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Introduction

In this work we study the ideal case where a flow is composed of two inmiscible layers of different densities in a shallow domain, that is, where the typical horizontal length is much larger than the vertical one. Such situations arise naturally in estuary flows, ocean currents, and atmospheric flows. This kind of flows are of interest from both a theoretical and practical point of view and they have frequently been used to study exchange flows through channels connecting two basins with different hydrological characteristics (see [START_REF] Armi | The hydraulics of two flowing layers with different densities[END_REF][START_REF] Armi | Maximal two-layer exchange through a contraction with barotropic net flow[END_REF][START_REF] Helfrich | Time-dependent two-layer hydraulic exchange flows[END_REF][START_REF] Farmer | Maximal two-layer exchange over a sill and through the combination of a sill and contraction with barotropic flow[END_REF] among many others). In particular, one practical situation of this type of fluids can be found at the Strait of Gibraltar (see [START_REF] Izquierdo | Control variability and internal bore evolution in the Strait of Gibraltar: A 2-D two-layer model study[END_REF][START_REF] Tejedor | Tides and tidal energetics of the Strait of Gibraltar: a modelling approach[END_REF]), where a two-layer exchange flows occurs: the less saline Atlantic water flowing at surface and penetrating into the Mediterranean, and the deeper, denser Mediterranean water flowing into the Atlantic. Another example occurs in the case of submarine avalanches, or aerial avalanches that reach a fluid (see [START_REF] Fernández-Nieto | A new Savage-Hutter type model for submarine avalanches and generated tsunami[END_REF]).

The formulation corresponding to the two-layer system falls within the framework of hyperbolic conservation laws with non-conservative products and source terms. From the theoretical point of view, the model presents several difficulties. The first one is related precisely to the presence of non-conservative products. Classically, such products are not well-defined for discontinuous solutions, although they could be defined, for instance, by means of the theory developed in [START_REF] Maso | Definition and weak stability of nonconservative products[END_REF]. The second one is related to the character of the system and its eigenvalues in particular. Indeed, although the model is hyperbolic in general, the eigenvalues may eventually become complex. Such situation is related to Kelvin-Helmotz instability and the physical behavior corresponds to mixing and turbulence. Although one could say that in such situations the two-layer system is no longer valid, any numerical scheme should treat them so that computations do not fail in the case of an eventual loss of hyperbolicity for a small region or time.

Two-layer shallow water systems are defined by the depth-averaged mass and momentum conservation equations for two immiscible fluids, whose constant densities are ρ 1 , ρ 2 respectively, over a variable topography b(x). We shall consider upper (index i = 1) and lower (index i = 2) layers with heights h i and discharges q i , for i = 1, 2 (u i = q i /h i will denote the layer velocities), see Figure 1. Let us remark that one of the layers could disappear in some parts of the domain in practical applications, as the case of aerial avalanches reaching a fluid area.

The two-layer system reads (see e.g. [START_REF] Castro-Díaz | Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system[END_REF])

               ∂ t h 1 + ∂ x q 1 = 0, ∂ t q 1 + ∂ x q 2 1 /h 1 + gh 1 ∂ x (h 1 + h 2 + b) = 0, ∂ t h 2 + ∂ x q 2 = 0, ∂ t q 2 + ∂ x q 2 2 /h 2 + gh 2 ∂ x (rh 1 + h 2 + b) = 0, (1) 
being g the gravitational acceleration and r = ρ 1 /ρ 2 ∈ (0, 1) the density ratio. For the sake of simplicity we have not considered friction terms between the two layers or the bottom and we shall focus on the one-dimensional case. In the case of submarine avalanches the right-hand side of the momentum equation would include a Coulomb friction term. The details and adaptation of the numerical scheme for submarine avalanches model is detailed in Appendix A.

For convenience, we shall denote by η 1 , η 2 the free surface and interface between the layers, described by Notice that the lake-at-rest steady solutions of system (1) are q 1 = 0, h 1 = constant, q 2 = 0, h 2 + b = constant.

