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Abstract

An identifying code C of a graph G is a dominating set of G such that any two
distinct vertices of G have distinct closed neighbourhoods within C. The smallest
size of an identifying code of G is denoted γID(G). When every vertex of G also has
a neighbour in C, it is said to be a total dominating identifying code of G, and the
smallest size of a total dominating identifying code of G is denoted by γID

t (G).
Extending similar characterizations for identifying codes from the literature, we

characterize those graphs G of order n with γID
t (G) = n (the only such connected

graph is P3) and γID
t (G) = n − 1 (such graphs either satisfy γID(G) = n − 1 or are

built from certain such graphs by adding a set of universal vertices, to each of which
a private leaf is attached).

Then, using bounds from the literature, we remark that any (open and closed)
twin-free tree of order n has a total dominating identifying code of size at most
3n
4 . This bound is tight, and we characterize the trees reaching it. Moreover, by

a new proof, we show that this upper bound actually holds for the larger class of
all twin-free graphs of girth at least 5. The cycle C8 also attains the upper bound.
We also provide a generalized bound for all graphs of girth at least 5 (possibly with
twins).

Finally, we relate γID
t (G) to the similar parameter γID(G) as well as to the

location-domination number of G and its variants, providing bounds that are ei-
ther tight or almost tight.
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1 Introduction

An identifying code of a graph is a dominating set that allows distinguishing all pairs
of vertices by means of their neighbourhoods within the identifying code. This exten-
sively studied concept is related to other similar notions that deal with domination-based
identification of the vertices/edges of a graph or hypergraph, such as locating-dominating
sets [39], separating systems [2, 3], discriminating codes [7], or test covers [29]. This class
of problems has applications in fault-detection in networks [27, 40], biological diagno-
sis [29] and machine learning [4], to name a few. A total dominating set is a set D of
vertices such that every vertex has a neighbour in D. The concept of a total dominating
set is perhaps the most studied alternative variant in the field of graph domination, see
the dedicated book [22] on this topic.

In this paper, we study total dominating identifying codes, that are sets of vertices
that are both identifying codes and total dominating sets. Our focus is on upper bounds
and extremal graphs for the smallest size of such a set, as well as bounds involving other
related concepts.

Notations and definitions. In this paper, we consider finite undirected graphs. We
first define some basic notations. A vertex u ∈ V (G) is said to be a leaf, if it has degree
exactly 1. A vertex v ∈ V (G) is said to be a support vertex if it has an adjacent leaf.
We denote by L(G) the set of leaves and by S(G) the set of support vertices in graph
G. Moreover, we denote the number of leaves and support vertices by `(G) = |L(G)|
and s(G) = |S(G)|, respectively. The girth of a graph is the smallest length of one of its
cycles.

We denote by N(v) ⊆ V (G) the open neighbourhood of vertex v and by N [v] =
N(v) ∪ {v}, its closed neighbourhood. If C is a set of vertices, or a code, and v, a vertex,
we denote the intersection between N [v] and code C by the I-set of v, I(v) = N [v] ∩ C.
Identifying codes were defined over twenty years ago in [27] by Karpovsky et al. and since
then they (and related concepts) have been studied in a large number of articles, see [28]
for an online bibliography. A set C ⊆ V (G) is called a separating code of G if for each
pair of distinct vertices u, v ∈ V (G), their I-sets are distinct, that is,

I(u) 6= I(v).

An identifying code of G is a set of vertices that covers every vertex v, that is, I(v) 6= ∅,
and is a separating code. (Note that every separating code is “almost” an identifying code,
as at most one vertex may remain uncovered by the separating code.) A total dominating
identifying code is a separating code that is also a total dominating set, that is, every
vertex of the graph has a neighbour in the code. Any total dominating identifying code
is also an identifying code.

The vertices of a code are called codewords. A codeword x is said to separate two
vertices if it belongs to the closed neighbourhood of exactly one of them. We also say
that the codeword x separates vertex u from vertex v or vice versa meaning that codeword
x separates these two vertices. (We sometimes use distinguish as a synonym of separate.)
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Two vertices are open twins if their open neighbourhoods are the same, and closed twins
if their closed neighbourhoods are the same. A graph admits a separating code if and only
if it has no pairs of closed twins [27]; in that case we say the graph is identifiable. We say
that a graph is twin-free if it contains neither open nor closed twins. Twins are important
for (total dominating) identifying codes, indeed closed twins cannot be separated, and for
any set of mutually open twins, at most one can be absent from any separating code. A
graph admits a total dominating set if and only if its minimum degree is at least 1. For
an identifiable graph G, we denote by γID(G) the smallest size of an identifying code of
G. In the context of total dominating identifying codes, by saying a graph is identifiable
we also assume implicitly that it admits a total dominating set. For such an identifiable
graph G, we denote by γID

t (G) the smallest size of a total dominating identifying code
of G. Total dominating identifying codes have been studied only in a handful of papers,
see [8, 21, 30, 31, 32, 33, 35].

Identifying codes have sometimes been called differentiating-dominating sets in the
literature, see for example [18]. Total dominating identifying codes have been called
differentiating-total dominating sets, however due to the now standard term of “identifying
code” we believe, it is a better choice to call them total dominating identifying codes, thus
we do so in this paper.

Further related concepts. Besides identifying and total dominating identifying codes,
quite many other related concepts have been studied. We present the relationships be-
tween some of these different types of dominating and locating codes in connected graphs
in Figure 1. As one can see on the figure, total dominating identifying codes are directly
related to several important concepts in the area.

A set C is locating-dominating if we have I(u) 6= I(v) for each distinct u, v 6∈ C [39].
Furthermore, set C is locating-total dominating if it is locating-dominating and total
dominating [21]. A code is self-identifying if for any distinct u, v we have I(u) \ I(v) 6=
∅ [26]. Self-identifying codes have also been studied as (1,6 1)+-identifying codes [23].
Denote by I(X) =

⋃
u∈X I(u) where X is a set of vertices. Code C is a (1,6 4)-identifying

code if for any distinct sets X, Y with |X|, |Y | 6 4 we have I(X) 6= I(Y ) [23, 27].
Moreover, code C is an error-correcting identifying code if |I(u)| > 3 for each vertex u
and |I(u)4I(v)| > 3 for any distinct vertices v and u [25, 36]. Finally, set C is an open
(neighbourhood) locating-dominating if we have N(v) ∩ C 6= ∅ for each vertex v and for
each distinct pair of vertices u, v, we have N(v) ∩ C 6= N(u) ∩ C [24, 37].

Each arc in Figure 1 follows trivially from the above definitions, with the possible
exception of the arc from SID to TID and the arcs adjacent to OLD. Assume that C is
a self-identifying code in graph G which also admits a total dominating identifying code.
If for any c ∈ C we have I(c) = {c} and u ∈ N(c), then I(c) ⊆ I(u), a contradiction.
Thus, C is total dominating and it is identifying by definition. Then, consider the arc
from OLD to TLD. Let C be an open locating-dominating set in G. Then, N(v)∩C 6= ∅
and thus, C is total dominating. Moreover, we have I(v) 6= I(u) for each pair of distinct
pair of non-codewords u and v. Then, consider the arc from EID to OLD. Let C be an
error-correcting-identifying code in connected graph G. If I(v) = {v} and u ∈ N(v), then
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I(u) = I({u, v}. Thus, C is total dominating. Moreover, if N(u) ∩ C = N(v) ∩ C, then
I(u)4I(v) ⊆ {v, u}, a contradiction.

The cardinality of an optimal locating-dominating sets in graph G is denoted by
γL(G). Similarly, we use γL

t (G) for locating-total dominating sets, γOL(G) for open-
locating-dominating sets, γID

E (G) for error-correcting identifying codes and γID
S (G) for

self-identifying codes.

LD

ID

SID

TID

EID

TD

D

TLD

4ID

OLD

Figure 1: Relations between some types of dominating sets in connected graphs. An
arrow from X to Y denotes that each code of type X in a graph is also a code of type
Y (when that graph admits codes of both types). The gray node corresponds to total
dominating identifying codes, the main focus of the paper. D stands for dominating
set, TD stands for total dominating set, LD stands for locating-dominating set, TLD
stands for locating-total dominating set, OLD stands for open-locating-dominating set,
ID stands for identifying code, TID stands for total dominating identifying code, EID
stands for error-correcting identifying code, SID stands for self-identifying code and 4ID
stands for (1,6 4)-identifying code.

The computational problem associated with determining γID
t (G) for an input graph

G is NP-hard, and has been studied in [33]. Lower and upper bounds for parameter γID
t

in trees have been proved in [8, 21, 30, 35]. Different graph classes, in particular graph
products, were studied in [31, 32].

Our results. Our main result is to characterize those graphs G of order n for which
γID
t (G) > n−1. We show that the only connected graph G with γID

t (G) = n is the 3-vertex
path P3. The graphs G for which γID

t (G) = n − 1 form a rich graph class. This class of
graphs includes those graphs for which γID(G) = n− 1, characterized in [12] as essentially
(1) stars, (2) the complements of half-graphs, and (3) graphs built from any number of
graphs from (2) using complete join operations and potentially, the addition of a single
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universal vertex. We show that besides these examples, one can obtain a graph G with
γID
t (G) > n − 1 from a graph from (2) or (3) or the empty graph, by completely joining

it to a copy of Km (for any integer m > 1), and add a private leaf to each vertex of Km.
We then show that these cases are essentially the only possibilities to obtain an extremal
graph for parameter γID

t .
All the graphs in the above constructions either have many twins, or have (many)

short cycles. We show that in the absence of these two obstructions, one can obtain an
upper bound on γID

t significantly smaller than n. Indeed, we first notice that two bounds
from the literature imply that every twin-free tree T of order n satisfies γID

t (T ) 6 3n/4,
and by a new proof, we generalize this upper bound to all identifiable graphs of girth at
least 5. The bound is shown to be tight for certain trees, and for the cycle C8.

