GTGYCAGCMGCC-30)
and reverse primers (50-CCCCGYCAATT-30), plus adapters. Overlap-
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ping paired-end reads of 250 base pairs were produced and aligned
to obtain full-length reads with Illumina MiSeq technology (Illu-
mina, San Diego, CA, USA).

The V4 region of the 18S ribosomal RNA gene was amplified
with the forward 566F (50-CTTTCCCTACACGACGCTCTTCCGATCT
CAGCAGCCGCGGTAATTCC-30) and reverse 1200R primers (50-GGA
GTTCAGACGTGTGCTCTTCCGATCTCCCGTGTTGAGTCAAATTAAGC-30

) (Hadziavdic et al., 2014) for 30 PCR cycles. To barcode samples, an
index of six base pairs was added to 1200R primers during a sec-
ond amplification (12 cycles) with forward (50-CAGCAGCCGCGG
TAATTCC-30) and reverse primers (50-CCCGTGTTGAGTCAAAT
TAAGC-30). Overlapping and non-overlapping paired-end reads of
250 base pairs were produced.

After multiplexing and amplifications, 16S and 18S reads were
purified and loaded on an Illumina MiSeq cartridge (Illumina, San
Diego, CA, USA) to be sequenced at the Genomic and Transcrip-
tomic Platform (INRAE, Toulouse, France).
Sequence bioinformatic processing
After sequencing, 16S and 18S reads were processed separately

with FROGS tools (version 4.0.1) (Escudié et al., 2018). However,
within both sets of sequences, reads from different diets and
sequencing batches were treated together (step 1, Fig. 2). Read
Fig. 2. Workflow from lamb microbiota data handling, to statistical learning and infer
analysis; RFI: residual feed intake; sPLSDA: sparse partial least squares discriminant ana
are numbered from 1 to 6. Microbiota compositions were studied at the OTU level. Main
models were used: sPLSDA and sPLSR. Accuracies were compared with corrected t-tests.
RFI. Host traits included feed efficiency, feed intake, growth and body composition trait

4

processing was performed with the following pipeline: (i) demul-
tiplexing; (ii) reconstruction of 18S amplicon sequences only, (iii)
quality control of amplicons based on the presence of primers,
ambiguous bases and size (>380 and <500 base pairs for 16S ampli-
cons; >200 and <490 base pairs for 18S amplicons); (iv) clustering
into operational taxonomic units (OTUs) with the Swarm algo-
rithm using a difference of 1 between sequences in each aggrega-
tion step (Mahé et al., 2014); (v) chimaera removal; (vi)
prefiltering, by removing OTUs aggregating less than 0.005% of
all sequences; and (vii) taxonomic affiliation with BLAST+
(Camacho et al., 2009) and the Silva 132 16S reference database
for bacteria and archaea, or the Silva 138.1 18S database for fungi
and protozoa (Quast et al., 2013).
Sequencing data cleaning and overview
For data cleaning and subsequent analyses (steps 2–6, Fig. 2),

four distinct compositional datasets were considered: one per diet
(concentrate or mixed diet) and amplified gene (16S or 18S). Then,
sequencing data were filtered at the sample and OTU levels. Sam-
ples with low sequencing depths were associated with low OTU
richness and small variations between the number of observed
OTUs (Supplementary Fig. S1). Thus, samples with a depth smaller
than 7 500 reads were discarded (step 2, Fig. 2). OTU filtering was
ence. Abbreviations: OTU: operational taxonomic unit; PCA: principal component
lysis; sPLSR: sparse partial least squares regression. Microbiota preprocessing steps
variation factors of compositions were identified with PCAs. Two kinds of predictive
RFI lines were selected for a decreased or an increased estimated breeding value of
s.
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performed by removing OTUs with a prevalence lower than 20%
under the considered diet (step 3, Fig. 2). The numbers of sequenc-
ing reads and OTUs before and after data cleaning are reported in
Supplementary Table S2.