η 1 = b + h 1 + h 2 and η 2 = b + h 2 .
These conditions are equivalent to having a flow at rest (q i = 0) and η 1 , η 2 constant. As said previously, system (1) includes non-conservative products, which correspond to the terms h 1 ∂ x h 2 and h 2 ∂ x h1, coming from the coupling between the layers. In this work we shall use the theory of Dal Maso, Lefloch and Murat [START_REF] Maso | Definition and weak stability of nonconservative products[END_REF] combined with the framework of path-conservative methods introduced in [START_REF] Parés | Numerical methods for nonconservative hyperbolic systems: a theoretical framework[END_REF]. The system may be written in a quasi-linear compact form as

∂ t w + A (w) ∂ x w + S(w)∂ x b = 0 (2) 
where w = (h 1 , q 1 , h 2 , q 2 ) ′ is the conservative variable vector, and A (w) ∈ M 4×4 and S (w) ∈ R 4 are

A (w) =     0 1 0 0 -u 2 1 + gh 1 2u 1 gh 1 0 0 0 0 1 grh 2 0 -u 2 2 + gh 2 2u 2     , S (w) =     0 gh 1 0 gh 2     .
Concerning the eigenstructure of system (1), we will study the eigenvalues of the matrix A(w), whose characteristic polynomial is

P (λ) = λ 2 -2u 1 λ + u 2 1 -gh 1 λ 2 -2u 2 λ + u 2 2 -gh 2 -rg 2 h 1 h 2 . (3) 
A simple computation reveals that λ = 0 is an eigenvalue in the particular case that the so-called composite Froude number (G) satisfies

G 2 = F r 2 1 + F r 2 2 -(1 -r)F r 2 1 F r 2 2 = 1, (4) 
where F r i , i = 1, 2 are the internal Froude numbers given by F 2 i = u 2 i /(g (1 -r) h i ). Otherwise, the eigenvalues will be non-zero when (4) is not verified.

When solving numerically the two-layer model, it is important to have some estimation on the eigenvalues of the system. Although the eigenvalues correspond to the roots of a fourth order polynomial, which may be computed using the Cardano-Vieta formulas [35], there is no easy explicit formulation for them. Therefore, from the numerical point of view, it is desirable to have some accurate, easy and explicit formulation of the eigenvalues. The eigenvalues of system (1) may be split into two internal (λ ± int ) and two external (λ ± ext ). Approximations of these eigenvalues were introduced in the classical work of Schijf and Schönfeld [START_REF] Schijf | Theoretical considerations on the motion of salt and fresh water[END_REF]. They are a first order approximation of the true eigenvalues in the case r ≈ 1 and u 1 ≈ u 2 . Moreover, they allow to estimate when hyperbolicity of the system is lost. More explicitly, denoting by λ SS ± ext , λ SS ± int the approximation in [START_REF] Schijf | Theoretical considerations on the motion of salt and fresh water[END_REF], they are given by

λ SS ± ext = u 1 h 1 + u 2 h 2 h 1 + h 2 ± g(h 1 + h 2 ), λ SS ± int = u 1 h 2 + u 2 h 1 h 1 + h 2 ± g(1 -r) h 1 h 2 (h 1 + h 2 ) 1 - (u 1 -u 2 ) 2 g(1 -r)(h 1 + h 2 ) , (5) 
where it holds that  

λ SS ± ext λ SS ± int   =   λ ± ext λ ± int   + O(u 1 -u 2 ).
Remark that the approximated eigenvalues λ SS ± ext are always real values, but that is not the case for λ SS ± int , which become complex whenever

