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Abstract

In the following pages we take a fresh look at the ancient Indian Chakravāla or Cyclic

algorithm for solving the Brahmagupta-Fermat-Pell quadratic Diophantine equation in

integers taking account of recent developments. This is the oldest general algorithm (1150

CE) for solving this equation. The algorithm can be proved directly in its own terms,

following a recent work by A. Bauval, to always lead to a periodic solution in a finite number

of steps. We review a slightly modified version of this work. It forms the basis of a re-

interpretation of this algorithm in the framework of a reduction theory of binary indefinite

integer valued quadratic forms on which the modular group SL(2,Z) acts. The reduction

condition of this algorithm are restated in terms of the roots of the quadratic form. The

SL(2,Z) action on (reduced) roots of this form furnish semi-regular continued fractions

which are periodic and which furnish SL(2,Z) automorphisms of the quadratic form. Very

much as in the classical theory of Gauss, this gives solutions of the Brahmagupta-Fermat-

Pell equation. We give a proof that the solution at the end of the first cycle is fundamental

(positive and least). We also give the conversion to regular continued fractions which

involve larger periods. A number of worked out examples are given to illustrate the main

points and this for the benefit of the uninitiated reader.

1. Introduction

The present work is concerned with integer solutions of the Brahmagupta-Fermat-Pell

equation. This is the well known quadratic Diophantine equation:

y2 −Dx2 = 1 (1.1)

where D > 0 is a positive non-square integer. By a non-square integer we always mean an

integer which is not a perfect square.
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As an associated problem we have

y2 −Dx2 = m (1.2)

where m is any integer, positive or negative. We are interested in solving (1.1) in integers.

But other cases (1.2) arise in intermediate steps of the Chakravāla or Cyclic algorithm

for solving (1.1) which is the subject of this work. We are interested in positive integer

solutions.

This equation has a long history, (Weil [W] Chapter 1). It has come to be known as the

”Pell equation” due to an erroneous attribution of Euler (see e.g. the MacTutor article

[MT] which gives an account of the history). This error has however propagated through

history. Integer solutions of this equation were in fact studied systematically in some

particular cases (see later) by the Indian mathematician Brahmagupta (circa 628 CE).

Bhāskarachārya (commonly referred to as Bhāskara II) (1150 CE) gave an algorithm

(the so-called Chakravāla or Cyclic algorithm) in 1150 CE to solve this equation in the

general case. However this algorithm is said to be older and has been attributed to Jayadeva

(mid 11th century CE) in [KS]. In any event it is the version of Bhāskara II which is known

explicitly (Datta and Singh, [DS Part 2]) and to which we will refer. As recounted by Weil

in [W], five hundred years later Fermat (1657 CE), who was unaware of the earlier work of

Brahmagupta and Bhāskara II, proposed the study of integer solutions of this equation.

It is thus proper to call this the Brahmagupta-Fermat-Pell equation.

We give further details of some of the historical work, which might not be known to all.

Brahmagupta obtained integer solutions of (1.1) for some particular cases, e.g. D = 83, 92,

exploiting a composition law known as Brahmagupta’s identity. The Diophantus identity

(see [W]) is the particular case D = −1 of Brahmagupta’s identity which is algebraic and

thus true for arbitrary D. The composition law generates new solutions (in fact an infinite

number) given a particular one. Furthermore, exploiting his composition law, he showed

that integer solutions of (1.2) for m = −1,±2,±4 implied the solution of (1.1), m = 1.

This is reviewed in [DS], Part 2. The algebraic identity of Brahmagupta was rediscovered

later by Euler. Bhāskaracharya (Bhāskara II) (c.1150 CE) exploited Brahmagupta’s

composition law to devise the Cyclic or Chakravāla algorithm, for solving this equation

in the general case. Bhāskara II solved many difficult cases (D=61, 67 etc) using the

Cyclic algorithm. Nārāyana (circa 1340- 1400 CE) solved the cases D = 97, 103 using

the same algorithm. These solutions are reviewed in [DS], Part 2. This algorithm is the

subject of this work.

Fermat in 1657 CE issued a challenge to English mathematicians to obtain integer

solution of this equation for the case D=61, not knowing the earlier solution given by

BhāskaraII. In response, the English mathematician Viscount Brouncker solved the case

D = 61 as well as other cases. See Weil [W] for Brouncker’s method. Euler, starting
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1730 CE, solved particular cases of this equation using the continued fraction for
√
D

and noticed the periodicity of the continued fraction. Later Lagrange took up Euler’s

continued fraction method and proved the existence of periodic solutions after a finite

number of steps. All of this is recounted by Weil in [W]. For the Indian work see [W, pages

14-24] and [DS, Part 2]. The Indian algorithm was known to work for all the cases that

had been tried. But a proof, in its own terms, that the algorithm would always work in a

finite number of steps was missing. This would come later.

So matters stood until in 1929-30 Ayyangar, [A1], in a pioneering work, took up the

analysis of the Chakravāla algorithm in terms of the evolution of particular indefinite (in-

teger valued) binary quadratic forms (which he called Bhāskara reduced forms). However,

Ayyangar’s proof of the finiteness and periodicity of the Chakravāla algorithm is marred

by some lacunae, as was noted by Bauval [B]1. This has since then been corrected, and, as

an improvement of Ayyangar’s earlier work, a new proof of the finiteness and periodicity

of this algorithm has been produced by Bauval in [B]. A version of the results in [B] is

given later.

Ayyangar [A2], in 1940-42, developed a type of semi-regular continued fractions (Near-

est Square Continued Fractions), noted NSCF. According to Ayyangar the NSCF was the

natural sequel to Bhāskara’s cyclic method. However the connection of his NSCF with the

Chakravāla algorithm is unclear as was pointed out by Selenius ([Se] and [Se1, Se2] ). The

semi-regular continued fractions of [A2] and those derived directly from the Chakravāla al-

gorithm (see Section 5) are not always the same. As mentionned earlier, in the Chakravāla

algorithm a successor step is not always unique (see later). This produces sequences which

split and join up locally with, however, the same common fundamental solution of the

Brahmagupta-Fermat-Pell equation. This will be seen in Sections 3 and then in Section

5, where the semi-regular continued fractions (SRCF) are derived. The case D = 29 was

pointed out in [B]. The cases D = 97, 58 are further examples of this phenomenon. One

now has only to compare this with Ayyangar’s NSCF sequences for the same cases as they

appear in [A2] and where this non-uniqueness does not appear to occur. Thus it appears

that the NSCF continued fractions do not always coincide with the SRCF derived from

1
In particular a successor step in the algorithm is not always unique. This and some other technical gaps are

pointed out in the various footnotes of [B].
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the Chakravāla algorithm. They do so only when the successor step is unique. 2

These notes are organized as follows:

In section 2, we recall briefly Brahmagupta’s composition law (identities) and some of his

solutions. Moreover we prove by iteration that if there is one positive integer solution,

then there is an infinite number of them. This was stated by Brahmagupta himself. We

show in a now standard way that they provide units of a quadratic ring and that, if all

the units have been obtained, there is a fundamental unit (the smallest solution).

In section 3, we give a version of the Chakravāla or Cyclic algorithm. In particular the

algorithm is designed to solve (1.1) whereas (1.2) plays an auxiliary role in intermediate

stages of the algorithm. The integer m in (1.2) is thus allowed to be positive or negative.

This therefore differs from the version in [B] where the equation to be solved has an

absolute value taken. This does not distinguish between m = +1 and m = −1, and m

called k in [B] is always positive. It is useful for various reasons to separate the two cases

which are very different. The positive equation (m = 1) is always solvable when D is a

positive non-square integer, and the solutions are periodic with even period and infinite

in number. The solvability of the negative equation (m = −1) is a harder problem. If we

have a solution for m = −1, then a second iteration (see later) using the Brahmagupta

composition produces a solution for m = 1. However to obtain solutions for the case

m = −1 additional conditions have to be imposed on D.3

2
Selenius in [Se1, Se2]] develops what he calls the ideal half-regular continued fraction (ideal SRCF) as a

counterpart of the Chakravāla algorithm. The following issue arises: For D = 58 on page 31 of [S2],

Selenius transforms a regular (RCF) to a semi-regular continued fraction for
√

58 (by a singularization process

which is opposite to that of Perron’s transformation of a SRCF to an RCF). However he obtains only one of the

two possible SRCF. We can compare this with those derived from the Chakravāla algorithm in Section 5 of

this paper. See example 5 in section 5 for the case D = 58 where the the semi-regular (SRCF) and regular

continued fractions (RCF) are given. The two split SRCF sequences (ν+ and ν− cycles) give the same RCF

by the Perron tranformation. This RCF coincides with that of Selenius. It appears that the possibility of non-

uniqueness in the Chakravāla algorithm and the SRCFs engendered therefrom is absent in the considerations

of Selenius. For further work on the NSCF of Ayyangar see [MRW], [MR].
3

There is a well known result, see e.g ([S1],theorem 5.1), that the equation for m = −1 has no solution

if D is divisible by a prime p ≡ 3 (mod 4). Moreover, it is well known (see e.g. Stark ([S1], theorem 7.26)

) that the equation for m = −1 is solvable if the continued fraction expansion of
√
D has a period length

that is odd. It was shown by Legendre in [Le] and Dirichlet in [D, §83, page 141, footnote 71] that D ≡ 1

(mod 4) is a necessary condition for solvability of the m = −1. More recently it has been shown by Mollin

and Srinivasan ([MS]) that a necessary and sufficient condition for the solvability of the negative equation is

that D ≡ 1(mod 4) together with y0 ≡ −1(mod 2D) where y0, x0 is the fundamental solution of the

m = 1 equation (1.1), y2 −Dx2 = 1, with D as above. Illustrative examples for this result are the cases

D = 61, 29, 97, 13, 41, see e.g. examples 2, 3, 4, 6, 7 of Section 5 where the fundamental solutions of the
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Another reason is that for the derivation of continued fractions from the algorithm we

have to distinguish the two cases.4 Hereafter we consider only the m = 1 case ((1.1) to be

solved, and, as mentioned earlier, (1.2) where positive and negative values of m occur plays

an auxiliary role in the algorithm in intermediate stages. However the principal results of

Bauval, namely her Proposition 1 and Theorem 2 (Main Theorem) in [B], remain valid

after some trivial changes.

It will be useful to summarise briefly some features of the algorithm as it figures in Sections

3, 4 and 5. In Weil’s notation, [W], a solution of equation (1.2) at a given stage n of the

algorithm

Da2
n +mn = b2n

can be represented as (an, bn;mn). The integers in this triple are relatively prime. The

algorithm (Section 3) introduces another positive integer νn chosen to fullfil two conditions:

(1) νn ≡ −νn−1 (mod mn) and amongst such νn, (2) νn is then chosen so as to make

|ν2
n − D| least in the congruence class (mod mn). To start the algorithm, we take ν0 =

0, a0 = 0, b0 = 1,m0 = 1. The algorithm then gives (an+1, bn+1;mn+1) as well as the

integer νn+1. In particular mn+1 is given by mn+1mn = ν2
n−D. In fact it is enough to to

record the evolution of the triple (mn, νn,mn+1) (as noted in [A1]) to prove the finiteness

and periodicity of the algorithm.

The condition (2) above on νn, viz that |ν2
n − D| is least in the congruence class (mod

mn) does not imply that the choice of νn is unique. This is behind the phenomenon of

twin successors and sequences as first pointed out in [B]. This produces sequences which

split and then join up (locally) with, however, the same common fundamental solution

of the Brahmagupta-Fermat-Pell equation. Explicit examples show this and these will be

found in Section 3. In particular, as mentioned earlier, the cases D = 29, 97, 58 exhibit

twin successors and are worked out in detail. The other examples which are worked out

are for D = 61, 67 (unique successors) with solutions due to Bhāskarachaya himself, and

in section 5 the additional cases D = 13, 41 to illustrate the occurence of short periods

in continued fractions. The phenomenon of twin successors and sequences have their

counterparts in the semi-regular continued fractions which are derived from the algorithm

in Section 5.

Section 4 is devoted to results which were obtained in [B]. We adopt the terminology in

[B] and call (mn, νn,mn+1) a step if it satisfies the conditions (1) and (2) given above.

Proposition 4.3 gives equivalent characterisations of a step. A step (mn, νn,mn+1) is

reduced if the reverse triple (mn+1, νn,mn) is also a step. Thus |ν2
n − D| is least both

in the congruence class (mod mn) and the congruence class (mod mn+1). Theorem 4.6

positive equation are given and the premises of the theorem of [MS] can be verified.
4

This is very much as in the case of the reduction theory of Gauss (see Dirichlet [D, Chapter 4]).
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shows that the successor of every step is reduced. The first step is seen to be reduced and

therefore every step of the algorithm is reduced. This leads to Theorem 4.8 which proves

that the number of steps is finite and produces a cycle. Proposition 4.3 and Theorem 4.6

closely follow results obtained in [B, Proposition 1, Theorem 2 ]. In Appendices 1 and 2

detailed proofs are given of Proposition 4.3 and Theorem 4.6. These are amplified versions

of the proofs given in [B, Proposition 1 and Theorem 2]. Given the brevity of the proofs

in [B] we hope this will be useful.

In Section 5, we adopt some of the considerations in Gauss [DA] and Dirichlet [D], Chapter

4, but now in the framework of the analysis of the Chakravāla algorithm in Section 4. After

the work of Fermat (see [W]), Lagrange ([L], see [W]), Legendre ([Le], see [W]) and Gauss

([G-DA], see [D]) were the first to consider binary quadratic form representation of integers.

Lagrange introduced the notion of equivalent forms under GL(2,Z) transformations, and a

reduction theory of quadratic forms which is efficient for the positive definite case and leads

to easy proofs of the various Fermat theorems on the sums of squares. This culminated in

the great work of Gauss ([G-DA]) who, in particular, gave a complete theory of reduction

for indefinite binary quadratic forms and this leads to the solution of (1.1). Gauss’s work

is covered in the Dirichlet lectures [D], edited and supplemented by Dedekind, and this

constitutes our principal reference. The modular group SL(2,Z) (whose elements Gauss

called proper substitutions) plays an important role in Gauss’s theory and this will be the

case in our context.

We consider the step (m, ν,m′) as an indefinite binary quadratic form with integer coeffi-

cients (in the notation of Gauss)

Q(x, y) = mx2 + 2νxy +m′y2

where ν is chosen so that |ν2 − D| is least in the congruence class (mod m) (see section

4). The discriminant of this form is ∆(Q) = 4(ν2 −mm′) = 4D where we take D > 0,

non-square and fixed. Forms with the above property for the middle coefficent may be

called best forms (mod m). Such forms are steps (in the sense of Section 4) and they

are reduced and are thus also best (mod m′). Note that the determinant of this form is

detQ = mm′ − ν2 = −D and thus the form is indefinite.

The condition that ν is best (mod m) can be restated in terms of the roots of the quadratic

form Q(ω, 1)

Q(ω, 1) = mω2 + 2νω +m′ = 0

The principal root is

ω+ =
−ν +

√
D

m
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and its conjugate is

ω− =
−ν −

√
D

m

Proposition 5.1 states that the necessary and sufficient condition that ν is best (mod m)

is

|ω+| < 1

provided |m| <
√
D. Thus ω+ is a proper fraction. It can be shown (see Remark 5.3) that

the other root ω− satisfies |ω−| > 1. These two conditions figure in the reduction theory

of Gauss, where in addition there is a third condition, namely that the roots have opposite

signs (see [D], §74).

From Theorem 4.6 and Corollary 4.7 the step (m, ν,m′) is reduced (reduced form) and

thus (m′, ν,m) is also a step (reduced form). Hence ν is best both (mod m) and (mod

m′). Moreover |m′| <
√
D. We will refer to (m′, ν,m) as the reversed step.

The quadratic form corresponding to the reversed step is the reversed form

Q(r)(x, y) = m′x2 + 2νxy +my2

whose principal root is

ω
(r)
+ =

−ν +
√
D

m′

and since ν is best (mod m′), and |m′| <
√
D, we have by Proposition 5.1

|ω(r)
+ | < 1

The modular group SL(2,Z) acts on quadratic forms by acting on the form matrix (Section

5 and [D], §54, §63). There is a modular transformation Sδ (see equation (5.16) below)

which maps a step (considered as a reduced form) to the successor form

Sδ : (m, ν,m′)→ (m′, ν′,m′′)

where ν+ ν′ = −δm′ and δ is an integer. Thus ν′ ≡ −ν (mod m′). For the successor form

(m′, ν′,m′′) to be a step (reduced form) we must have |ω′+| < 1. Here ω′+ is the principal

root of the quadratic form (m′, ν′,m′′). This fixes δ but not uniquely. There can be twin

successors as explained earlier. This is the content of Theorem 5.4. It is shown in Section 5

that the cyclic algorithm then arises naturally. The modular group SL(2,Z) acts naturally

on roots of forms (Section 5 and [D], §73) and thus on roots of steps which are reduced

forms. The action of the transformation Sδ on principal roots is given in section 5. Its
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iteration leads to semi-regular continued fractions (SRCF) which are convergent (Proposi-

tion 5.5, Lemma 5.6 and Proposition 5.7) and are periodic. The SL(2,Z) automorphisms

of the quadratic form constitute a subgroup (its elements are called automorphs) which act

on the roots. As shown in [D, §62] there is a 1−1 correspondence between the elements of

this subgroup and solutions of the Brahmagupta-Fermat-Pell equation. The periodicity of

the SRCF (together with symmetry properties of Lemma 5.11) provide us with such au-

tomorphs and thus all solutions of the Brahmagupta-Fermat-Pell equation. The solutions

obtained at the end of the first cycle are fundamental: positive and least. This is shown

in Section 5 (see Proposition 5.12) Although not strictly necessary, we nevertheless give

for comparison the transformation to regular continued fractions (RCF) together with the

(same) fundamental solutions. This involves cycles with longer period lengths. However

for the RCF the non-uniqueness of successors disappears. We give a number of examples.

Appendix 3 contains the proof of Lemma 5.6, and in Appendix 4 we give a proof of Lemma

5.11 which gives a generalisation to the SRCF of the Galois inverse period theorem and

its symmetry consequences, needed earlier.

Remark 1.1. The history of this equation can be found in the book by André Weil, [W]. The

work in number theory of the early Indian mathematicians and astronomers (Aryabhata,

Brahmagupta, Bhaskara II (Bhaskaracharya) and others) and then the later European

contributions (Fermat, Brouncker, Euler, Lagrange, and Legendre) is recounted in this

book. For Gauss’s theory (not covered in [W]) see the beautiful Dirichlet lectures [D],

posthumously edited and supplemented by Dedekind.