To give an overview of microbiota compositions, the sequence
of OTU seeds and descriptive statistics are available in Supplemen-
tary Table S3 (16S data) and Supplementary Table S4 (18S data).
Phyla mean relative abundances were also computed after
regrouping OTUs by phyla with the phyloseq R package
(McMurdie and Holmes, 2013). Then, at the OTU level, unsuper-
vised learning was used to identify the main variation patterns
driving microorganisms’ abundances (analysis A, Fig. 2). Prior to
principal component analyses (PCAs), several preprocessing steps
were carried out to account for compositionality and sequencing
effects. Null abundances of OTUs were imputed with the Geometric
Bayesian Multiplicative replacement procedure (step 4, Fig. 2)
(Martín-Fernández et al., 2015). Then, a Centered LogRatio (CLR)
transformation was carried out with OTU abundances (step 5,
Fig. 2). CLR coordinate values were adjusted univariately for
sequencing effects with a robust MM regression (Maechler et al.,
2017) (Eq. (4), step 6, Fig. 2). Robust MM regression was preferred
as it is less sensitive to outlying values than least squares linear
regressions.

CLR Xð Þi ¼ b0;i þ b1;iseqdepth þ b2;iseqbatch þ b3;iseqbatchjplate þ ei ð4Þ
where CLR Xð Þi stands for the CLR values of the ith OTU. Then, b0;i

stands for the intercept. For the ith OTU, b1;i to b3;i represent the
effects of sequencing depth, sequencing batches (n = 2) and
sequencing plates nested in batches (n = 5), respectively. Finally,
ei stands for residuals. Residuals were used as adjusted CLR values
to define the principal components (PCs) with the mixOmics R
package (version 6.18.1) (Rohart et al., 2017).

Predictions with sparse partial least squares discriminant analyses and
regressions

Sparse Partial Least Squares Discriminant Analyses (sPLSDA) or
Regressions (sPLSR) were performed to assess how well the RFI
lines and host traits could be predicted with microbiota data by
using multivariate analyses (analysis B, Fig. 2).

Preprocessing
sPLSDA and sPLSR were carried out with the mixOmics R pack-

age (version 6.18.1) (Rohart et al., 2017) on the CLR values adjusted
for sequencing effects (steps 4–6, Fig. 2).

Sparse partial least squares discriminant analysis
sPLSDAwas carried out to predict the RFI lines to check whether

ruminal microbiota can predict efficient vs. inefficient animals.
With sPLSDA, two hyperparameters were tuned through a grid

search and cross-validations: the number of components and the
number of selected variables per component. The retention of 1
to 20 components was tested, with a step of 1. We tested selecting
2 to 9 variables per component, with a step of 1 and then 10 to the
maximum number of variables with a step of 10. To assess hyper-
parameters, 5-fold cross-validations were repeated 50 times. A
joint factor denoting the RFI line and contemporaneous group
was used to stratify the cross-validation sets thanks to the cre-
ateMultiFolds function (Kuhn, 2008): i.e. every line, pen and year
are represented in all sets and in similar proportions. The tuning
criterion was the Balanced Error Rate (BER), calculated as the aver-
age of error rates over the RFI lines (Eq. (5)):

BER ¼ 1
2
� a

aþ b
þ c
c þ d

� �
ð5Þ
5

with a, b, c and d being the false predicted RFI-, the true predicted
RFI+, the false predicted RFI+ and the true predicted RFI-,
respectively.

The following rule of thumb was used to select the final hyper-
parameters: a more complex model (i.e., with more components
and/or more selected variables) was retained if the averaged BER
decreased by one standard error (Kuhn and Johnson, 2013). The
average BERs of the selected models are reported.

Sparse partial least squares regression
sPLSR was used to predict continuous lamb traits: feed effi-

ciency (REI, FCR), energy intake (ADEI), growth rate (ADG) and
body composition traits (MD, BFT). The goal was to check how
accurately feed efficiency and its components could be predicted
under each diet.

With sPLSR, the same two hyperparameters as sPLSDA had to be
tuned. Therefore, the same grid search and cross-validation strate-
gies were implemented. The tuning criterion was the RMSE, which
is the square root of the mean of squared errors. A more complex
model (i.e. with more components and/or more variables per com-
ponent) was retained if the averaged RMSE decreased by one stan-
dard error. Different accuracy criteria were calculated and
averaged over folds and repetitions: Pearson and Spearman corre-
lations between the true and predicted values of selected models,
RMSE, mean absolute error, coefficient of determination, and bias.
All metrics are reported in Supplementary Table S5.