g(1 -r)(h 1 + h 2 ) < |u 1 -u 2 |. (6) 
Therefore, the hyperbolicity of the system is expected to be lost approximately when [START_REF] Bouchut | An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment[END_REF] is satisfied. As said previously and explained in [START_REF] Castro-Díaz | Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system[END_REF], this loss of hyperbolicity is related to the appearance of shear instabilities that may lead to intense mixing of the two layers. In [START_REF] Castro-Díaz | Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system[END_REF] a numerical treatment to deal with this difficulty is proposed, which is based on adding an artificial friction between the layers. This friction would represent the energy that would be lost in a mixing situation, making |u 1 -u 2 | smaller, so that we return back to the hyperbolic region of the system. Several other numerical treatments of the loss of hyperbolicity have been proposed in the bibliography, either using the estimations of the eigenvalues given in [START_REF] Schijf | Theoretical considerations on the motion of salt and fresh water[END_REF], by approximating them numerically or using the Cardano-Vieta formula. Among many others we may cite [START_REF] Castro | A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system[END_REF][START_REF] Castro | Numerical simulation of two-layer shallow water flows through channels with irregular geometry[END_REF][START_REF] Bouchut | An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment[END_REF][START_REF] Kurganov | Central-Upwind schemes for Two-Layer shallow water equations[END_REF][START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF][START_REF] Castro-Díaz | Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system[END_REF][START_REF] Berthon | An efficient splitting technique for two-layer shallow-water model[END_REF][START_REF] Sarno | Some considerations on numerical schemes for treating hyperbolicity issues in two-layer models[END_REF][START_REF] Krvavica | Analytical implementation of Roe solver for two-layer shallow water equations with accurate treatment for loss of hyperbolicity[END_REF][START_REF] Murillo | Adaptation of flux-based solvers to 2D two-layer shallow flows with variable density including numerical treatment of the loss of hyperbolicity and drying/wetting fronts[END_REF]. One of the goals of this work is to give a good approximation of the hyperbolicity region, as well as a novel numerical treatment when complex eigenvalues are found. It is expected that system (1) loses the hyperbolicity in many practical scenarios. Actually, our main motivation is the application of the two layer system to submarine avalanche simulations, where r ≈ 0.33 and such scenario is easily found in the first times of the formation of the avalanche.

The paper is organized as follows: In Section 2 a new approximation of the eigenvalues of the system is proposed. It allows us to improve the estimation of the non-hyperbolic region. We also propose an algorithm that allows us to get bounds of the external eigenvalues. Section 3 deals with the numerical discretization of the two-layer shallow water system by a finite volume method. We will propose a combination between two finite volume solvers, the PVM-2U-FL and IFCP-FL, being the last one a original contribution of this work. This new solver is introduced in Section 3.1.1. Three numerical treatments for the case of complex eigenvalues are presented in Subsection 3.2, two of them are based on adding a friction correction term, whereas the last one is based on changing locally the model. Then, Section 4 will present several numerical test. They are divided into two blocks of test cases: one for high density ration and one for low one. In particular, in Subsection 4.1.1 we show the better accuracy of the proposed IFCP-FL solver in comparison with other solvers. The difference between the three numerical treatments applied in the presence of complex eigenvalues are then analyzed in the other test cases. Some conclusions are presented in Section 5. Finally, in Appendix A we explain how the tow-layer system and the proposed new numerical scheme is be adapted for the case of a submarine avalanches model.

A new approximation for the eigenvalues and hyperbolicity region for the two-layer system

This section is devoted to introducing a new approximation of the eigenvalues of system (1), whose properties are studied. In particular, we give an algorithm ensuring the approximation of bounds of the external eigenvalues of the system. Based on this new approximations, we are able to improve the estimation of the hyperbolicity region given by the classical approximation [START_REF] Bouchut | An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment[END_REF]. Concretely, after an heuristic study, we propose to define the hyperbolicity region as a combination of two different curves.

Eigenvalues approximation

Let us start with the approximation of the eigenvalues of system [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF]. Looking at the characteristic polynomial (3), we see that it is possible to easily compute the exact eigenvalues in some particular cases. Namely, if u 1 = u 2 , then the exact eigenvalues are

λ ± ext = u 1 ± g h 1 + h 2 2 + g h 1 + h 2 2 2 -g 2 (1 -r)h 1 h 2 , λ ± int = u 1 ± g h 1 + h 2 2 - g h 1 + h 2 2 2 -g 2 (1 -r)h 1 h 2 , (7) 
and in the case h 1 = h 2 , the exact eigenvalues are

λ ± ext = u 1 + u 2 2 ± (u 1 -u 2 ) 2 4 + gh 1 + rg 2 h 2 1 + h 1 g(u 1 -u 2 ) 2 , λ ± int = u 1 + u 2 2 ± (u 1 -u 2 ) 2 4 + gh 1 -rg 2 h 2 1 + h 1 g(u 1 -u 2 ) 2 . (8) 
We look for an approximation of the eigenvalues in such a way that it matches with the exact ones in these particular cases (u 1 = u 2 or h 1 = h 2 ). The definition these new approximations are given in the following theorem:

Theorem 1 Let λ ± ext , λ ± int be the approximations defined by

λ ± ext = u 1 h 1 + u 2 h 2 h 1 + h 2 ± c ext , λ ± int = u 1 h 2 + u 2 h 1 h 1 + h 2 ± c int , (9a) 
where,

c ext = g h 1 + h 2 2 + h 1 h 2 (h 1 + h 2 ) 2 (u 1 -u 2 ) 2 + γ c , (9b) 
c int = g h 1 + h 2 2 + h 1 h 2 (h 1 + h 2 ) 2 (u 1 -u 2 ) 2 -γ c , (9c) 
and

γ c = g h 1 + h 2 2 2 + (r -1)g 2 h 1 h 2 + 2gh 1 h 2 h 1 + h 2 (u 1 -u 2 ) 2 . ( 9d 
)
Then, the following properties are satisfied:

1. If u 1 = u 2 or h 1 = h 2 , then λ ± ext and λ ± int match with the exact values of the external and internal eigenvalues, respectively. 3. Let us denote by P (a) (λ) the characteristic polynomial associated to the proposed approximations λ ± ext and λ ± int , i.e.,

Assuming

P (a) (λ) = λ -λ - ext λ -λ + ext λ -λ - int λ -λ + int . (10) 
Then:

(a) If h 1 = h 2 or u 1 = u 2 , then P (a) (λ) = P (λ) for all λ ∈ R, being P (λ) the characteristic polynomial associated to the exact eigenvalues of the system (3).

(b) If h 1 ̸ = h 2 and u 1 ̸ = u 2 , then there exist a unique value λ 0 such that P (a) (λ 0 ) = P (λ 0 ). Moreover, we have that

λ 0 = u 1 + u 2 2 - h 1 h 2 (h 1 -h 2 ) (h 1 + h 2 ) 3 (u 1 -u 2 ) 3 (2γ c -g(h 1 + h 2 ))
.

Proof:

In what follows, the main steps of the proof for each statement are detailed.

1. It is easy to check that one gets that λ ± ext , λ ± int correspond to [START_REF] Castro | A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system[END_REF] or [START_REF] Castro | Numerical simulation of two-layer shallow water flows through channels with irregular geometry[END_REF] in the case u 1 = u 2 or h 1 = h 2 respectively.

2.

First, note that the property (2b) is a straight consequence of (2a), since λ SS ± ext and λ SS ± int are first order approximations (O(ϵ)) of the exact external and internal eigenvalues, respectively, provided that r ≈ 1. Notice that here we have quantified (1 -r) ∼ O(δ 2 ). Then, it is enough to prove (2a).

Using the Taylor's theorem, we get

√ a 2 + x = a + x 2a + O(x 2
) for any a > 0. Then, we write γ c as

γ c = g h 1 + h 2 2 + (r -1)gh 1 h 2 h 1 + h 2 + 2h 1 h 2 (u 1 -u 2 ) 2 (h 1 + h 2 ) 2 + O ϵ 2 + δ 4 + δ 2 ϵ 2 .
Consequently, we get

c ext = g(h 1 + h 2 ) + O (ε + δ) ,
and

c int = (1 -r)g h 1 h 2 h 1 + h 2 1 - (u 1 -u 2 ) 2 g(1 -r)(h 1 + h 2 ) + O ϵ 2 + δ 2 + δϵ ,
which proves (2a). Notice that λ ± int are indeed second order approximations of λ SS ± int , whereas λ ± ext are first order approximations of λ ± ext .

3.

In order to prove that P (λ) intersects P (a) in a unique point (λ 0 ), it is enough to prove that P (λ)-P (a) (λ) = d 1 λ + d 0 , with d 0 , d 1 ∈ R. First, the exact characteristic polynomial (3) is written as

P (λ) = λ 4 + -2u 2 -2u 1 λ 3 + (u 1 + u 2 ) 2 + 2u 1 u 2 -g(h 1 + h 2 ) λ 2 + -2u 1 u 2 (u 1 + u 2 ) + 2u 2 gh 1 + 2u 1 gh 2 λ + u 2 1 u 2 2 -u 2 1 gh 2 -u 2 2 gh 1 + (1 -r)g 2 h 1 h 2 .
We also develop the expression of the approximated polynomial P (a) (λ) [START_REF] Castro | On some fast well-balanced first order solvers for nonconservative systems[END_REF], and looking at the factors multiplying λ 3 and λ 2 , it is easy to check that