Remark 1.2. A basic text which gives an account of the Indian work (500 CE- 1400 CE)

with translations of the relevant passages from the Sanskrit is Datta and Singh: [DS].

Remark 1.3 A brief historic account of work related to this equation can be found in [MT].

Remark 1.4. I bring to the reader’s attention two interesting books on the history of Indian

Mathematics by Divakaran [Di] and Plofker [Pl]. I have profited from them.

Acknowledgements: I wish to thank P. P. Divakaran for stimulating my interest in this

subject. This has led to the present study. I thank Erhard Seiler for his continuing interest

as well as for his efforts towards procuring for me some works of Selenius ([Se1] and [Se2])

which are not easily available. I am grateful to Sergey Alexandrov and Jean-Bernard Zuber

for reading these notes and for their pertinent questions and comments.

2. Brahmagupta’s composition law and applications

Let D be a positive, non-square integer. Let m be an integer. Througout the following

the triple (x, y;m) will denote an integer solution of

Dx2 +m = y2 (2.1)
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Proposition 1.1: The Brahmagupta Composition law (628 CE)

Let (xj , yj ;mj) be two such triples. There exists a composition

(x1, y1;m1) • (x2, y2;m3) = (x3, y3;m3) (2.2)

such that

x3 = x1y2 + x2y1

y3 = Dx1x2 + y1y2

m3 = m1m2

(2.3)

Proof : For j = 1, 2 we write

y2
j −Dx2

j = (yj +
√
Dxj)(yj −

√
Dxj)

We have

(y1 +
√
Dx1)(y2 +

√
Dx2) = (y1y2 +Dx1x2) +

√
D(x1y2 + x2y1)

Similarly

(y1 −
√
Dx1)(y2 −

√
Dx2) = (y1y2 +Dx1x2)−

√
D(x1y2 + x2y1)

Multiplying out the last two equations gives

m1m2 = (y2
1 −Dx2

1)(y2
2 −Dx2

2) = (Dx1x2 + y1y2)2 −D(x1y2 + x2y1)2 (2.4)

Remark :The last equation is an algebraic identitity: Brahmagupta’s identity. Since this

is an algebraic identity, D can be arbitrary. Choosing e.g. D = −1 we get Diophantus’s

identity.

Proposition 1.2: (after Brahmagupta):

If the equation

Dx2 + 1 = y2 (2.5)

where D is a nonsquare, positive integer, has one positive integer solution (x1, y1) , then

it has infinitely many positive solutions (xn, yn), for all integers n ≥ 1. The (xn, yn) are

generated by the formula
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yn + xn
√
D = (y1 + x1

√
D)n

Proof: The proof is by iteration of the composition law of Proposition 1.1 applied to the

integer triple (x, y; 1). Define the quadratic ring

Z(
√
D) = {η = y +

√
Dx : y, x ∈ Z}

The ring has a norm N (η) defined by

N (η) = ηη̄ = (y +
√
Dx)(y −

√
Dx) = y2 −Dx2

Thus the integer triple (x, y; 1) corresponds to a unit of the ring: N (η) = 1.

More generally we obtain an infinite number of solutions (xn, yn; 1), as follows: Let n ≥ 1.

ηn = yn +
√
Dxn = (y1 +

√
Dx1)n = ηn1

where η1 = y1 +
√
Dx1 is a unit. Then its norm is

N (ηn) = ηnη̄n = (η1η̄1)n = 1

and thus (xn, yn; 1) are solutions. If (x1, y1; 1) is a positive solutions then all (xn, yn; 1)

are positive solutions. Thus Proposition 1.2 implies that there are an infinite number of

positive solutions. Of the solution set {(xn, yn; 1)} one of them is the smallest because the

solutions grow with increasing integer values of x (equivalently y) as is easy to show.

Suppose now we have found all the positive solutions. Then, by the above argument,

one of them is the smallest labelled (xD, yD; 1). This is the fundamental solution and

ηD = yD + xD
√
D is the the fundamental unit. All other units are generated by the

formula ηnD, for all n ≥ 1 as the next proposition shows.

Ordering units: Recall that a unit of a quadratic ring is an element η = y + x
√
D where

y, x are integers and ηη̄ = 1. Here η̄ is the conjugate η̄ = y−x
√
D. We can order the units

by ordering the integers y or equivalently the integers x since ηη̄ = 1 implies y2 = Dx2 +1.

Thus we can say that the fundamental unit ηD is the smallest unit.

Proposition 1.3 (after Dirichlet) : All units are generated from the fundamental unit

ηD by the formula ηnD, for all n ≥ 1 and there are no others.

Proof: That ηnD are units follows from Proposition1.2, ηnDη̄D
n = (ηDη̄D)n = 1. We now

prove that there are no others. The following argument is borrowed in essence from [D,

§85]. Suppose η = t+ u
√
D is a unit not in the list ηnD, all n ≥ 1. Then for some n,

ηnD < η < ηn+1
D
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Set η′ = ηη̄D
n. Plainly, η′ is a unit, since η′η̄′ = (ηη̄)(η̄nDη

n
D) = 1.

Then

η̄D
nηnD < ηη̄D

n < η̄D
nηnDηD

or

1 < η′ < ηD

which contradicts the assumption that ηD is a fundamental unit.

Remark: The Chakravāla algorithm (see later), like those of Lagrange and Gauss, solves

the equation for all positive, non-square D and gives all the positive periodic solutions. At

the end of the first period the algorithm gives the fundamental solution (xD, yD). That

this is so is shown in section 5, Proposition 5.12. The formula

yn + xn
√
D = (yD + xD

√
D)n

then generates all the solutions and there are no others as proved in Propositions 1.2 and

1.3. The fundamental solution is unique: the Chakravāla, Lagrange and Gauss algorithms

give the same fundamental solution, as follows from Proposition 1.3.

For completeness, we now give two elementary applications of the composition law, both

due to Brahmagupta. These are borrowed from [DS, Part 2].

Example 1 : Solve in integers

83x2 + 1 = y2 (2.6)

Solution : Notice that the triple (x = 1, y = 9;m = −2) is a solution to

83x2 − 2 = y2 (2.7)

Composing this triple with itself gives

(1, 9;−2) • (1, 9;−2)) = (18, 164; 4) = (x′, y′;m′)

which is a solution to

83x′2 + 4 = y′2

Dividing out by 4 gives

83(
x′

2
)2 + 1 = (

y′

2
)2
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Thus the triple (9, 82; 1) is an integer solution to (2.6).

Example 2: Solve in integers

92x2 + 1 = y2 (2.8)

Solution : Suppose x = 1, y = 10,m = 8. By composing with itself

(1, 10; 8) • (1, 10; 8) = (20, 192; 64) = (x′, y′;m′)

In other words, with the above values,

92x′2 + 64 = y′2

Now division by 82 gives

92(
x′

8
)2 + 1 = (

y′

8
)2

Therefore (x′′ = x′/8 = 5/2, y′′ = y′/8 = 24; 1) satisfies the beginning equation. Com-

posing withitself gives

(x′′, y′′; 1) • (x′′, y′′; 1) = (120, 1151; 1)

Thus (120, 1151 ;1) is an integer solution.

Remark : Before taking up the Chakravāla algorithm, we will state a result due to Brah-

magupta which shows that for four cases when integer solutions of the auxiliary equation

(2.2) are given, then the integer solutions of (1.1) can be straight away obtained. In the

Chakravāla algorithm (to be given later), as a shortcut, one can stop when one of these

cases arise without going to the end of the cycle. The proof (which is based on the com-

position law) is sketched in [W] (Chapter1) and given in more detailed fashion in [DS],

Part 2, pages 157-160. We do not give the proof here because in the Chakravāla or cyclic

algorithm which is the subject of the present study it is not necessary to make use this

theorem. However it is useful to know it, because in many instances it cuts short the work

without going to the end of the period.

Proposition 1.4: (Brahmagupa)

Existence of integer solutions a, b of

Da2 +m = b2

for m = −1,±2,±4 imply the existence of integer solutions (x, y; 1) of
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Dx2 + 1 = y2

1: For m = −1: we have the integer triple (2ab, 2b2 + 1; 1)

2: For m = ±2: we have the integer triple (ab, b2 ∓ 1; 1)

3: m = 4, b even : we have the integer triple (ab2 ,
b2

2 − 1; 1).

4: m = 4, b odd: we have the integer triple (a2 (b2 − 1), b2 (b2 − 3); 1).

5. m = −4 : we have the integer triple (ab2 (b2 + 3)(b2 + 1), (b2 + 2)[1
2 (b2 + 3)(b2 + 1)−1]; 1)

3. The Chakravāla algorithm of Bhāskara II (1150 CE)

We want to solve the Brahmagupta-Fermat-Pell equation (1.1) which we repeat

Dx2 + 1 = y2 (3.1)

where D is a positive non-square integer.

Consider the associated equation

Da2 +m = b2 (3.2)

where the members of the triple (a, b;m) are relatively prime integers. The following

Lemma will be used repeatedly to produce the recursion.

Lemma 3.1 (Bhāskara II) (see [DS], part 2):

Let ν be any positive integer. Then

D
( (aν + b

m

)2
+

(ν2 −D)

m
= (

Da+ bν

m
)2 (3.3)

Proof

We have the identitity

D 12 + (ν2 −D) = ν2 (3.4)

We compose the triple (a, b;m) with the triple (1, ν; (ν2−D) according to Brahmagupta’s

composition law (Proposition 1.1) to get the triple (aν + b,Da+ bν;m(ν2 −D). In other

words

D(aν + b)2 +m(ν2 −D) =
(
Da+ bν

)2
Now divide the previous eqation by m2 to get
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D
( (aν + b)

m

)2
+

(ν2 −D)

m
=
(Da+ bν

m

)2
(3.5)

which proves the lemma.

We now describe the Chakravāla algorithm of Bhāskara II for solving (3.1). In an inter-

mediate step, Bhāskara solved a linear Diophantine equation by the pulverizer or kuttāka

method (see [DS], part 2) of Aryabhata and Brahmagupta. However, as noticed in [A1]

and [W, page 23], this is equivalent in the present context to a congruence condition.

We will solve the auxiliary equation (3.2) iteratively to obtain a sequence of quadruples

(an, bn;mn, νn) where the three members of the triple (an, bn;mn) consists of relatively

prime (coprime) integers. νn is a positive integer. We use the standard notation: if a, b are

integers then a|b means a divides b. Two integers a, b are relatively prime if gcd(a, b) = 1.

It is convenient to state again (3.2)

Da2
n +mn = b2n (3.6)

The positive integers νn play an auxiliary role, but are needed for the algorithm to be

defined.

The Chakravāla algorithm

To start the algorithm we choose:

a0 = 0, b0 = 1;m0 = 1, ν−1 = 0 (3.7)

The subsequent steps are defined as follows:

1. Choose νn ≡ −νn−1 ( mod mn) and amongst these νn choose νn such that |ν2
n −D| is

least in the congruence class (mod mn). We then say (following the convenient terminology

in [B]) that the positive integer νn is best (mod mn).

Remark 1: By definition of the choice of νn, mn|(νn + νn−1).

Remark 2: There may be more than one choice of νn which is best, as remarked in [B].

This will be illustrated for the cases D = 29, 97, 58.

2. Suppose after n iterations we have the quadruple (an, bn;mn, νn) where (an, bn;mn)

are relatively prime integers. Then applying Bhāskara′s Lemma composing the triples

(an, bn;mn) and (1, νn; (ν2
n −D) gives us the recursion

an+1 =
(anνn + bn)

mn
(3.8)
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bn+1 =
Dan + bnνn

mn
(3.9)

mn+1 =
(ν2
n −D)

mn
(3.10)

(3.8), (3.9) and (3.10) imply the recurrence relations:

an+2 = an+1
(νn+1 + νn)

mn+1
− an (3.11)

bn+2 = bn+1
(νn+1 + νn)

mn+1
− bn (3.12)

Now mn+1 | (νn+1 + νn). Therefore the coefficients in (3.11) and (3.12) are integers.

Theorem 3.2 :

an+1, bn+1,mn+1 are relatively prime integers.

Proof: By assumption an, bn,mn are relatively prime integers.

1. We will first prove that an+1 is an integer. To this end first eliminate bn between (3.8)

and (3.9). We get

mn(bn+1 − νnan+1) = an(D − ν2
n) (3.13)

whence

(bn+1 − νnan+1) = −mn+1an (3.14)

bn − νn−1an = −mnan−1 (3.15)

From (3.8) we get

an+1mn = anνn + bn = an(νn + νn−1) + (bn − anνn−1)

Dividing the last equation by mn and using (3.15) we get

an+1 =
an(νn + νn−1)

mn
− an−1 (3.16)

Since an, an−1 are integers and mn|(νn + νn−1) we have an+1 is an integer.

2. Next we prove that bn+1,mn+1 are integers. From (3.13)
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mn

an
(bn+1 − νnan+1) = (D − ν2

n) (3.17)

Now mn and an are relatively prime. The right hand side of (3.17) is an integer. Therefore

an|(bn+1 − νnan+1). Hence

bn+1 − νnan+1

an
=
D − ν2

n

mn
= −mn+1 = integer

Therefore

bn+1 = νnan+1 − anmn+1 = integer (3.18)

We have thus proved that bn+1 and mn+1 are integers.

3. Next we prove that an+1, bn+1,mn+1 are pairwise relatively prime. From (3.8) we

obtain

mnan+1bn = (anνn + bn)bn = anνnbn + b2n

= anνnbn + (Da2
n +mn)

= an(νnbn +Dan) +mn

= anmnbn+1 +mn

where in the last step we have used (3.9). Now dividing out by mn we obtain

an+1bn − anbn+1 = 1 (3.19)

.

From (3.19) we see that an+1, bn+1 are relatively prime and (an+1, bn+1,mn+1) are rela-

tively prime. The theorem has been proved

The analysis of this algorithm will be given in Section 4. We make some prelimnary

observations. νn has been chosen such that ν2
n is nearest to D as possible in absolute

value, within the congruence class (mod mn). The condition |mn| <
√
D is shown in

Section 4 to hold uniformly. Recall mnmn+1 = ν2
n − D. It follows that |ν2

n − D| < D

whence we obtain the bound 0 < νn <
√

2D

To display the cyclical structure of the algorithm it will be enough to record the evolution of

the triple (mn, νn,mn+1). The triple represents (Gaussian notation) the binary quadratic

form

Qn(x, y) = mnx
2 + 2νnxy +mn+1y

2 (3.20)

and the discriminant of the form is by its definition ∆(Qn) = 4(ν2
n−mnmn+1) = 4D. The

quadratic form can be represented by the matrix
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Qn =

(
mn νn
νn mn+1

)
(3.21)

whence the determinant of the form is det(Qn) = mnmn+1 − ν2
n = −D, showing that

the form is indefinite. The number D is positive, non square and fixed. Since the co-

efficients are integers with the above uniform bounds, the number of possible triples (or

forms) (mn, νn,mn+1) of fixed discriminant is finite. Therefore the successive forms must

eventually repeat themselves. This is the origin of the cyclical structure of the Cakravāla

algorithm which will be proved in Section 4.

If the cyclic algorithm leads to one of the cases m = ±1,±2,±4, then as a shortcut we can

apply Brahmagupta’s Theorem 3. Independently of this, as shown later, this algorithm

always gives an integer solution of (3.1). If not stopped artificially to exploit the above

short cut, the full sequence leading to the solution will display the cyclical structure. We

give a few examples which display these features. The cases in examples 3.1 and 3.2 were

solved by BhαskaraII (see [DS]). Example 3.3, mentioned in [B], illustrates the possibility

of twin successors and thus of a sequence splitting into two sequences which join up in the

cycle. Examples 3.4, and 3.5 also illustrates this point.

Example 3.1 (Bhāskara II, 1150 CE) (see [DS, part 2]):

Solve in integers the case D = 61 :

61x2 + 1 = y2

.

The auxiliary equation is:

61a2 +m = b2

Step 0:

ν−1 = 0, a0 = 0, b0 = 1,m0 = 1

.

This is the trivial solution.

Step 1: (a1, , b1,m1, ν0). We must have m0|(ν0 + ν−1). Using the values from step 0, we

have ν0 is any integer such that |ν2
0−61| is least. This gives ν0 = 8. Thus m1 = ν2

0−61 = 3

and a1 = 1, b1 = 8. We thus have

a1 = 1, b1 = 8,m1 = 3, ν0 = 8

Step 2: (a2, b2,m2, ν1). Must have m1|(ν1 + ν0). This implies 3|(ν1 + 8), and |ν2
1 − 61| is

least. Therefore ν1 = 7, m2 =
ν2
1−61

3 = −4, a2 = (7 + 8)/3 = 5, b2 = (61 + b1ν1)/3 =

(61 + 56)/3 = 39. We thus have
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a2 = 5, b2 = 39,m2 = −4, ν1 = 7

Proceeding in this way we have to obtain (an+1, bn+1,mn+1, νn) until n = 13 when we get

the desired result (m14 = 1).

(a14 = 226153980, b14 = 1766319049,m14 = 1, ν13 = 8)

To display the cyclical structure of the Cakravāla it is enough to record the sequence

(mn, νn,mn+1). Starting with n = 0, the full cycle ends at n = 13, in other words after 14

steps. We have

{(1, 8, 3), (3, 7,−4), (−4, 9,−5), (−5, 6, 5), (5, 9, 4)(4, 7,−3), (−3, 8,−1);

(−1, 8,−3), (−3, 7, 4), (4, 9, 5), (−5, 6,−5), (−5, 9,−4), (−4, 7, 3), (3, 8, 1)} (3.22)

The sequence reverses itself after 7 steps (marked with a semi colon). From step 8 each

member is the reverse of the previous one, to end up finally at step 14 which is the reverse

of the first step and gives m14 = 1.

Boundedness of mn, νn: Observe in the above cycle that the maximum value of |mn| is 5.

We have |mn| <
√
D, where D = 61 for all n in the cycle. Moreover the maximum value

of νn is 9 <
√

2× 61. Thus νn <
√

2D.

Remark : Just after 2 steps we get m = −4, so we could have applied Brahmagupta’s

Proposition 1.3 to the triple

(a = a2 = 5, b = b2 = 39;m = m2 = −4) to obtain

x = ab
1

2
(b2 + 3)(b2 + 1) = 226153980

y = (b2 + 2)
(1

2
(b2 + 3)(b2 + 1)− 1

)
= 1766319049

as the least solution of 61x2 + 1 = y2. This short cut however breaks the cycle.

Example 3.2, (Bhāskara II). Solve in integers the case D = 67 :

67x2 + 1 = y2

.

The auxiliary equation is:

67a2 +m = b2

0 : (a0 = 0, b0 = 1,m0 = 1, ν−1 = 0) .