Finally, we study the ratio between parameter γID
t and related parameters; natural

lower bounds for γID
t (G) are γL(G), γL

t (G) and γID(G), as we can see from Figure 1. We
show that for any identifiable graph G, γID

t (G) 6 2γID(G)− 2 and γID
t (G) 6 2γL

t (G) (both
bounds are tight). Interestingly, we can show that γID

t (G) 6 3γL(G) − log2(γ
L(G) + 1),

and we show the bound is nearly tight, as there are infinitely many connected graphs G
for which γID

t (G) = 3γL(G) − 2 log2(γ
L(G) + 1). Moreover, we also show that without

restricting the class of graphs, neither γID
S (G) nor γID

E (G) gives a useful upper bound for
γID
t (G). In other words, there are graphs for which γID

t (G) is much smaller than either of
γID
S (G) or γID

E (G).
We present our characterization of extremal graphs in Section 2. The bound for twin-

free graphs of girth at least 5 is presented in Section 3. The bounds relating γID
t to related

parameters are presented in Section 4. We conclude in Section 5.

Further related work. Our results were inspired by the related work below.
Characterizations of extremal graphs for identifying codes and related parameters were

studied in several papers, for example for locating-dominating sets [5, 6], for identifying
codes [6, 12], for open neighbourhood locating-dominating sets [11], and for discriminating
codes [7].

Bounds for twin-free graphs have been studied for related graph parameters. It was
proved in [15] that for every twin-free bipartite graph G of order n, γID(G) 6 2n/3, and
the bound is tight exactly for 2-coronas of bipartite graphs (that is, bipartite graphs B
for which a private copy of P2 is attached to each vertex of B by one of the ends of
P2). It was proved in [17] that every twin-free bipartite graph and every twin-free graph
with no 4-cycles has a locating-dominating set of size at most n/2; the bound is tight for
infinitely many trees, which are characterized in [14]. In [13], it was proved that every
twin-free graph with no 4-cycle has a locating-total dominating set of size at most 2n/3.
It is conjectured that these two bounds hold for all twin-free graphs [13, 17].

Bounds for graphs of girth at least 5 were given for identifying codes in [1, 15, 16].
In particular, generalizing a result from [1], it is shown in [15] that for every graph G of

order n and girth at least 5, we have γID(G) 6 5n+2`(G)
7

, a bound which is tight.
Relations between identification-type graph parameters were provided in [20] (locating-

dominating sets and identifying codes) and [38] (locating-dominating sets, identifying
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codes, and open-locating-dominating sets). It is shown that for every graph G, any two
of these parameters’ values cannot be more than a factor 2 apart from each other. Such
bounds do not seem to be known for total dominating identifying codes, however, in [32,
Theorem 2.3], infinitely many graphs G satisfying γID

t (G) = 3
2
γID(G) are constructed.

2 Characterizing graphs with largest possible total dominating
identifying codes

In this section, we characterize the graphs which attain extremal values for total domi-
nating identifying codes.

2.1 Preliminaries

One can easily check that no graph of order at most 2 admits a total dominating identifying
code, since P1 has no total dominating set and P2 is not identifiable. We start by showing
that P3 is the only connected identifiable graph of order n whose smallest total dominating
identifying code has size n.

Proposition 1. If G is a connected identifiable graph of order n (thus n > 3), then we
have γID

t (G) 6 n− 1, unless G is P3 (and γID
t (P3) = 3).

Proof. Since P3 is the only identifiable graph of order at most 3 admitting a total domi-
nating set and γID

t (P3) = 3, we may assume n > 4. It is known that for any identifiable
graph G with at least one edge, there is always a vertex x such that V (G) \ {x} is an
identifying code of G, see [19]. Moreover, V (G)\{x} is a total dominating set, unless x is
a support vertex. Thus, if there are no support vertices in G, we are done. Otherwise, let
x be a support vertex of G and let y be a leaf neighbour of x. Since V (G) \ {y} is a total
dominating set, if V (G) \ {y} is also an identifying code, then we are done. Otherwise,
there must exist two vertices u, v of G that can only be distinguished by y, that is, such
that N [u] = N [v]∪{y}. If y ∈ {u, v}, then y = u and v = x, but this is not possible since
y separates u and v, a contradiction. Hence, u is a neighbour of y, that is, u = x. Since
n > 4, u and v have a common neighbour, say w. As v is not a support vertex, the set
V (G) \ {v} is a total dominating set. We claim that it is also an identifying code of G,
which would prove the claim. Indeed, any pair s, t of vertices with y /∈ {s, t} such that
v separates s from t, is also separated by u, and y is separated from x by w (and from
every other vertex by itself).

The authors of [21] characterized the trees T of order n > 4 with γID
t (T ) = n− 1 to be

exactly the set of stars, and P4. The set of graphs G of order n > 4 with γID
t (G) = n− 1

necessarily contains all those graphs without isolated vertices for which γID(G) = n − 1
(except P3). The graphs G of order n with γID(G) = n − 1 were characterized in [12],
based on the following graph families.

Definition 2 ([12]). For any non-negative integer k, we define the graph Ak of order 2k as
the graph on vertex set {x1, . . . , x2k} where xi is adjacent to xj if and only if |i−j| 6 k−1.
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We denote by A the set of graphs obtained by taking any number (possibly, zero) of
disjoint copies of graphs in the family {Ak | k > 1} and joining every pair of these graphs
by all possible edges between them. We denote by A∗ the set A without the graphs A0

and A1.
For two graphs G and H, we denote by G ./ H the complete join of G and H, that

is, the graph obtained from a copy of G and a copy of H by adding all possible edges
between the two copies. For a set C of graphs, we denote by C ./ K1 the set of graphs
{G ./ K1 | G ∈ C}.

Note that A0 is the empty graph, A1 is the edgeless graph of order 2, and A2 is the
4-vertex path. For k > 2, the graph Ak is isomorphic to the (k − 1)-th power of the
path P2k and can be partitioned into two cliques, as shown in Figure 2. In fact Ak is the
complement of the half-graph of order 2k (half-graphs form a family of special bipartite
graphs defined by Erdős and Hajnal, see [9]).

An example of a graph in A is provided in Figure 3. As a special case, the set A
contains all even-order complete graphs minus a maximum matching (by considering only
copies of A1 in the construction), and by the addition of a universal vertex, A ./ K1

contains all odd-order complete graphs minus a maximum matching.

xk+1 xk+2 xk+3 ... x2k−1 x2k

x1 x2 x3
...

xk−1 xk

Clique on {xk+1, . . . , x2k}

Clique on {x1, . . . , xk}

Figure 2: The graph Ak of order n = 2k has total dominating identifying code number
n− 1 (the black vertices form an optimal total dominating identifying code).

For completeness, we give a proof for the following result from [12], initially stated for
usual identifying codes but which also holds for total dominating identifying codes.

Proposition 3 ([12]). For every graph G of order n in A∗∪ (A∗ ./ K1), every separating
code has size at least n − 1, and γID

t (G) = n − 1. Moreover, if G ∈ A∗ ./ K1, then the
only separating code is V (G) minus the unique universal vertex.

Proof. First, assume that k > 2, we show that γID
t (Ak) = 2k − 1. For every i with

1 6 i 6 k − 1, xk+i is the only vertex separating xi from xi+1 and similarly, xk−i+1 is
the only vertex separating x2k−i and x2k−i+1; thus, all of x2, . . . , x2k−1 must belong to any
separating code of Ak. Finally, xk and xk+1 can only be separated by one of x1 and x2k.
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A3

A2

A1

A1

Figure 3: A graph in A∗ built from two copies of A1 and from one copy of each of A2 and
A3.

Thus, any separating code has size at least 2k − 1 = n− 1, and so γID
t (G) > n− 1. The

set V (Ak) \ {x1} is a total dominating identifying code of size n− 1.
Now, consider any graph in A∗ and number the ` > 1 copies of graphs in {Ak | k > 1}

as A1
i1
, . . . , A`

i`
where As

is is a copy of Ais whose vertices are labeled xs1, . . . , x
s
2is . Consider

any copy As
t (where t = is) of At from the construction of G. If t > 2, by the same

arguments as above, we see that all the vertices xs2, . . . , x
s
2t−1 from As

t must belong to any
separating code of G (since all vertices of As

t have the same neighbourhoods outside of
As

t), and at least one of xs1 and xs2t in As
t must belong to the code in order to separate

xst from xst+1. If t = 1, one of xs1 and xs2 necessarily belongs to the code since these two
vertices are open twins in G. Without loss of generality, by the symmetries of xs1 and xs2t,
we assume that xs1 belongs to the code, and we also assume that xs1 belongs to the code
for each copy As

is in G (1 6 s 6 `). Now, for any pair of copies As
is and At

it in G, notice
that xsis and xtit can only be separated by one of xs2is and xt2it . Hence, at most one vertex

of type xj2ij in some Aj
ij

can be omitted from any separating code, and so any separating

code has size n− 1. Note that V (G) \ {xj2ij} is a total dominating identifying code of size
n− 1.

Assume now that G ∈ A∗ ./ K1 and let u be the universal vertex from the copy of K1

in G. We use the same reasoning, to show that all vertices except possibly u and some xj2ij
must belong to the separating code. However, to separate u from xjij , we must also include

vertex xj2ij , and so again any separating code has size at least n− 1, and γID
t (G) > n− 1.

Moreover, V (G) \ {u} is a total dominating identifying code of size n− 1.
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The following characterization was proved in [12].