Comparing prediction accuracies from different sets of predictors
To predict lamb lines or traits, three sets of predictors were con-

sidered: (i) The first set included either 16S- or 18S-adjusted CLR
values. (ii) The second set included systematic effects: suckling
method (concentrate diet only), phenotyping period (mixed diet
only), year, pen, age and final BW. (iii) Finally, the third set of pre-
dictors included the systematic effects and CLR values of 16S or
18S OTUs.

Models fitted on different sets of predictors were compared per
predicted trait and data subset. Differences between model accura-
cies were tested with corrected t-tests (Bouckaert and Frank, 2004)
(Analysis C, Fig. 2). Then, P-values were adjusted with Benjamini–
Hochberg procedure per predicted trait and data subset.

Results

Data overview

Phenotypic lamb traits
For feed efficiency traits and their components, descriptive

statistics are provided in Table 1, along with least square means
computed for the two RFI divergent lines.

Under a concentrate diet (17 to 23 weeks of age), lambs
ingested an average of 10.98 MJ of net energy per day and grew
by 330.91 g/day. It resulted in an average FCRC of 0.03 MJ/g. Under
a mixed diet (29 to 35, or 37 to 43 weeks of age), sheep consumed
an average of 8.06 MJ of net energy per day. No FCR was computed
with a mixed diet because of some negative and null ADGM values.
Regardless of the diet, RFI- animals had significantly lower intakes:
with a decrease of �0.95 MJ of net energy/day under a concentrate
diet and �0.46 MJ/day under a mixed diet.

Considering the animals under study, the divergence between
the two RFI lines was equal to 1.86 genetic SDs of RFIC least square
means. Regardless of the diet, RFI- animals were more feed effi-
cient, with a difference in residual energy intake between the RFI
lines equal to 0.69 MJ of net energy/day under a concentrate diet
against 0.33 MJ/day under a mixed diet. Under a concentrate diet,
the difference in FCRc was also significant, with RFI+ animals



Table 1
Statistical summary of lamb traits and least square means for residual feed intake lines.

Population statistics4 Line least square means5

Diet1

(n2)
Trait3 Mean SD Min Max RFI- RFI+ Adj. P6

C-diet (269) REIC, MJ/day 0.000 0.756 �1.701 2.070 �0.353 0.337 <0.001
FCRC, MJ/g 0.034 0.006 0.021 0.055 0.032 0.035 <0.001
ADEIC, MJ/day 10.98 1.38 7.37 14.14 10.50 11.45 <0.001
Final BWC, kg 56.62 6.71 39.74 78.85 55.69 57.49 <0.001
ADGC, g/day 331 58 150 501 333 331 0.927
BFTC, mm 5.7 0.8 3.9 8.3 5.8 5.8 0.927
MDC, mm 28.1 2.2 22.1 35.0 28.0 28.6 0.029

M-diet (163) REIM, MJ/day 0.000 0.899 �2.740 2.222 �0.203 0.125 0.013
ADEIM, MJ/day 8.06 1.22 4.31 10.50 7.77 8.23 0.008
Final BWM, kg 64.49 5.80 47.80 77.90 63.74 64.72 0.196
ADGM, g/day 123 67 �58 264 121 128 0.386
BFTM, mm 4.5 0.8 2.9 6.9 4.6 4.4 0.196
MDM, mm 27.3 2.4 20.8 34.0 27.0 27.5 0.196

Abbreviations: ADEI: average daily energy intake; ADG: average daily gain; BFT: back fat thickness; C-diet: concentrate diet; FCR: feed conversion ratio; M-diet: mixed diet;
MD: muscle depth; REI: residual energy intake; RFI-: efficient line with a low residual feed intake; RFI+: inefficient line with a high residual feed intake.