1: m0|(ν0 + ν−1)⇒ 1|ν0. Therefore ν0 is any integer: |ν2
0 − 67| is least. ν0 = 8 We get
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(a1 = 1, b1 = 8,m1 = −3, ν0 = 8)

2 : m1|(ν1 + ν0)⇒ ((−3)|(ν1 + 8). Possible choices are ν1 = 4, 7, 10...... Of these we must

have |ν2
1 − 67| is least. This gives ν1 = 7. m2 =

ν2
1−67
−3 = 6. a2 = −5, b2 = −41. Taking

absolute values we get

(a2 = 5, b2 = 41,m2 = 6, ν1 = 7)

3. m2|(ν2 + ν1)⇒ 6|(ν2 + 7), and |ν2
2 − 67| least. This gives ν2 = 5 and m3 =

ν2
2−67

6 = −7.

We get

(a3 = 11, b3 = 90,m3 = −7, ν2 = 5

4. m3|(ν3+ν2)⇒ (−7)|(ν3+5), and |ν2
3−67| least. This gives ν3 = 9 andm4 =

ν2
3−67
(−7) = −2.

We get

(a4 = 27, b4 = 221,m4 = −2, ν3 = 9)

We have taken absolute values for a4, b4.

Henceforth we record only the sequence

(mn, νn,mn+1)

to display the cyclical nature of the algorithm.

5. (m4, ν4,m5) :

m4|(ν4 + ν3) ⇒ (−2)|(ν4 + 9), and |ν2
4 − 67| least. This gives ν4 = 9 and m5 =

ν2
4−67
(−2) =

81−67
(−2) = −7. Therefore we have obtained the triple

(m4 = −2, ν4 = 9,m5 = −7)

6. (m5, ν5,m6) :

m5|(ν5 + ν4) ⇒ (−7)|(ν5 + 9), and |ν2
5 − 67| least. This gives ν5 = 5 and m6 =

ν2
5−67
(−7) =

25−67
(−7) = 6. Therefore we have obtained the triple

(m5 = −7, ν5 = 5,m6 = 6)

7. (m6, ν6,m7) :

m6|(ν6 + ν5) ⇒ 6|(ν6 + 5), and |ν2
6 − 67| least. This gives ν6 = 7 and m7 =

ν2
6−67
m6

=
49−67

6 = −3. Therefore we have obtained the triple

(m6 = 6, ν6 = 7,m7 = −3)
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8. (m7, ν7,m8) :

m7|(ν7 + ν6) ⇒ (−3)|(ν7 + 7), and |ν2
7 − 67| least. This gives ν7 = 8 and m8 =

ν2
6−67
m7

=
64−67
−3 = 1. Therefore we have obtained the triple

(m7 = −3, ν7 = 8,m8 = 1)

Thus the solution has been reached in Step 8:

(a8 = 5967, b8 = 48842,m8 = 1)

.

Remark : Since we reached m4 = −2 in Step 4, a short cut via Brahmagupta’s Theorem

3 already gives (x = 5967, y = 48842,m = 1).

The full sequence (mn, νn,mn+1) which displays the cyclical nature is

{(1, 8,−3), (−3, 7, 6), (6, 5,−7), (−7, 9,−2); (−2, 9,−7), (−7, 5, 6), (6, 7,−3), (−3, 8, 1)}
(3.23)

From step 5 onwards the sequence reverses itself. This is a typical feature of the Cakravāla

cycle. Once again we observe for all n in the cycle |mn| <
√
D since the maximum value

of |mn| in the cycle is 7 and 7 <
√

67. Moreover 0 < νn <
√

2D, since the maximum value

of νn is 9 and 9 <
√

2× 67.

Twin successors:

Bauval [B] pointed out the possibility of local splitting and joining of a Cakravāla se-

quence. When |m| <
√
D, m is even and ν is best (mod m), this occurs when ν has two

values ν± which are equidistant from D. We have

0 < ν2
+ −D = D − ν2

−

Twin successors are of the form (see Section 4, Lemma 4.2) (m, ν±,m
′) where m is even

and ν± is best (mod m) , and

ν± = |m′| ± |m|
2

|m′|2 +
|m|2

4
= D

.
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This leads to twin sequences. This possibility was absent in the Ayyangar analysis. We

will first see this from an illustrative example when D = 29, see[B]. Further examples are

when D = 97 and when D = 58.

Example 3.3 : Solve in integers the equation

29x2 + 1 = y2

The auxiliary equation is

29a2 +m = b2

We proceed as earlier to obtain the sequence (mn, νn,mn+1).

0 :

(a0 = 0, b0 = 1,m0 = 1, ν−1 = 0)

1 : (m0, ν0,m1):

To obtain ν0 the only condition to meet in this case is |ν2
0 − 29| is least. This gives ν0 = 5.

m1 =
ν2

0 − 29

m0
= −4

Thus we obtain the triple

(m0, ν0,m1) = (1, 5,−4)

2: (m1, ν1,m2):

m1|(ν1 + ν0) ⇒ 4|(ν1 + 5), The possible values are ν1 = 3, 7, 11, ..... We have to have

|ν2
1 − 29| is least. This happens for both ν1 = ν− = 3 and ν1 = ν+ = 7 . In fact

ν− = 3 : |9− 29| = 20

1

ν+ = 7 : |49− 29| = 20

So we can choose either of the values and thus the sequence is split. This leads to twin

successors

1. ν− = 3. Then

m2 =
ν2
− − 29

m1
=
−20

−4
= 5

(m1, ν1 = ν1 = ν−,m2) = (−4, 3, 5)
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2. ν+ = 7. Then

m2 =
ν2

+ − 29

m1
=

20

−4
= −5

(m1, ν1 = ν+,m2) = (−4, 7,−5)

Observe that m1 is even, ν± = |m2|± |m1|
2 , and 29 = m2

2 +
m2

1

4 , thus verifying the assertions

preceding this example. Thus choices ν1 = ν± have led to twin successors:

(1, 5,−4)↗ (−4, ν− = 3, 5) : sequence 1

(1, 5,−4)↘ (−4, ν+ = 7,−5) : sequence 2

(ν− sequence: Successor of (m1, ν−,m2) = (−4, 3, 5) is (m2, ν2,m3).

We obtain ν2 : m2|(ν2 + ν−)⇒ 5|(ν2 + 3). Then possible choices ν2 =, 2, 7, 12, .... Of these

ν2 = 7 = ν+ makes |ν2
2 − 29| least. Then

m3 =
ν2

+ − 29

m2
=

20

5
= 4

and thus

(m2, ν2 = ν+,m3) = (5, 7, 4)

and thus successor of (m1, ν−,m2) is (m2, ν+,m3). In section 4 we will see that is a general

feature.

We have ν3 : m3|(ν3 + ν2) ⇒ 4|(ν3 + 7). Then possible choices ν3 = 1, 5, 9, .... Of these

ν3 = 5 makes |ν2
3 − 29| least. Then

m4 =
ν2

3 − 29

m3
=
−4

4
= −1

Thus

(m3, ν3,m4) = (4, 5,−1)

We have so far obtained for for the ν− sequence:

(1, 5,−4), (−4, ν− = 3, 5), (5, ν+ = 7, 4), (4, 5,−1);

ν+ sequence : The successor of (m1, ν1+,m2) = (−4, 7,−5) is (m2, ν2,m3)

ν2 : m2|(ν2 + ν1+)⇒ 5|(ν2 + 7). Possible choices ν2 = 3, 8, .... Of these ν2 = ν− = 3 makes

|ν2
2 − 29| least. Then
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m3 =
−20

−5
= 4

and we obtain for the triple (m2, ν2,m3):

(−5, ν− = 3, 4)

Thus the successor of (m1, ν+,m2) is (m2, ν−,m3).

ν3 : m3|(ν3 + ν−) ⇒ 4|(ν3 + 3). Possible choices ν3 = 5, 9, .... Of these ν3 = 5 makes

|ν2
3 − 29| least. Then

m4 =
−4

4
= −1

and we obtain for the triple (m3, ν3,m4):

(4, 5,−1)

Thus for the ν+ sequence we have obtained so far

(1, 5,−4), (−4, ν+ = 7,−5), (−5, ν− = 3, 4), (4, 5,−1);

At (4, 5,−1) the two sequences have merged. After the ν+ and ν− have merged the

sequences reverse to complete the cycle. The same phenomenon of twin successors, local

splitting and merging is met in the reverse parts. Therefore we have 4 cycles. The point

where the sequences reverse is indicated by a semi-colon.

The completed sequence ν− cycles are

{(1, 5,−4), (−4, ν−, 5), (5, ν+, 4), (4, 5,−1);

(−1, 5, 4), (4, ν+, 5), (5, ν−,−4), (−4, 5, 1)} (3.24)

ν− bis cycle :

(1, 5,−4), (−4, ν−, 5), (5, ν+, 4), (4, 5,−1); (−1, 5, 4), (4, ν−,−5), (−5, ν+,−4), (−4, 5, 1)

The completed ν+ cycle is

{(1, 5,−4), (−4, ν+,−5), (−5, ν−, 4), (4, 5,−1);

(−1, 5, 4), (4, ν−,−5), (−5, ν+,−4), (−4, 5, 1)} (3.25)

and ν+ bis cycle :
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(1, 5,−4), (−4, ν+,−5), (−5, ν−, 4), (4, 5,−1); (−1, 5, 4), (4, ν+, 5), (5, ν−,−4), (−4, 5, 1)

which shows the cyclical nature of the twin sequences. Finally observe that after 4 steps the

two sequences above have merged at the triple (4, 5,−1). Working through the algorithm

gives us the common solution (a4 = 13, b4 = 70;−1) to the equation

29 a2 − 1 = b2

where a = a4 and b = b4. The full cycle is however reached after 8 steps when we obtain

as the common solution (a8 = 1820, b8 = 9801; 1). This is most easily seen by applying a

shortcut which is Brahmagupta’s composition after 4 steps:

(a, b;−1) • (a, b;−1) = (2ab, 29a2 + b2; 1) = (1820, 9801; 1)

where a = a4 = 13, b = b4 = 70. This is the common solution at the end of the cycle

where the two sequences have merged again.

Example 3.4: D = 97. This will illustrate once more twin successors. We will record the

steps (mn, νn,mn+1), the solution of the Brahmagupta-Fermat equation will be found in

Section 5. We start with ν−1 = 0, m0 = 1.

1. (m0, ν0,m1). Since m0 = 1, the only condition to meet is that |ν2
0 − 97| is least. This

gives n0 = 10 and m1 = ν2
0 − 97 = 3.Thus

(m0, ν0,m1) = (1, 10, 3)

2. (m1, ν1,m2). We must have 3|(10 + ν1). This gives ν1 = 2, 5, 8, 11, 14, .... as possible

choices. ν1 = 11 makes |ν2
1 − 97| least. This gives m2 =

ν2
1−97
m1

= 24
3 = 8 Therefore

(m1, ν1,m2) = (3, 11, 8)

3. (m2, ν2,m3). We must have 8|(11 + ν1). This gives ν2 = 5, 13, .... as possible choices.

Both the choices ν2 = 5, 13 make |ν2
2 −97| least. In fact |52−97| = 72 and |132−97| = 72.

Define

ν2,+ = 13, ν2,− = 5

Then ν2
+ and ν2

− are equidistant from 97 in absolute value. This leads to twin sequences

as follows.

4. ν+ branch : For the choice ν2 = ν+ = 13 we have m3 =
ν2
+−97

8 = 72
8 = 9. Therefore

(m2, ν2,m3) = (8, ν2,+ = 13, 9)
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(m3 = 9, ν3,m4). We must have m3|(ν3 + 13) This gives ν3 = 5, 14, ... and it is seen that

ν3 = 5 makes |ν2
3 − 97| least. Thus ν3 = ν− Therefore m4 =

ν2
3−97
m3

= 52−97
9 = − 72

9 = −8.

Therefore

(m3, ν3,m4) = (9, ν2,− = 5,−8)

5. (m4 = −8, ν4,m5). We must have 8|(ν4 + 5). This gives ν4 = 3, 11, 19, ... as possible

choices. |ν2
4 − 97| is least for the choice ν4 = 11. Thus m5 =

ν2
4−97
m4

= 121−97
−8 = 24

−8 = −3.

Therefore

(m4, ν4,m5) = (−8, 11,−3)

6. (m5 = −3, ν5,m6). We must have 3|(ν5 + 11). This gives ν5 = 1, 4, 10, 13, ... as possible

choices. |ν2
5 − 97| is least for the choice ν5 = 10. Thus m6 =

ν2
5−97
m4

= 100−97
−3 = −1.

Therefore

(m5, ν5,m6) = (−3, 10,−1)

We have thus obtained for the ν+ branch:

(1, 10, 3), (3, 11, 8), (8, ν+ = 13, 9), (9, ν− = 5,−8), (−8, 11,−3), (−3, 10,−1); (3.26)

ν− branch: We have

(m0 = 1, ν0 = 10,m1 = 3), (m1 = 3, ν1 = 11,m2 = 8), (m2, ν2 = ν− = 5,m3 = −9)

where the last integer comes from m3 = 25−97
8 = −9.

(m3 = −9, ν3,m4). We must have m3|(ν3 + 5), or 9|(ν3 + 5). Possible choices are ν3 =

4, 13, 22, ... The choice ν3 = 13 = ν+ makes |n2
3 − 97| least. Whence m4 = 169−97

−9 = −8.

Thus

(m3, ν3,m4) = (−9, ν+ = 13,−8)

(m4 = −8, ν4,m5). We must have m4|(ν4 + ν3), or 8|(ν4 + 13). Possible choices are ν4 =

3, 11, 19, ... Of these choices ν4 = 11 makes |ν2
4 − 97| least. We have m5 = 121−97

−8 = −3.

Thus

(m4, ν4,m5) = (−8, 11,−3)

(m5 = −3, ν5,m6). We must have m5|(ν5 + ν4), or 3|(ν5 + 11). Possible choices are

ν5 = 1, 4, 7, 10, 13, .... Of these choice ν5 = 10 makes |ν2
4 − 97| least. We have m6 =

ν2
5−97
m5

= 100−97
−3 = −1. Thus
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(m5, ν5,m6) = (−3, 10,−1)

We have thus obtained so far for the ν− branch

(1, 10, 3), (3, 11, 8), (8, ν− = 5,−9), (−9, ν+ = 13,−8), (−8, 11,−3), (−3, 10,−1); (3.27)

Observe that the ν+ branch given by (3.26) and the ν− branch given by (3.27) have

merged at the step (−3, 10,−1). After the ν+ and ν− have merged the sequences reverse to

complete the cycle. The same phenomenon of twin successors, local splitting and merging

is met in the reverse parts. Therefore we have 4 cycles. They are

ν+ cycle

(1, 10, 3), (3, 11, 8), (8, ν+ = 13, 9), (9, ν− = 5,−8), (−8, 11,−3), (−3, 10,−1);

(−1, 10,−3), (−3, 11,−8), (−8, ν− = 5, 9), (9, ν+ = 13, 8), (8, 11, 3), ((3, 10, 1) (3.28)

ν+ bis cycle

(1, 10, 3), (3, 11, 8), (8, ν+ = 13, 9), (9, ν− = 5,−8), (−8, 11,−3), (−3, 10,−1);

(−1, 10,−3), (−3, 11,−8), (−8, ν+ = 13,−9), (−9, ν− = 5, 8), (8, 11, 3), (3, 10, 1) (3.29)

ν− cycle

(1, 10, 3), (3, 11, 8), (8, ν− = 5,−9), (−9, ν+ = 13,−8), (−8, 11,−3), (−3, 10,−1);

(−1, 10,−3), (−3, 11,−8), (−8, ν+ = 13,−9), (−9, ν− = 5, 8), (8, 11, 3), (3, 10, 1) (3.30)

ν− bis cycle

(1, 10, 3), (3, 11, 8), (8, ν− = 5,−9), (−9, ν+ = 13,−8), (−8, 11,−3), (−3, 10,−1);

(−1, 10,−3), (−3, 11,−8), (−8, ν− = 5, 9), (9, ν+ = 13, 8)8, 11, 3), (3, 10, 1) (3.31)

These 4 cycles produce the same solution (6377352, 62809633; 1) of the Brahmagupta-

Fermat equation which can be seen from the algorithm. This will be seen again in Section

5.

Example 3.5: D = 58. This is our final example of twin successors. We will record the

steps (mn, νn,mn+1), the solution of the Brahmagupta-Fermat equation will be found in

Section 5. We start with ν−1 = 0, m0 = 1.

1. (m0, ν0,m1). Since m0 = 1, the only condition to meet is that |ν2
0 − 58| is least. This

gives n0 = 8 and m1 = ν2
0 − 58 = 6.Thus
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(m0, ν0,m1) = (1, 8, 6)

2. (m1, ν1,m2). We must have 6|(8 + ν1). This gives ν1 = 4, 10, 16, .... as possible choices.

Both the choices ν1 = 4, 10 make |ν2
1 −58| least. In fact |42−58| = 42 and |102−58| = 42.

Define

ν1,+ = 10, ν1,− = 4

Then ν2
+ and ν2

− are equidistant from 58 in absolute value. This leads to twin sequences

as follows.

3. ν− branch : For the choice ν1 = ν− = 4 we have m2 =
ν2
+−58

6 = −42
6 = −7. Therefore

(m1, ν1,m2) = (6, ν− = 4,−7)

(m2 = −7, ν2,m3). We must have m2|(ν1 + ν2), or 7|(4 + ν2). This gives ν2 = 3, 10, ... and

it is seen that ν2 = 10 makes |ν2
2 − 58| least. Thus ν2 = ν+ = 10 Therefore m3 =

ν2
2−58
m3

=

102−58
m2

= 42
−7 = −6. Therefore

(m2, ν2,m3) = (−7, ν+ = 10,−6)

4. (m3 = −6, ν3,m4). We must have 6|(10 + ν3). This gives ν3 = 2, 8, 14, ... as possible

choices. |ν2
3 − 58| is least for the choice ν3 = 8. Thus m4 =

ν2
3−58
m3

= 64−58
−6 = 6

−6 = −1.

Therefore

(m3, ν3,m4) = (−6, 8,−1)

5. (m4 = −1, ν4,m5). We must have −1|(ν4 + 8). This gives ν4 = 1, 2, 3, 4, ...7, 8, 9, ... as

possible choices. |ν2
4 − 58| is least for the choice ν4 = 8. Thus m5 =

ν2
4−58
m4

= 64−58
−1 = −6.

