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ARTICLE

Reforestation policies around 2000 in southern
China led to forest densification and expansion
in the 2010s
Xiaowei Tong1✉, Martin Brandt1,2, Yuemin Yue 1✉, Xiaoxin Zhang 2, Rasmus Fensholt 2, Philippe Ciais 3,

Kelin Wang1, Siyu Liu2, Wenmin Zhang2, Chen Mao1,4 & Martin Rudbeck Jepsen2

Forest expansion has been observed in China over the past decades, but the typically applied

coarse resolution satellite data does not reveal spatial details about China’s forest transition.

By using three decades of satellite observations at a 30-m spatial resolution, we reveal here

the complex spatiotemporal patterns of individual forest stands forming the forest return

history of southern China. We calculate forest age, forest densification rates, and annual

forest fragmentation and show that the observed forest area surge around 2010 is a result of

trees planted after 2000 that formed dense forests about a decade later. We document that

old forests in the 1980s were mostly fragmented into scattered patches located on mountain

tops, but forests rapidly expanded downhill by 729,540 km2 and alleviated the clear-cut and

logging pressure from old forests. Our study provides a detailed documentation of forest

densification and expansion for a country that had been largely deforested three decades ago.
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Three decades ago, southern China was almost entirely
deforested1, but the region now hosts one of the largest
tropical and subtropical forest fractions in the world2,3.

This implies that only fractions of primary forests are left and that
the vast majority of current forest areas are secondary forests,
most of them being planted. A similar forest transition, from
deforestation to reforestation, was observed in Europe and USA
already in the 19th and 20th centuries4–6 and has recently been
documented for Vietnam and China starting in the 1980s6,7.
What makes the transition starting in the 80s particularly inter-
esting from a monitoring perspective is that the entire period has
been recorded by satellites, starting with deforested landscapes in
the early 1980s until today, with large parts of the region covered
by forests. Forestation measures in China intensified after the year
2000, with several large-scale tree plantation programs being
initialized8–10, either as monoculture plantations or as semi-
natural forests with a more heterogenous species composition.
Several studies have reported a dramatic increase in greenness in
the recent decade, which has often been interpreted as either
climate-driven or intensified plantation efforts11, both in area and
density. However, the spatial resolution of the imagery used in
these studies was too coarse to attribute the greening to either
densification of existing forests or forest expansion. Therefore, it
remains largely unclear if increased plantation activities alone
could have caused this phenomenon12 when new forest stands
were added to the landscape and whether these new forests are
fragmented patches or form larger forest stands.

Satellite instruments, providing coarse spatial resolution satellite
images since the early 1980s, have documented the extensive
greening of the region, characterizing the transition of a landscape
dominated by grass- and croplands into tree cover3,11. This tran-
sition happened progressively over the past decades, supposedly by
successively creating fractions of forests, however impossible to
identify from the use of coarse resolution satellite data. While
upscaling from field plots and stand growth modeling provide an
overall indication of forest ages for a region as a whole13,14, this kind
of information is often not sufficiently detailed to pinpoint spatial
nuances and differences in forestation. It does also not support an
in-depth understanding of the history and future potential of forest
expansion and densification for areas dominated by mosaics of
planted forests. This is because a majority of the tree planting
activities in China have been conducted by individual farmers who
have replaced their croplands with forests, and this forest patchwork
is then managed at the level of individual fields15. This landscape
heterogeneity is intensified by large differences in elevation and
slope within small areas, which is typical for karst areas dominating
southern China10.