1 C-diet: sheep were fed a 100% concentrate diet; M-diet: sheep were fed a mixed diet including 2/3 of forage and 1/3 of concentrate.
2 Number of animals.
3 Subscripts denote the trait diet: C for the C-diet; M for the M-diet.
4 Descriptive statistics based on raw phenotypes, without adjusting for confounding effects.
5 Least squares means were computed for lamb lines divergently selected for residual feed intake. Traits were adjusted for the age, suckling method (under the C-diet only),

year, pen and phenotyping period (under the M-diet only).
6 Tukey’s test adjusted P-values. The Benjamini–Hochberg procedure was applied per diet.
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ingesting 0.31 MJ of net energy/day more than RFI- animals to
grow by 100 g/day.

Regardless of the diet, no significant difference was found
between the two RFI lines for growth (ADGC or ADGM) and most
body composition traits (BFTC, BFTM, or MDM). Only MDC signifi-
cantly differed between the two lines: RFI- animals had a lower
MD by 0.56 mm. Regarding the final BW under a concentrate diet,
the RFI- line was significantly lighter (�1.8 kg on average, at
approximately 23 weeks of age). Later in life, under the mixed diet,
the difference between the BWs of both lines was no longer signif-
icant (adjusted P-value = 0.196).
Microbiota data
After data cleaning, 582 and 1148 OTUs of 16S sequencing

remained under the concentrate and mixed diets, respectively,
whereas for 18S sequencing, 124 and 183 OTUs were kept under
the two diets, respectively.

OTUs were clustered according to their phylum affiliations, and
mean phylum relative abundances are reported in Fig. 3. With 16S
sequencing, the most abundant phyla were Bacteroidetes under a
concentrate diet (Fig. 3A) and Firmicutes under a mixed diet
(Fig. 3C), while Euryarchaeotawas the third most abundant phylum
under both diets. With 18S sequencing and regardless of the diet
(Fig. 3B and D), the Ciliophora phylum was largely predominant,
with relative abundances ranging between 87 and 96%.

PCA allowed the identification of the main variation patterns of
microbiota compositions (Fig. 4). Under a concentrate diet, the
variability of the second PC was associated with the year of lamb
phenotyping with 16S data (5% of the variance explained,
Fig. 4A). Under a mixed diet and regardless of the sequencing,
the first PC variability seemed to be mostly tied to the phenotyping
period and then the year to a lesser extent (Fig. 4C, D). None of the
recorded variables (age at sampling, age at weaning, sampling
order, pen, suckling method or RFI line) were associated with the
other PCs. No main factor of variability could be identified for
18S data under a concentrate diet (Fig. 4B).
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Predictive accuracy of sparse partial least squares models

Predicting the residual feed intake lines
Regardless of the predictors, diet and sequencing, the BERs of

sPLSDA were always high (from 0.35 to 0.55) when predicting
RFI lines (Table 2).

Systematic effects included fixed effects and final BW. Predic-
tion of the RFI line from systematic effects was never significantly
worse than the prediction from microbiota data (i.e., with a higher
averaged BER). The addition of the microbiota data to the fixed
effect and BW data never decreased BERs significantly.
Predicting host traits
Host traits were predicted with sPLSR by using fixed effects and

BW and/or microbiota data. Pearson correlations between actual
traits and predictions are reported in Fig. 5, and other metrics
are provided in Supplementary Table S5.

Predictions from microbiota data only – Under a concentrate diet,
when host feed efficiency was predicted from 16S (Fig. 5A) or 18S
(Fig. 5B) data, the average correlations between actual traits and
predictions were almost null for REIC (0.11 for 16S compared to
0.06 for 18S data) or low to moderate for FCRC (0.35 for 16S, 0.16
for 18S). Under a mixed diet, predicting REIM led to low average
correlations (0.35 with 16S, 0.17 with 18S) (Fig. 5C, D).