Therefore

(m4, ν4,m5) = (−1, 8,−6)

At this point the sequence has already reversed. The complete sequences are:

ν− cycle

(1, 8, 6), (6, ν− = 4,−7), (−7, ν+ = 10,−6), (−6, 8,−1);

(−1, 8,−6), (−6, ν+ = 10,−7), (−7, ν− = 4, 6), (6, 8, 1) (3.32)

ν− bis cycle

(1, 8, 6), (6, ν− = 4,−7), (−7, ν+ = 10,−6), (−6, 8,−1);

(−1, 8,−6), (−6, ν− = 4, 7), (7, ν+ = 10, 6), (6, 8, 1)
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.

In a similar way we compute the the other of the twin sequences.

ν+ cycle:

(1, 8, 6), (6, ν+ = 10, 7), (7, ν− = 4,−6), (−6, 8,−1);

(−1, 8,−6), (−6, ν− = 4, 7), (7, ν+ = 10, 6), (6, 8, 1) (3.33)

.

ν+ bis cycle

(1, 8, 6), (6, ν+ = 10, 7), (7, ν− = 4,−6), (−6, 8,−1);

(−1, 8,−6), (−6, ν+ = 10,−7), (−7, ν− = 4, 6), (6, 8, 1)

The two sequences merge at the midpoint, (−6, 8,−1), and then reverse to complete the

cycles. Working through the algorithm we obtain from the twin sequences the same fun-

damental solution (2574, 19603); 1) to the Brahmagupta-Fermat- Pell equation. This will

be seen again in Section 5, from the periodic semi-regular continued fraction engendered

by this algorithm.

4. The Chakravāla algorithm produces a cycle after a finite number of steps.

This section is based principally on the work of Bauval, [B].

Definition 4.1: Best (mod m)

Let D > 0 be a non-square integer. Let ν > 0, and m be integers. Then following Bauval

[B] we say that ν is best (mod m) if in the congruence class (mod m), ν2 is nearest to

D in absolute value. In other words for all ν′ > 0, and ν′ ≡ ν (mod m)

|D − ν2| ≤ |D − ν′2] (4.1)

If |m| <
√
D, then ν is best if ν is one of two positive integers ν1 and ν2 such that

ν2
1 < D < ν2

2 = (ν1 + |m|)2 (4.2)

If only one is best, then we say it is strictly best.

If m is even and ν1 and ν2 are both best then

D − ν2
1 = ν2

2 −D (4.3)
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.

Lemma 4.2 (Twins):

Suppose m is even and ν1 = ν−, ν2 = ν+ are both best (mod m). Then we have twins

(m, ν±,m
′) satisfying

ν± = |m′|±|m|
2

(4.4)

and

D = |m′|2 +
|m|2

4
(4.5)

Proof: Since ν1 = ν−, ν2 = ν+ are both best, we have

D − ν2
− = ν2

+ −D = |m||m′| (4.6)

where

ν2
− < D < ν2

+ = (ν− + |m|)2 (4.7)

Therefore

|m||m′| = (ν− + |m|)2 −D = ν2
− + |m|2 + 2ν−|m| −D

whence

|m||m′| = −|m||m′|+ |m|2 + 2ν−|m|

Dividing out by 2|m| we obtain

ν− = |m′| − |m|
2

(4.8)

and

ν+ = ν− + |m| = |m′|+ |m|
2

(4.9)

which proves (4.4). Now square each of (4.8) and (4.9) and then add the squares to get

D =
1

2
(ν2
− + ν2

+) = |m′|2 +
|m|2

4

which proves (4.5).

Proposition 4.3 , (after Bauval [B], Proposition 1) : Suppose |m| <
√
D, ν2 − D =

ε|m||m′| where ε = 1 if ν2 > D and ε = −1 if ν2 < D (which follows from ν2−D = mm′).

Suppose also ν is best (mod m). Then the following inequalities are equivalent
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(1) ν is best (mod m)

(2) |m′|2 +
|m|2

4
≤ D (4.10)

(3) ν ≥ |m′|+ ε
|m|
2

(4.11)

(2) ⇒ |m′| <
√
D.

Proof of Proposition 4.3: This is given in Appendix 1.

The above implies that in the Chakravāla recursion |mn| <
√
D for all positive integers

n.

Remark: The same inequalities also figure in Ayyangar [A1], page 237, but the his deriva-

tion of (2) from (3) by a squaring argument is false when ε = −1. See equation (14), p

237 of [A1]. Various errors in [A1] are pointed out in [B].

Definition 4.4: Steps and Reduced steps: We shall say, following Bauval [B], that

the triple (m, ν,m′) is a step if |m| <
√
D, |ν2−D| = |m||m′| and ν is best (mod m). If ν

is also best (mod m′), then we have a reduced step. If (m, ν,m′) is a reduced step then

clearly (m′, ν,m) is a step. If (m, ν,m′) is a reduced step then both

|m′|2 +
|m|2

4
≤ D (4.12)

|m|2 +
|m′|2

4
≤ D (4.13)

Corollary 4.5: Let (m, ν,m′) be a step. If |m′| ≥ |m| then the step is reduced.

Proof of Corollary 4.5: The inequality (4.10) for the step can be rewritten as

3

4
(|m′|2 −m2) + |m|2 +

|m′|2

4
≤ D

Since |m′| ≥ |m|, we get

|m|2 +
|m′|2

4
≤ D (4.14)
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which proves the Corollary.

Theorem 4.6 (after Bauval [B], Theorem 2 ): The successor of any step is reduced: If

(m, ν,m′) is a step and (m′, ν′,m′′) is a successive step, we have |m| <
√
D and |m′| <

√
D,

ε|m||m′| = ν2 −D, ε|m′||m′′| = ν′2 −D, m′|(ν + ν′) and

(1) |m′|2 +
m2

4
≤ D (4.15)

(2) |m′′|2 +
m′2

4
≤ D (4.16)

then

(3) |m′|2 +
m′′2

4
≤ D (4.17)

and thus the successor step (m′, ν′,m′′) is a reduced step.

Corollary 4.7: All steps are reduced:

The first step (m0, ν0,m1), where m0 = 1 is easily seen to be reduced. By Proposition 4.3,

|m1|2 + |m0|2
4 ≤ D, and |m1| <

√
D. Furthermore |m0|2 + |m1|2

4 ≤ 1+ D
4 ≤ D, since D ≥ 2.

Hence the first step is reduced and therefore by Theorem 4.6 all steps are reduced.

Proof of Theorem 4.6: The proof is given in Appendix 2.

Lemma 4.8: Twin succesors

Suppose m is even and both ν± = |m′| ± |m|2 are best (mod m) as in Lemma 4.2. Then

the successor step of (m, ν±,m
′) is (m′, ν∓,−m).

Proof: By Theorem 4.6 and Corollary 4.7, all steps are reduced. Thus each step (m, ν±,m
′)

is reduced and thus each of ν± is best (mod m) as well as being best (mod m′). From

this it can be shown that the successor step of (m, ν+,m
′) is (m′, ν−,m

′′). Indeed, let the

successor step of (m, ν+,m
′) be (m′, ν′,m′′). Then ν′ is best (mod m′). Moreover ν− is

best (mod m′), since the step (m, ν−,m
′) is reduced. The solution is ν′ = ν−.

Consider the successor step (m′, ν−,m
′′). Again, since by Theorem 4.6 and Corollary 4.7,

all steps are reduced, we have that (m′, ν−,m
′′) is a reduced step. Therefore ν− is best

(mod m′) and best (mod m′′). Since ν− is best (mod m), from Lemma 4.2, and also best

(mod m′) since (m, ν,m
′) is a reduced step, it follows that m′′ = εm, where ε = ±1, and

the step (m′, ν−, εm) is the successor of the step (m, ν+,m
′). It remains to fix the sign

factor ε. Now m′m = ν2
+ − D, and from (4.7) ν2

+ > D. Therefore m and m′ have the

same sign. Since m′′m′ = ν2
− − D and ν2

− < D, m′′ = εm has the opposite sign of m′

and therefore opposite sign of m. Thus ε = −1. Therefore we have proved that the step
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(m, ν+,m
′) has as successor step (m′, ν−,−m). Similarly we prove that the step(m, ν−,m

′)

has as successor step (m′, ν+,−m).

Theorem 4.9: The Chakravāla algorithm produces a finite sequence which is a cycle :

Proof: The algorithm produces the sequence of steps (mn, νn,mn+1). From Proposition

4.3 we have |mn| <
√
D for all n. From this and mnmn+1 = ν2

n−D we have |ν2
n−D| < D,

whence 0 < νn <
√

2D for all n. Therefore the number of possible steps is finite. From

Theorem 4.6 we have that if (mn, νn,mn+1) is a step, then its reverse (mn+1, νn,mn) is

also a step. Therefore the total number of steps is even, say 2r. The 2r steps complete a

cycle. The mid point, before reversal, is reached after r steps. We now have two cases.

Case 1: Each step has a unique successor. We then have a sequence of r successive steps

and then the reversed sequence of r steps to complete a cycle. Thus the cycle is

(1, ν0,m1), (m1, ν1,m2), ......., (mr−2, νr−2,mr−1), (mr−1, νr−1,mr);

(mr, νr−1,mr−1), (mr−1, νr−2,mr−2), ......., (m2, ν1,m1), (m1, ν0, 1)

Case 2: A step has a twin successor. In this case we have twin sequences. By Lemma 4.8,

the successor of (m, ν±,m
′) is (m′, ν∓,−m) where ν± = |m′|± |m|2 . Moreover, following

the argument in [B], a twin successor can only occur once before the midpoint of the cycle.

Assume that the twin successor occurs at the j-th step. We then have two sequences. For

each sequence we indicate by a semicolon the step at which the sequence is reversed. The

two sequences merge at the (j + 3)rd step. Thus the split is local. See the illustrative

Examples 3.3 (D = 29), 3.4 (D = 97) and 3.5 (D=58).

(1, ν0,m1), (m1, ν1,m2), ......., (mj−1, νj−1,m), (m, ν+,m
′)(m′, ν−,−m), (−m, νj+2,mj+3);

(mj+3, νj+2,−m)(−m, ν−,m′)(m′, ν+,m)(m, νj−1,mj−1), ......., (m2, ν1,m1), (m1, ν0, 1)

and

(1, ν0,m1), (m1, ν1,m2), ......., (mj−1, νj−1,m), (m, ν−,m
′)(m′, ν+,−m), (−m, νj+2,mj+3);

(mj+3, νj+2,−m)(−m, ν+,m
′)(m′, ν−,m)(m, νj−1,mj−1), ......., (m2, ν1,m1), (m1, ν0, 1)

5. The Chakravāla algorithm and it’s semi-regular continued fractions

We will consider the action of modular transformations on steps. A modular transfor-

mation is the action of the group SL(2,Z). For this it is useful to identify the step

(mn, νn,mn+1) with the binary quadratic form
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Qn(x, y) = mnx
2 + 2νnxy +mn+1y

2 (5.1)

with an extra condition: the middle coefficient νn is best, i.e. |ν2
n−D| is least in the modulus

class (mod mn). Such forms can be called best forms. ∆(Qn) = 4D is the discriminant of

the form, and this is by definition

∆(Qn) = 4(ν2
n −mnmn+1) = 4D

The main reason, in this context, for the quadratic form interpretation is for studying

the action of the modular group SL(2,Z). It has been known, since Gauss, that the

modular group, and some particular transformations engender the evolution of the forms

(m, ν,m′)→ (m′, ν′,m′′). Additional conditions have to be imposed to ensure reducibility

to impose boundedness of forms. Furthermore reduced forms are reversible: if (m, ν,m′) is

a reduced form so is (m′, ν,m′′). This leads to periodicity. The Gauss reduction condition

is in terms of the roots of the quadratic form. On the other hand the best forms of

the Chakravāla algorithm are also reduced (Theorem 4.6 and Corrolary 4.7). We shall

see in the following that the Chakravāla algorithm is also produced by SL(2,Z) action

supplemented by the best condition. We shall also see that the best condition is equivalent

to a condition on roots of the quadratic form (but different from those of Gauss). The best

forms are bounded and periodic, and the action of the modular group on the roots leads to

periodic semi-regular continued fractions. The modular group action and the Chakravāla

periodic semi-regular continued fractions lead to automorphisms of the quadratic form.

Each such automorphism (automorph) gives (as in the classical theory of Gauss) a a

solution of the Brahmagupta-Fermat-Pell equation. The solution obtained at the end

of the first cycle is fundamental: it is positive and least. This is proved in Proposition

5.12. The tranformation to regular continued fractions turns out to be unnecessary. This

transformation is also given for completeness but the periods are much longer than those

of the semiregular continued fractions.

Remark: In the following we use the terms steps and best forms equivalently.

The quadratic form can be represented by the matrix

Qn =

(
mn νn
νn mn+1

)
(5.2)

whence the determinant of the form is det(Qn) = mnmn+1 − ν2
n = −D, showing that

the form is indefinite. The number D > 0 is not a square and is fixed. Since the coef-

ficients are integers with uniform bounds (Theorem 4.9) , the number of possible forms

(mn, νn,mn+1) of fixed discriminant is finite. Therefore the successive forms eventually

repeat themselves. We have proved earlier (Theorem 4.6) that every best form (≡ step)
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arising in the Chakravala process is reduced. This leads (Theorem 4.8) to finite sequences

which are cyclical.

5.1 Action of the modular group SL(2, Z) on steps ≡ best forms

Let (a, b, c) with integer entries represent the quadratic form

Q(a, b, c) = ax2 + 2bxy + cy2 (5.3)

Then Q(a, b, c) can be represented by the matrix

Q(a, b, c) =

(
a b
b c

)
(5.4)

with

∆(Q) = −4 detQ = 4(b2 − ac) = 4D (5.5)

The matrix M ∈ SL(2, Z)

M =

(
α β
γ δ

)
(5.6)

with

detM = αδ − βγ = 1

acts on the form (a, b, c)

(a, b, c)→ (a′, b′, c′) (5.7)

by its action on the on the matrix Q representing the quadratic form

Q(a, b, c)→ Q′(a′, b′c′) = MTQ(a, b, c)M =

(
a′ b′

b′ c′

)
(5.8)

with transformed coefficients

a′ = aα2 + 2bαγ + cγ2 (5.9)

b′ = aαβ + b(αδ + βγ) + cγδ (5.10)

c′ = aβ2 + 2bδβ + cδ2 (5.11)

By computation we find that the discriminant ∆(Q′) of Q′ satisfies
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∆(Q′) = (αδ − βγ)2∆(Q) = ∆(Q) (5.12)

so that modular transformations leaves the discriminant invariant.

Right neighbouring forms

Definition 5.0: Following Dirichlet ([D], page 107) we will say that (a, b, c) has a right

neighboring form (a′, b′, c′) if the following three conditions are satisfied : that the dis-

criminant is the same, that a′ = c and b′ ≡ −b (mod a′). The last condition means that

b+ b′ is divisible by a′. In other words that for an integer δ we have b+ b′ = −a′δ. These

conditions are fulfilled by the choice of the modular transformation Sδ below.

Let δ be an integer. Consider the SL(2,Z) matrix

Sδ =

(
0 1
−1 δ

)
(5.13)

Under the transformation Sδ : (a, b, c)→ (a′, b′, c′)

we get

a′ = c, b′ = −b− cδ, c′ = a+ 2bδ + cδ2

We thus have the map after re-labelling

Sδ : (a, b, a′)→ (a′, b′, a′′)

where

b′ = −b− a′δ, a′′ = a+ 2bδ + a′δ2 (5.14)

Thus (a′, b′, a′′) is a right neighbouring form of (a, b, a′).

5.2 Modular transformations of steps/best forms to steps/best forms..

The previous developments ((5.13) - (5.14) ) apply directly to a Chakravāla step (m, ν,m′)

considered as a best form. Under the modular transformation Sδ given by (5.13) we have

Sδ : (m, ν,m′)→ (m′, ν′,m′′) (5.15)

where Sδ is the matrix

Sδ =

(
0 1
−1 δ

)
(5.16)

We identify (a, b, a′) with (m, ν,m′) and (a′, b′, a′′) with (m′, ν,m′′). Then from (5.14) we

get
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ν + ν′

m′
= −δ (5.17)

Since δ is an integer this means

ν′ ≡ −ν (modm′) (5.18)

Moreover we obtain from (5.14), the above identification and (5.17)

m′′ = m− ν + ν′

m′
(ν − ν′) (5.19)

From (5.19) and mm′ = ν2 −D since (m, ν,m′) is a step, we get

m′′ =
ν2 −D
m′

(5.20)

(5.20) also follows from the fact that the discriminant is left invariant under modular

transformations:

ν2 −mm′ = ν′2 −m′m′′ = D (5.21)

The form (m′, ν′,m′′) is a right neighbour of the step according to Definition 5.0 and thus

ν′ = −ν − m′δ for any integer δ. We now pick this integer δ by demanding that ν′ is

best (mod m′) (see Definition 4.1). In other words, ν′ is nearest to ν in the | · | norm in

the congruence class mod (m′). This ensures that the right neighbour (m′, ν′,m′′) is a

Successor Step of the Chakravāla algorithm and thus reduced by Theorem 4.6. However

the choice of δ is not unique so that there may be more than one successor step. To see

this, remark that

δ = −ν + ν′

m′

and two choices of ν′ may be equally best (mod m′) as shown earlier.

We now give an equivalent condition in terms of the roots of quadratic forms for a right

neighbour of the Chakravala step (as defined above) to be a successor step (and thus a

reduced step).

We consider the roots of the quadratic form (m, ν,m′)

mω2 + 2νω +m′ = 0 (5.22)

The roots are

ω =
−ν ±

√
D

m
(5.23)
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Define

ω+ =
−ν +

√
D

m
(5.24)

to be the first or principal root.

Proposition 5.1: Let (m, ν,m′) be a quadratic form. Assume D > 0 is a non-square

integer, ν > 0 is an integer and |m| <
√
D. Then the condition ν is best (mod m) (see

Definition 4.1) is equivalent to the condition that the principal root |ω+| < 1.

Proof: ν is best (mod m) implies that |ν2 −D| is least in the congruence class (mod m).

Assume |m| <
√
D. Then ν is ν1 or ν2 where

0 < ν1 <
√
D < ν2 = ν1 + |m| (5.25)

Suppose ν = ν1. Then

0 < ν <
√
D < ν + |m| (5.26)

Therefore

|ω+| =
| − ν +

√
D|

|m|
<
|m|
|m|

= 1 (5.27)

Suppose ν = ν2. Then

ν − |m| <
√
D < ν (5.28)

or

0 < ν −
√
D < |m| (5.29)

Therefore

|ω+| =
|ν −

√
D|

|m|
<
|m|
|m|

= 1 (5.30)

Therefore in both cases ν = ν1 or ν = ν2 we have |ω+| < 1. Thus ν is best in the

congruence class (mod m) ⇒ |ω+| < 1.