Over the past decade, forest stands began converging into larger
areas of closed canopies9, but the age structure of the forests
remains undocumented because the areas appear as homogeneous
forests seen from space. Consequently, information on forest
growth, coverage, age, and growth saturation are mostly based on
models, coarse spatial resolution satellite data sources, or upscaled
from field plots, which includes considerable uncertainty13,16. This
is problematic because information on forest age, growth rate, and
whether a given forest is a monocultural plantation or a semi-
natural forest with heterogenous species composition is crucial
information for estimates of the potential biodiversity and eco-
system services of the forests, including time-averaged carbon
stocks and carbon sequestration potentials17. This challenge is not
only the case for southern China but applies to all areas of het-
erogeneous landscapes where forest management, such as tree
plantations, shifting cultivation, forestry, and restoration, happens
at a small scale. Hence, large regions where forests are locally
managed are labeled as forestation areas and merged into
broad forest age groups, often neglecting the complexity of very

heterogeneous forest structures, amplified by regular harvest and
replanting.

To give clear and reliable accounts of forest expansion, densifi-
cation, age, and consequently on carbon stocks and sequestration
potentials in managed forest areas, more detailed monitoring
techniques are needed. Medium-resolution images (30 m) have
been available over several decades via the Landsat program, but
the temporal depth of these data has rarely been applied to estimate
the age of individual forest stands in highly heterogeneous plan-
tation landscapes18 and plantations characterized by successive
planting and harvesting are generally challenging to map19. This
study attempts to overcome this by making use of the long time
series of Landsat images to quantify forest area, age, densification
rate, and fragmentation changes in southern China between 1986
and 2018 at 30-m spatial resolution to resolve the complex spa-
tiotemporal patterns of forestation in southern China. We train a
machine-learning model and create annual forest probability (fp)
maps as a proxy for forest density9. These maps are used to analyze
the age of forests, their growth rate (densification), as well as the
annual degree of forest fragmentation, defined here as the rela-
tionship between core and non-core forests20. Generally, emerging
forests are detectable at forest probabilities above around 20%. An
area is considered a dense forest if the predicted probability sur-
passes and remains above a certain threshold (50%) until 2018
(Fig. 1a). This generally excludes short-rotation plantations but
includes plantations and forestry where tree stands are allowed to
grow and create dense canopy covers. We define forest age as the
number of years a forest has been in a dense state, and the growth
or densification rate is calculated as the mean annual change in
forest probability between early-stage forests (fp= 20%) until the
forest is dense (fp= 50) (Fig. 1a). Thus, age refers to the number of
years a forest has been in a dense state (fp ≥ 50%). Using these data,
we reconstructed the forestation history of southern China
(Fig. 1b), offering another level of detail in our understanding of the
underlying mechanisms of the recent pronounced increase in
greening and how this relates to forest expansion and densification.

Results
Forests expansion in southern China. We observe a continued
strong forest expansion (dense forest area) during 1986–2018,
with two pronounced peaks in the mid-1990s and around 2010
(Fig. 2a). A gain in forest is here reported when a 30 × 30 m area
exceeds the dense forest stage. We find that the forest extent
increased from 249,414 km2 in 1986 to 491,496 km2 in 2003 and
978,954 km2 in 2018, which means the area fraction of southern
China covered by forest increased from 9 to 35%. We did not
observe large contractions or losses of forests, defined as areas
where the forest probability falls below 50%. However, the first
large forest expansion in the mid-1990s was followed by minor
(dense) forest contractions. A similar contraction after the second
forest expansion period around 2010 has not yet been observed
(Fig. 2a).

Only minor forest areas are older than the satellite records. We
then studied the age of the dense forests by counting how many
years each forest has been in a dense state (fp ≥ 50%) until 2018.
We found that only 225,890 km2 (23%) of the current forest
area contains forests older than our 33-year time series that
were present in 1986 and have not been cut until 2018. Only
10,326 km2 of these ‘old’ forests (fp ≥ 50% in 1986) have been lost
over the past three decades. A total of 32% of the current forests
have reached their dense forest stage during the past 10 years
(Fig. 2b). A closer look at the age distribution shows a clear spatial
diffusion process where new dense forests often expand from
remnants of older forests that existed in 1986 (Fig. 2f).
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Accelerated densification rate of recent forests. For dense for-
ests, we calculated how fast they reached their dense state. This
period is the number of years it takes for a forest to go from
fp= 20% to fp= 50%, and the densification rate is the mean
annual probability increment with the unit probability % per year.
We did not calculate the continued densification rate for dense
forests (fp > 50%). The densification rates of different forest age
groups (years after reaching a dense state) (Fig. 2c) can be
grouped into two different classes: forests that reached a dense
state more than 10–11 years ago have a homogeneously slow
densification rate, and forests that reached the dense state in the
past decade have an almost doubled densification rate, that means
they reach the dense state much faster.