Predicting each component of feed efficiency also led to varying
average Pearson correlations, depending on the diet and the
sequencing dataset. Predicting intakes (ADEIC, ADEIM) with 16S
or 18S data led to a large range of correlations: from 0.05 with
18S under a concentrate diet to 0.56 with 16S under a mixed diet.
Similar results were obtained for growth traits (ADGC or ADGM),
with correlations ranging from 0.15 with 18S data under a concen-
trate diet to 0.38 with 18S data under a mixed diet. Finally, average
correlations between body composition traits (BFTC, BFTM, MDC

and MDM) and microbiota predictions fluctuated between almost
null and moderate values: from �0.07 for BFTC predicted from
18S data to 0.45 for BFTM predicted from 16S data.



Fig. 3. Mean phylum abundances per sequencing and diet, in lamb ruminal fluids. Relative phylum abundances were computed after data cleaning, per diet and
sequencing. (A) 16S sequencing under a concentrate diet; (B) 18S under a concentrate diet; (C) 16S under a mixed diet; (D) 18S under a mixed diet. Taxonomic affiliations
were based on the Silva 132 16S and Silva 138.1 18S databases. Taxa affiliated with archaea, bacteria, fungi and protozoa are represented in blue–green, purple, dark blue, and
red, respectively.
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Predictions from systematic effects – Regardless of diet, trait and
sequencing, average correlations for predictions from systematic
effects ranged from 0.31 to 0.84. Furthermore, for almost all
recorded traits, correlations were significantly higher than predic-
tions derived from 16S or 18S data only. There were only three
exceptions: similar accuracies were reached when FCRC and MDM

were predicted from 16S or systematic effects, same as ADGM pre-
dicted from 18S or systematic effects.

Predictions from microbiota and systematic effects – Finally, com-
bining microbiota data with fixed effects and final BW never signif-
icantly improved correlations compared to predictions from fixed
effects and BW. Most of the correlations were not significantly dif-
ferent. However, some correlations significantly decreased when
16S data and systematic effects were combined to predict: ADEIC
(by �0.05 units on average), ADEIM (�0.11) and ADGC (�0.19).
Similar decreases were observed with 18S data when predicting
FCRC (�0.18), ADEIC (�0.04) and ADGC (�0.24).
Discussion

DNA extracted from the rumen fluid of fattening lambs was
sequenced for the 16S ribosomal RNA gene to detect prokaryotes
and the 18S ribosomal RNA gene to study eukaryotic microorgan-
isms. This makes the study one of the few that have quantified
both types of microorganisms simultaneously in more than 150
lambs, fed successively with two contrasting diets.
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The rumen microbiota was not modified by the selection for feed
efficiency

Our results suggest that the ongoing selection for RFI did not
modify the rumen microbiota abundances (both prokaryotes or
eukaryotes), regardless of the diet.

When we looked at a microbial signature combining several
OTUs for predicting the RFI line, by using an sPLSDA multivariate
framework, we also observed a low predictive ability
(BER > 0.45). A relationship between the rumen microbiota and
the RFI lines can be doubted, as the microbiota poorly predicts
the selected line. Similarly, in dairy sheep, divergent selection on
somatic cell count in milk or milk persistency did not modify the
ruminal microbiota (averaged BER ranging from 0.50 to 0.71)
(Martinez Boggio et al., 2021). Our results were obtained after
two and three generations of selection, so it remains to be checked
whether longer-term sheep selection for RFI could also signifi-
cantly alter the rumen microbiota.

In monogastrics, divergent selection of pigs for RFI during 9–10
generations resulted in significant differences in the abundances of
52 faecal bacterial genera between the RFI lines (Aliakbari et al.,
2021). With rabbits, discriminant analysis of principal components
was able to discriminate a line selected for a decreased RFI during
ninegenerationsandtheancestral linebasedontheircaecalbacterial
phylotypes (Drouilhet et al., 2016). The discrepancy between these
monogastrics results and ours may be due to much more advanced
divergence or the microbiota gut localisation that was studied.



Fig. 4. Principal component analyses of lamb ruminal microbiota, per diet and sequencing. Abbreviations: CLR: centered logratio; expl. var: explained variance; OTU:
operational taxonomic unit; PC: principal component. Analyses were carried out per diet and sequencing with OTU CLR values adjusted for sequencing effects. (A) 16S
sequencing under a concentrate diet; (B) 18S under a concentrate diet; (C) 16S under a mixed diet; (D) 18S under a mixed diet. Animals phenotyped in 2018, 2019 and 2020
are represented by dots, crosses and diamonds, respectively. Under a mixed diet, animals phenotyped during the first and second periods are represented in dark blue and red,
respectively.