Conversely suppose |ω+| < 1. Therefore

| − ν +
√
D| < |m| (5.31)

Suppose ν <
√
D. Then from (5.31)
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0 < −ν +
√
D < |m|

and hence

ν <
√
D < ν + |m| (5.32)

Suppose ν >
√
D. Then from (5.31) we have

0 < ν −
√
D < |m|

and hence

ν − |m| <
√
D < ν (5.33)

Therefore the condition |ω+| < 1 ⇒ ν is best mod m. This completes the proof that the

condition |ω+| < 1 and the condition that ν is best in the congruence class (mod m) are

equivalent.

Corollary 5.2: The condition |ω+| < 1 implies that the form (m, ν,m′) is reduced. For,

Proposition 5.1 says that ν is best (mod m) and therefore (m, ν,m′) is a step. Theorem

4.6 and its corollary then says this step is reduced and equivalently the form is reduced.

Remark 5.3: Comparison with Gauss reduction, see [D]

1. Besides the above reduction condition |ω+| < 1, we have trivially |ω−| > 1 where (using

ν > 0)

|ω−| =
|ν +

√
D|

|m|
=
ν +
√
D

|m|

In fact since |m| ≤
√
D (see Section 4) and ν > 0 we have

|ω−| >
√
D√
D

= 1

|ω+| < 1 and |ω−| > 1 are also two of the conditions of Gauss reduction (see Dirichlet-

Dedekind [D] Chapter 4, §74 ). However, Gauss has a third condition, namely the roots

ω+ and ω− have opposite signs. As a consequence in the Gauss reduction 0 < ν <√
D. Furthermore, as a consequence for the Gauss reduced form (m, ν,m′), the outer

members m,m′ have opposite signs. In the Chakravāla reduction this third condition of

Gauss (namely that the roots ω+ and ω− have opposite signs) is absent. In the Gauss

theory a reduced form has exactly one reduced form as a right neighbour (see [D], §77).

A Chakravāla reduced form has at least one and at most two reduced forms as right

neighbour(s) (the latter case coresponds to twin successors of Section 4). As pointed out
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there it is possible to encounter local splitting and merging of sequences (see Lemma 4.2 in

Section 4 and the examples for D = 29, 97, 58 in section 3). However the solution of the

Brahmagupta-Fermat-Pell equation remains the same (see later) for the complete cycles

of the split/merged sequences.

Theorem 5.4:

Let (m, ν,m′) be a Chakravāla step. Let Sδ be the modular map (5.15) and (5.13):

Sδ : (m, ν,m′)→ (m′, ν′,m′′)

where Sδ is given by (5.13)

Sδ =

(
0 1
−1 δ

)
(5.34)

where δ is an integer. The map Sδ gives (m′, ν′,m′′) as a right neighbour with ν′ =

−ν −m′δ.
Let ω′+ be the principal root of

m′ω′2 + 2ν′ω′ +m′′ = 0

ω′+ =
−ν′ +

√
D

m′
(5.35)

Then the right neighbour (m′, ν′,m′′) with ν′ = −ν −mδ is a step if and only if |ω′+| < 1.

Then ν′ is best (mod m′) and this fixes the integer δ.

As a consequence by Theorem 4.6 the successor step (m′, ν′,m′′) is a reduced step i.e.

(m′′, ν′,m′) is also a step.

Proof: The map Sδ is given by (5.15) et seq till (5.20). (m′, ν′,m′′) is a right neighbour

of the step (m, ν,m′). The latter being a step implies |m| <
√
D and then Proposition

4.3 implies that |m′| <
√
D. As a right neighbour ν′ ≡ −ν (mod m′), and from the map

Sδ we have ν′ = −ν −m′δ, where δ is the integer in Sδ Amongst all these ν′ one is to be

chosen as follows: Let ω′+ be the principal root given by (5.35). Suppose |ω′+| < 1 Then by

Proposition 5.1 (applied to ω′+) , ν′ is best (mod m′). Therefore (m′, ν′,m′′) is a successor

step and thus, by Theorem 4.6, is a reduced step. Conversely suppose (m′, ν′,m′′) is a

step. Then ν′ is best (mod m′). Therefore by Proposition 5.1, |ω′+| < 1.

5.3 Action of the modular group on roots of quadratic forms

If Q(x, y) = ax2 +2bxy+cy2 and Q′(x′, y′) = a′x′2 +2b′x′y′+cy′2 is its modular transform,

then Q(x, y) = Q′(x′, y′) identically. If Q is represented by the matrix in (5.4), then

Q′ = MTQM where M is given by (5.6). If ξ = (x, y) represented as a column vector and

ξ′ = (x′, y′), then (ξ,Qξ) = (ξ′, Q′ξ′). Hence ξ = Mξ′. Thus
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(
x
y

)
=

(
α β
γ δ

)(
x′

y′

)
(5.36)

Therefore

x = αx′ + βy′, y = γx′ + δy′ (5.37)

whence

x

y
=
α(x

′

y′ ) + β

γ(x
′

y′ ) + δ

The roots ω, ω′ of the quadratic forms Q(x, y), Q′(x′, y′) are just the values of the ratios
x
y and x′

y′ where these forms vanish. Therefore

ω =
αω′ + β

γω′ + δ
(5.38)

Inverting this we get

ω′ =
δω − β
−γω + α

(5.39)

Let ω+, ω
′
+ be the principal roots, where

ω+ =
−b+

√
D

a

As a consequence of (5.39) we get

ω′+ =
−b′ +

√
D

a′

Thus principal roots are transformed to principal roots.

5.4 Action of modular group on roots of Cakravāla steps and semi-regular

continued fractions

Let (m, ν,m′) be a Cakravāla step. Let Sδ be the modular map (5.15):

Sδ : (m, ν,m′)→ (m′, ν′,m′′)

(m, ν,m′) is a step and therefore by Propsition 5.1, its principal root |ω+| < 1. By Theorem

5.2, (m′, ν′,m′′) is a step if and only if its principal root satisfies |ω′+| < 1. Thus ω+ and

|ω′+| < 1 are proper fractions. Now specialising the action of the modular group on roots

of quadratic forms given by (5.39) to Sδ we get
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ω+ =
1

δ − ω′+
(5.40)

For n ≥ 0 take the sequence of modular maps

Sδn : (mn, νn,mn+1)→ (mn+1, νn+1,mn+2) (5.41)

where

δn = −νn + νn+1

mn+1
(5.42)

and (mn, νn,mn+1) is a step and thus |ω+,n| < 1. Then (mn+1, νn+1,mn+2) is a step ⇐⇒
|ω+,n+1| < 1. By Proposition 5.1, νn+1 is best mod mn+1. This fixes (but not uniquely)

νn+1 (= −νn modmn+1). This fixes in turn the integer δn and thus the map Sδn . We now

get from (5.40) with ω+ = ω+,n, ω
′
+ = ω+,n+1

ω+,n =
1

δn − ω+,n+1
(5.43)

Semi-Regular Continued Fraction (SRCF):

Henceforth we simplify notation by writing ω = ω+ for the principal root. From (5.43) we

have by iteration the continued fraction

ωn =
1|
|δn

+
−1|
|δn+1

+
−1|
|δn+2

+ ...... (5.44)

=
1

δn +
− 1

δn+1 +
− 1

δn+2 + ......

Proposition 5.5 :

The continued fraction given by (5.44) (starting with n = 0) can be transformed into a

standard form of a semi-regular continued fraction (SRCF) (or half −regular in the sense

of Perron [P], Chapter 5, §35, page 149 et seq)

ω0 =
ε0|
|k0

+
ε1|
|k1

+
ε2|
|k2

+ ....
εn|
|kn

+ ........ (5.45)

=
ε0

k0 +
ε1

k1 +
ε2

k2 + ....
εn

kn + .....
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where the integers

kn = |δn| ≥ 2 (5.46)

and the εn = ±1 are as follows:

kn = |δn|, εn = −(sign δn−1 × sign δn)1, ε0 = (sign δ0)1 (5.47)

kn ≥ 2⇒

kn + εn+1 ≥ 1 (5.48)

and therefore the infinite irregular continued fraction (5.45) is a Semi-Regular Continued

Fraction (SRCF), (see Perron, [P], §35, page 149 et seq).

Remark: This may be called Bhāskara′s continued fraction as it has been derived directly

from his algorithm and should be distinguished from the NSCF in [A2]. We simply refer

to it as the SRCF in the following.

Proof: We have kn = |δn|. Define ε′n = − |δn|δn = −knδn . Therefore ε′n = −sign δn. Now

substituting δn = −knε′n in (5.43) we get

ωn =
−ε′n

kn + ε′nωn+1
(5.49)

We set ε′−1 = 1. Define εn = −ε′n−1ε
′
n. Then ε0 = −ε′0. We have

εn = −(sign δn−1 × sign δn)1, ε0 = (sign δo)1 (5.50)

Now we obtain a recursion relation for the SRCF. From (5.49), multiplying both sides by

ε′n−1 and setting

ξn = ε′n−1ωn (5.51)

we get

ξn =
εn

kn + ξn+1
(5.52)

with ξ0 = ω0. Iterating (5.52) we have the complete quotient

ξn =
εn|
|kn

+
εn+1|
|kn+1

+ .......... (5.53)

Starting from n = 0 we get the SRCF
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ω0 = ξ0 =
ε0|
|k0

+
ε1|
|k1

+
ε2|
|k2

+ ....+
εn|
|kn

+ ... (5.54)

Thus (5.45) and (5.47) have been proved. That kn ≥ 2 is the statement of Lemma 5.6

below and is proved in Appendix 3. The proof of Proposition 5.3 is complete.

Lemma 5.6: Let (m, ν,m′) and (m′, ν′,m′′) be any two successive steps. By definition

δ = −ν + ν′

m′

Define

k = |δ| = ν + ν′

|m′|

Then

k ≥ 2

The proof which depends on the fact that all steps are reduced (Theorem 4.6 and Corollary

4.7) is given in Appendix 3.

Proposition 5.7: A semi-regular continued fraction

ω0 =
ε0|
|k0

+
ε1|
|k1

+
ε2|
|k2

+ ....
εn|
|kn

+ ........ (5.55)

where εn = ±1 and kn ≥ 2 converges.

Proof: This is the Tietze convergence theorem, given in Perron [P], Chapter 5, §35, page

149, Satz 1. This theorem was proved under the weaker condition kn ≥ 1, and kn+εn+1 ≥ 1

for all n ≥ 0. This condition is obviously satisfied if kn ≥ 2. The proof is quite easy under

the condition kn ≥ 2 of Proposition 5.5 and we shall give it. To this end define the

convergents

pn
qn

=
ε0|
|k0

+
ε1|
|k1

+
ε2|
|k2

+ ....
εn−1|
|kn−1

(5.56)

for all n ≥ 1. Then pn, qn satisfy recurrence relations for all n ≥ 1. These are conveniently

written in matrix form

(
pn pn−1

qn qn−1

)
=

(
pn−1 pn−2

qn−1 qn−2

)(
kn−1 1
εn−1 0

)
(5.57)

where p0 = 0, p−1 = 1 and q0 = 1, q−1 = 0. We obtain for n ≥ 1,
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whence

pn
qn

=
kn−1pn−1 + εn−1pn−2

kn−1qn−1 + εn−1qn−2
(5.58)

Iterating the matrix recurrence relation we get(
pn pn−1

qn qn−1

)
=

(
0 1
1 0

)(
k0 1
ε0 0

)(
k1 1
ε1 0

)
.....

(
kn−1 1
εn−1 0

)
(5.59)

Taking determinants

pnqn−1 − qnpn−1 = (−1)n+1ε0ε1....εn−1 (5.60)

Dividing both sides by qnqn−1 we get

pn
qn
− pn−1

qn−1
= (−1)n+1 ε0ε1....εn−1

qnqn−1
(5.61)

From the matrix recurrence relation we have for all n ≥ 1,

qn = kn−1qn−1 + εn−1qn−2 (5.62)

where q0 = 1, q−1 = 0

Lemma 5.8: qn is a positive strictly monotonic increasing sequence.

Proof: Assume qn−1 > qn−2 > 0. Then we have, using kn ≥ 2,

qn − qn−1 = (kn−1 − 1)qn−1 + εn−1qn−2

> (kn−1 − 1)qn−2 + εn−1qn−2

> qn−2 + εn−1qn−2 = (1 + εn−1)qn−2 ≥ 0

Therefore qn > qn−1 > 0. For n = 1, q1 = k0 ≥ 2 and therefore q1 > 0. For n = 2,

q2 − q1 = (k1 − 1)q1 + ε1

≥ q1 + ε1 = k0 + ε1 > 0

Therefore by induction for all n ≥ 1 we have qn > qn−1 > 0 for all n ≥ 1.

Let m ≥ 1 be any fixed integer. From (5.61) we have, by using a telescopic sum and that

qn is strictly monotonic increasing,

∣∣∣pn+m

qn+m
− pn
qn

∣∣∣ ≤ m∑
j=1

∣∣∣pn+j

qn+j
− pn+j−1

qn+j−1

∣∣∣ ≤ m∑
j=1

1

qn+jqn+j−1
≤ m

qn+1qn
(5.63)

Since qn > 0 is strictly monotonic increasing, we have qn →∞ as n→∞ and hence
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∣∣∣pn+m

qn+m
− pn
qn

∣∣∣→ 0

Therefore {pnqn } is a Cauchy sequence and thus converges. The limit defines ω0.

Lemma 5.9: For n ≥ 1 we have

qn ≥ n (5.64)

Proof: The conditions of Satz 1 in the convergence theorem of Perron [P], Chapter 5, §35,

page 149, are true here because kn ≥ 2. The lemma follows from equations (9) and (10)

on page 151 of [P].

Remark: A simple inductive proof of (5.64) is given by A. Offer in his Lemma 6 , [O].

In a semi-regular continued fraction the convergents do not have a fixed sign. Therefore

it is useful for later purposes (see the proof of Proposition 5.12) to have a uniform bound.

Lemma 5.10: The sequence of convergents {pnqn } is uniformly bounded :

Proof: From (5.61),

pn
qn

=
n∑
j=1

(−1)j+1 ε0ε1....εj−1

qjqj−1
(5.65)

Using the bound (5.64) in Lemma 5.9, we have that the sequence {pnqn } is uniformly bounded

above by

|pn
qn
| ≤ 1 +

1

2
+

n∑
j=3

1

q2
j−1

< 1 +
1

2
+

∞∑
j=2

1

j2
=

1

2
+ ζ(2) (5.66)

where ζ is the Riemann zeta function and ζ(2) = π2

6 .

Remark: (5.66) is a very rough bound as it ignores all cancellations, but it suffices for our

purpose as we shall see later. In practice, it is seen that |pnqn | is a proper fraction less than

1, and this may seem intuitively obvious since we are approximating an irrational ω0 and

|ω0| < 1. See the examples at the end of this section.

Periodicity:

The SRCF of the Chakravāla algorithm is periodic because it corresponds to a reduced

step cycle with period length 2r (Theorem 4.8). Therefore δn+2r = δn which implies

kn+2r = kn. Moreover ε′n+2r = ε′n and hence εn+2r = εn. We thus have in a period of

length 2r
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ω0 = ?
ε0|
|k0

+
ε1|
|k1

+
ε2|
|k2

+ ....
ε2r−1|
|k2r−1

?+ (5.67)

The asterisks mark the beginning and end of a cycle. Within this cycle of period 2r we

may have a cycle of shorter period. An argument in [D], §83, page 140, shows that the

case that the SRCF period is shorter than the step period 2r can only occur if r is odd.

We have as illustrated below

ε2r+i = εi, k2r+i = ki : ∀i ≥ 0 (5.68)

Moreover if in addition r is odd and only if r is odd

kr+i = ki, εr+i = εi : ∀i ≥ 0

Additional symmetries follow from a generalisation to SRCF of the Galois theorem on

inverse periodicity for RCF (regular continued fractions) given in Perron ([P], §23, Satz 6,

page 83 and §24, page 87)

Lemma 5.11: Generalized Galois inverse periodicity for SRCF:

We have

ζ0 =
√
D + ν0 = 2ν0 + ω0 = 2ν0 + ?

ε0|
|k0

+
ε1|
|k1

+
ε2|
|k2

+ .....
ε2r−2|
|k2r−2

+
ε2r−1|
|k2r−1

? (5.69)

On the other hand by inverse periodicity we get

= k2r−1 + ?
ε2r−1|
|k2r−2

+
ε2r−2|
|k2r−3

+ ....+
ε1|
|k0

+
ε0|
|k2r−1

? (5.70)

Proof: This is given in Appendix 4.

From (5.69) and (5.70) we have the following Galois symmetry relations

εi = ε2r−1−i : 0 ≤ i ≤ 2r − 1 (5.71)

ki = k2r−2−i : 0 ≤ i ≤ 2r − 2 (5.72)

k2r−1 = 2ν0 (5.73)

As an immediate consequence of (5.71), we see that the sequence ε0, ε1, ......, ε2r−1 can be

written as

ε0, ε1, ......, εr−1, εr−1, εr−2, ...., ε1, ε0
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Therefore,

ε0ε1......ε2r−1 = ε2
0ε

2
1......ε

2
r−1 = 1 (5.74)

a result we shall use afterwards.

5.5 Solving the Brahmagupta-Fermat-Pell equation

As shown earlier an SL(2,Z) transformation has a natural action on a quadratic form and

therefore on its (principal) roots:

ω → ω′

ω =
αω′ + β

γω′ + δ
(5.75)

where (
α β
γ δ

)
∈ SL(2,Z) (5.76)

The SL(2,Z) automorhisms of the quadratic form form a subgroup. Each element of this

subgroup has been baptised an automorph. Let SA be an automorph. Then under SA we

have ω → ω:

ω =
αω + β

γω + δ
(5.77)

It is shown in [D, Chapter 4, §62] that there is a 1 − 1 correspondence between such

automorphs and solutions of the Brahmagupta-Fermat-Pellian equation. The periodic-

ity of the SRCF (5.67) provides us with such an automorph, and thus a solution of the

Brahmagupta-Fermat-Pell equation as we will now see. From (5.67) we have

ω0 =
ε0|
|k0

+
ε1|
|k1

+
ε2|
|k2

+ ....
ε2r−1|

|(k2r−1 + ω0)
(5.78)

From (5.58) we have

ε0|
|k0

+
ε1|
|k1

+
ε2|
|k2

+ ....
ε2r−1|
|k2r−1

=
k2r−1p2r−1 + ε2r−1p2r−2

k2r−1q2r−1 + ε2r−1q2r−2
(5.79)

Now p2r−1, p2r−2, q2r−1, q2r−2 are independent of k2r−1. Therefore

ω0 =
ε0|
|k0

+
ε1|
|k1

+
ε2|
|k2

+ ....
ε2r−1|

|(k2r−1 + ω0)
=

(k2r−1 + ω0)p2r−1 + ε2r−1p2r−2

(k2r−1 + ω0)q2r−1 + ε2r−1q2r−2
(5.80)
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In the previous equation we now use (see (5.58) )

p2r = k2r−1p2r−1 + ε2r−1p2r−2

q2r = k2r−1q2r−1 + ε2r−1q2r−2 (5.81)

to get

ω0 =
ω0p2r−1 + p2r

ω0q2r−1 + q2r
(5.82)

Claim

SA =

(
p2r−1 p2r

q2r−1 q2r

)
∈ SL(2,Z) (5.83)

and therefore (5.82) is an automorph.