The densification rate and period depend on management-
related factors, including species selection and planting densities,
but also on growing conditions, such as soil and climate. We
assume that management and climate vary over space and time
while site conditions are static. In the following, we investigate
which of these conditions could have caused the high densifica-
tion rates of recent dense forests.

Climate conditions, reflected here by rainfall and temperature21,
started being more favorable around 2010–2013, which could
contribute to the shorter densification period of recent forests
(Figs. 3a and 2c). We further investigated the elevation reflecting
site conditions for different forest age groups (Fig. 3b). We find that
there is a clear pattern showing that forests that reached the dense
state more than 15 years ago were located at higher elevation areas,
indicating a progressive forest expansion from mountains into
valleys, where we find today the younger dense forests. Although
growing conditions in lower elevation areas may be more favorable,
our results demonstrate comparable densification rates of recent
forests between mountain (Fig. 4a) and valley areas (Fig. 4b).

Our data show that forests that reached the dense stage during
the past 10 years are likely the result of plantation programs
starting around 2000. When entering a dense stage, they become
clearly visible in satellite images, and then their densification rate
can be tracked back in time. Although forest expansion rates have
recently declined just as swiftly as they increased around 15 years
ago (Fig. 2a), younger dense forests reached their dense state almost
twice as fast as older dense forests did (Fig. 2c), independent of
terrain (Fig. 4a, b), signifying that forests planted after 2000 have a

different species composition as previous forests. This is supported
by Fig. 4c, showing that the densification rates of forests that
reached a dense state more than 11 years ago were relatively
normally distributed across the populations, while there was a clear
shift toward fast-growing forests for forests that reached a dense
state less than 10 years ago (left skewed distribution), irrespective of
elevation (Fig. 4a, b). High densification rates typically suggest fast-
growing plantations, which often have low diversity.

Continued growth of dense forests. We visually studied the
continued probability increment of forests after they reached a
dense state, that is, after the fp exceeded 50% (Fig. 3c). Here, we
find that even earlier formed forests (>33 years) progressively
increased in density over the full period. We also find that the
increasing forest probability values converge across dense forest
age groups toward the end of the time series and almost approach
forest probabilities of dense forests that formed more than 33
years ago (upper line in Fig. 3c). This implies that the continued
probability increment of forests that reached a dense state in
recent years is faster than it was the case for forests that reached a
dense state in earlier years, and the same is observed for the
densification rate. The increased probability increment during
1995–2005 may be due to favorable climate conditions (Fig. 3a).

This pattern is also reflected in the biomass accumulation of
forests, which was obtained by using the ESA CCI Globbiomass
dataset22. The data show that biomass density increases with
forest age (years after reaching a dense state) up to about 15 years
back from 2018 (Fig. 5a). The older dense forests (16–32 years by
2018) have similar levels of biomass and only forests that formed
before our time series (33+ years), which includes old forests, had
notably higher values. The similar levels of biomass are supported
by the forest probability (Fig. 5b), which shows that all forests
from 1987 to 2008 reached similar forest probability levels toward
2018.

