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Uplift modeling aims to estimate the incremental impact of a treatment, such as a marketing campaign or a drug, on an individual's behavior. These approaches are very useful in several applications such as personalized medicine and advertising, as it allows targeting the specic proportion of a population on which the treatment will have the greatest impact. Uplift modeling is a challenging task because data are partially known (for an individual, responses to alternative treatments cannot be observed). In this paper, we present a new tree algorithm named UB-DT designed for uplift modeling. We propose a Bayesian evaluation criterion for uplift decision trees T by dening the posterior probability of T given uplift data. We transform the learning problem into an optimization one to search for the uplift tree model leading to the best evaluation of the criterion. A search algorithm is then presented as well as an extension for random forests. Large scale experiments on real and synthetic datasets show the eciency of our methods over other state-of-art uplift modeling approaches.

Introduction

Uplift modeling aims to estimate the incremental impact of a treatment, such as a marketing campaign or a drug, on an individual's behavior. These approaches are very useful in several applications such as personalized medicine and advertising, as it allows targeting the specic proportion of a population on which the treatment will have the greatest impact. Uplift estimation is based on groups of people who have received dierent treatments. A major diculty is that data are only partially known: it is impossible to know for an individual whether the chosen treatment is optimal because their responses to alternative treatments cannot be observed. Several works address challenges related to the uplift modeling, among which uplift decision tree algorithms became widely used [START_REF] Rzepakowski | Decision trees for uplift modeling with single and multiple treatments[END_REF][START_REF] Zhao | Uplift modeling with multiple treatments and general response types[END_REF].

Despite their usefulness, current uplift decision tree methods have limitations such as local splitting criteria. A split criterion decides whether to divide a terminal node. However these splits are independent to each other and a pruning step is then used to ensure generalization and avoid overtting. Moreover, these methods require parameters to set. In this paper, we present UB-DT (Uplift Bayesian Decision Tree) a parameter-free method for uplift decision tree based on the Bayesian paradigm. Contrary to state-of-art uplift decision tree methods, we dene a global criterion designed for an uplift decision tree. A major advantage of a global tree criterion is it allows to get rid of the pruning step, since it acts as a regularization to avoid overtting. We transform the uplift tree learning problem to an optimization problem according to the criterion. Then a search algorithm is used to nd the decision tree that optimizes the global criterion. Moreover our approach is easily extended to random forests and we propose UB-RF (Uplift Bayesian Random Forest). We evaluate both UB-DT and UB-RF to state-of-art uplift modeling approaches through a benchmarking study.

This paper is organized as follows. Section 2 introduces an overview of uplift modeling and related work. Section 3 presents UB-DT. We conduct experiments in Section 4 and conclude in Section 5.

2 Context and literature overview

Uplift problem formulation

Uplift is a notion introduced by Radclie and Surry [START_REF] Radclie | Dierential response analysis: Modeling true responses by isolating the eect of a single action[END_REF] and dened in Rubin's causal inference models [START_REF] Rubin | Estimating causal eects of treatments in randomized and nonrandomized studies[END_REF] as the Individual Treatment eect (ITE).

We now outline the notion of uplift and its modeling. Let X be a group of N individuals indexed by i : 1 . . . N where each individual is described by a set of variables K. X i denotes the set of values of K for the individual i. Let Z be a variable indicating whether or not an individual has received a treatment. Uplift modeling is based on two groups: the individuals having received a treatment (denoted Z = 1) and those without treatment (denoted Z = 0). Let Y be the outcome variable (for instance, the purchase or not of a product). We note Y i (Z = 1) the outcome of an individual i when he received a treatment and Y i (Z = 0) his outcome without treatment. The uplift of an individual i, denoted by τ i , is dened as:

τ i = Y i (Z = 1) -Y i (Z = 0).
In practice, we will never observe both Y i (Z = 1) and Y i (Z = 0) for a same individual and thus τ i cannot be directly calculated. However, uplift can be empirically estimated by considering two groups: a treatment group (individual with a treatment) and a control group (without treatment). The estimated uplift of an individual i denoted by τi is then computed by using the CATE (Conditional Average Treatment Eect) [START_REF] Rubin | Estimating causal eects of treatments in randomized and nonrandomized studies[END_REF]:

CAT E : τi = E[Y i (Z = 1)|X i ] -E[Y i (Z = 0)|X i ] (1)
As the real value of τ i cannot be observed, it is impossible to directly use machine learning algorithms such as regression to infer a model to predict τ i . The next section describes how uplift is modeled in the literature.