Proof: Since the entries are all integers we just have to verify that SA is unimodular. From

(5.60) and Lemma 5.11, (5.74) we have

detSA = p2r−1q2r − q2r−1p2r = −(−1)2r+1ε0ε1...ε2r−1 = 1

which proves the claim.

Let us write for ease of notation

SA =

(
p2r−1 p2r

q2r−1 q2r

)
=

(
α β
γ δ

)
(5.84)

which defines α, β, γ, δ, namely:

α = p2r−1, β = p2r, γ = q2r−1, δ = q2r (5.85)

From (5.82), and the identification (5.85) we get

ω0 =
αω0 + β

γω0 + δ
(5.86)

From (5.86) we derive

γω2
0 + (δ − α)ω0 − β = 0 (5.87)

On the other hand, ω0 = ω+,0 = −ν0+
√
D

m0
is the principal root of the quadratic form

(m0, ν0,m1) where m0 = 1. This is a properly primitive form (in the sense of Gauss,see

[D], p 104) since its divisor σ = gcd(m0, 2ν0,m1) = 1. We will compare (5.87) with

m0ω
2
0 + 2ν0ω0 +m1 = 0 (5.88)
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Let u be an integer. The divisor σ = 1. Hence comparing (5.87) with (5.88) we get

γ = m0u,

δ − α = 2ν0u,

β = −m1u

(5.89)

We get

δ + α == 2δ − (δ − α) = 2δ − 2ν0u = even integer

Therefore

δ + α = 2t (5.90)

where t = integer. From (5.90) and (5.89) we get

α = t− ν0u

δ = t+ ν0u

β = −m1u

γ = m0u

(5.91)

Now use αδ − βγ = 1. Then from (5.91) we get

t2 − (ν2
0 −m0m1)u2 = 1 (5.92)

From the definition of m1 we have

ν2
0 −m0m1 = D

Therefore

t2 −Du2 = 1 (5.93)

which is the Brahmagupta-Fermat- Pellian equation.

Remark: (5.91) and (5.93) figure in [D], (§62, page 105) , with notational differences and

taking account that in our case σ = 1. These results are due to Gauss (G-DA, §162).

Finally, from (5.91) and the identification (5.85) we get

p2r−1 = α = t− ν0u

p2r = β = −m1u

q2r−1 = γ = m0u

q2r = δ = t+ ν0u

(5.94)
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Since m0 = 1, (5.94) ⇒

u = q2r−1

t = p2r−1 + ν0q2r−1

(5.95)

which solves the Brahmagupta-Fermat-Pell equation t2 − Du2 = 1 from the convergent
p2r−1

q2r−1
of the SRCF for a full period 2r.

Fundamental solution:

Proposition 5.12: The solution of the Brahmagupta-Fermat-Pell equation t2 −Du2 = 1

given by the Chakravāla algorithm at the end of the first cycle is fundamental, i.e. it is

positive and the least of all the other solutions given at the end of successive cycles.

Proof: The solution is given by (5.95). First we show that the solution is positive for

non-square D ≥ 7. Then we lift this restriction. Observe that

u = q2r−1 > 0

.

On the other hand

t ≥ q2r−1

(
ν0 − |

p2r−1

q2r−1
|
)

From (5.66) of Lemma 5.10 we have the estimate

|p2r−1

q2r−1
| < 1

2
+ ζ(2)

Now ζ(2) = π2

6 = 1.644934...... It is easily seen that since for D ≥ 7, ν0 ≥ 3 we have

t > 3− 1

2
− π2

6
> 0

For D = 2, 5, 6 the partial quotients are positive and therefore t > 0 together with u > 0.

For D = 3, ν0 = 2. Explicit computation (see later) shows |p2r−1

q2r−1
| < 1. . Therefore u > 0,

and t > 0 for all non-square D > 0.

Next we show that this solution is the least. Suppose we have performed n cycles. This

corresponds to a period 2nr. Let un, tn be the solution after n cycles. We have

un = q2nr−1

tn = p2nr−1 + ν0q2nr−1

(5.96)

By the previous argument we have un > 0 and tn > 0 for D ≥ 7. For D = 2, 5, 6 the partial

quotients are positive and therefore un > 0, tn > 0. For D = 3 we have ν0 = 2 and the
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Claim below proves |p2nr−1

q2nr−1
| < 1 for all n ≥ 1. Therefore for all non-square D ≥ 2 we have

un > 0, tn > 0 which establishes that the solutions after each cycle remain positive. Now

un = q2nr−1 is strictly monotonic increasing with increasing n by Lemma 5.8. Moreover the

equation t2n = Du2
n + 1 implies then that tn is strictly monotonic increasing. Therefore, of

this infinite set of solutions, the solution u1, t1 after the first cycle is the least and positive.

It is thus the fundamental solution.

Let (t1, u1) = (tD, uD) be the above fundamental solution. Then all the solutions (tj , uj),

j ≥ 1, are generated by the composition law of Proposition 1.2 :

tj + uj
√
D = (tD + uD

√
D)j

.

That these give all the solutions and there are no others was proved in Proposition 1.3.

We will now prove the Claim that was made above.

Claim: For D = 3 and all n ≥ 1 we have |p2nr−1

q2nr−1
| < 1.

Proof: For D = 3 we have ν0 = 2. From the algorithm we have the period length 2r = 2

and

ω0 = ?
−1|
|4

+
−1|
|4
? (5.97)

Now 2(n+ 1)r − 2nr = 2r = 2. Therefore

p2(n+1)r−1

q2(n+1)nr−1
=
−1|
|4

+
−1|
|4

+
p2nr−1|
|q2nr−1

whence

p2(n+1)r−1

q2(n+1)r−1
= − (4q2nr−1 + p2nr−1)

15q2nr−1 + 4p2nr−1
(5.98)

Assume for n ≥ 1 that

|p2nr−1

q2nr−1
| < 1 (5.99)

That this assumption is true for n = 1 is seen below.

Then from (5.98) we get

|
p2(n+1)r−1

q2(n+1)r−1
| <

4 + |p2nr−1

q2nr−1
|

15− 4|p2nr−1

q2nr−1
|
<

5

11
< 1 (5.100)
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From (5.97) we have for n = 1, |p2r−1

q2r−1
| = |p1q1 | = 1

4 < 1. Therefore by induction we have

for all n ≥ 1,

|p2nr−1

q2nr−1
| < 1 (5.101)

and the claim has been proved.

A number of examples are given below.

Remark 5.8: From SRCF to RCF

We have seen how from the penultimate convergent at the end of the first full period of

the SRCF (corresponding to the Chakravāla cycle) we get the fundamental solution of the

Brahmagupta-Fermat-equation. Fundamental solutions can of course also be obtained by

converting the SRCF to an RCF (regular continued fraction) where all the partial quotients

have +1 as numerator. The RCF has only positive partial quotients and has an increased

(even) period length (see below) This accounts for the fact that the computations are

longer. Although from the point of view of the Chakravāla algorithm this is unnecessary

we nevertheless give this transformation for the sake of comparison.

To do this we perform the transformation T1 of Perron ([P], §37, page 159 et seq) for the

SRCF (5.67)

√
D = ν0 + ω0 = ν0 + ?

ε0|
|k0

+
ε1|
|k1

+
ε2|
|k2

+ ....
ε2r−1|
|k2r−1

?+ (5.102)

The transformation T1 consists in the following:

Before each partial quotient with εj negative insert 1|
|1 and replace all minus signs by plus.

Change the denominators kj of the partial quotients as follows:


kj → kj : if εj = +1, εj+1 = +1
kj → kj − 1 : if εj = +1, εj+1 = −1 or εj = −1, εj+1 = +1
kj → kj − 2 : if εj = −1, εj+1 = −1.

(5.103)

Moreover for the cases ε0 = ±1, ν0 is either unchanged or ν0 → ν0 − 1 as defined below.

Period of RCF:

Let ε0, ε1, ...., ε2r−1 be the partial numerators of the SRCF. 2r is the length of the full

period of the SRCF. Let η = ]{j : εj = −1}. Then η is even. It is easy to show that the

length of the full period of the RCF is 2r + η = 2ρ.

Remark: This accounts for the fact that the number of steps in the computation of SRCF
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convergents is less than those of the corresponding RCF.

Under the transformation T1 the expression (5.67) for the principal root ω0 given by a

SRCF is now transformed to its RCF and ν0 changed to ν′0

T1 :
√
D = ν0 + ω0 = ν′0 + ω0

∣∣∣
RCF

(5.104)

where ν′0 = ν0 if ε0 = 1 and ν′0 = ν0 − 1 if ε0 = −1, and

ω0

∣∣∣
RCF

= ?
1|
|κ0

+
1|
|κ1

+
1|
|κ2

+ ....
1|
|κ2ρ−1

?+ (5.105)

The κj ≥ 1 are the integers obtained in the T1 transformation above.

Claim: ν′0 is the integer part of
√
D.

Proof :Recall that ν0 is the integer such that ν2
0 is nearest to D in absolute value in the

congruence class (mod 1) (see Definition 4.1 and(4.1), (4.2) with m0 = 1) From its defini-

tion (see (5.47) together with δ0 = −ν0+ν1
m1

, and m1 = ν2
0 −D, we have ε0 = (signδo)1 =

(−sign(ν2
0−D))1. Therefore if ε0 = 1 then ν2

0 < D and nearest to it in which case ν′0 = ν0,

is the integer part of
√
D. If ε0 = −1 then ν2

0 > D and nearest to it. Hence (ν0− 1)2 < D

and nearest to it. Therefore ν′0 = ν0 − 1 is the integer part of
√
D.

We define the convergents of the RCF

Pj
Qj

=
1|
|κ0

+
1|
|κ1

+
1|
|κ2

+ ....
1|
|κj−1

PJ , Qj satisfy the recurrence relation (5.58) where we set all εj = 1. In particular

Pn = κn−1Pn−1 + Pn−2, Qn = κn−1Qn−1 +Qn−2 (5.106)

where P0 = 0, P−1 = 1, and Q0 = 1, Q−1 = 0. Moreover κj ≥ 1. Therefore Qn ≥
Qn−1 + Qn−2, whence Qn > Qn−1 > 0. Whence Qn ≥ 2Qn−2, and by iteration Q2n ≥
2nQ0 = 2nand similarly Q2n+1 ≥ 2nQ1 ≥ 2n. Therefore Qn ≥ 2

n−1
2 . As before the

sequence { PnQn } is uniformly bounded above by a constant and Cauchy:

| Pn
Qn
− Pn−1

Qn−1
| = 1

Qn−1Qn
≤ 1

2n−2
→ 0

As a consequence Pn
Qn
→ ω0.

The solution of the Brahmagupta-Fermat-Pell equation is now obtained exactly as before

((5.78) et seq with obvious changes,( pj → Pj and qj → Qj , ej = 1, kj → κj ) but now

from the convergent
P2ρ−1

Q2ρ−1
of the RCF which is the ratio of two positive integers. We have

to replace (5.95) by
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u = Q2ρ−1

t = P2ρ−1 + ν′0Q2ρ−1

(5.107)

where ν′0 = ν0 if ε0 = 1 and ν′0 = ν0 − 1 if ε0 = −1. We have proved in the Claim

above that ν′0 is the integer part of
√
D. This gives an explicitly positive solution of the

Brahmagupta-Fermat-Pell equation from the convergent
P2ρ−1

Q2ρ−1
of the RCF:

t2 −Du2 = 1 (5.108)

For n ≥ 1 define

un = Q2nρ−1

tn = P2nρ−1 + ν′0Q2nρ−1

(5.109)

As before un is positive and strictly monotonic increasing with increasing n. The equation

(5.108) then implies that tn is positive and strictly monotonic increasing. Therefore u1, t1

is the fundamental solution.

Remark: Ever since Lagrange the regular continued fraction for
√
D has been used to

prove the existence of fundamental solutions. But, in so far as the Chakravala algorithm

is concerned, we have seen that this is not really necessary. The fact that at the end of the

first Chakravāla cycle the solution is fundamental has been directly proved in Proposition

5.12 at the level of the SRCF which is the natural outcome of this algorithm seen as a

reduction theory of quadratic forms.

The RCF solutions are illustrated for the cases D = 67, 29, 97, 58, 13 in the Examples 1, 3,

4, 5, 6 below.

Examples:

We consider some illustrative examples of the SRCF (specific to the Chakravāla algorithm)

for ω+,0 which is the principal root of the form (m0, ν0,m1). We give the corresponding

fundamental solution of the Brahmagupta-Fermat equation from the convergent p2r−1

q2r−1
,

where 2r is the full period, from (5.95).

From the definition of ω+,0

ω+,0 =
−ν0 +

√
D

m0

we have, since mo = 1,

√
D = {

√
D}+ ω+,0
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where {
√
D} = ν0, the integer nearest to

√
D in absolute value in the congruence class

(mod 1). 5

Thus the SRCF of ω+,0 gives the SRCF of
√
D. These examples illustrate also the

periodicity of the SRCF. The period length of the cycle is 2r which is also the period

length of the continued fraction. But when r is odd the SRCF has within its period of

length 2r a short period of length r in illustration of earlier remarks. We mark by asterisks

the beginning and end of a cycle. For D = 67, D = 29, D = 97 and D = 58 we have for

the SRCF the period length 2r. For D = 29, D = 97 and D = 58 we have twin successors

and local branching and joining as illustrated in Section 3. Correspondingly we will find

two SRCF which at the end of the full cycle give the same fundamental solution of the

Brahmagupta-Fermat-Pell equation. On the other hand, for D = 61, 13, 41 the SRCF

have the short period length r. However for the solution of the Brahmagupta-Fermat-

Pell equation we will need the full cycle with period 2r. We point out that of the seven

examples below of the SRCF corresponding to the cyclic algorithm, all agree with the

NSCF computed by Ayyangar [A2] except for those corresponding to the cases D = 29,

D = 97 and D = 58 where twin successors occur. In addition we illustrate for the cases

D = 67, 29, 97, 58, 13, Perron’s transformation of the SRCF to the RCF and the ensueing

fundamental solution of the Brahmagupta-Fermat equation as explained in Remark 5.8.

above. To each twin SRCF (D = 29, 97, 58) corresponds an unique RCF. Note also that

if the period in the RCF is odd, then we must double it to get an even period because

we are solving the positive, (m = 1), Brahmagupta-Fermat-Pell equation for which the

period is even. We then see that the RCF even period is longer than for the SRCF,

and sometimes much longer (see e.g example 4 below where the first SRCF period is 12

whereas for the RCF the first even period is 22. Computationaly, the SRCF is faster than

the corresponding RCF.

In the following we compute in turn from the complete step cycle given by the cyclic

algorithm, the integers δn = −νn+νn+1

mn+1
, kn = |δn|, and εn = −(sign δn × sign δn−1)1 with

ε0 = (sign δ0)1. We will need the convergents

pn
qn

=
ε0|
|k0

+
ε1|
|k1

+
ε2|
|k2

+ ....
εn−1|
|kn−1

(5.110)

in particular when n = 2r − 1 for solving the Brahmagupta Fermat Pell equatuin (see

(5.95) ).

1. D = 67. {
√
D} = ν0 = 8. The step cycle is given by (2.4).

(1, 8,−3), (−3, 7, 6), (6, 5,−7), (−7, 9,−2); (−2, 9,−7), (−7, 5, 6), (6, 7,−3), (−3, 8, 1)

5 ν0 is not in general the same as [
√
D] the integer part of

√
D.

29/july/2023 [55] 5:55



The step period is 2r = 8 and r = 4 is even. We now compute

?δ0 = 5, δ1 = −2, δ2 = 2, δ3 = 9, δ4 = 2, δ5 = −2, δ6 = 5, δ7 = −16?

k0 = 5, k1 = 2, k2 = 2, k3 = 9, k4 = 2, k5 = 2, k6 = 5, k7 = 16

ε0 = 1, ε1 = 1, ε2 = 1, ε3 = −1, ε4 = −1, ε5 = 1, e6 = 1, ε7 = 1

Therefore we obtain (writing ω0 instead of ω0,+ for simplicity)

√
67 = 8 + ω0

where

ω0 = ?
1|
|5

+
1|
|2

+
1|
|2

+
−1|
|9

+
−1|
|2

+
1|
|2

+
1|
|5

+
1|
|16

?

after which the same sequence repeats itself. The SRCF period is q = 2r = 8. To obtain

the solution of the Brahmagupta-Fermat equation we need the following convergent of ω0:

p2r−1

q2r−1
=
p7

q7

=
1|
|5

+
1|
|2

+
1|
|2

+
−1|
|9

+
−1|
|2

+
1|
|2

+
1|
|5

=
1106

5967

Thus p2r−1 = 1106 and q2r−1 = 5967. From (5.95) and ν0 = 8 we obtain

u = q2r−1 = 5967,

t = p2r−1 + ν0q2r−1 = 1106 + 8× 5967 = 48842

which gives the fundamental solution of the Brahmagupta-Femat equation

t2 − 67u2 = 1

Perron’s transformation T1 of SRCF to RCF leads to

√
67 = 8 + ?

1|
|5

+
1|
|2

+
1|
|1

+
1|
|1

+
1|
|7

+
1|
|1

+
1|
|1

+
1|
|2

+
1|
|5

+
1|
|16

?

The period of the RCF is 2ρ = 2r+η = 8 + 2 = 10. We have the convergent
P2ρ−1

Q2ρ−1
= 1106

5967 .

The solution of the Brahmagupta-Fermat equation t2 − 67u2 = 1 is given by
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u = q2ρ−1 = 5967,

t = p2ρ−1 + ν0q2ρ−1 = 1106 + 8× 5967 = 48842

as before.

2. D=61. {
√

61} = ν0 = 8. The step cycle is given by (3.20).