Table 2
Balanced error rates while predicting residuaI feed intake lines of lambs from fixed effects, BW and/or microbiota data.

Set of predictors3

Diet1 Sequencing (n2) M S S + M

C-diet 16S (269) 0.46a (0.06) 0.38a (0.05) 0.46a (0.06)
18S (205) 0.47b (0.07) 0.35a (0.06) 0.43ab (0.06)

M-diet 16S (160) 0.55a (0.08) 0.47a (0.07) 0.53a (0.08)
18S (161) 0.45a (0.08) 0.49a (0.07) 0.45a (0.08)

Abbreviations: C-diet: concentrate diet; M: microbiota; M-diet: mixed diet; S: systematic effects; S + M: microbiota plus systematic effects.
Predictions were carried out with sparse partial least squares discriminant analyses. Balanced error rates were averaged over 5-fold cross-validations repeated 50 times. SDs
are given in brackets.

1 Diets. C-diet: sheep were fed a 100% concentrate diet; M-diet: sheep were fed a mixed diet (2/3 of forage and 1/3 of concentrate).
2 Number of samples.
3 Sets of predictors. M: adjusted centered logratio values of 16S or 18S operational taxonomic units; S: systematic effects, i.e., fixed effects and final BW; S + M: systematic

effects and adjusted centered logratio values of 16S or 18S operational taxonomic units.
a,b Balanced error rates with different letters significantly differ (corrected t-test P-value < 0.05 after adjustment). Comparisons and Benjamini–Hochberg adjustments were
made per diet and sequencing.
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Predictions of feed efficiency and associated traits are not improved
with rumen microbiota data

Assessing the predictive ability of host traits for the rumen microbiota
The predictive ability of host traits from rumen prokaryote or

eukaryote microbiota was highly variable according to traits: low
prediction accuracies were observed for residual intakes compared
to the other studied traits.

Predictions from microbiota compositions only – As a majority of
authors did, we fitted models with only microbiota variables to
predict feed efficiency traits. Averaged Pearson correlations
between sPLSR predictions from microbiota data and actual traits
varied with the diet (concentrate or mixed diet), feed efficiency
8

trait (FCRC, REIC or REIM), and sequencing data used as predictors
(16S or 18S). We obtained null to low correlations between actual
residual intakes (0.06–0.35) and predictions from microbiota data.
This result contradicts that of Ellison et al. (2019), who found a
strong correlation between actual sheep RFI and predictions from
16S data (0.71 versus 0.35 in our study for REIM). Discrepancies
between our results might be explained by two main differences.
They used a smaller number of animals (16 in their training set,
20 in their testing set), which might not fully reflect the variability
of a larger population. Second, they picked animals with extreme
and average RFI phenotypes out of a larger population to build
the testing set. Selecting discontinuous and contrasting groups
might artificially inflate the Pearson correlation (Aggarwal and



Fig. 5. Average Pearson correlations between lamb feed efficiency, production traits and predictions from systematic effects and/or microbiota data. Abbreviations: ADEI:
average daily energy intake; ADG: average daily gain; BFT: back fat thickness; FCR: feed conversion ratio; M: microbiota; MD: muscle depth; REI: residual energy intake; S:
systematic effects; S + M: microbiota plus systematic effects. Predictions were carried out with sparse partial least squares regressions. Pearson correlations were averaged
over 5-fold cross-validations repeated 50 times. Error bars are equivalent to 1 SD. (A) 16S sequencing under a concentrate diet; (B) 18S under a concentrate diet; (C) 16S under
a mixed diet; (D) 18S under a mixed diet. Three sets of predictors were tested, with M: adjusted centred logratio values of 16S or 18S operational taxonomic units (green); S:
systematic effects including fixed effects and final BW (blue–green); S + M: systematic effects and adjusted centred logratio values of 16S or 18S operational taxonomic units
(purple). Traits were recorded under a concentrate diet (C subscript) or a mixed diet (M subscript). a,b,cCorrelations with different letters significantly differ (corrected t-test P-
value < 0.05 after adjustment). Comparisons and Benjamini–Hochberg adjustments were made per trait, diet and sequencing.
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Ranganathan, 2016). Furthermore, it might not reflect the variabil-
ity of a continuous trait such as RFI. In dairy cows fed a mixed diet
(30 animals in the training and 31 in the testing sets), there was a
low correlation (0.19) between the ratio of milk production over
feed intake and predictions from whole metagenome sequencing
data (Delgado et al., 2019). This result is intermediate to our pre-
diction accuracies when FCR was predicted from 16S or 18S data
(0.16–0.35) in meat sheep fed a concentrate diet.