Theorem 4 ([12]). If G is a connected identifiable graph on n vertices, then γID(G) = n−1
if and only if G ∈ {K1,t | t > 2} ∪ A∗ ∪ (A∗ ./ K1).

2.2 The characterization

We next state our characterization theorem, which we will prove after some preliminary
lemmas.

Theorem 5. For any connected graph G on n > 3 vertices, we have γID
t (G) > n − 1 if

and only if either:

(i) γID(G) > n− 1, that is G ∈ {K1,t | t > 2} ∪ A∗ ∪ (A∗ ./ K1), or

(ii) G′ = G′′ ./ Km, where m > 1 and G′′ ∈ A ∪ (A ./ K1), and G is obtained from G′

by attaching a leaf to each vertex in the clique Km.

Moreover, γID
t (G) = n if and only if G = P3.

Next, we prove that the family of graphs described in Theorem 5(ii) (whose members
have an identifying code of size less than n− 1), indeed is extremal for total dominating
identifying codes.

Proposition 6. If G′ = G′′ ./ Km, where m > 1 and G′′ ∈ A∪ (A ./ K1), and the graph
G of order n > 3 is obtained from G′ by attaching a leaf to each vertex in the clique Km,
then γID

t (G) > n− 1.

Proof. LetG be obtained fromG′ andG′′ as described in the statement (note that possibly,
G′′ is the empty graph, the graph of order 1, or the edgeless graph of order 2).

Let C be an optimal total dominating identifying code in G. Observe that for it to
be total dominating, every vertex in Km has to be in C. Moreover, to separate vertices
in the clique Km, at least m− 1 of the leaves must be in the code. Furthermore, none of
the vertices in the clique Km separate vertices in G′′ from each other. Thus, C ∩ V (G′′)
must be a separating code of G′′, but in any separating code of G′′, there is at most one
non-codeword by Proposition 3. Thus, we have |C| > n− 2, and the two vertices not yet
fixed to be in C are a leaf and a vertex of G′′ that can be omitted from a separating code
of G′′.

Assume now that |C| = n− 2, w is the non-codeword in G′′ and u, which is adjacent
to v, is the non-codeword leaf in G. Observe that if G′′ ∈ A ./ K1, then w is the universal
vertex in G′′ and hence, I(w) = I(v), a contradiction. Moreover, if G′′ ∈ A\{A0, A1}, then
the non-codeword corresponds to a vertex of type x1 or x2ij in some subgraph Aij , say,
x1. However, now I(x2ij−1) = I(v), again a contradiction. Therefore, C has cardinality
n− 1. By the same arguments, when |V (G′′)| 6 2, we also have γID

t (G) > n− 1.

Some example graphs G of order n for which γID
t (G) = n− 1 but γID(G) < n− 1 are

depicted in Figure 4.
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. . . m-clique

. . .

(a) The graph obtained from Km (m >
2) by attaching a leaf to each vertex.

. . . m-clique

. . .

(b) The graph obtained from Km (m >
2) by joining it to K1 = A0 ./ K1 and
attaching a leaf to each vertex of Km.
For m = 2 we obtain the bull graph.

2-clique

A1

(c) The graph obtained
from Km (m > 1) by at-
taching a leaf to each ver-
tex and joining it to A1

(here m = 2).

1-clique

A1 ./ K1

(d) The graph obtained
from Km (m > 1) by at-
taching a leaf to each ver-
tex and joining it to A1 ./
K1 = P3 (here m = 1).

. . . m-clique

. . .

A2

(e) The graph obtained from Km (m >
1) by attaching a leaf to each vertex and
joining it to A2 = P4.

Figure 4: Some examples of graphs of order n with total dominating identifying code
number n − 1 but a smaller identifying code. Black vertices form a minimum total
dominating identifying code.

2.3 The proof

In the following lemma, we show that the extremal graphs are exactly the same for
identification and total dominating identification, when the graphs do not contain any
leaves.

Lemma 7. If G be a connected identifiable graph with minimum degree δ(G) > 2 on
n > 4 vertices, then γID

t (G) = n− 1 if and only if γID(G) = n− 1.

Proof. Let G be a connected graph with minimum degree δ(G) > 2 on n > 4 vertices
with γID

t (G) = n − 1. Assume by contradiction that γID(G) 6 n − 2. We may assume
that C ′ is an identifying code of cardinality n − 2 in G. We notice that C ′ cannot be
total dominating since γID

t (G) = n − 1. Thus, there exists a vertex v ∈ C ′ such that
deg(v) = 2 (since G has no degree 1 vertex) and there are two adjacent non-codewords u
and u′ and these two vertices are the only non-codewords in G. Since γID

t (G) = n− 1, we
cannot shift codeword v to any of u or u′ and obtain a total dominating identifying code.
Since v was not helpful with total domination in C ′, there exists a vertex w such that
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N [u] ∪ {u′} = N [w] ∪ {v, u′} or N [u′] ∪ {u} = N [w] ∪ {v, u}. Without loss of generality
we assume the first case.

Assume first that u and u′ are not adjacent. In this case, we may shift the codeword
in w to u. Notice that the resulting code is total dominating. Moreover, since u and u′

are not adjacent, u and w separate exactly the same set of vertex pairs with the exception
of those with v (and possibly u′ if w is adjacent to u′) in them. Moreover, I(v) is unique
since I(v) = {u, v}, and u′ is the only vertex with v in its I-set while not having u in
its I-set. Hence, the resulting code is total dominating identifying. Moreover, it is a
total dominating identifying code with cardinality of n − 2, a contradiction. Hence, we
may assume from now on that u and u′ are adjacent. If we again do the same shift of
codewords, then we notice that we have a total dominating identifying code unless w was
the vertex which separated u and u′. That is, N [u] = N [u′] ∪ {w}.

Recall that we could not shift the codeword in v to u′ and get an identifying code.
Since u′ separates w and u, we have a vertex w′ 6= w with N [u] = N [w′] ∪ {v} or
N [u′] = N [w′] ∪ {v}. If N [u] = N [w′] ∪ {v}, then N [w] ∪ {v, u′} = N [w′] ∪ {v}. Hence,
u′ is the only vertex which can separate w and w′ and u′ has to be a codeword in any
identifying code, a contradiction since C ′ did not contain it. Hence, we may assume that
N [u′] = N [w′] ∪ {v}. However, now we may shift the codeword from w′ to u′ and get a
total dominating identifying code. Hence, we have γID

t (G) = n − 2, a contradiction, and
we have γID(G) = n− 1.

The other direction is clear. If γID(G) = n − 1, then γID
t (G) = n − 1 since G is not

P3.

To exactly characterize the extremal graphs for total dominating identification, we
require some lemmas which will later be utilized in the induction.

Lemma 8. Let G be a connected graph of order n > 5 other than a star, with a leaf u
and an adjacent support vertex v. If γID

t (G) = n − 1, then γID
t (G − u − v) > n − 3 and

G− u− v is identifiable and connected.

Proof. Let G be a connected graph other than a star with γID
t (G) = n− 1 > 4 with leaf u

and adjacent support vertex v. We denote graph G−u−v by Gv. We prove the following
facts.

(1) Gv has no components of size 2. Suppose on the contrary that such a component
exists in Gv, say, with x, y as its vertices and x ∈ NG(v) (thus y /∈ NG(v) since G is
identifiable). Now, V (G) \ {y, u} is a total dominating identifying code of cardinality
n− 2 in G, a contradiction. Indeed, the code is clearly total dominating and y is the only
vertex with I(y) = {x}, x is the only one with I(x) = {v, x} since n > 5, u the only one
with I(u) = {v}, v is the only other vertex which is adjacent to x and hence is separated
from the rest of codewords. Finally, the other vertices will have unique I-sets since G is
identifiable.

(2) Gv is connected. Suppose on the contrary that we have several components in Gv.
By the above paragraph, none of them has size 2.
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Consider the case where each component inGv has at least three vertices. Notice that if
a component, say A, is not identifiable, then G[A∪{v}] is identifiable (and not isomorphic
to P3), by Proposition 1 there is a total dominating identifying code of G[A ∪ {v}] of
cardinality at most |A|, and it must contain vertex v. On the other hand, if a component
of Gv is identifiable, then again by Proposition 1 it has a total dominating identifying
code which does not contain each vertex in that component (unless the component is P3,
in which case that component together with v has a total dominating identifying code
of size 3, with a non-codeword other than v). If we now consider graph G, then, by
combining the codes in each component (together with u and v), we find a code which
contains at most n − 2 codewords. Resulting code is clearly total dominating and each
vertex within the components is separated by codewords within those components or by
v. Moreover, v and u are separated from every other vertex by u. Hence, we have a total
identifying code unless I(u) = I(v). However, if I(u) = I(v) holds, then we can just
move the codeword from u to any other vertex adjacent to v. Now u is the only vertex
adjacent to only v and each other vertex adjacent to v already had, before the codeword
shift, another codeword which is adjacent to it. This leads to a contradiction.

Finally, to show that G is connected, it remains to deal with the case where some
component of Gv is a single vertex, that is, v has at least two adjacent leaves. By (1) we
know that no component of Gv has size 2. Let U = {u, u1, . . . , uk}, for some k > 1, be
the set of leaves adjacent to v in G. Denote graph G− U − v by G′′. Similarly as above,
we can check that G′′ is not P2 or P3. Assume first that G′′ is not identifiable. Then,
G − U is identifiable, has size at least 3 (because G is not a star) and is not isomorphic
to P3 and hence, by Proposition 1, it has a total dominating identifying code C ′ of size at
most n− |U | − 1. Moreover, v ∈ C ′ since it is the only vertex which separates some pair
of closed twins in G′′. However, now C ′ together with all but one vertex in U is a total
dominating identifying code of G of cardinality at most n− 2, a contradiction. Hence, we
may assume that G′′ is identifiable. Moreover, if G′′ has a total dominating identifying
code C ′ of size at most n − |U | − 3, then C ′ ∪ U ∪ {v} is a total dominating identifying
code of size at most n− 2 in G, a contradiction. Thus, γID

t (G′′) = n− |U | − 2 since G′′ is
not isomorphic to P3.