Reversed fragmentation. Next, we go beyond analyzing the forest
transition and study the spatial distribution of forest expansion and
how it contributes to large coherent forest areas and increased
landscape connectivity. Forest fragmentation is typically seen as an
ecosystem degradation process23,24, but the reverse case, increased

Fig. 1 Schematic overview of definitions and study area. a The figure exemplifies our definitions of forest, non-forest, forest age, and densification rate.
Forest probability is the output from a Random Forest model and shows how likely an area resembles a dense forest. We set a threshold of 50% to define
an area as a dense forest, and the number of years from the year the threshold is crossed until 2018 as the forest age. Note that the area must remain
above 50% until 2018 to qualify as a forest. The years before the threshold is crossed are used to calculate the densification rate. It is defined as the mean
probability change per year in the period where an area is between a probability of 20% and 50%. If the area falls below 20%, the count is reset. b The
study area covers the southern provinces in China. Red points reflect training samples from non-forest areas, and green points are training samples from
forests.
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landscape connectivity via restoration, has rarely been shown.
Here, we study the connectivity of the forest patches by dividing
them into core and non-core forests (only dense forests). Core
forests is defined as minimum 9 dense forest grids in a 3 by 3 square
at a 30m resolution, implying a minimum size of 0.9 ha for a core
forest. Non-core forests are edges of core forests, as well as island
forests (isolated 30 × 30m grids) in a non-forest matrix. Individual
plantations are typically first seen as islands of non-core forest,
which, if not regularly harvested and more trees are planted at the
edges of the plantation areas, progressively expand into larger core-
forest areas.

Our data show that forests in 1986 were mostly scattered patches;
core forests covered 93,197 km2, but 63% of the forests were non-
core forests (Fig. 5c). Out of these non-core forests, 36,003 km2 were
unconnected islands (30 × 30m), the other non-core forests were
bridges and edges. Connected core forests started increasing in the
mid-1990s but increased massively in the past decade (much more
than non-core forests) with a total increase of 517% (482,092 km2).
These numbers imply that 84% of the core forests in 2018 are new
(i.e., less than three decades). Interestingly, forests that were younger
than 10 years in 2018 are rarely core forests (Fig. 5d). The average
core forest patch size, which is a connected core forest area,
increased from 0.03 km2 in 1986 to 0.07 km2 in 2018 (Fig. 6e), and

the number of core forest patches increased from about 3 million to
more than 7 million (Fig. 6f). In 2018, 403,664 km2 (41% of the
forests) are non-core forests, which are forests with reduced
ecological importance. These may be recently converted farmlands
or the result of patch-wise forest harvest activities through selective
logging or small-scale forestry, but also edges of core forests
contribute to this class. Figure 6 illustrates the distribution of
existing and new core forests as well as non-core forests in southern
China and a close-up example illustrating the progressive forestation
of an area between 1986 and 2018.

Discussion
This study has developed a dataset and method for tracking
individual forests at an annual scale, which allows us to study
the forestation history of southern China. The difference to
previous maps is that we provide forest age at a high spatial
resolution13,14,25, which better captures the patchwork from dif-
ferent forest planting programs and individual farmer’s land
management decisions in the complex karst landscapes. We track
the evolution of dense forest areas over time and document how
they have quadrupled over three decades, confirming the massive
forest expansion found in previous studies2,9,26. Here we go

Fig. 2 Forest gain, loss, age, and densification rate over 1986–2018. a Dense forest expansion and contraction per year. b Forest age*, reflecting the
number of years after a forest area reaches a dense state. cMean densification rates** (the unit is probability in % per year) of different forest age* groups.
d The forest age* of the entire region in 2018, e same for densification rate*. Note that older forests existing in 1986 are not shown here. f, g Close-ups on
forest age* in 2018 and densification rate* for a selected area. * = years after reaching a dense state. ** = before reaching a dense state.
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beyond the reporting of forest area3 and show that also core
forests have sextupled over recent decades. Our maps can also be
used to study forest changes and forest age structure at the
regional level, revealing that recent planting campaigns are in
particular visible in Chongqing, Guizhou, and Hubei provinces
(Supplementary Fig. 2), while early planting campaigns from the
1990s are more dominant in Fujian, Zhejiang, Guangxi, and
Hunan. Old forests dominate Taiwan, while basically all forests in
Shanghai are recently planted.