Related work

Uplift modeling approaches Uplift modeling approaches are divided into two categories. The rst one (called metalearners) is made up of methods that take advantage of usual machine learning algorithms to estimate the CATE. One of the most intuitive approaches is the two-model approach. It consists of tting two independent classication models, one for the treated group and another for the control group. The estimated uplift is then the dierence between the estimations of the two classication models. While this approach is simple, intuitive and allows the usage of any machine learning algorithm, it has also known weaknesses with particular patterns [START_REF] Radclie | Real-world uplift modelling with signicance-based uplift trees[END_REF]. The causal inference community has also proposed other metalearners such as X-learner [START_REF] Künzel | Metalearners for estimating heterogeneous treatment eects using machine learning[END_REF], R-Learner and DR-learner [START_REF] Kennedy | Towards optimal doubly robust estimation of heterogeneous causal eects[END_REF].

The second category is closer to our work. This category gathers tailored methods for uplift modeling such as tree-based algorithms. Trees are built using recursive partitioning to split the root node to child nodes according to a splitting criterion. [START_REF] Rzepakowski | Decision trees for uplift modeling with single and multiple treatments[END_REF] denes a splitting criterion that compares the probability distributions of the outcome variable in each of the treatment groups using weighted divergence measures like the Kullback-Leibler (KL), the squared euclidean distance (ED) and the chi-squared divergence. [START_REF] Zhao | Uplift modeling with multiple treatments and general response types[END_REF] proposes the Contextual Treatment Selection algorithm (CTS) where a splitting criterion directly maximizes a performance measure called the expected performance. Causal machine learning algorithms were also developed such as the Causal Trees algorithm [START_REF] Athey | Recursive partitioning for heterogeneous causal eects[END_REF] and the Causal Forests [START_REF] Athey | Generalized random forests[END_REF]. Uplift tree splitting criterion and Bayesian approaches. Building an uplift tree requires to discretize variables to detect areas with homogeneous treatment eects. The global criterion of UB-DT to select a variable on a node takes advantage of on a univariate parameter-free Bayesian approach for density estimation through discretization called UMODL [START_REF] Raa | A non-parametric bayesian approach for uplift discretization and feature selection[END_REF]. More precisely, UMODL applies a Bayesian approach to select the most probable uplift discretization model M given the data. This implies nding the model M that maximizes the posterior probability P (M |Data), hence maximizing P (M ) × P (Data|M ). Finally, a global criterion within the Bayesian framework for decision trees is given in [START_REF] Voisine | A bayes evaluation criterion for decision trees[END_REF] but it does not deal with uplift.

3 UB-DT: uplift decision tree approach UB-DT is made up of two ingredients: a global criterion C(T ) for a binary uplift decision tree T and a tree search algorithm to nd the most probable optimal tree. We start by presenting the structure of an uplift tree model. Then we describe the new global criterion for an uplift decision tree and the algorithm to give the best tree. Finally we show how the approach is straightforwardly extended to random forests.

3.1

Parameters of an uplift tree model T We dene a binary uplift decision tree model T by its structure and the distribution of instances and class values in this structure. The structure of T consists Fig. 1: Example of an uplift tree model. Internal nodes are described by the segmentation variable X s and the distribution of instances in each of the two children {N si }. Leaf nodes containing a treatment eect (i.e W l = 1) are described by the class distribution for each treatment. This applies to leaves 4, 5 and 7. Leaf nodes containing no treatment eect (i.e W l = 0) are only described by the class distribution (this is the case of leaf 6).

of the set of internal nodes S T and the set of leaf nodes L T . The distribution of the instances in this structure is described by the partition of the segmentation variable X s for each internal node s, the class frequency in each leaf node where there is no treatment eect, and the class frequency on each treatment in the leaf nodes with a treatment eect. More precisely, T is dened by:

• the subset of variables K T used by model T . This includes the number of the selected variables K T and their choice among a set of K variables provided in a dataset, we note K = |K|. • a binary variable I n indicating the choice of whether each node n is an internal node (I n = 1) or a leaf node (I n = 0). • the distribution of instances in each internal node s, which is described by the segmentation variable X s of the node s and how the instances of s are distributed on its two child nodes. • a binary variable W l indicating for each leaf node l if there is a treatment eect (W l = 1) or not (W l = 0). If W l = 0, l is described by the distribution of the output values {N l.j. } 1≤j≤J , where N l.j. is the number of instances of output value j in leaf l. If W l = 1, l is described by the distribution of the class values per treatment {N l.jt } 1≤j≤J,1≤t≤2 , where N l.jt is the number of instances of output value j and treatment t in leaf l.

These parameters are automatically optimized by the search algorithm (presented in Section 3.4) and not xed by the user. In the rest of the paper, the following notations N s. , N si. , N l. and N l..t will additionally be used to respectively designate the number of instances in node s, in the i th child of node s, in the leaf l and treatment t in leaf l.

Uplift tree evaluation criterion

We now presents the new global criterion C(T ) which is an uplift tree model evaluation criterion. UB-DT applies a Bayesian approach to select the most probable uplift tree model T that maximizes the posterior probability P (T |Data).

This is equivalent to maximizing the product of the prior and the likelihood i.e. P (T ) × P (Data|T ). Taking the negative log turns the maximization problem into a minimization one: C(T ) = -log (P (T ) × P (Data|T )), C(T ) is the cost of the uplift tree model T . T is optimal if C(T ) is minimal. By exploiting the hierarchy of the presented uplift tree parameters and assuming a uniform prior, we express C(T ) as follows (cf. Eq. 2):

C(T ) = log(K + 1) + log K + KT -1 KT Variable selection + s∈S Tn log 2 + log KT + log(Ns. + 1)
Prior of internal nodes

+ l∈L T log 2
Treatment eect W

+ l∈L T log 2 + l∈L T (1 -W l ) log N l. + J -1 J -1 + l∈L T W l t log N l..t + J -1 J -1
Prior of leaf nodes

+ l∈L T (1 -W l ) log N l. ! N l.1. !N l.2. ! . . . N l.J. ! + l∈L T W l t log N l..t ! N l.1t !..N l.Jt ! Tree Likelihood (2) 
The next section demonstrates Eq. 2.

3.3

C(T ): proof of Equation 2

We express the prior and the likelihood of a tree model, resp. P (T ) and P (Data|T ) according to the hierarchy of the uplift tree parameters. Assuming the independence between all the nodes, the prior probability of an uplift decision tree is thus dened as:

P (T ) = P (KT ) × s∈S T P (Is) P (Xs | KT ) P (Nsi. | KT , Xs, Ns., Is) × P ({W l }) × l∈L T P (I l ) (1 -W l ) × p ({N l.j } | KT , N l. ) + W l × t P ({N l.jt } | KT , N l..t ) (3) 
The rst line is the prior probability of the variable selection, the second line the prior of internal nodes and the third line the prior of the leaf nodes.

Variable selection probability. A hierarichal prior is chosen: rst the choice of the number of selected variables K T , then the choice of the subset K T among K variables. By using a uniform prior the number K T can have any value between 0 and K in an equiprobable manner. For the choice of the subset K T , we assume that every subset has the same probability. Then the prior of the variable selection can be dened as:

P (K T ) = 1 K + 1 1 K + K T -1 K T
Prior of internal nodes. Each node can either be an internal node or a leaf node with equal probability. This implies that:

P (I s ) = 1 2
The choice of the segmentation variable is equiprobable between 1 and K T . We obtain:

P (X s |K T ) = 1 K T
All splits of an internal node s to two intervals are equiprobable. We then obtain:

P (N si. | K T , X s , N s. , I s ) = 1 N s + 1
Prior of leaf nodes. Similar to the prior of internal nodes, each node can either be internal or a leaf node with equal probability leading to P (I l ) = 1 2 . For each leaf node, we assume that a treatment can have an eect or not, with equal probability, we get:

P ({W l }) = l 1 2
In the case of a leaf node l where there is not eect of the treatment (W l = 0), UB-DT describes one unique distribution of the class variable. Assuming that each of the class distributions is equiprobable, we end up also with a combinatorial problem:

P ({N l.j } | K T , N l. ) = 1 N l. + J -1 J -1
In a leaf node with an eect of the treatment (W i = 1), UB-DT describes two distributions of the outcome variable, with and without the treatment. Given a leaf l and a treatment t, we know the number of instances N l..t Assuming that each of the distributions of class values is equiprobable, we get:

P ({N l.jt } | K T , N l..t ) = 1 N l..t + J -1 J -1
Tree likelihood. After dening the tree's prior probability, we establish the likelihood probability of the data given the tree model. The class distributions depend only of the leaf nodes. For each multinomial distribution of the outcome variable (a single or two distinct distributions per leaf depending on whether the treatement has an eect or not), we assume that all possible observed data D l consistent with the multinomial model are equiprobable. Using multinomial terms, we end up with:

P (Data | T ) = l∈L P (D l |M ) l∈L (1 -W l ) × 1 N l. !/N l.1. !N l.2. ! . . . N l.J. ! + W l × t 1 (N l..t !/N i.1t !..N i.Jt !) (4)
By combining the prior and the likelihood (resp. Eq. 3 and 4) and by taking their negative log, we obtain C(T ) and thus Eq. 2 is proved.

Search algorithm

The induction of an optimal uplift decision tree from a data set is NP-hard [START_REF] Naumov | Np-completeness of problems of construction of optimal decision trees[END_REF]. Thus, learning the optimal decision tree requires exhaustive search and is limited to very small data sets. As a result, heuristic methods are required to build uplift decision trees. Algorithm 1 (see below) selects the best tree according to the global criterion. Algorithm 1 chooses a split among all possible splits in all terminal nodes only if it minimizes the global criterion of the tree. The algorithm continues as long as the global criterion is improved. Since a decision tree is a partitioning of the feature space, a prediction for a future instance is then the average uplift in its corresponding leaf. This algorithm is deterministic and thus it always leads to the same local optimum. Experiments show the quality of the building trees.

3.5

UB-RF

UB-DT is easily extended to random forests. For that purpose, a split is randomly chosen among all possible splits that improve the global criterion. The number of trees is set by the analyst and the prediction of a forest is the average predictions of all the trees.

Experiments

We experimentally evaluate the quality of UB-DT as an uplift estimator and compare UB-DT and UB-RF versus state-of-art uplift modeling approaches 3 .

We use the following state-of-art methods: (1) metalearners: two-model approach (2M), X-Learner and R-Learner, each with Xgboost; (2) uplift trees: CTS-DT,KL-DT, Chi-DT, ED-DT; (3) uplift random forests: CTS-RF,KL-RF, Chi-RF, ED-RF [START_REF] Rzepakowski | Decision trees for uplift modeling with single and multiple treatments[END_REF]; (4) and causal forests (all forest methods were used with 10 trees).

4.1

Is UB-DT a good uplift estimator?

To be able to measure the estimated uplift we need to know the real uplift and therefore we use synthetic data. Fig. 2 depicts two synthetic uplift patterns where P (Y = 1|X, T = 1) and P (Y = 1|X, T = 0) are identied for each instance. The grid pattern can be considered as a tree-friendly pattern whereas the continuous pattern is much more dicult. We generated several datasets according to these patterns with several dierent numbers of instances (also called data size) ranging from 100 to 100,000 instances. Uplift models were built using 10-fold stratied cross validation and the RMSE (Root Mean Squared Error) was used to evaluate the performance of the models.