-( λ - int + λ + int + λ - ext + λ + ext ) = -2u 1 -2u 2 ,
and

λ + int λ - int + λ + ext λ - ext + λ + ext + λ - ext λ + int + λ - int = (u 1 + u 2 ) 2 + 2u 1 u 2 -g(h 1 + h 2 ).
Therefore, we get that P (λ) -P (a) (λ) = d 1 λ + d 0 , where, after some computations, we obtain that

d 1 = (u 1 -u 2 )(h 1 -h 2 ) 2γ c h 1 + h 2 -g , and 
d 0 = h 1 h 2 (h 1 -h 2 ) 2 (h 1 + h 2 ) 4 (u 1 -u 2 ) 4 - 1 2 (h 1 -h 2 )(u 2 1 -u 2 2 ) 2γ c h 1 + h 2 -g = = h 1 h 2 (h 1 -h 2 ) 2 (h 1 + h 2 ) 4 (u 1 -u 2 ) 4 - u 1 + u 2 2 d 1 .
Notice that if u 1 = u 2 or h 1 = h 2 , then λ ± ext , λ ± int equals the exact eigenvalues λ ± ext , λ ± int . Thus, we trivially have that P (λ) and P (a) (λ) are the same polynomial. It can be also seen by noticing that d 0 = d 1 = 0 in that case.

In addition, in the case d 0 , d 1 ̸ = 0, the intersection between the two graphs is located at the point λ 0 = -d 0 /d 1 , which gives

λ 0 = u 1 + u 2 2 - h 1 h 2 (h 1 -h 2 ) (h 1 + h 2 ) 3 (u 1 -u 2 ) 3 (2γ c -g(h 1 + h 2 ))
.

□

Let us introduce an interesting consequence of the third statement in previous theorem. Assuming that all the (approximated and exact) eigenvalues are real numbers, we are able to determine whether λ - ext and λ + ext are lower and upper bounds of λ - ext and λ + ext , respectively. It is not possible if complex eigenvalues appears, which will be addressed later. Otherwise, we have the following result:

Corollary 1 Let λ ±
ext , λ ± int ∈ R be the roots of the exact characteristic polynomial P (λ) and λ ± ext , λ ± int ∈ R approximations corresponding to the roots of P (a) (λ). Let λ 0 be the intersection point of P (λ) and P (a) (λ). Then:

1. If λ 0 ∈ λ - ext , λ + ext , then either λ - ext < λ - ext < λ + ext < λ + ext (in this case P ( λ - ext ) > 0 and P ( λ + ext ) < 0 ) or λ - ext < λ - ext < λ + ext < λ + ext
(in this case P ( λ - ext ) < 0 and P ( λ + ext ) > 0 ). That is, one of the approximations λ ± ext is not a bound of the corresponding external eigenvalue.

If λ

0 / ∈ λ - ext , λ + ext , then either λ - ext < λ - ext < λ + ext < λ + ext (in this case P ( λ ± ext ) > 0) or λ - ext < λ - ext < λ + ext < λ + ext
(in this case P ( λ ± ext ) < 0). That is, either both approximations λ ± ext are bounds of the corresponding external eigenvalues or none of them verify it.

3. If λ 0 = λ - ext or λ 0 = λ + ext , then either either both approximations λ ± ext are bounds of the corresponding external eigenvalues or none of them verify it.

As mentioned above, this corollary gives us a criteria to know whether the approximated eigenvalues are bounds of the exact ones. In fact, we see that in most of cases, at least one of them is not a bound, which would be desirable to have for a numerical scheme. However, we overcome this problem by redefining the approximation of external eigenvalues. It consists of performing a Newton-Raphson's iteration starting from an appropriate value. Concretely, we follow these steps: Algorithm 1 (Bounds of external eigenvalues)

1: do 2:

λ + ext ← λ + ext + c ext 3: while P ′ ( λ + ext ) ≤ 0 4: do 5: λ - ext ← λ - ext -c ext 6: while P ′ ( λ - ext ) ≥ 0 7: λ ± ext ← λ ± ext -P λ ± ext /P ′ λ ± ext
Previous algorithm always gives as result a bound of the exact external eigenvalues, which is easy to prove by geometrical considerations. Therefore, in the case that the original approximation is not a bound of the exact eigenvalue, this algorithm corrects it and computes a bound. Otherwise, the algorithm improves the computed bound of the exact eigenvalue. In addition, its convergence is ensured by the fact that P (λ) and P (a) (λ) have the same inflection points (since (P -P (a) )(λ) is a linear function). The inflection points are