(1, 8, 3), (3, 7,−4), (−4, 9,−5), (−5, 6, 5), (5, 9, 4), (4, 7,−3), (−3, 8,−1);

(−1, 8,−3), (−3, 7, 4), (4, 9, 5), (5, 6,−5), (−5, 9,−4), (−4, 7, 3), (3, 8, 1)

The step period length is 2r = 14, and thus r = 7 which is odd. From this we compute

δ0 = −5, δ1 = 4, δ2 = 3, δ3 = −3, δ4 = −4, δ5 = 5, δ6 = 16,

δ7 = 5, δ8 = −4, δ9 = −3, δ10 = 3, δ11 = 4, δ12 = −5, δ13 = −16

from which we obtain

k0 = 5, k1 = 4, k2 = 3, k3 = 3, k4 = 4, k5 = 5, k6 = 16;

k7 = 5, k8 = 4, k9 = 3, k10 = 3, k11 = 4, k12 = 5, k13 = 16

ε0 = −1, ε1 = 1, ε2 = −1, ε3 = 1, ε4 = −1, ε5 = 1, ε6 = −1;

ε7 = −1, ε8 = 1, ε9 = −1, ε10 = 1, ε11 = −1, ε12 = 1, ε13 = −1

From the above we see that the step cycle period length is 2r = 14 whereas the SRCF

period length is q = r = 7 and thus shorter. We have

√
61 = 8 + ω0

where

ω0 = ?
−1|
|5

+
1|
|4

+
−1|
|3

+
1|
|3

+
−1|
|4

+
1|
|5

+
−1|
|16

?

and for the full period 2r = 14 we have

ω0 =
−1|
|5

+
1|
|4

+
−1|
|3

+
1|
|3

+
−1|
|4

+
1|
|5

+
−1|
|16

+
−1|
|5

+
1|
|4

+
−1|
|3

+
1|
|3

+
−1|
|4

+
1|
|5

+
−1|
|16

To solve the Brahmagupta-Fermat equation using (5.95) we need the convergent
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p2r−1

q2r−1
=
p13

q13

=
−1|
|5

+
1|
|4

+
−1|
|3

+
1|
|3

+
−1|
|4

+
1|
|5

+
−1|
|16

+
−1|
|5

+
1|
|4

+
−1|
|3

+
1|
|3

+
−1|
|4

+
1|
|5

=
−42912791

226153980

Thus p2r−1 = p13 = −42912791 and q2r−1 = q13 = 226153980. From ν0 = 8 and (5.95) we

obtain

u = q2r−1 = 226153980,

t = p2r−1 + ν0q2r−1 = −42912791 + 8× 226153980 = 1766319049

which gives the fundamental solution of the Brahmagupta-Fermat equation

t2 − 61u2 = 1

3. D = 29. {
√
D} = 5. In section 3 we have seen that there are twin sequences which

merge. On reversing the same phenomenon take place. We consider the ν+ and ν− cycles.

To these correspond twin SRCF

29 = 5 + ω0,ν+

29 = 5 + ω0,ν−

of period length 2r = 8.

ν− cycle:

(1, 5,−4), (−4, ν− = 3, 5), (5, ν+ = 7, 4), (4, 5,−1);

(−1, 5, 4), (4, ν+ = 7, 5), (5, ν− = 3,−4), (−4, 5, 1)

δ0 = 2, δ1 = −2, δ2 = −3, δ3 = 10, δ4 = −3, δ5 = −2, δ6 = 2, δ7 = −10

k0 = 2, k1 = 2, k2 = 3, k3 = 10, k4 = 3, k5 = 2, k6 = 2, k7 = 10

ε0 = 1, ε1 = 1, ε2 = −1, ε3 = 1, ε4 = 1, ε5 = −1, ε6 = 1, e7 = 1

ων− = ?
1|
|2

+
1|
|2

+
−1|
|3

+
1|
|10

+
1|
|3

+
−1|
|2

+
1|
|2

+
1|
|10

?
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ν+ cycle:

(1, 5,−4), (−4, ν+ = 7,−5), (−5, ν− = 3, 4), (4, 5,−1);

(−1, 5, 4), (4, ν− = 3,−5), (−5, ν+ = 7,−4), (−4, 5, 1)

δ0 = 3, δ1 = 2, δ2 = −2, δ3 = 10, δ4 = −2, δ5 = 2, δ6 = 3, δ7 = −10

k0 = 3, k1 = 2, k2 = 2, k3 = 10, k4 = 2, k5 = 2, k6 = 3, k7 = 10

ε0 = 1, ε1 = −1, ε2 = 1, ε3 = 1, ε4 = 1, ε5 = 1, ε6 = −1, ε7 = 1

whence

ων+ = ?
1|
|3

+
−1|
|2

+
1|
|2

+
1|
|10

+
1|
|2

+
1|
|2

+
−1|
|3

+
1|
|10

?

For the ν− cycle, we have the convergent

p2r−1

q2r−1
=
p7

q7

=
1|
|2

+
1|
|2

+
−1|
|3

+
1|
|10

+
1|
|3

+
−1|
|2

+
1|
|2

=
701

1820

For ν+ cycle , we have the convergent

p2r−1

q2r−1
=
p7

q7

=
1|
|3

+
−1|
|2

+
1|
|2

+
1|
|10

+
1|
|2

+
1|
|2

+
−1|
|3

=
701

1820

So for both cycles we have p2r−1 = p7 = 701 and q2r−1 = q7 = 1820. So from ν0 = 5 and

(5.95) we have the common solution for the twin SRCF for D = 29

u = q2r−1 = 1820,

t = p2r−1 + ν0q2r−1 = 701 + 5× 1820 = 9801

which gives the fundamental solution of the Brahmagupta-Fermat-Pell equation

t2 − 29u2 = 1
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We now perform the Perron transformation (see Remark 5.8) T1 : SRCF → RCF . For

both the ν− and ν+ cycles we get the same RCF:

√
29 = 5 + ?

1|
|2

+
1|
|1

+
1|
|1

+
1|
|2

+
1|
|10

+
1|
|2

+
1|
|1

+
1|
|1

+
1|
|2

+
1|
|10

?

The period of the RCF (see Remark 5.8) is 2ρ = 2r + η = 8 + 2 = 10. Computation now

gives for the convergent

P2ρ−1

Q2ρ−1
=

701

1820
=
p2r−1

q2r−1

Hence we get the same solution u = 1820, t = 9801 of the equation u2 − 29t2 = 1.

4. D = 97. {
√
D} = ν0 = 10. We have twin successors shown in Section 3. We consider the

ν+ and ν− cycles given in (3.28) and (3.30). The period length is 2r = 12. Correspondingly

we have the SRCF

97 = 10 + ω0,ν+

97 = 10 + ω0,ν−

of period length 2r = 12.

ν− cycle:

(1, 10, 3), (3, 11, 8), (8, ν− = 5,−9), (−9, ν+ = 13,−8), (−8, 11,−3), (−3, 10,−1);

(−1, 10,−3), (−3, 11,−8), (−8, ν+ = 13,−9), (−9, ν− = 5, 8), (8, 11, 3), (3, 10, 1) (5.111)

From this we have

δ0 = −7, δ1 = −2, δ2 = 2, δ3 = 3, δ4 = 7, δ5 = 20,

δ6 = 7, δ7 = 3, δ8 = 2, δ9 = −2, δ10 = −7, δ11 = −20

From this we have kn = |δn|. Next, we compute εn. Recall ε0 = sign δ0, εn = −(sign δn)×
(sign δn−1). Thus,

ε0 = −1, ε1 = −1, ε2 = 1, ε3 = −1, ε4 = −1, ε5 = −1

ε6 = −1, ε7 = −1, ε8 = −1, ε9 = 1, ε10 = −1, ε11 = −1

We have the SRCF corresponding to the ν− cycle
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ω0,ν− = ?
−1|
|7

+
−1|
|2

+
1|
|2

+
−1|
|3

+
−1|
|7

+
−1|
|20

+
−1|
|7

+
−1|
|3

+
−1|
|2

+

+
1|
|2

+
−1|
|7

+
−1|
|20

?

The SRCF period is 2r = 12. We need the convergent p2r−1

q2r−1
in order to solve the

Brahmagupta-Fermat equation.

p2r−1

q2r−1
=
p11

q11

=
−1|
|7

+
−1|
|2

+
1|
|2

+
−1|
|3

+
−1|
|7

+
−1

|20
+
−1|
|7

+
−1|
|3

+
−1|
|2

+
1|
|2

+
−1|
|7

=
−963887

6377352

ν+ cycle:

(1, 10, 3), (3, 11, 8), (8, ν+ = 13, 9), (9, ν− = 5,−8), (−8, 11,−3), (−3, 10,−1);

(−1, 10,−3), (−3, 11,−8), (−8, ν− = 5, 9), (9, ν+ = 13, 8), (8, 11, 3), ((3, 10, 1) (5.112)

We have

δ0 = −7, δ1 = −3, δ2 = −2, δ3 = +2, δ4 = +7, δ5 = +20,

δ6 = +7, δ7 = +2, δ8 = −2, δ9 = −3, δ10 = −7, δ11 = −20

kn = |δn| and the εn are as follows:

ε0 = −1, ε1 = −1, ε2 = −1, ε3 = 1, ε4 = −1, ε5 = −1,

ε6 = −1, ε7 = −1, ε8 = 1, ε9 = −1, ε10 = −1, ε11 = −1

This gives the SRCF corresponding to the ν+ cycle:

ω0,ν+ = ?
−1|
|7

+
−1|
|3

+
−1|
|2

+
1|
|2

+ +
−1|
|7

+
−1|
|20

+
−1|
|7

+
−1|
|2

+
1|
|2

+
−1|
|3

+
−1|
|7

+
−1|
|20

?

We compute
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p2r−1

q2r−1
=
p11

q11

=
−1|
|7

+
−1|
|3

+
−1|
|2

+
1|
|2

+ +
−1|
|7

+
−1|
|20

+
−1|
|7

+
−1|
|2

+
1|
|2

+
−1|
|3

+
−1|
|7

=
−963887

6377352

So for both ν+ and ν− cycles we have p2r−1 = p11 = −963887 and q2r−1 = q11 = 6377352.

Hence from ν0 = 10 and (5.95) we have the common solution for D = 97

u = q2r−1 = 6377352,

t = p2r−1 + ν0q2r−1 = −963887 + 10× 6377352 = 62809633

This gives the fundametal solution of the Brahmagupta-Fermat-Pell equation

t2 − 97u2 = 1

We now perform the Perron transformation T1 : SRCF → RCF (see Remark 5.8) for both

the ν− and ν+ cycles. The two RCF coincide and we get

√
97 = 9 + ?

1|
|1

+
1|
|5

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|5

+
1|
|1

+
1|
|18

+
1|
|1

+
1|
|5

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|5

+
1|
|1

+
1|
|18

?

The period of the RCF is 2ρ = 2r + η = 12 + 10 = 22. Clearly the period of the RCF is

much longer than that of the SRCF and the number of steps to compute the convergents

is much increased. Computation gives for the convergent

P2ρ−1

Q2ρ−1
=

5413465

6377352

.

whence (see Remark 5.8) we get

u = Q2ρ−1 = 6377352

and

t = P2ρ−1 + (ν0 − 1)Q2ρ−1 = 5413465 + 9× 6377352 = 62809633
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which gives the same solution of the Brahmagupta-Fermat equation u2−97t2 = 1 as before.

5. D = 58. {
√
D} = ν0 = 8. We have twin successors shown in Section 3, Example 3.5.

We consider the ν+ and ν− cycles given in (3.32) and (3.33). The period length is 2r = 8.

Correspondingly we have the SRCF

58 = 8 + ω0,ν+

58 = 8 + ω0,ν−

We compute as before the SRCF from the ν− and ν+ cycles. The SRCF corresponding to

the ν− cycle

ω0,ν− = ?
−1|
|2

+
1|
|2

+
−1|
|3

+
−1|
|16

+
−1|
|3

+
−1

|2
+

1|
|2

+
−1|
|16

?

The SRCF period is 2r = 8. We need the convergent p2r−1

q2r−1
.

p2r−1

q2r−1
=
p7

q7

=
−1|
|2

+
1|
|2

+
1|
|3

+
−1|
|16

+
−1|
|3

+
−1

|2
+

1|
|2

=
−989

2574

ν+ cycle:

The SRCF corresponding to the ν+ cycle:

ω0,ν+ = ?
−1|
|3

+
−1|
|2

+
1|
|2

+
−1|
|16

+
−1|
|2

+
1|
|2

+
−1|
|3

+
−1|
|16

?

We compute

p2r−1

q2r−1
=
p7

q7

=
−1|
|3

+
−1|
|2

+
1|
|2

+
−1|
|16

+
−1|
|2

+
1|
|2

+
−1|
|3

=
−989

2574

So for both ν+ and ν− cycles we have p2r−1 = p7 = −989 and q2r−1 = q7 = 2574. Hence

from ν0 = 8 and (5.95) we have the common solution for D = 58

u = q2r−1 = 2574,

t = p2r−1 + ν0q2r−1 = −989 + 8× 2574 = 19603
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This gives the fundamental solution of the Brahmagupta-Fermat-Pell equation

t2 − 58u2 = 1

Perron’s transformation T1 of the SRCF for the ν+ and ν− cycles to the RCF’s (see Remark

5.8) lead to the same RCF

√
58 = 7 + ?

1|
|1

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|14

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|14

?

The period of the RCF is 2ρ = 2r+ η = 8 + 6 = 14. We have the convergent
p2ρ−1

q2ρ−1
= 1585

2574 .

The solution of the Brahmagupta-Fermat equation t2 − 58u2 = 1 is given by

u = Q2ρ−1 = 2574,

t = P2ρ−1 + (ν0 − 1)Q2ρ−1 = 1585 + 7× 2574 = 19603

as before.

6. D = 13. {
√
D} = ν0 = 4. The step cycle is

(1, 4, 3), (3, 2,−3), (−3, 4,−1); (−1, 4,−3), (−3, 2, 3), (3, 4, 1)

The cycle period is 2r = 6 and thus r = 3 which is odd. We obtain the SRCF by computing

first

δ0 = −2, δ1 = 2, δ2 = 8, δ3 = 2, δ4 = −2, δ5 = −8

after which the sequence repeats itself. Taking absolute values we have the kn

k0 = 2, k1 = 2, k2 = 8, k3 = 2, k4 = 2, k5 = 8

Next we compute the εn. We have

ε0 = −1, ε1 = 1, ε2 = −1, ε3 = −1, ε4 = 1, ε5 = −1

Thus

√
13 = 4 + ω0

ω0 = ?
−1|
|2

+
1|
|2

+
−1|
|8

+ ?

The full period 2r = 6 gives
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ω0 = ?
−1|
|2

+
1|
|2

+
−1|
|8

+
−1|
|2

+
1|
|2

+
−1|
|8
?

To solve the Brahmagupta-Fermat- Pell equation we need the convergent

p2r−1

q2r−1
=
p5

q5

=
−1|
|2

+
1|
|2

+
−1|
|8

+
−1|
|2

+
1|
|2

=
−71

180

So p2r−1 = p5 = −71 and q2r−1 = q5 = 180. So from ν0 = 4 and (5.95) we get

u = q2r−1 = 180,

t = p2r−1 + ν0q2r−1 = −71 + 4× 180 = 649

which gives the fundamental solution of the Brahmagupta-Fermat equation

t2 − 13u2 = 1

Perron’s transformation T1 of the SRCF to the RCF (see Remark 5.8) leads to

√
13 = 3 + ?

1|
|1

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|6

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|1

+
1|
|6
?

The period of the RCF is 2ρ = 2r + η = 6 + 4 = 10. We have the convergent
p2ρ−1

q2ρ−1
= 109

180 .

The solution of the Brahmagupta-Fermat equation t2 − 13u2 = 1 is given by

u = Q2ρ−1 = 180,

t = P2ρ−1 + (ν0 − 1)Q2ρ−1 = 109 + 3× 180 = 649

as before.

7. D = 41. {
√
D} = ν0 = 6. The step cycle is

(1, 6,−5), (−5, 4, 5), (5, 6,−1); (−1, 6, 5), (5, 4,−5), (−5, 6, 1)

The cycle period is 2r = 6 and thus r = 3 which is odd. We obtain the SRCF by computing

first

δ0 = 2, δ1 = −2, δ2 = 12, δ3 = −2, δ4 = 2, δ5 = −12

after which the sequence repeats itself. Taking absolute values we have the kn
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k0 = 2, k1 = 2, k2 = 12, k3 = 2, k4 = 2, k5 = 12

Next we compute the εn. We have

ε0 = 1, ε1 = 1, ε2 = 1, ε3 = 1, ε4 = 1, ε5 = 1

Thus

√
41 = 6 + ω0

ω0 = ?
1|
|2

+
1|
|2

+
1|
|12

+ ?

The full period 2r = 6 gives

ω0 = ?
1|
|2

+
1|
|2

+
1|
|12

+
1|
|2

+
1|
|2

+
1|
|12

?

To solve the Brahmagupta-Fermat- Pell equation we need the convergent

p2r−1

q2r−1
=
p5

q5

=
1|
|2

+
1|
|2

+
1|
|12

+
1|
|2

+
1|
|2

=
129

320

So p2r−1 = p5 = 129 and q2r−1 = q5 = 320. So from ν0 = 6 and (5.95) we get

u = q2r−1 = 320,

t = p2r−1 + ν0q2r−1 = 129 + 6× 320 = 2049

which gives the fundamental solution of the Brahmagupta-Fermat equation

t2 − 41u2 = 1

Appendix 1

Proof of Proposition 4.3 : We have |m| <
√
D. Since ν is best mod m, it is one of two

positive integers ν1 or ν2 satisfying

ν2
1 < D < ν2

2 = (ν1 + |m|)2 (6.1)

29/july/2023 [66] 6:66



Recall also that ν2 − D = ε|m||m′| where ε = ±1 according as ν is greater or less than√
D. We now have two cases according as ν >

√
D or ν <

√
D.

1. Suppose ν >
√
D. Then ε = +1 and ν2 − D = |m||m′|. and ν2 = ν in (4.2) and

ν1 = ν − |m|. We have

ν2 −D ≤ D − (ν − |m|)2 = (D − ν2) + 2νm− |m|2

whence

ν2 −D ≤ ν|m| − |m|
2

2

Use ν2 −D = |m||m′| and factor out |m|. This gives

ν ≥ |m′|+ |m|
2

(6.2)

which proves that (1) (Proposition 4.3) ⇒ (3) when ν >
√
D. Working backwards from

(6.2) we can prove (3)⇒ (1) of the proposition. In fact from (6.2) and ν2 −D = |m||m′|
(since ν >

√
D ) we have

ν2 −D
|m|

= |m′| ≤ ν −−|m|
2

whence

2(ν2 −D) ≤ 2|m|ν − |m|2 = −(ν − |m|)2 + ν2

whence

0 < ν2 −D ≤ D − (ν − |m|)2

This implies

(ν − |m|)2 < D < ν2

which states that n is best mod m when ν >
√
D. Thus we have shown that (3) of

Proposition ⇒ (1). Hence we have shown when ν >
√
D, we have (1) ⇐⇒ (3).