We found two distinctive waves of dense forest cover increase:
one in the 1990s, likely the result of the earlier “greening the
barren mountain” program aiming to recover forest mountain
tops. Interestingly, this wave of increase was followed by a wave of
forest loss. The second wave of forest cover increase manifested as
dense forest around 2010, being the driver of the pronounced
increase in greening observed in other studies11. This second
wave is the result of forest expansions resulting from plantation
activities starting around 2000, which reached a dense state
around 2010. The densification rate of the second wave, that is,
the growing speed before a forest reaches a dense state, is a
magnitude higher than the densification rate of the first wave, and
it is relatively homogeneous over the years. These insights con-
tradict previous assumptions that the greening starting around

2010 is attributable to intensified forestation measures or changed
policies that took place around 201010 but are the result of pre-
vious forest expansion measures, which become visible from
satellite imagery approximately a decade after plantation. The
question of whether forest expansion or densification caused the
pronounced greening after 2010 cannot be answered with one or
the other. The forests were planted and thus expanded in the early
2000s, after which they densified over approximately one decade,
becoming visible in satellite observations once reaching a dense
state. After becoming visible, it was then possible to track back
the temporal evolution of the forests, here termed the densifica-
tion rate of emerging forests. Moreover, after a long dry period in
the 2000s, climate conditions were more favorable over the past
decade, likely contributing to the increased densification rate.

Our study shakes several widely accepted assumptions repre-
sented by an expectation of a uni-directional interaction between
humans and forest resources. First, previous studies have shown that
human influence has increasingly caused the removal of forests,
leaving forests to steep terrain and mountain tops in large parts of
the world27,28; here the opposite is observed to be the case with
forests expanding progressively down the mountains into valleys and
flat areas (Figs. 3c and 4, Supplementary Fig. 1). Second, it has also
been shown that small forest areas and remnants of old forests are

Fig. 3 Growing conditions and densification of forests in southern China. a The PDSI (Palmer drought severity index) uses rainfall and temperature data
to estimate positive and negative climate conditions. b The distribution of forest age* from 2018 is shown along the elevation gradient (ASTER GDEM;
30m). The color shadings reflect the 5, 10, 25, 75, 90, 95th percentiles; the line is the median. c Continued annual probability of dense forests that have
surpassed the 50% probability threshold is shown for different age classes. The age groups are derived from the year a line crossed a probability of 50%,
which is here the starting year. The upper line starting at around 70% fp are all forests older than 1986. * = years after reaching a dense state.

Fig. 4 Densification rate**, forest age*, and elevation. a Number of Landsat grids (30 × 30m) having a certain densification rate** (rounded to full
numbers) for forests with an age* of 1–10 years growing above 500m elevation. b Same but for forests below 500m elevation. c Distribution of
densification rates** for forests with an age* of at least 11 years. * = years after reaching a dense state. ** = before reaching a dense state.
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increasingly lost29; here we show that new forests expand around
‘old’ forests (here defined as dense forests that formed before 1986)
and only small areas of ‘old’ forests are lost over three decades. On
the contrary, we observe increased densification of ‘old’ forests
(upper line in Fig. 3c), likely because new forests serve as buffer
zones around ‘old’ forests (Supplementary Fig. 1) serving as a pri-
mary source for logging, thereby alleviating the pressure from woody
resource exploitation in ‘old’ forests. Moreover, with millions of
people migrating from rural areas into cities, human pressure is
strongly declining8. Third, several studies find globally increasing
forest fragmentation23,24, destroying habitats and biodiversity; here,
the opposite is the case, and we show that forest expansion connects
previously disconnected patches leading to a massive increase in core
forests (Fig. 5c).