Let C ′ be a total dominating identifying code of G′′ with |C ′| = n− |U | − 2. Assume
first that C ′ contains a neighbour of v (this is true in particular if deg(v) > |U |+ 2 in G).
Then C ′∪{v} together with all the vertices of U but one is a total dominating identifying
code of size n − 2 in G since v has a codeword neighbour in C ′, again a contradiction.
Thus, we may assume that deg(v) = |U | + 1 in G (we denote by w the neighbour of v
not in U), and w 6∈ C ′. Thus, w is not a support vertex. Then, G′′ − w is identifiable. If
G′′ − w is P3, then it is easy to check that G has a total dominating identifying code of
size at most n− 2. Otherwise, if G′′ − w is connected, then, by Proposition 1, it satisfies
γID
t (G′′ − w) 6 n− |U | − 3. If G′′ − w is disconnected, then none of the components is a
P2 (otherwise w would be a codeword in C ′) and if a component is a P3, then each vertex
in that P3 is a codeword in C ′. We can now just shift one of the codewords in the P3

to w in C ′ and obtain a total dominating identifying code of G′′. (The codeword that
can be shifted depends on which edges exist between w and the P3-component. At the
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beginning of this paragraph we have shown that if v has an adjacent codeword vertex in
a total dominating identifying code of G′′ of size at most n−|U |−2, then we have a total
dominating identifying code of size n − 2 in G, a contradiction. Hence, we may assume
that we do not have any such P3-components in G′′−w. Thus, each component in G′′−w
has at least four vertices and hence, by Proposition 1, γID

t (G′′−w) 6 n−|U |−3. Now, in
G, the code C ′′ ∪ {v, w} together with all the vertices of U but one, is total dominating
identifying with cardinality at most n− 2, a contradiction.

Hence we have proved that Gv is connected.

(3) Gv is identifiable. By contradiction, assume Gv has some closed twins. Assume first
that Gv has three mutually twin vertices x, y and z such that NGv [x] = NGv [y] = NGv [z].
Now, v cannot separate all three of these vertices in G and hence, we have a contradiction.

Assume next that we have at least two disjoint pairs of closed twins, that is, NGv [x] =
NGv [y] and NGv [z] = NGv [w]. We may assume that v ∈ NG(x) and v ∈ NG(z) but
v 6∈ NG(y) and v 6∈ NG(w). Now, V (G) \ {y, w} is a total dominating identifying code
in G. Clearly the code is total dominating. Moreover, v separates x and y as well as z
and w. Furthermore, u separates v from other vertices and x separates v from u. Since
NGv [x] = NGv [y] and NGv [z] = NGv [w], adding w or y to the code will not separate any
new vertices and since G is identifiable, this code is an identifying code.

Thus, we now assume that there is exactly one pair of closed twins in Gv, that is,
NGv [x] = NGv [y] where v ∈ NG[x] \ NG[y]. Notice that by (1), Gv has no components
of size 2, hence x and y have a common neighbour, z. Then, consider the graph G′′ =
G− {u, v, x}. Notice that G′v is identifiable since G is identifiable and if NG′′ [a] = NG′′ [b]
for some vertices a, b, then u cannot separate them in G, v cannot be the only one to
separate them in G since there is exactly one pair of closed twins in Gv, and x cannot
separate them either since NGv [x] = NGv [y]. Thus, G′′ is identifiable, as claimed.

Notice that if G′′ is isomorphic to P3, then G is one of four possible graphs (see
Figure 5), and in each case one can check that γID

t (G) 6 4 = n− 2, a contradiction.

u v x y

z

(a)

u v x y

z

(b)

u v x y

z

(c)

u v x y

z

(d)

Figure 5: The possibilities for graph G when G′′ is isomorphic to P3, in part (3) of the
proof of Lemma 8. The black vertices form total dominating sets of size n− 2.

the electronic journal of combinatorics 30(3) (2023), #P3.15 13



Hence, by Proposition 1, we have γID
t (G′′) 6 n − 4. Let C ′′ be an optimal total

dominating identifying code of G′′.
Observe first that |C ′′| = n− 4. Indeed, if |C ′′| 6 n− 5, then C = C ′′ ∪ {u, v, x} is a

total dominating identifying code of G of cardinality at most n− 2. Indeed, C is clearly
total dominating and v is separated from all vertices except u by u and u is separated from
v by x. Moreover, u is the only vertex with I(u) = {u, v}. Furthermore, if I(x) = I(a) for
some vertex a, then I(a) = I(y)∪{v} and a and y are not separated in G′′, a contradiction.
Thus, C is total dominating identifying with n− 2 codewords since all other vertices are
dominated and separated by C ′. Hence |C ′′| = n− 4.

Consider the two codes Cx = C ′′∪{v, x} and Cy = C ′′∪{v, y}. Cx is a total dominating
set, and Cy is also a total dominating set, except if v has degree 2 in G. Observe that for
both codes, I(u) = {v} and is unique if deg(v) > 3. All vertex pairs in G′′ are separated
by the vertices in C ′′. Moreover, in both codes, if some vertex b of G′′ is not separated
from x, then this means that I(b) = I(y)∪ {v} but then b and y are not separated by C ′′

in G′′, a contradiction. Thus, in both codes, x is separated from all vertices of G, except
possibly v. Hence, for each of the two codes, if v is also separated from all other vertices
and has a neighbour in the code, then that code is a total dominating identifying code of
size at most n− 2, a contradiction, and we are done.

Hence, we assume that neither Cx nor Cy are total dominating identifying codes. Since
Cx is total dominating, it is not identifying; hence, by the above discussion, there is some
vertex b with I(v) = I(b) in Cx. Thus, b is dominated by v and x (possibly, b = x):
b must be a neighbour of y. Then, y /∈ C ′′, for otherwise, b and v would be separated
by y in Cx, a contradiction. Thus, we have N [v]4N [b] = {u, y}. If b = x, then Cy is
a total dominating identifying code, indeed x, y have at least one common neighbour in
C ′′, which is a neighbour of v, so Cy is total dominating. Moreover, all neighbours of v
except u are neighbours of y, so v is also separated from all other vertices either by v or
by y. Therefore, we have b 6= x. Hence, degG(v) > 3 and Cy is total dominating. Thus,
Cy is not identifying, that is, there is a vertex c with I(c) = I(v) in Cy. Hence, c is not
adjacent to y (hence, not to x) and is adjacent to b, and N [c]4N [v] = {u, x}. It follows
that N [b]4N [c] = {x, y}, however that is a contradiction, since NG[x] = NG[y] ∪ {v}.

Thus, we have shown that Gv is identifiable.

(4) γID

t (Gv) > n − 3. Suppose on the contrary that there exists a total dominating
identifying code C ′ with cardinality n − 4 in Gv. Consider code C = C ′ ∪ {u, v} in G.
It is clearly total dominating and has cardinality of n − 2. Moreover, u separates itself
and v from all other vertices. Hence, we are done unless I(v) = I(u) = {v, u}, thus,
assume that N(v) ∩C ′ = ∅. Since G is connected, v has at least one neighbour, w, other
than u. Let us instead consider code Cw = C ∪ {w, v}. Again, the code is clearly total
dominating. Moreover, u is the only vertex with I(u) = {v} since C ′ is total dominating
in Gv. Furthermore, I(v) = {v, w} and if I(a) = {v, w} for some vertex a, then a is not
dominated by C ′ in Gv, a contradiction. Thus, we found a total dominating identifying
code of cardinality n− 2 in G, a contradiction.

In the following lemma, we find the set of graphs of order n which have (usual)
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identifying code number n − 1 and to which we may add a leaf and a support vertex so
that the resulting graph has total dominating identifying code number n′−1 = n+1, but
larger than the usual identifying code number. Small stars are special cases for the lemma
that are excluded. In particular, star K1,3 can actually be constructed from A1 ∈ A by
adding a universal vertex v and a leaf u to v. The star K1,2 is isomorphic to P3 and the bull
graph (illustrated in Figure 6(d)) can be constructed from it by adding a non-universal
support vertex. However, the bull graph can also be constructed from K1 by joining it to
a copy of K2 and adding leaves to the two newly added vertices.

Lemma 9. Let G be a connected graph on n > 3 vertices with support vertex v and
an adjacent leaf u and G′ = G − u − v 6= K1,p with p 6 3. If γID

t (G) = n − 1 and
γID(G′) = n− 3, then G′ ∈ A∗ ∪ (A∗ ./ K1)and v is a universal vertex in G.

Proof. Since |V (G′)| = n−2 and γID(G′) = n−3, we have G′ ∈ {K1,t | t > 2}∪A∗∪(A∗ ./
K1) by Theorem 4. Based on this, we distinguish several cases. Notice that we have n > 5.