When only microbial predictors were used as predictors, the
best prediction accuracies were obtained with intake traits (ADEIC
or ADEIM): correlations ranged between 0.05 and 0.56 on average,
with higher correlations for 16S predictors than 18S. Delgado et al.
(2019) found an intermediate correlation of 0.39 between actual
intakes and predictions of cow DM intake fromwhole metagenome
sequencing data.

As observed before in different contexts, microbiota data alone
might be used to predict energy intake, with moderate accuracies,
but for feed efficiency traits, accuracies of predictions are very low.

Predictions from a combination of microbiota and systematic
effects – Few authors have used a combination of microbiota data
9

and systematic effects to jointly predict host traits. In rabbits fed
pellets, the averaged correlation was as low as 0.17 between actual
RFI and sPLSR predictions from systematic effects and 16S data
(Velasco-Galilea et al., 2021). In sheep-fed concentrates, we
obtained slightly lower correlations between REIC and predictions
from analogous predictors (average correlation of 0.11).

The present study also combined systematic effects and 16S
predictors to predict not only feed efficiency traits but also their
components. With these predictors, ADEI prediction accuracy in
sheep fed concentrates was similar to previous findings in mono-
gastrics: our average correlation of 0.79 in sheep is close to that
of 0.73 in rabbits (Velasco-Galilea et al., 2021). The same observa-
tion holds for ADG prediction accuracy from 16S data and system-
atic effects: average of 0.41 in our study, against 0.51 in rabbits
(Velasco-Galilea et al., 2021), and for BFT prediction accuracy:
average correlation of 0.62 in our study against averages that
may be over 0.50 in pigs, depending on the sampling time
(Maltecca et al., 2019).

Therefore, low to high prediction accuracies can be reached
when systematic effects and microbiota are combined as
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predictors of host traits. However, it does not demonstrate that
predictions benefit from the inclusion of microbiota variables. Pre-
diction models may rely more on systematic effects, such as the
live weight, than microbiota variables. Indeed, the present study
illustrates that models integrating microbial predictors and sys-
tematic effects never significantly outperformed predictions from
systematic effects only. Therefore, microbiota predictors did not
provide any added value to improve prediction accuracies. Predic-
tion accuracies did not benefit from any synergy between micro-
bial, fixed effects and BW predictors. In addition, systematic
effects (i.e., fixed effects and BW here) represented less-
expensive predictors than metabarcoding variables. In contrast,
Velasco-Galilea et al. (2021) demonstrated that sPLSR models more
accurately predicted rabbit RFI when microbiota variables were
included than models with systematic effects only. Similarly,
Maltecca et al. (2019) showed an improvement in machine learn-
ing accuracy by including microbiota data to predict swine growth
and carcass traits. This was not the case in our study, regardless of
the trait, microbiota sequencing or diet.

The sheep rumen microbiota may not have a negligible predic-
tive ability for feed efficiency or its components. However, the pre-
sent study suggests that recording systematic effects, such as
animal weight and environmental effects, might be more effective
than sampling and metabarcoding the rumen fluid. Most studies
did not consider the predictive ability of systematic effects to
establish a baseline and prove the utility of the microbiota in host
trait predictions. We conclude that host trait predictions did not
benefit from the inclusion of microbiota predictors because these
were compared to cheaper predictors that proved to be more or
as effective.