Nevertheless, China’s ‘new’ forests are the result of human
management, and the homogeneous and rapid growing speed is
an indication of low woody plant diversity. For being a stable
carbon sink, biodiversity should be kept high and harvest low30.
Also, the forest transition in Europe generated a forest landscape
with a relatively low diversity, which becomes problematic in
times of climate change31,32, where droughts and insects threaten
forest stands. Also, in China, climate can have positive or negative
effects on forest growth33,34, and the coming years will show how
sustainable, resistant, and resilient China’s new forests are.

Methods
Concept. This study aims at creating temporally stable long time series of forest
dynamics in southern China using the entire Landsat archive. We use a Random
Forest regression model with two classes, validated with field plots and sub-meter
GF satellite data to estimate the “forest probability” (fp): a high probability implies
the area comes close to the training data of the dense forest class, a low probability
implies it comes close to the training data of the non-forest class. If an area crosses
a uniform probability threshold (fp 50%), it can be considered a forest (termed here
“dense state”); if it remains above this threshold until 2018, the number of years
after crossing the threshold until 2018 is the forest age; the speed in probability
increase per year between 20 and 50% is the densification rate (Fig. 1).

Landsat data. We make use of the entire Landsat 5/7/8 archive available in Google
Earth Engine ranging from 1986 to 2020, which provides atmospherically corrected
surface reflectance images. For each image, we used the quality assurance band to
identify and remove the bad-quality observations caused by clouds and snow/ice.
Previous studies have shown that the temporal depth of the archive is sufficient for
time series analyses over this period35, but southern China is a very cloudy region,
and we had to form annual median images and, in addition, use a 3-year moving
median to reduce noise9, which shortened the study period to 1986–2018. In
addition to the six bands, we calculated two widely used vegetation indices (NDVI
and NBR) for each year. The annual composites were then downloaded.

Modeling forest probability. A total of 15,991 training pixels (30 × 30 m) were
selected in dense forests and 158,728 pixels in non-forest areas across southern
China. To identify dense forests, we made use of national forest inventory data
from 2014 to 2018, 10,000+ high-resolution satellite images from GF-1 (2 m
resolution) and GF-2 (80 cm resolution) images, and the time slide function Google

Fig. 5 Biomass and forest fragmentation related to forest age*. a Biomass from ESA CCI Globbiomass (from 2018) and associated standard deviations
for different forest age* groups from 2018. b Average forest probability for different forest ages from 2018. c Forests split into core (gray) and non-core
forests (black) and the annual distribution of both classes. d The ratio between core and non-core forests for different forest ages*. * = years after reaching
a dense state. e The average size of core forest patches is shown for each year. A patch is defined as a connected core forest area. f The number of core
forest patches. * = years after reaching a dense state.
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Earth to ensure that forests in the training samples existed as dense forest over the
full period. Training samples were distributed over the full time range of Landsat
images, making sure that the model performs robustly over the different Landsat
sensors. When selecting the training samples in historic images, we verified the
existence of forests using the Google Earth time slide function. We then trained a
Random Forest model using all Landsat bands, NDVI and NBR, and a digital
elevation model (ASTER GDEM v3; 30 m) to predict the probability for each
30 × 30 m pixel if it belongs to the forest class (fp= 100%) or the non-forest class
(fp= 0%). The accuracy was assessed using a bootstrapping procedure that ran-
domly holds back 25% of the samples which are not used for training but only for
calculating the accuracy values: the overall accuracy was 98% (Kappa 93%); the true
positive rate was 90.4%, the true negative rate 8.6%; the false negative rate 0.6% and
the false positive rate 0.4%. The model was applied each year, predicting the forest
probability for each 30 × 30m pixel. Previous work has shown that this forest
probability is highly correlated with tree cover, and annual probability maps can be
used to track the densification of forests over time9. The forest probability ranges
from 0 to 100%, and we defined that a pixel with a probability larger or equal to
50% can be considered a “dense forest”, following ref. 9. Pixels with a forest
probability between 20 and 50% were considered as emerging forest, and their
increase in probability per year was defined as densification rate in % yr−1.