Case 1: G′ is Ak ∈ A. Assume by contradiction that v is not a universal vertex in G.
By Lemma 8, G′ must be connected, hence we have k > 2. Moreover, assume that i is
the smallest integer for which xi 6∈ N(v) and xi−1 ∈ N(v). If x1 6∈ N(v), then let i be
the smallest integer for which xi 6∈ N(v) and xi+1 ∈ N(v). Moreover, assume that v does
not separate the two maximum cliques in Ak, that is, we do not have N(v) ∩ V (Ak) =
{x1, . . . , xk} or N(v)∩V (Ak) = {xk+1, . . . , x2k}. Assume now that i 6 k and xi−1 ∈ N(v).
Thus, v separates xi and xi−1. Consider code C = {v, u}∪V (Ak)\{x2k, xi+k−1}. Code C
is clearly a total dominating set and it has n− 2 vertices. Moreover, V (Ak) \ {x2k} is an
identifying code in Ak and codeword xi+k−1 is used to separate vertices xi and xi−1 from
each other. Furthermore, each vertex xj, 2 6 j 6 2k, j 6= i, i− 1, is identified in the same
way as in Ak, and vertices xi and xi−i are separated by v. Finally, since v and u are the
only vertices with u in their I-sets, they have unique I-sets. The case where x1 6∈ N(v) is
similar with the exception that we have x1 as the non-codeword instead of x2k. Now, we are
left with the case where N(v)∩V (Ak) = {x1, . . . , xk} or N(v)∩V (Ak) = {xk+1, . . . , x2k}.
These two cases are symmetric, thus without loss of generality, we may assume that
the first one holds. Consider the code C = {v, u} ∪ V (Ak) \ {x1, x2k}. Recall that
V (Ak) \ {x1} is an identifying code in Ak. Moreover, the only identical I-sets with the
code V (Ak) \ {x1, x2k} in Ak are I(xk) and I(xk+1). However, in G, the codeword v
separates these two vertices. Thus, C is a total dominating identifying code in G.

Thus, v is a universal vertex, as claimed.

Case 2: G′ ∈ A but G′ is not any graph Ai. Assume that v is not a universal
vertex in G. Recall that G′ is constructed with a sequence of joins of graphs Aij . Notice
that if there exists a subgraph Aij of G′ such that v is adjacent to some but not all of the
vertices of that subgraph, then we can find a new non-codeword as in Case 1 if ij > 2.
When ij = 1, degG(v) > 3 and v separates vertices in Aij , we can proceed as in Case 1,
that is, have both vertices of Aij as non-codewords. When ij = 1 and N(v) = {u, x1}
where x1 ∈ V (Aij), we can consider total dominating identifying code V (G) \ {u, x2}
where x2 6= x1 is the other vertex of Aij .
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Moreover, if, for each j, every vertex in subgraph Aij is either adjacent or non-adjacent
to v and, say, V (Ai1) ⊆ N(v) and V (Ai2) ∩ N(v) = ∅, then we may choose as the two
non-codewords the vertices corresponding to x1 in each of the subgraphs Ai1 and Ai2 .
Without v, we could not do this since nothing would separate vertices xi1+1 and xi2+1 in
the corresponding subgraphs, but now v separates them. Hence, we can construct a total
dominating identifying code of size at most n− 2, a contradiction, and v is universal.

Case 3: G′ ∈ A ./ K1. Notice that A1 ./ K1 is K1,2 and hence, by our assumptions,
we do not have to consider it. Hence, |V (G′)| > 5. Denote by y the universal vertex
of G′. Recall (see Proposition 3) that the only minimum identifying code in G′ consists
of every vertex except y. Assume first that there does not exist any vertex z ∈ V (G′)
with N [v] = N [z] ∪ {u}. Then we may consider code C = V (G) \ {u, y}. Code C is
total dominating since G′ 6= A1 ./ K1 and |V (G′)| > 5. Moreover, all vertices in G′

have pairwise distinct I-sets since C \ {v} is a total dominating identifying code in G′.
Furthermore, u is the only vertex with I(u) = {v} while v is separated from other vertices
since it has a unique closed neighbourhood.

Assume then that there exists a vertex z ∈ V (G′) with N [v] = N [z] ∪ {u} and z 6= y.
Now, we consider code C = V (G) \ {z, y}. Again, code C is a total dominating set since
V (G′) \ {y} is total dominating in G′ and v is adjacent to any vertex which would be
dominated by z. Moreover, V (G′) \ {y} is an identifying code in graph G′. Codeword u
separates u and v from other vertices in G and |I(v)| > |I(u)|. Since N [v] = N [z] ∪ {u},
any vertices that would be separated by z in G′ by code V (G′) \ {y} are now separated
by v. Hence, C is a total dominating identifying code in G of cardinality n − 2 and v is
universal.

Case 4: G′ ∈ {K1,t | t > 2}. We first show that G′ has exactly two leaves. Consider
on the contrary that G′ = K1,t. By our assumption that G′ is not K1,p for p 6 3, we have
t > 4. Denote by w the central vertex of G′ and by {w1, . . . , wt} = L(G′) the t leaves
of G′. Observe first that if v is adjacent to at most t − 2 leaves of G′, then the graph
G−w−w1, where w1 6∈ NG(v), is disconnected and hence, by Lemma 8, γID

t (G) < n− 1,
a contradiction. Then, consider the case where v is adjacent to t − 1 leaves w2, . . . , wt

(possibly, v is adjacent to w as well). We choose C = V (G) \ {w2, u}, and show it is a
total dominating identifying code of cardinality n − 2. Observe that it is clearly total
dominating. Moreover, C is identifying since w1 separates w1 and w from other vertices
and |I(w)| > |I(w1)|, u is the only vertex with I(u) = {v}, v is adjacent to multiple
codewords in L(G′) and hence separated from the leaves in L(G′) and each codeword in
L(G′) is separated by itself from all other leaves. Thus, C is identifying, a contradiction.

Assume then that v is adjacent to each leaf in G′ (possibly, v is adjacent to w). Now we
choose C = V (G)\{w,w1}. Again, code C is clearly total dominating and has cardinality
of n − 2. Moreover, it is identifying. Indeed, u and v are separated from other vertices
by u and |I(v)| > |I(u)|, w is clearly separated from the leaves of G′, I(w1) = {v} and
is unique, and each leaf codeword is separated from the other leaves by itself. Hence, the
claim follows.

Now we are ready to prove the exact characterization of extremal graphs from Theo-
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rem 5.

Proof of Theorem 5. By Proposition 1, γID
t (G) = n if and only if G = P3.

Let us first see that the graphs of the statement are indeed extremal. If G ∈ {K1,t |
t > 2} ∪ A∗ ∪ (A∗ ./ K1), then γID

t (G) > n − 1, since γID(G) > n − 1 by Theorem 4. If
G′ = G′′ ./ Km where m > 1 and G′′ ∈ A ∪ (A ./ K1), and we add attach a leaf to each
vertex in the clique Km, then γID

t (G) > n− 1 by Proposition 6.

We then show that these are the only graphs attaining the extremal value of n − 1.
Let γID

t (G) = n − 1 and G be a graph other than a star. By Lemma 7, if there are no
leaves in G, then γID(G) = n− 1 and we are done by Theorem 4. Thus, we assume that
G has at least one leaf u and an adjacent support vertex v, and we proceed by induction
on the number n of vertices.

For the base cases, let us first go through all the graphs with 3 6 n 6 6, with leaves,
and γID

t (G) = n− 1. Let v be a support vertex in G and u be the adjacent leaf. The only
identifiable graph with n = 3 is P3, which is isomorphic to K1,2 and hence in the family.
When n = 4 we have P4, which is isomorphic to A2 and in the family as well.

For n = 5, due to Lemma 8 we are only interested in the graphs for which G−u− v is
identifiable, connected and γID

t (G−u−v) > 2; that is, G−u−v is P3. The possible graphs
are depicted in Figure 6. The three graphs in (a), (b) and (c) have a total dominating
identifying code of size at most n−2, while the two other ones are in the extremal family.
Indeed, (d) is the bull graph, which is obtained from K1 (i.e. A0 ./ K1) in A ./ K1

by joining it to K2 and adding an adjacent leaf to each vertex of K2. Moreover, (e) is
obtained from P3 (i.e. A1 ./ K1) in A ./ K1 by joining it to K1 and adding an adjacent
leaf to its vertex.

When n = 6, again by Lemma 8, we are only interested in the connected identifiable
graphs for which γID

t (G− u− v) > 3, that is, for which G− u− v is P4, C4 or K1,3. There
exist nine such graphs for which G − u − v is P4, five graphs for which G − u − v is C4

and seven graphs for which G− u− v is K1,3. However, by Lemma 8, we may omit each
graph G from which we may obtain an unconnected or non-identifiable graph by deleting
a leaf-support vertex pair. After that we are left with six graphs for which G − u − v is
P4, five graphs for which G− u− v is C4 and four graphs for which G− u− v is K1,3, see
Figure 7. Apart from graphs (d), (f), (k) and (n), all have a total dominating identifying
code of size at most n− 2. Graph (d) is in the family, since it is isomorphic to the empty
graph A0 in A, to which has been joined a copy of K3 with a leaf attached to each vertex.
Graphs (f) and (k) are in the family as well, as they are either P4 (i.e. A2 in A) or C4

(i.e. A1 ./ A1 in A) joined to K1 whose vertex a leaf is attached to. Finally, (n) is also in
the family, as it is A1 joined to K2 whose vertices we have attached leaves.

Hence, we can assume from now on that n > 7 and we proceed with the inductive
step.

By Lemma 8, Gv = G−u−v is a connected, identifiable graph with γID
t (Gv) = n−3 for

any leaf u and adjacent support vertex v. Notice that if Gv is a star, then γID(Gv) = n−3
and we have a contradiction with Lemma 9. Moreover, if δ(Gv) > 2, then by Lemma 7,
γID(Gv) > n − 3 and we are done by Lemma 9. Hence, we can assume that Gv is not
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Figure 6: The possibilities for graph G when G− u− v is isomorphic to P3, in the proof
of Theorem 5. The black vertices form total dominating identifying codes.

a star and has a vertex of degree 1. Then, since Gv is also not a P4 since n > 7, we
have γID(Gv) 6 n − 4 by Theorem 4. Thus, by induction, Gv has the claimed structure
of part (ii) of the statement. That is, there exist graphs G′′ ∈ A ∪ (A ./ K1) and
G′ = G′′ ./ Km, for m > 1, such that we can form the graph Gv by adding a leaf to every
vertex in the clique Km of graph G′.