We will now show that (3) ⇐⇒ (2). Squaring inequality (6.2) gives

ν2 ≥ |m′|2 + |m′||m|+ |m|
2

4

Now |m′||m| = ν2 −D. Therefore
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|m′|2 +
|m|2

4
≤ D (6.3)

which is (2) of the Proposition. On the other hand suppose (2) is true. Then we have

D + |m||m′| ≥ (|m′|+ |m|
2

)2 (6.4)

Since ν >
√
D we have |m||m′| ≤ ν2−D or D+ |m||m′| ≤ ν2. Therefore from (6.4) we get

ν2 ≥ (|m′|+ |m|
2

)2

Now taking square roots we get (6.2). Thus we have proved the chain of implications

(1) ⇐⇒ (3) ⇐⇒ (2)

which proves the Proposition for the case ν >
√
D.

2. We will now prove the Proposition for the case ν <
√
D.

Suppose ν <
√
D. In this case ε = −1 and ν2 −D = −|m||m′|. Then ν1 = ν in (4.2) and

ν2 = ν + |m|. We have

D − ν2 ≤ (ν + |m|)2 −D = ν2 −D + 2ν|m|+ |m|2 (6.5)

Therefore transfering ν2 −D to the left and using ν2 −D = −|m||m′|, we get

2|m||m′| ≤ 2ν|m|+ |m|2

Dividing out by 2|m| we get

ν ≥ |m′| − |m|
2

(6.6)

which proves that (1) ⇒ (3) of the Proposition. We now prove that (3) ⇒ (1). Starting

from (6.6) and ν2 −D = −|m||m′| we have

D − ν2 ≥ |m|(ν +
|m|
2

) = m|ν +
|m|2

2

or

2(D − ν2) ≥ (ν + |m|)2 − ν2

whence
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0 < ν2 < D < (ν + |m|)2

which is (1). We have thus proved that when ν <
√
D, we have (1)⇒ (3) of the Proposi-

tion.

We will now prove that (1) ⇐⇒ (2) when ν <
√
D.

First we prove (1)⇒ (2). Starting from (6.5)

D − ν2 ≤ ν|m|+ |m|
2

2

whence

ν2 + ν|m| −D +
|m|2

2
≥ 0

or

(ν +
|m|
2

)2 +
|m|2

4
−D ≥ 0

Therefore

(ν +
|m|
2

)2 > D − |m|
2

4
≥ 0

Note that |m| <
√
D implies D > |m|2 > |m|2

4 and hence D − |m|
2

4 > 0. All quantities in

the previous inequality are positive, so we can take square roots to get

ν ≥
√
D − |m|

2

4
− |m|

2

Furthermore, since D > |m|2
2 , we have

D − |m|
2

4
≥ |m|

2

2
− |m|

2

4
=
|m|2

4
> 0

Therefore squaring positive quantities we get

ν2 ≥ (

√
D − |m|

2

4
− |m|

2
)2 = D − |m|

2

4
+
|m|2

4
− |m|

√
D − |m|

2

4

Therefore

|m|
√
D − |m|

2

4
≥ D − ν2 = |m||m′|

Dividing out by |m| and then squaring gives us
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D ≥ |m′|2 +
|m|2

4

which proves (2) of the Proposition. Thus (1)⇒ (2).

Next we prove (2)⇒ (1).

Essentially we work backwards. From (2) we have

|m|
√
D − |m|

2

4
≥ |m||m′| = D − ν2

whence

ν2 ≥ (

√
D − |m|

2

4
− |m|

2
)2 (6.7)

It was established earlier that

D − |m|
2

4
>
|m|2

4

so that

√
D − |m|

2

4
≥ |m|

2

Therefore taking square root of (6.7) we get

ν +
|m|
2
≥
√
D − |m|

2

4
(6.8)

The right hand side is positive. Hence taking the square of (6.8) we get

D − ν2 ≤ ν|m|+ |m|
2

2

which is (6.5) and thus

0 < ν2 < D < (ν + |m|)2

Therefore we have also shown (2) ⇒ (1). Thus (1) ⇐⇒ (2). Therefore for ν <
√
D we

have shown by transitivity (1) ⇐⇒ (2) ⇐⇒ (3). The proof of Proposition 4.3 is now
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complete.

Appendix 2

Proof of Theorem 4.6:

(m, ν,m′) is a step and (m′, ν′,m′′) is a successor step. As steps they satisfy (see statement

of Theorem 4.3)

(1) |m′|2 +
m2

4
≤ D (6.9)

(2) |m′′|2 +
m′2

4
≤ D (6.10)

and we have to prove that

(3) |m′|2 +
m′′2

4
≤ D (6.11)

in which case the successor step (m′, ν′,m′′) is a reduced step.

Now (3) follows from (2) if |m′| ≤ |m′′| by Corollary 4.5. And (3) follows from (1) if

|m′′| ≤ |m|. Thus from now on we assume that

|m| < |m′′| < |m′| (6.12)

.

Recall that ν2 − D = ε|m||m′| and ν′2 − D = ε′|m′′||m′|. Furthermore since m′|(ν + ν′)

we have for some positive integer l,

ν′ + ν = |m′|l (6.13)

Therefore

|m′|l(ν′ − ν) = (ν′ + ν)((ν′ − ν) = ν′2 − ν2 = ε′|m′′||m′| − ε|m||m′|

Dividing out by |m′| we get

ν′ − ν =
ε′|m′′| − ε|m|

l
(6.14)

Adding (6.13) and (6.14), we get

2ν′ = |m′|l +
ε′|m′′| − ε|m|

l
(6.15)
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Now |m| ≤ |m′′| by assumption. Therefore

2ν′ = |m′|l +
(ε′ − ε)|m′′|

l

Now ε = ±1. Therefore

ν′ ≥ 1

2

(
|m′|l +

(ε′ − 1)|m′′|
l

)
(6.16)

On the other hand, subtracting (6.14) from (6.13), we get

ν =
1

2

(
|m′|l − ε′|m′′| − ε|m|

l

)
(6.17)

From (6.9), Proposition 4.1 and (6.17) we have

1

2

(
|m′|l − ε′|m′′| − ε|m|

l

)
≥ |m′|+ ε

|m|
2

(6.18)

Our strategy is to show first that low values of l are excluded.

1. Suppose l = 1. Then from (6.18) we get

1

2

(
|m′| − ε′|m′′|+ ε|m|

)
≥ |m′|+ ε

|m|
2

or

1

2

(
|m′| − ε′|m′′|

)
≥ |m′|

or

−ε′|m′′| ≥ |m′|

If ε′ = 1, then |m′| ≤ 0, which is impossible. If ε′ = −1, then |m′′| ≥ |m′| which is contrary

to hypothesis (6.12). Therefore

l 6= 1

2. Suppose l = 2. Then from (6.18)

1

2

(
|m′|2− ε′|m′′| − ε|m|

2

)
≥ |m′|+ ε

|m|
2

or

(ε′|m′′|+ ε|m|) ≤ 0
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If ε′ = 1, then

(|m′′|+ ε|m|) ≤ 0

Then ε = 1 leads to contradiction. If ε = −1 then

|m′′| ≤ |m|

which contradicts hypothesis (6.12).Therefore for ε′ = 1 we must have l 6= 2. Thus

ε′ = 1⇒ l ≥ 3

.

If ε′ = −1, then l ≥ 2. From (6.16)

ν′ ≥ 1

2

(
|m′|2− 2

|m′′|
2

)
or

ν′ ≥ (|m′| − |m
′′|

2
) (6.19)

For ε′ = 1 we have l ≥ 3. Therefore

ν′ ≥ 1

2

(
|m′|l − 2

|m′′|
l

)
≥ 1

2

(
|m′|3− 2

|m′′|
l

)
This is true for all l ≥ 3. Therefore the second term is as small as one pleases. Hence

ν′ ≥ 3

2
|m′| = |m′|+ 1

2
|m′|

From (6.12), |m′| ≥ |m′′| and therefore

ν′ ≥ 3

2
|m′| ≥ |m′|+ 1

2
|m′′| (6.20)

From (6.19) (case ε′ = −1) and (6.20) (case ε′ = +1) we get

ν′ ≥ |m′|+ ε′
1

2
|m′′| (6.21)

and this implies from Proposition 4.1

|m′|2 +
|m′′|2

4
≤ D (6.22)
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Therefore (m′, ν′,m′′) is a reduced step and thus Theorem 4.3 has been proved.

Appendix 3

Proof of Lemma 5.6:

Let (m, ν,m′) and (m′, ν′′,m”) be two successive steps. From Theorem 4.6 and Corollary

4.7 we have that all steps are reduced. We will show that this implies that k ≥ 2 where

k =
ν + ν′

|m′|

In the proof we will make use of some of the results in Appendix 2 where we gave the proof

of Theorem 4.6. Recall that, from Proposition 4.3 beginning paragraph, ν2−D = ε|m||m′|
and similarly ν′2 − D = ε′|m′||m′′|, where ε, ε′ = ±1. Furthermore for consistency of

notation with Appendix 2 we define l = k so that as in (6.13)

ν + ν′ = |m′|l

and we have to prove l 6= 1.

We have to consider the following 6 cases :

1. |m| < |m′| < |m′′|

2. |m′′| < |m′| < |m|

3. |m′| < |m| < |m′′|

4. |m′′| < |m| < |m′|

5. |m| < |m′′| < |m′|

6. |m′| < |m′′| < |m|

Suppose l = 1. We have proved in Appendix 2, (6.18) and the lines following it, that when

ε′ = 1, l 6= 1. On the other hand, when ε′ = −1 we have |m′′| ≥ |m′|, which is contrary to

the hypotheses of Cases 2), 4), 5). Therefore l 6= 1 in these cases. It remains to consider

Cases 6, 1, 3.

Case 6. We shall now show that for Case 6, l 6= 1. Suppose l = 1. Assume ε′ = −1, since

otherwise, as earlier, l 6= 1. Now by Theorem 4.6 and Corollary 4.7 all steps are reduced.

Thus the step (m, ν,m′) is reduced. Therefore ν is best mod m and also mod m′, since

(m′, ν,m) is a step. Hence, by Proposition 4.3 and Definition 4.4 we have

ν ≥ |m|+ ε

2
|m′| (6.23)
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Combining this with (6.17) we get (by assumption l = 1) with ε′ = −1 (otherwise l 6= 1)

1

2

(
|m′|+ |m′′|+ ε|m|

)
≥ |m|+ ε

2
|m′| (6.24)

whence

1

2
(1− ε)|m′| ≥ |m|(1− ε

2
)− 1

2
|m′′|

or

(1− ε)|m′| ≥ |m|(2− ε)− |m′′| (6.25)

1. ε = 1. From (6.25) we get |m| ≤ |m′′| which contradicts Case 6.

2. ε = −1. From (6.25)

2|m′| ≥ 2|m|+ (|m| − |m′′|)

For Case 6, we have |m| > |m′′|.
Therefore

|m′| ≥ |m|

which contradicts Case 6. Therefore l 6= 1.

It remains to show that for Cases 1 and 3 , l 6= 1. We can take ε′ = −1 because if ε′ = 1

then l 6= 1 as shown in Appendix 2. We now consider in turn

Case1. Suppose l = 1. (m′, ν′,m′′) is reduced, and therefore ν′ is best mod m′ and also

best mod m′′. Hence from Proposition 4.3 we have

ν′ ≥ |m′′|+ ε
|m′|

2
(6.26)

ν′ ≥ |m′|+ ε
|m′′|

2
(6.27)

We also have from (6.15), on taking l = 1 and ε′ = −1

ν′ =
1

2
(|m′| − |m′′| − ε|m|) (6.28)

From (6.28) and (6.27) we get

1

2
(|m′| − |m′′| − ε|m|) ≥ |m′|+ ε

|m′′|
2

or
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|m′| − |m′′| − ε|m| ≥ 2|m′|+ ε|m′′|

whence

−(1 + ε)|m′′| ≥ |m′|+ ε|m|

For ε = −1 we get |m| ≥ |m′| which contradicts Case 1. On the other hand if ε = 1 we

get |m| ≤ 0 which is impossible. Therefore l 6= 1.

Case 3. Suppose l = 1. Assume ε′ = −1, otherwise if ε′ = 1 then l 6= 1 as shown earlier.

From (6.28) and (6.26) we have

1

2
(|m′| − |m′′| − ε|m|) ≥ |m′′|+ ε

|m′|
2

or

|m′| − |m′′| − ε|m| ≥ 2|m′′|+ ε|m′|

whence

(1− ε)|m′| − ε|m| ≥ 3|m′′| (6.29)

There are now two possibilities.

1. ε = 1. Then |m′′| ≤ 0, which is impossible.

2. ε = −1. From (6.29) we have

2|m′|+ |m| ≥ 3|m′′|

Therefore

|m| ≥ |m′′|+ 2(m′′ − |m′|)

For Case 3, we have |m′′| > |m′|. Therefore from the previous inequality |m| ≥ |m′′|, which

contradicts Case 3. Therefore l 6= 1. Therefore we have now proved in all the possible

cases 1) - 6) that l 6= 1. The proof of Lemma 5.6 is complete.

Appendix 4

Generalisation of Galois inverse period theorem and symmetry consequences to semi-

regular continued fractions(SRCF)

Proof of (5.71) ,(5.72) and (5.73) :

Perron [P] (§23, pages 82-83 ) gave a simple proof the Galois inverse period theorem (Satz

6) for regular continued fractions (RCF) and as a consequence obtained in (§24, page
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87) additional symmetries for the partial quotients of the RCF. Here, following closely

the above considerations in [P], we generalize the Galois inverse period theorem and its

symmetry consequences for the partial quotients of the SRCF. A similar generalization is

given in [A2], §5.6.1, pages 32-34.

Recall that from (5.24) and (5.67)

ϑ0 =
√
D = ν0 + ω0 = ν0 + ?

ε0|
|k0

+
ε1|
|k1

+
ε2|
|k2

+ ....
ε2r−1|
|k2r−1

? (6.30)

where we have used m0 = 1 and that the SRCF is periodic with period 2r. ν0 = [
√
D] is

the integer closest to
√
D in absolute value in the congruence class (mod 1). We have the

periodicity of the partial quotients by εj+2r = εj and kj+2r = kj . It is convenient to make

a slight change of notation. We define ηj , κj by the equations

ηj = εj−1 : 1 ≤ j ≤ 2r (6.31)

κj = kj−1 : 1 ≤ j ≤ 2r (6.32)

κ0 = ν0 (6.33)

with the same periodicity. The SRCF (6.30) now reads with κ0 = ν0

ϑ0 = κ0 + ?
η1|
|κ1

+
η2|
|κ2

+ +....
η2r|
|κ2r

? (6.34)

The SRCF (6.34) is generated by the recursion relation

ϑj = κj +
ηj+1

ϑj+1
: 0 ≤ j ≤ 2r − 1 (6.35)

and by periodicity

ϑ2r = κ2r +
η2r+1

ϑ2r+1
= κ2r +

η1

ϑ1
(6.36)

Let ϑ̄j be the conjugate of ϑj . It obeys the same recursion relation, namely

ϑ̄j = κj +
ηj+1

ϑ̄j+1
: 0 ≤ j ≤ 2r − 1 (6.37)

whence

− ηj+1

ϑ̄j+1
= κj − ϑ̄j (6.38)

Define
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− ηj+1

ϑ̄j+1
= ζ2r−j (6.39)

From (6.38) and (6.39) we obtain

ζ2r−j = κj +
ηj

ζ2r−j+1
(6.40)

We rewrite (6.40)

ζi = κ2r−i +
η2r−i

ζi+1
: 0 ≤ i ≤ 2r − 1 (6.41)

Therefore

ζ0 = κ2r +
η2r|
|κ2r−1

+
η2r−1|
|κ2r−2

+ ....+
η2|
|κ1

+
η1|
|ζ2r

(6.42)

From (6.39) and periodicity we obtain

ζ2r = − η1

ϑ̄1
= − η2r+1

ϑ̄2r+1
= ζ0 (6.43)

From (6.42) and (6.43) we obtain

ζ0 = κ2r + ∗ η2r|
|κ2r−1

+
η2r−1|
|κ2r−2

+ ....+
η2|
|κ1

+
η1|
|κ2r

? (6.44)

Reverting back to the original notation in (6.31) and (6.32) we have the analogue for the

SRCF of the Galois inverse periodicity

ζ0 = k2r−1 + ?
ε2r−1|
|k2r−2

+
ε2r−2|
|k2r−3

+ ....+
ε1|
|k0

+
ε0|
|k2r−1

? (6.45)

where from (6.43)

ζ0 = − ε0

ϑ̄1
(6.46)

We now obtain the additional symmetry relations. From

√
D = ϑ0 = κ0 + ?

η1|
|κ1

+
η2|
|κ2

+ +....
η2r|
|κ2r

? (6.47)

we obtain

√
D − κ0 =

η1

ϑ1
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whence

η1√
D − κ0

= ϑ1 = κ1 + ?
η2|
|κ2

+
η3|
|κ3

+ +....
η2r|
|κ2r

? (6.48)

From (6.48) we obtain for the conjugate ϑ̄1

ϑ̄1 = − η1√
D + κ0

whence

− 1

ϑ̄1
= η1(

√
D + κ0) (6.49)

From (6.43) and (6.49) we obtain

ζ0 = − η1

ϑ̄1
= (
√
D + κ0) (6.50)

where we have used η2
1 = 1. Now from (6.50) and(6.30) we obtain directly (remembering

κ0 = ν0)

ζ0 =
√
D + ν0 = 2ν0 + ω0 = 2ν0 + ?

ε0|
|k0

+
ε1|
|k1

+
ε2|
|k2

+ ....+
ε2r−2|
|k2r−2

+
ε2r−1|
|k2r−1

? (6.51)

We compare ζ0 given by (6.51) above with ζ0 given in (6.42):

ζ0 = k2r−1 + ?
ε2r−1|
|k2r−2

+
ε2r−2|
|k2r−3

+ ....+
ε1|
|k0

+
ε0|
|k2r−1

? (6.52)

to obtain the symmetry relations of (5.71), (5.72) and (5.73) :

εi = ε2r−1−i : 0 ≤ i ≤ 2r − 1 (6.53)

ki = k2r−2−i : 0 ≤ i ≤ 2r − 2 (6.54)

k2r−1 = 2ν0 (6.55)

The proof of (5.71), (5.72) and (5.73) is complete.
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