Since the probability output of the Random Forest model was used to estimate
forest growth, it could not be applied to assess the classification uncertainty.
Instead, we used forest inventory data from 167 plots (13 m radius; 2015) in
Guangxi to calculate the agreement showing if an area identified as dense forest by
our classification (fp ≥ 50%) was also identified as forest (measured canopy
cover > 10%) during the field campaign. The results show that 88% of the dense
forests in our classification were also marked as forest in the field data.

Deriving forest age and densification rate. Our method is very sensitive to
noise and disturbances; for example, the densification rate calculation requires a
continuous increase without drop, and the forest age calculation requires the
probability to remain above 50% for all years after the threshold has been
reached. It was thus necessary to remove short-term drops resulting from noise,
data quality, and small disturbances from the time series but keep large dis-
turbances, such as harvest, that have a footprint of several years. We thus
applied a polynomial fitting to the forest probability time series, in addition to
the annual median and 3-year moving median that was applied to the raw
Landsat time series.

After a pixel has crossed the 50% forest probability threshold and it is classified
as forest, it must remain above this threshold. We then count the number of years
after it crossed the 50% forest probability threshold until 2018, which we define as
forest age. We estimate the “plantation year” as the year when a pixel crosses 20%
forest probability and remains above this threshold, continuously increasing up to
50%. Note that the term “plantation year” may be misleading, as it can also imply

that a forest recovers from a natural or anthropogenic disturbance, such as drought
or harvest, and the crossing of a forest probability threshold implies that certain
tree structures are visible, which is not the case directly after a plantation. The
speed at which an emerging forest grows between the 20 and 50% thresholds is the
densification rate; the unit is the probability change per year.

Our definition of forest age is derived from the year a forest stand reaches a
dense stage. A forest that meets our definition has, on average, already accumulated
around 60 (±37) Mg biomass per hectare (Fig. 6a), according to the biomass map
from ref. 22. (for comparison purposes, our maps were aggregated to 100 m by
averaging the results). This does not exclude that the real plantation year is earlier.
In other words, a forest with an age of 5 years in 2018 could have been planted 20
years ago but only reached a dense state 5 years prior to 2018 due to unfavorable
growing conditions. Although we do estimate the “plantation year” using a low
threshold value, the confidence in the date when reaching a dense state is much
higher, as lower probability values may be noisy and clear dates are difficult to
determine. These definitions imply that areas we map as forests are closed canopy
forests, and newly planted or recently harvested forests are mostly not included.
Forest plantations that are regularly harvested, such as Eucalyptus and rubber, are
typically not included, as they do not reach or maintain high probability values.
While this approach has high reliability on the mapped forests, it may
underestimate the actual extent by excluding young forests.

Forest fragmentation. We used MSPA, a morphological segmentation approach,
on the binary annual forest/no-forest maps20. The method segments forest pixels
into two major classes: core forest and non-core forest. Core forests require to be
surrounded by at least 30 m of forests from all sides; the remaining pixels are non-
core forests. These non-core forests can be divided into many subclasses, such as
island, bridge, edge20. The ecological meaning of both classes varies with a large
range of interpretations. The method has been successfully applied to study for-
estation programs in China, however, at a 250 m resolution36.

Data availability
The data produced in this study is available at https://doi.org/10.5281/zenodo.804624937.
See https://xiaoxinz1214.users.earthengine.app/view/forestchangesouthernchina for
online visualization.

Code availability
The study did not generate custom codes but made use of standard packages in Google
Earth Engine, R, Python, and GRASS GIS (https://grass.osgeo.org). MSPA codes are
freely available at https://forest.jrc.ec.europa.eu/en/activities/lpa/mspa/.

Fig. 6 Forest fragmentation during 1986–2018. The map shows the distribution of new and existing core forests, as well as non-core forests. The close-up
figures show how core and non-core forests changed for an example area for three selected years. A core forest is defined as an area that is surrounded by
at least 30m of forest.
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