We claim that the only way to add vertex v to Gv is by making it a universal vertex
in G′ and adding no edges between v and the leaves of Gv.

We first show that there can be no edges in G between v and the set L(Gv). Suppose on
the contrary that there exists an edge between w′ and v, where w′ ∈ L(Gv) and w ∈ S(Gv)
is the support vertex adjacent to w′. Due to issues with total domination, we first consider
the case where N(v) = {w′, u}. By Lemma 8 we have γID

t (Gv − w − w′) > n − 5. Let
C ′ be a total dominating identifying code in Gv − w − w′. Now C ′ ∪ {u, v, w′} is a total
dominating identifying code in G of cardinality n− 2, a contradiction.

We then consider the case where v has at least three neighbours in G. We split this
case based on whether there exists a universal vertex y of G′ such that y 6∈ S(Gv) (such
a vertex exists only if G′′ ∈ A ./ K1). Assume first that such vertex y does not exist. In
this case, we may consider the code C = V (G) \ {w,w′}. It is total dominating since v
has at least three neighbours. Moreover, V (Gv) \ {w′} is an identifying code in Gv and
we only need codeword w to dominate w′. When we consider C and graph G, we notice
that u and v clearly have unique I-sets. Moreover, w is the only non-codeword which
is a universal vertex in G′ and every other vertex universal in G′ has an adjacent leaf
codeword (since y does not exist). Thus, w is separated from other vertices. Finally, w′

is the only vertex which has exactly v in its I-set.
Assume then that the vertex y ∈ S(Gv) exists. Now, we may consider code C =

V (G)\{y, w}. Code C is clearly total dominating. Moreover, V (G)\{w} and V (G)\{y}
are identifying codes in Gv and w is only needed to total dominate w′ in Gv. Since y
and w are universal vertices in G′, they do not separate anything in G′. Moreover, u
and v are clearly separated by C. Thus, the code is total dominating and identifying.
Hence, we may from now on assume that v is not adjacent to any leaf of Gv, that is,
L(G) = L(Gv) ∪ {u}.

We consider the case where there are some non-edges between the clique Km in G′,
and v. Let us not have edge vw in graph G, where w is some vertex in the clique Km of
G′ and w′ is either the universal vertex in G′′, if such a vertex exists, and otherwise the
leaf adjacent to w. Now, C = V (G) \ {w′, u} is a total dominating identifying code of G.
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Figure 7: The possibilities for graph G when G − u − v is isomorphic to P4, C4 or K1,3,
in the proof of Theorem 5. The black vertices form total dominating identifying codes.

Indeed, V (Gv) \ {w′} is a total dominating identifying code in Gv and u is now the only
vertex which has exactly v in its I-set while v is separated from all other vertices since
it is the only non-leaf vertex which is not adjacent to w. Hence, we may from now on
assume that v has an edge with each vertex of clique Km in G′.

Finally, we are left with the case where we have some non-edges between v and G′′.
Assume first that there does not exist a vertex z ∈ V (G′′) such that NG[z]∪{u} = NG[v].
Now, we may consider code C = V (G) \ {u,w′} where w′ is either the universal vertex
in G′′, if such a vertex exists, and otherwise some leaf in L(G) other than u. Code C is
total dominating. Moreover, V (Gv) \ {w′} is an identifying code in Gv. Finally, u has a
unique I-set as the only vertex adjacent to only v, while v is separated from every other
vertex in clique Km by having some non-edge to G′′ and it is separated from every vertex
in G′′ since z does not exist. Thus, C is a total dominating identifying code of size n− 2,
a contradiction.
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Consider then the case where we have the vertex z ∈ V (G′′) with NG[z]∪{u} = NG[v].
Notice that since v is not a universal vertex to G′′, neither is z. Thus, we may consider
C = V (G) \ {z, w′} where w′ is either the universal vertex in G′′, if such a vertex exists,
and otherwise some leaf in L(G) other than u. Again, C is clearly total dominating and
V (Gv) \ {w′} is an identifying code in Gv. Again, u and v have unique I-sets with the
same arguments as before. Moreover, any pair of vertices separated by z in Gv, is now
separated by v in G and hence, C is an identifying code in G. Now, we have exhausted
all the possibilities and the claim follows.

3 An upper bound for graphs of girth at least 5

Notice that the extremal graphs from the previous section either have many twins (stars
for example), or small cycles. In this section, we prove a (tight) upper bound for total
identifying codes of twin-free graphs of girth at least 5 that is much smaller than the one
for the general case. Similar upper bounds for twin-free graphs have been studied in the
context of location-domination, see [13, 14, 17] and usual identifying codes [1, 15].

We will need the following lemma, whose proof was given in [21] (note that it was
extended to a larger graph class in [15], that includes all identifiable triangle-free graphs).

Lemma 10 ([21]). If T is a tree on n > 4 vertices that is not the path P4, then

γID

t (T ) 6 n− s(T ).

Lemma 10 was shown to be tight in [15], for example for the 3-corona of any graph,
the 1-corona of any triangle-free graph of order at least 3, or any star of order at least 3.

For total dominating identifying codes in trees, the following upper bound is known.

Theorem 11 ([30, Theorem 14]). If T is a tree on n > 3 vertices, then γID
t (T ) 6 3(n+`(T ))

5
.

This upper bound, together with Lemma 10, yields the following corollary.

Corollary 12. If T is a twin-free tree on at least n > 3 vertices, then

γID

t (T ) 6 3n/4.

Proof. Since G is twin-free, we have s(T ) = `(T ), thus by Lemma 10 we have γID(T ) 6
n−`(T ). Thus, if `(T ) > n

4
, we are done. On the other hand, if `(T ) < n

4
, by Theorem 11,

we have γID(T ) 6 3(n+ `(T ))/5 < 3n
4

.

Observe that we have γID
t (C6) = 4 > (3 · 6)/5 and hence, one cannot generalize the

bound γID
t (T ) 6 3(n+ `(T ))/5 to a class of twin-free graphs including 6-cycles. However,

we can generalize Corollary 12 to all twin-free graphs of girth at least 5 by finding a small
total dominating identifying code in a well chosen sub-tree.

Theorem 13. If G is a connected twin-free graph of girth at least 5 on n > 3 vertices,
then

γID

t (G) 6 3n/4.
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Proof. Observe first that if G has a twin-free spanning tree T , then T has a total-
dominating identifying code of size at most 3n/4 by Corollary 12. Moreover, since G
does not have any triangles or 4-cycles, one can check that the same code is also total
dominating identifying in G.

Assume that every spanning tree of G has some twins, that is, leaves with the same
adjacent support vertex, and assume that T is the spanning tree with the least amount
of twins among all spanning trees of G. Now, for each support vertex, we remove all but
one adjacent leaf and we denote by T ′ the resulting twin-free tree and say that it has
n′ vertices. Notice that n′ > 4. Indeed, if n′ 6 3, then T does not contain a P4 as a
subgraph. Since T is connected, it is a star. However because n > 4 and G is twin- and
triangle-free, we get a contradiction. Thus, n′ > 4. Now, γID

t (T ′) 6 3n′/4 by Corollary 12.
Let C be a total dominating identifying code in T ′ of at most size 3n′/4; observe that
S(T ′) ⊆ C, since each leaf needs a neighbour in C in order to be totally dominated.

If v ∈ S(T ) is a support vertex which has u,w ∈ NT (v)∩L(T ), then we have removed
either u or w to form T ′. However, since G is twin-free, u or w, say u, has some other
neighbours in G. Consider x ∈ NG(u). Observe that since T had the minimal number of
twins among all the spanning trees, we have x ∈ S(T ′). Indeed, otherwise T − uv + xu
would have at least one twin less than T , a contradiction. However, then, x ∈ C and
hence, |IG(C;u)| > 2 and because G has no 4-cycles, u is uniquely distinguished. Thus,
C is a total dominating identifying code of G with cardinality at most 3n′/4 < 3n/4.

Note that Theorem 13 cannot hold for graphs that contain twins (because of complete
bipartite graphs, for which the total identifying code number is n−2 or n−1) or triangles
(because of complements of half-graphs, for which the (total dominating) identifying code
number is n − 1 [12] as seen in Proposition 3). However, in the following corollary, we
give a generalized form for all connected graphs of girth at least 5.

Corollary 14. If G is a connected graph of girth at least 5 on n > 3 vertices, then

γID

t (G) 6 (3n+ `(G)− s(G))/4.

Proof. Let G be a connected graph of girth at least 5 on n > 3 vertices. If G is a star,
then (3n + `(G) − s(G))/4 = n − 1/2 and the claim holds. Assume then that G is not
a star. Notice that if we have any twins, then they are leaves with the same adjacent
support vertex. Denote by G′ the graph obtained from G by removing leaves until G′ is
twin-free and let G′ have order n′. Since G is not a star, we have n′ > 3 and thus by
Theorem 14, γID

t (G′) 6 3n′/4. Let C ′ be an optimal total dominating identifying code
in G′. We have S(G′) ⊆ C ′. Thus, we may construct a total dominating identifying
code C for G as C = C ′ ∪ (L(G) \ L(G′)). We have |C| 6 3n′/4 + (`(G) − `(G′)) =
3(n− `(G) + s(G))/4 + (`(G)− s(G)) = (3n+ `(G)− s(G))/4.