Disentangling ruminal microbiota compositions and the environment
is crucial. The current experiment showed that environmental
effects such as the year or period of phenotyping shaped the rumi-
nal microbiota composition of lambs (Fig. 4). The influence of envi-
ronmental effects on the gut microbiota has already been well
documented, as shown by geographic location, pen, diet, and farm-
ing practice effects (Thompson and Holmes, 2009; Henderson
et al., 2015; Siegerstetter et al., 2017; Belanche et al., 2019; Bi
et al., 2019; Marie-Etancelin et al., 2021; Wen et al., 2021). For
instance, Ellison et al. (2017) found four times more OTUs signifi-
cantly associated with the diet than OTUs associated with RFI sta-
tus. Marie-Etancelin et al. (2021) highlighted that the diet
impacted 91 bacterial genera out of 114, whereas no significant
relationship was found between RFI traits and bacterial genera.
Identifying significant associations between host traits and the
rumen microbiota might be challenging, partly because of strong
environmental effects in the upper gut of ruminating animals.

Therefore, scientists should also assess the predictive potential
of systematic effects when using microbiota data for predictions. It
would be desirable to include covariates or factors reflecting spa-
tiotemporal changes, as they may affect the microbiota composi-
tion (Maltecca et al., 2019) and the predicted phenotype. For
instance, animal phenotypes might not be homogeneous across
pens due to the allocation of animals, or across years due to exper-
imental variations. Microbiota variations associated with the pen
or the year may be spuriously correlated with host phenotypes.
Therefore, ignoring systematic effects might have led to overopti-
mistic claims about the microbiota’s potential to predict sheep feed
efficiency.

Perspectives for host phenotype predictions

Metabarcoding the rumen microbiota might not be efficient in
predicting the production traits presently examined in sheep.
However, it might be more useful in predicting greenhouse gas
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emissions, given that methane is a direct by-product of fibre fer-
mentation by rumen microorganisms (Hill et al., 2016). Moreover,
it was previously estimated that approximately 13% of methane
production variations were associated with microbiome variations
in dairy cattle (microbiability of 0.13 ± 0.08) (Difford et al., 2018).
In sheep, estimates of methane yield microbiability varied with the
sequencing method and pipeline, from 0.19 (±0.07) to 0.41 (±0.08)
(Hess et al., 2020).

To predict sheep feed efficiency, intake, growth or body compo-
sition traits, different omics approaches might provide better
results. Previously, our RFI lines were better discriminated based
on plasma metabolomics than based on rumen metabolomics,
but the predictive ability was not assessed (Touitou et al., 2022).
This suggests that the rumen in the upper gut would not be the
best host component to predict feed efficiency variations. Sequenc-
ing the digestive microbiota in a different gut section might be use-
ful. This was already explored with the faecal microbiota to predict
pig traits (Maltecca et al., 2019; Aliakbari et al., 2022). In rumi-
nants, we focused on the ruminal microbiota because of its central
role in animal nutrition. However, the faecal microbiota, as the end
of the entire digestive process, could be relevant. To the best of our
knowledge, in ruminants, no peer-reviewed study has used testing
sets to assess the predictive accuracies of complex traits from
rumen and faecal microbiotas. Nonetheless, Andrade et al. (2022)
identified faecal and ruminal microorganisms significantly associ-
ated with beef RFI. Furthermore, Monteiro et al. (2022) suggested
that the dairy cow faecal microbiota was less correlated with feed
intake than the rumen microbiota and that the faecal microbiome
was more correlated with production efficiency. They hypothe-
sised that more efficient animals could be associated with a differ-
ent fermentation profile in the rumen. Then, the host uptake of
nutrients might lead to differences in nutrient availability for
microorganisms in the lower gut (Monteiro et al., 2022). In addi-
tion to the rumen, it might be the accumulation throughout the
whole digestive tract of differences in digestion or assimilation
that influences the host efficiency. It may also affect the availability
of nutrients for microorganisms in the lower gut. This might result
in a correlation between host feed efficiency and faecal microbiota.
Finally, faecal sampling would be less invasive than rumen fluid
sampling.
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