β ± = u 1 + u 2 2 ± (u 1 -u 2 ) 2 12 + g h 1 + h 2 6 ,
so the approximations λ ± ext given by ( 9) verify λ - ext < β -< β + < λ + ext . In the case where complex eigenvalues arise, a particular numerical treatment will be considered, as explained in Subsection 3.2. In this case, where the characteristic polynomial (3) has exactly two real eigenvalues, we will need to use some values for the external eigenvalues when defining the numerical scheme. In addition, the approximations λ ± ext are not reliable in that case. Then, we will use the bounds of the external eigenvalues λ ± bound given in [START_REF] Laguerre | Sur une méthode pour obtenir par approximation les racines d'une équation algébrique qui a toutes ses racines réelles[END_REF] for the roots of an arbitrary polynomial, that applied to the characteristic polynomial P (λ), defined by (3), gives

λ ± bound = u 1 + u 2 2 ± 3 (u 1 -u 2 ) 2 12 + g h 1 + h 2 6 . (11) 
Notice that λ ± bound are bounds of the roots of the polynomial only in the case of all real roots, which is not the case. However, they verify that λ - bound < β -< β + < λ + bound , as before. Then, applying Algorithm 1 starting from λ ± bound we get bounds of the external eigenvalues.

Remark 1 Algorithm 1 uses a single Newton's iteration to get the bound of the external eigenvalues. However, one could make more iterations if a more accurate approximation of the eigenvalues is required.

Hyperbolicity region

We study here the hyperbolicity region of the two-layer system [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF]. The main advantage of this new approach is the fact that it is based on the new approximation of the eigenvalues introduced in previous subsection, so it is not necessary to compute exactly whether we are in the non-hyperbolic region, as it is done in other works, e.g. [START_REF] Sarno | Some considerations on numerical schemes for treating hyperbolicity issues in two-layer models[END_REF][START_REF] Krvavica | Analytical implementation of Roe solver for two-layer shallow water equations with accurate treatment for loss of hyperbolicity[END_REF].

In the following, we compare the exact and approximated hyperbolicity regions. When approximating this region, we use the eigenvalues approximation introduced in previous subsection and the classical [START_REF] Schijf | Theoretical considerations on the motion of salt and fresh water[END_REF]. Concerning the later approximation, it estimates that complex eigenvalues arise when (6) is verified. That is, in the |u 1 -u 2 | -(h 1 + h 2 ) plane the hyperbolic region is the one verifying

|u 1 -u 2 | > F SS (h 1 , h 2 ), with F SS (h 1 , h 2 ) = g (1 -r) (h 1 + h 2 ). ( 12 
)
Considering now the eigenvalues approximation (9), we see that γ c (9d) is a non-negative value, and therefore only c int may become a complex value. This determines the hyperbolicity region. Concretely, we obtain complex eigenvalues if

g h 1 + h 2 2 + h 1 h 2 (h 1 + h 2 ) 2 (u 1 -u 2 ) 2 < g h 1 + h 2 2 2 + (r -1)g 2 h 1 h 2 + 2gh 1 h 2 h 1 + h 2 (u 1 -u 2 ) 2 .
This region cannot be described only in terms of |u 1 -u 2 | and (h 1 + h 2 ), as it also depends explicitly on h 1 , h 2 . Thus, the hyperbolicity region in this case is determined by two boundary surfaces, which are defined in the space of axes h 1 , h 2 an |u 1 -u 2 | by Figure 2 shows a 3D representation of the limits of the hyperbolicity region for several values of r, namely, r = 0.3, 0.5, 0.9, 0.99. The space between these two surface is the non-hyperbolic region. In order to compare this approximation with [START_REF] Castro-Díaz | Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system[END_REF], we shall consider some sections or projections into the previous plane. In particular, for any given value h 1 + h 2 we consider uni-parametric family of heights given by

|u 1 -u 2 | = (h 1 + h 2 ) g(h 1 + h 2 ) 2h 1 h 2 1 ± 1 -4(1 -r) h 1 h 2 (h 1 + h 2 ) 2 . ( 13 
)
h 1 = α(h 1 + h 2 ), h 2 = (1 -α)(h 1 + h 2 ), for α ∈ [0, 1]. ( 14 
)
This allows us to write the boundaries of the hyperbolic region in terms of |u 1 -u 2 | and (h 1 + h 2 ) for any given value of α. More explicitly, the non-hyperbolic region in this case is the one determined, in the