Remark 15. Theorem 13 improves the known upper bound for usual identifying codes in
connected twin-free graphs of girth at least 5 when `(G) > n/8. Indeed, the current best
known upper bound for such graphs is γID(G) 6 (5n+ 2`(G))/7, [15]. When `(G) > n/8,
we have (5n + 2`(G))/7 > 3n/4. Furthermore, Corollary 14 improves the bound when
s(G) > n/(a+ 7) where `(G) = a · s(G) and a > 1 is a constant.
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Consider now some graphs which actually attain the 3n
4

upper bound. In [30], the
authors have shown that if γID

t (T ) = 3(n+ `(T ))/5, then T ∈ T , where T is defined with
the following iterative process. Let T0 = P8 and let there exist four different statuses of
vertices, A, B, C and D, denoted by s(v) for vertex v. For T0, leaves have status C,
support vertices status A, non-leaf vertices adjacent to support vertices status B and the
remaining two vertices have status D. Now, we can create a tree Ti from a tree Ti−1 ∈ T
by applying either of two operations φ1 or φ2.

In operation φ1, we add a path P5 to Ti−1, with vertices y, z, u, v, w, where the con-
secutive vertices have an edge between them, with an edge between y and any vertex
x ∈ V (Ti−1) with s(x) = C. Moreover, we have statuses s(y) = D, s(z) = D, s(u) = B,
s(v) = A and s(w) = C.

In operation φ2, we add path P4 to Ti−1, with vertices y, z, u, v, where the consecutive
vertices have an edge between them, with an edge between y and any vertex x ∈ V (Ti−1)
with s(x) = D. Moreover, we have statuses s(y) = D, s(z) = B, s(u) = A and s(v) = C.

For a graph H, the 3-corona of H is the graph of order 4|V (H)| obtained from H by
adding a vertex-disjoint copy of a path P3 for each vertex v of H and adding an edge
joining v to one end of the added path (see [15] and [22, Section 1.3]).

Since a twin-free tree T on n > 8 vertices can attain the upper bound in Corollary 12
only when T ∈ T and s(T ) = n/4, we can construct T from T0 by iteratively applying
operation φ2. Moreover, this is equivalent with saying that T is the 3-corona of some
tree H on at least two vertices where s(v) = D if v ∈ V (H). This leads to the following
theorem (noticing that the path P4 is also an example).

Theorem 16. If T is a twin-free tree on n > 4 vertices with γID
t (T ) = 3n/4, then T is

the 3-corona of some tree H.

Observe that we cannot generalize Theorem 16 to all twin-free graphs of girth at
least 5, since γID

t (C8) = 6, but we do not know if there exist other counterexamples.
However, we can deduce from the proof of Theorem 13 that if some other counterexample
exists, then that graph has only 3-coronas as its twin-free spanning trees.

4 Bounds between related parameters

In this section we prove bounds relating the parameter γID
t to similar parameters. Tight

bounds relating the parameters γID, γL and γOL were provided in the literature. It was
indeed proved in [20] that for any identifiable graph G, γID(G) 6 2γL(G) holds (and is
tight). Similar bounds were proved in the PhD thesis [38, Chapter 2.4.1], showing that
γID(G) 6 2γOL(G), γOL(G) 6 2γL(G) and γOL(G) 6 2γID(G), and providing tight families
of examples for each bound. As we will see, we can also bound γID

t (G) by a constant
times γL(G), γL

t (G) and γID(G), but not exactly by a factor of 2 like in the other bounds.
We have presented some relationships between these types of codes in Figure 1. Thus,
we have γID

t (G) 6 γID
E (G) and γID

t (G) 6 γID
S (G). As we will see, we cannot get similar

constant type bounds for these parameters.
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4.1 Relation with (classic) identifying codes

Theorem 17. Let G be a connected graph with γID(G) > 3, then

γID

t (G) 6 2γID(G)− 2.

Proof. Assume that C is an optimal identifying code in G with cardinality at least 3.
Since G is connected and C is identifying, if I(c) = {c} for some codeword c ∈ C, then we
may add any adjacent non-codeword to C and vertex c becomes totally dominated. Since
at least the first non-codeword we add to the code can be chosen to connect two codewords
(indeed the non-codeword cannot be only dominated by the codeword), we immediately
get that we need at most |C| − 1 vertices in this process, and so γID

t (G) 6 2γID(G)− 1.
Observe that if any two codewords are adjacent in C, then there is also a third

codeword adjacent to one of them, that distinguishes them. Thus, we need at most
|C|−3+ |C| = 2|C|−3 codewords to form a total dominating identifying code and we are
done. Hence, we assume from now on that every optimal identifying code in G has only
isolated codewords. Therefore, each non-codeword has at least two adjacent codewords.
Observe that if any non-codeword x has three or more adjacent codewords, then we are
done by adding vertex x to the code and then proceeding as in the first step. Likewise,
if a pair of non-codewords together has four or more distinct adjacent codewords, we can
proceed similarly. Thus, we may now assume that this does not occur.

Moreover, we may assume that 2|C| 6 n. Otherwise, the claim follows from Proposi-
tion 1. Now, consider the bipartite graph B obtained from G by keeping only the edges
between the codewords and non-codewords. If we contract non-codewords into edges (re-
call that each non-codeword has degree 2 in B) of B to obtain a graph G′, since 2|C| 6 n,
we notice that we have |C| vertices and at least |C| edges in G′. Moreover, graph B
could not have a 4-cycle since C is an identifying code and hence, we do not contract
non-codewords into parallel edges. Thus, the resulting graph G′ has a cycle of length at
least 3. If this cycle has at least four vertices, then there existed two non-codewords in
G with at least two distinct adjacent codewords each (this corresponds to a matching of
size 2 in G′), a contradiction, and the claim follows. The same is true, if the cycle is a
triangle and there exist any other vertex in G′ (then here also, G′ contains a matching of
size 2).

Finally, we are left with the case where γID(G) = 3. Moreover, by the previous
argumentation, the only case we need to consider is the one where each codeword has
degree 2, is adjacent to exactly two non-codewords, and there is a total of six vertices. If
none of the non-codewords are adjacent in G, then G is the cycle C6 which has γID

t (C6) = 4,
and we are done. Thus, we may assume that there is an edge between some non-codewords.
However, now we can find an induced path P4 c1, u, v, c2 which starts with c1 ∈ C, has
non-codewords u and v as the middle vertices and ends with c2 ∈ C. The path is induced
due to the properties of codeword vertices. We claim that these four vertices form a total
dominating identifying code C ′. Observe that the single vertex w which belongs to neither
C nor C ′ is the only vertex with I-set {c1, c2} and the single vertex in C \ C ′ is the only
vertex which is not adjacent to either codeword in C ∩ C ′. Finally, the vertices in C ′ are
pairwise separated since G[C ′] is a 4-path.
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The upper bound of Theorem 17 is tight for 1-coronas of complete graphs from which
we remove a single leaf.

4.2 Relation with locating-total dominating sets

Theorem 18. If G is a connected identifiable graph on at least three vertices, then

γL

t (G) 6 γID

t (G) 6 2γL

t (G).

Proof. In [19, Proof of Theorem 8], the authors have shown that if D′ is a locating-
dominating set in G, then there exists an identifying code D such that D′ ⊆ D and
|D| 6 2|D′|.

Assume now that C ′ is an optimal locating-total dominating set in graph G. Thus,
C ′ is a locating-dominating set and hence, there exists an identifying code C such that
C ′ ⊆ C of cardinality |C| 6 2|C ′| = 2γL

t (G). Moreover, since C ′ is total dominating, also
C is total dominating and hence, γID

t (G) 6 2γL
t (G) as we claimed.

The upper bound from Theorem 18 is tight for complete graphs of odd order from
which we have removed a maximal matching, indeed for such a graph G of order n = 2k+1
we have γID

t (G) = n − 1 = 2k by Proposition 3 but γL
t (G) = k (for every edge of the

removed matching, the two endpoints are twins in G, so one of them must belong to any
locating-dominating set and γL

t (G) > k; on the other hand, selecting one such vertex for
each pair gives a locating-total dominating set of size k).

4.3 Relation with locating-dominating sets

We first relate the locating-total domination number with the usual location-domination
number.

Theorem 19. If G is a connected graph on at least three vertices, then

γL(G) 6 γL

t (G) 6 2γL(G)− 1.

Proof. Let G be a connected graph and let C be an optimal locating-dominating set in G.
We can create a locating-total dominating set from C by adding a codeword adjacent to
each codeword in C. Thus, γL

t (G) 6 2γL(G). However, since G is connected, there exists
a non-codeword u with |I(u)| > 2 if γL(G) > 3. Thus, we may add u and γL(G)− 2 other
vertices to the code and we get the claimed upper bound. Notice that γL(G) > 2, since
we have at least three vertices in G. Moreover, if γL(G) = 2 and we have |I(u)| = 1 for
each vertex in V (G), then G is a path on four vertices. However, γL

t (P4) 6 γID
t (P4) = 3

and the claim follows.

The upper bound from Theorem 19 is tight for stars which have all but one of their
edges subdivided once. Indeed, for such a tree Tk of order n = 3k + 2, we have γL(Tk) =
k + 1 and γL

t (Tk) = 2k + 1. For each leaf of Tk, either the leaf or its support vertex must
be in any dominating set to dominate the leaf, so γL(Tk) > k + 1. Moreover, to get a

the electronic journal of combinatorics 30(3) (2023), #P3.15 24



total dominating set, we need two vertices in each branch which has three vertices and
the central vertex, so γL

t (Tk) > 2k + 1. On the other hand, taking every support vertex
gives a locating-dominating set of size k + 1. Taking every support vertex together with
its degree 2 neighbour gives a locating-total dominating set of size 2k + 1.