Results: Fig. 3 gives the RMSE for the two synthetic patterns according to the data size for dierent uplift methods. We see that UB-DT is a good estimator for uplift. With UB-DT, RMSE decreases and converges to zero when data sizes increase both for the grid and continuous patterns. This is the expected behavior of a good uplift estimator. This also means that UB-DT, thanks to its global criterion, avoids overtting of uplift trees. The two-model approach with decision trees also shows competitive performance. UB-DT clearly outperforms the other tree-based methods, these latter having similar performances. With the continuous pattern, KL-DT, Chi-DT, ED-DT and CTS-DT approaches have Algorithm 1: UB-DT algorithm input : T the root tree output: the tree T * which minimizes the proposed criterion T * ← T while C(T * ) decreases:

T ← T * for leaf l in LT :
for X in K:

Get the best Split SX (l) according to UMODL

TX ← T * + SX (l) if C(TX )<C(T ): T ← TX if C(T )<C(T * ):
T * ← T Prediction: The output of a tree is a partition of the feature space. The predicted uplift for each instance is the average uplift of its leaf node. 7) Gerber [START_REF] Gerber | Social pressure and voter turnout: Evidence from a large-scale eld experiment[END_REF] (a policy-relevant dataset used to study the eect of social pressure on voter turnout); (8) Right Heart Catheterization (RHC) [START_REF] Connors | The eectiveness of right heart catheterization in the initial care of critically ill patients. support investigators[END_REF] (a real dataset from the medical domain, the treatment indicates whether a patient received a RHC and the outcome is whether the patient died at any time up to 180 days after admission to the study).

Each dataset was used with dierent settings of treatment and outcome variables. For all datasets, each treatment and outcome variables are binary. Table 1 provides the most relevant specications about the data sets.

Results. We evaluate the uplift models by using the qini metric [START_REF] Devriendt | Learning to rank for uplift modeling[END_REF]. Qini is a variant of the Gini coecient. Its values are in [-1, 1], the higher the value, the larger the impact of the predicted optimal treatment. Fig. 4a (resp. Fig. 4b) shows the overall average ranking of tree based methods (resp. meta-learners and forest-based methods) according to its qini performance against each dataset. Compared to other tree-based methods and to the two-model approach with decision trees, Figure 4a shows that UB-DT achieves the best performance. Table 2 reports the results of the experiment for the qini metric. This table shows that UB-DT is also a good estimator of the uplift on real data. Figure 4b shows that both UB-RF and 2M have the best rank. Table 3 indicates that the random forest strategy improves the performance of the uplift models (qini values are higher with UB-RF than UB-DT). UB-RF has the best performance on 4 out the 14 experiments. In this paper, we presented a new parameter-free method called UB-DT for uplift decision trees. We have designed a Bayesian approach to select the most probable uplift tree model T that maximizes the posterior probability P (T |Data).

Contrary to state-of-art uplift decision tree approaches, UB-DT is characterized by a global criterion to build a tree, so the splits in one node depend on the splits in the other nodes. This approach avoids overtting and the need for a pruning step. A search algorithm nds the tree that optimizes this criterion. We showed that our approach is easily extended to random forests and we dened UB-RF. Evaluations on real and synthetic data sets show that UB-DT is a good uplift estimator and our tree and forests methods perform competitively with state-of-art uplift modeling approaches including non tree methods. This work opens several perspectives. Studies on general trees (with more than two child nodes) is promising. In addition, studies with multiple treatments are still open work in uplift modeling. Moreover, the search algorithm leads to a local optimum and may create under-tted uplift trees. To go above this horizon eect, it would be interesting to use a post-pruning algorithm [START_REF] Voisine | A bayes evaluation criterion for decision trees[END_REF].
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 23 Fig. 2: Uplift for 2 synthetic patterns. Fig. 2a (grid pattern): uplift values for each cell. Fig. 2b (continuous pattern): uplift values are P (Y |T = 0, x1, x2) = 1 -(x1 + x2)/20 while P (Y |T = 1, x1, x2) = (x1 + x2)/20.
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 34 Fig. 4: Overall average ranking of the uplift approaches

Code, datasets and complementary results are at https://github.com/MinaWagdi/ UB-DT

https://cran.r-project.org/web/packages/Information/index.html

https://ods.ai/tracks/df21-megafon/competitions/megafon-df21-comp/data

https://github.com/joshxinjie/Data_Scientist_Nanodegree/tree/master/ starbucks_portfolio_exercisejoshxinjie