|u 1 -u 2 | -(h 1 + h 2 ) plane, by the curves (h 1 + h 2 ) = 2α(1 -α)|u 1 -u 2 | 2 g(1 ± 1 -4(1 -r)α(1 -α)) .
That is, the non-hyperbolic region is the one determined by Comparison of exact region (red zone) and the approximated boundaries given by the classical (12) (dashdotted green lines) and proposed (13) (dashed blue lines) boundaries for the hyperbolic region. Also the exact boundaries for the case h 1 = h 2 (15) (dotted black lines).

g(h 1 + h 2 )(1 -1 -4(1 -r)α(1 -α)) 2α(1 -α) < |u 1 -u 2 | < g(h 1 + h 2 )(1 + 1 -4(1 -r)α(1 -α)) 2α(1 -α) .
This approximation of the hyperbolic region is analysed in Figures 3, 4 and5, where we represent the exact non-hyperbolic region, and the approximations given by the classical approximation [START_REF] Castro-Díaz | Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system[END_REF] and the ones proposed here, for the cases r = 0.3, 0.5, 0.9, 0.99 and α = 0.1, 0.3, 0.5 in [START_REF] Castro Díaz | A second order PVM flux limiter method. application to magnetohydrodynamics and shallow stratified flows[END_REF]. We also plot in the figures the exact boundaries of the hyperbolic region in the case h 1 = h 2 , that are defined by

2g (h 1 + h 2 ) 1 - √ r < |u 1 -u 2 | < 2g (h 1 + h 2 ) 1 + √ r ( 15 
)
It is is worth mentioning that the cases α ∈ (0.5, 1) is symmetric to α ∈ (0, 0.5).

In these figures we see that the exact non-hyperbolic region is delimited by an upper and lower boundaries. However, the classical approximation only gives an upper boundary for the non-hyperbolic region, so all the right-hand side of the boundary is supposed to be non-hyperbolic. Then, the proposed approximation and the one corresponding to h 1 = h 2 notably improves the estimation of the hyperbolic region.

We focus now on each limit of the non-hyperbolic region. We see that the upper limit for the non-hyperbolic region is better approached by [START_REF] Maso | Definition and weak stability of nonconservative products[END_REF], whereas the classical boundary overestimates this region (especially for r = 0.3) and the one in the case h 1 = h 2 is not a bound in some cases (see for instance upper figures in Figure 3). Concerning the lower boundary, we see that the proposed approximation widely overestimates the non-hyperbolic region for some cases (see for instance Figure 3), whereas the one for the case h 1 = h 2 is closer to Comparison of exact region (red zone) and the approximated boundaries given by the classical (12) (dashdotted green lines) and proposed (13) (dashed blue lines) boundaries for the hyperbolic region. Also the exact boundaries for the case h 1 = h 2 (15) (dotted black lines). the exact one. We see that the nearer the proportion between h 1 and h 2 is, the better approximation we obtain (compare Figures 3 and4). It is also noticeable that in the case α = 0.5 (Figure 5) the proposed approximation and the one with h 1 = h 2 coincide with the exact limits for the non-hyperbolic region, as stated in Theorem 1.

As a conclusion from these qualitative analysis, it seems that the upper limit corresponding to the proposed approximation and the lower one corresponding to the case h 1 = h 2 bound the non-hyperbolic region (although we have not proven it formally), being a better approximation than taking both boundaries from the approximation of the eigenvalues [START_REF] Castro | Well-Balanced Schemes and Path-Conservative Numerical Methods[END_REF]. Then, we propose to consider this approximation for the practical point of view, i.e,

F (L) new (h 1 , h 2 ) < |u 1 -u 2 | < F (R) h1=h2 (h 1 , h 2 ) (16a)
with

F ( L / R ) new (h 1 , h 2 ) = g(h 1 + h 2 ) 3 2h 1 h 2 1 + ( -/ + ) 1 -4(1 -r) h 1 h 2 (h 1 + h 2 ) 2 , (16b) 
and We remark that model (1) becomes hyperbolic in the limit r → 0, which is only reproduced by the case h 1 = h 2 . Both the classic and the proposed approximations widely overestimate the non-hyperbolic region in this limit case.