Notice that Theorems 17, 18 and 19 together with [19, Theorem 8] and Figure 1 imply
that γID

t (G) 6 2γID(G) − 2 6 4γL(G) − 2 and that γID
t (G) 6 2γL

t (G) 6 4γL(G) − 2.
However, as we can see in the following theorem, this bound is not tight.

Theorem 20. If G is a connected identifiable graph with γL(G) > 2, then

γID

t (G) 6 3γL(G)− log2(γ
L(G) + 1).

Proof. Let CLD be an optimal locating-dominating set with at least two codewords in an
identifiable connected graph G. We have γID(G) 6 2|CLD| by [20, Theorem 8]. Moreover,
following the proof of [20], we may construct an identifying code from CLD by just adding
at most |CLD| additional vertices to CLD. Denote by CA a smallest set of vertices which
we can add to CLD so that CA ∪ CLD = CID is an identifying code. Observe that every
vertex in CA is adjacent to a vertex in CLD (since every vertex not in CLD is adjacent to a
vertex in CLD). Moreover, when we add the |CA| new codewords, those new codewords are
also total dominating some (old) codewords of CLD. We denote the dominated codewords
by CD ⊆ CLD. In particular, we have 2|CD| − 1 > |CA| since the vertices in CA were all
dominated and separated among each other by the vertices of CD.

Therefore, to make CID total dominating, it suffices to add only codewords which
dominate vertices in CLD \ CD. Hence, we can build a total dominating identifying code
of cardinality at most |CLD|+ (|CLD| − |CD|) + |CA| 6 2|CLD|+ |CA| − log2(|CA|+ 1) 6
3|CLD| − log2(|CLD|+ 1).

We can show that the bound of Theorem 20 is almost tight, as follows.

Proposition 21. For every integer k > 2, there is a connected identifiable graph Gk with
γL(Gk) = 2k − 1 and γID

t (Gk) = 3 · 2k − 2k − 3 = 3γL(Gk)− 2 log2(γ
L(Gk) + 1).

Proof. We build Gk as follows. Gk contains a set A = {a1, . . . , ak} of k vertices. For each
vertex ai in A, we add a leaf bi adjacent to ai. Moreover, for each subset S of A of size
at least 2 (there are 2k − k − 1 such sets), we have vertices xS, x′S, yS and zS with the
following edges. Vertices xS and x′S have all the vertices ai with ai ∈ S as neighbours.
Moreover, xS is adjacent to x′S and to yS. Vertex zS is adjacent to xS, x′S and yS. See
Figure 8 for an illustration.

To see that γL(Gk) 6 2k − 1, notice that the set consisting of A and each vertex
yS forms a locating-dominating set. Moreover we need at least 2k − k − 1 vertices to
dominate the vertices of type yS, and k vertices to dominate the vertices of type bi, so
γL(Gk) > 2k − 1.

Next, observe that each vertex yS needs to be in any identifying code to separate xS
from x′S, for each subset S of A of size at least 2. We also need one of zS and xS to totally
dominate yS. Moreover, x′S must belong to the code in order to separate yS from zS.
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Vertex ai must belong to the code to totally dominate bi, for each i in {1, . . . , k}. Thus,
γID
t (Gk) > 3(2k−k−1)+k = 3·2k−2k−3. Finally, the set consisting of A, each vertex yS,
zS, and x′S forms a total dominating identifying code, thus γID

t (Gk) 6 3 · 2k − 2k − 3.

xS1x′S1

yS1zS1

xS2x′S2

yS2zS2

a1

b1

a2

b2

ak

bk
. . .

. . .

AS1 S2

Figure 8: Sketch of the graph Gk built in Proposition 21, where S1 and S2 are two subsets
of A of size at least 2. The black vertices form an optimal locating-dominating set, while
the black and gray vertices together form an optimal total dominating identifying code.

4.4 Relations with self-identifying and error-correcting identifying codes

In the following two propositions, we show that there does not exist general bounds of
types γID

S (G) 6 cγID
t (G) or γID

E (G) 6 cγID
t (G) for any constant c. In fact, the constructions

we give, offer (almost) the largest possible gaps between any γID
t and any other parameter.

Indeed, if a graph has 2k − 1 vertices, then there are at least k vertices in any total
dominating identifying code in graph G. Hence, the values of γID

E (G) or γID
S (G) alone tell

almost nothing about the value of γID
t (G).

Proposition 22. Let k > 4 be an even integer. There exists a connected graph G with
γID
t (G) = k and γID

S (G) = 2k − 2.

Proof. Let k > 4 be an even integer. We construct graph G in the following way. We
start from a complete graph Kk on vertex set X = {x1, . . . , xk}. After that we create
2k − k − 2 vertices and join each to a distinct subset X ′ ⊆ X of vertices of cardinality
1 6 |X ′| 6 k − 2. Then, we join any vertex u with N(u) = X ′ to the single vertex v
with N(v) = X \ X ′. If deg(u) = 1 and N(u) = {x2i+1}, then we join it to vertex v
with N(v) = {x2i+2} where 0 6 i 6 k/2 − 1. Finally, we remove a perfect matching
{x1xk, x2x3, x4x5, . . . , xk−2xk−1} from the vertices within the clique Kk.

Observe that C = X forms an optimal total dominating identifying code. Moreover,
since no vertex has its closed neighbourhood completely included in another neighbour-
hood, set V (G) is a self-identifying code. We claim that it is also optimal. Suppose on the
contrary that C is a self-identifying code of smaller cardinality. Assume first that some
vertex xi 6∈ C. There exists a vertex u with N(u) = {xi, v}. Now, I(u) ⊆ {u, v} ⊆ I(v)
and hence, C is not a self-identifying code. Assume then that some vertex u 6∈ X is a

the electronic journal of combinatorics 30(3) (2023), #P3.15 26



non-codeword. There is vertex v ∈ N(u) \ X. Assume first that N(u) = {v, xi}. Let
xj ∈ N(v). Now I(u) ⊆ {xi, v} ⊆ I(xj). Moreover, if N(u) = X ′ ∪ {v}, then there exists
a vertex xj ∈ X \X ′ with X ∪ {v} ⊆ I(xj), a contradiction. Hence, V (G) is an optimal
self-identifying code and the claim follows.

In the following proposition, we consider the possible gap between total dominating
identifying codes and error-correcting identifying codes.

Proposition 23. Let k > 4 be an integer. There exists a connected graph G with γID
t (G) =

k and γID
E (G) = 2k − 1.

Proof. Let k > 4 be an integer. We construct graph G in the following way. We start from
a path Pk on vertex set X = {x1, . . . , xk}. After that we create a set Y of 2k−k−1 vertices
and join each to a distinct nonempty subset X ′ ⊆ X of vertices such that N [xi]∩X 6= X ′

for any xi. After this, we add edges between the vertex w of Y joined to all vertices of
X, and each vertex of Y joined to the vertices of some set X ′ ⊆ X with |X ′| = 1.

Observe that code C = X is an optimal total dominating identifying code in G.
Moreover, we claim that V (G) is an optimal error-correcting identifying code in G. Let C
be an optimal error-correcting identifying code in G. Notice that for each i (1 6 i 6 k),
xi ∈ C. Indeed, otherwise some vertex u in Y with N(u) = {xi, xj} would have |I(u)| 6
2, a contradiction. Moreover, if a vertex u with |N(u) ∩ X| 6 2 is a non-codeword,
then |I(u)| 6 2, a contradiction. Similarly, if the vertex w of Y with N(w) = X is a
non-codeword, then each vertex u of Y with |N(u) ∩ X| = 1 has |I(u)| 6 2. Finally,
suppose by contradiction that some vertex v of Y with |N(v)∩X| > 3 is a non-codeword.
Then, we can find a vertex xi of N(v) ∩ X such that there exists a vertex v′ of Y with
N(v′)∩X = (N(v)∩X)\{xi}. Then, I(v)4I(v′) ⊆ {v′, xi}, a contradiction. Thus, V (G)
is an optimal error-correcting identifying code.

Observe that the construction in Proposition 23 is best possible since any graph on
2k − 1 vertices has at least k vertices in any identifying code.

5 Concluding remarks

We have characterized the extremal graphs for total dominating identifying codes (that
is, those graphs G of order n for which γID

t (G) ∈ {n − 1, n}), extending the existing
characterization for usual identifying codes from [12]. All these graphs either have twins
or cycles of lengths 3 and 4; in the absence of these features, we showed that the graph
has a relatively small total dominating identifying code, since γID

t (G) 6 3n/4.
It would be interesting to characterize the graphs for which the γID

t (G) 6 3n/4 upper
bound for twin-free graphs of girth at least 5 of Theorem 13 is tight, extending the
characterization obtained for trees (Theorem 16). Is C8 the only other tight example
besides the 3-coronas?

Perhaps it is possible to extend the 3n/4 bound from girth 5 graphs to some twin-
free triangle-free graphs with 4-cycles (we need the triangle-free restriction because of
complements of half-graphs, and the twin-free restriction because of stars).
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We note that several known bounds for twin-free trees are tight only for coronas, like
the 3n/4 bound for total dominating identifying codes of Corollary 12, the 2n/3 bound for
identifying codes from [15], the 2n/3 bound for locating-total dominating sets from [13]
and n/2 bound for dominating sets [10, 34]. An exception is the n/2 upper bound for
locating-dominating sets, see [14], for which the class of trees reaching the bound is more
intricate.

We also introduced multiple tight bounds for γID
t based on other domination param-

eters. However, in the case of locating-dominating sets, we still have a gap in the loga-
rithmic term between the bound in Theorem 20 and the construction in Proposition 21.
We have shown that when we do not give any restrictions for the graph structure, then
the self-identification number and the error-correcting identification number do not give
(almost) any information about the total dominating identification number. However, is
it possible to give restrictions for the graph structure so that these values become closer
to each other?
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