F ( L / R ) h1=h2 (h 1 , h 2 ) = 2g (h 1 + h 2 ) 1 + ( -/ + ) √ r . (16c) 

Numerical discretization of the two-layer system

In order to design a numerical scheme for the two-layer system, several aspects have to be taken into account. First, it is well known that solutions of (1) may develop discontinuities, even for initial smooth data. Moreover, this system contains non-conservative products. So, we will consider numerical methods in the framework of path-conservative schemes introduced in [START_REF] Parés | Numerical methods for nonconservative hyperbolic systems: a theoretical framework[END_REF]. Second, situations with loss of hyperbolicity of system (1) may arise, as commented in previous section. Then, some numerical treatment will be necessary in practice.

Here, we propose a second-order finite volume method with flux limiter, which is based on a suitable nonlinear combination of the Lax-Wendroff method and a first-order path-conservative PVM scheme (see [START_REF] Castro Díaz | A class of computationally fast first order finite volume solvers: PVM methods[END_REF]). These PVM schemes define the numerical viscosity matrix as a polynomial evaluation of the Roe matrix [START_REF] Gallardo | On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas[END_REF]. Concretely, we will locally switch between two different PVM methods, depending on where we are with respect to the hyperbolicity region, in such a way that both schemes reduce to the Lax-Wendroff method in case of smooth data. Once the numerical scheme is applied, a numerical treatment when complex eigenvalues arise is considered.

In next subsections, we develop all the details of the numerical scheme, as well as the numerical treatment for non-hyperbolic situations. In addition, system (1) may be adapted to the submarine avalanche model introduced in [START_REF] Fernández-Nieto | A new Savage-Hutter type model for submarine avalanches and generated tsunami[END_REF]. This will further explained in Appendix A, as well as the numerical discretization of such a model.

Numerical scheme

We consider now the usual framework of finite volume methods: the domain is divided into control volumes

V i = [x i-1/2 , x i+1/2 ]
, for i ∈ I. We denote by x i the centre of each volume and, without loss of generality, a fixed mesh size ∆x = x i+1/2 -x i-1/2 is assumed here. In addition, for any variable f , we denote by f n its approximation at the fixed time t n . So, we denote the averaged conservative variable vector

w n i = 1 ∆x x i+1/2 x i-1/2 w(t n , x)dx.
Finally, the time step ∆t n = t n -t n-1 is variable, and it is computed according to the stability CFL condition

∆t n = min i∈I ∆t n i , with ∆t n i = CFL ∆x max i |λ n i |
,

where |λ i | = max{|S L,i | , |S R,i |}, being S L,i , S R,i
the minimum and maximum wave speeds at control volume V i , respectively. We consider the framework of path-conservative schemes introduced in [START_REF] Parés | Numerical methods for nonconservative hyperbolic systems: a theoretical framework[END_REF], which is extended to schemes based on polynomial reconstructions (see [START_REF] Gallardo | On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas[END_REF][START_REF] Castro | Well-Balanced Schemes and Path-Conservative Numerical Methods[END_REF] among many others). First, let us extend the ideas of the hydrostatic reconstruction [START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[END_REF] for the case of the two-layer system. To do so, we define

(h 1 + h 2 ) - i+1/2 = b i + h 1,i + h 2,i -b i+1/2 , (h 1 + h 2 ) + i+1/2 = b i+1 + h 1,i+1 + h 2,i+1 -b i+1/2 , (17a) and h 
- 2,i+1/2 = b i + h 2,i -b i+1/2 h + 2,i+1/2 = b i+1 + h 2,i+1 -b i+1/2 , with b i+1/2 = max(b i , b i+1 ). ( 17b 
)
The reconstructed values of h 1 are then defined as

h ± 1,i+1/2 = (h 1 + h 2 ) ± i+1/2 -h ± 2,i+1/2 . (17c) 
The velocity values at the intercells correspond to the one at the corresponding center of the cells, that is

u ± k,i+1/2 = u k,i+1/2±1/2 for k = 1, 2.
Then, we define the reconstructed values to the left, w - i+1/2 , and right w + i+1/2 of the intercell as

w ± i+1/2 = (h ± 1,i+1/2 , q ± 1,i+1/2 , h ± 2,i+1/2 , q ± 2,i+1/2 , ) T , (17d) 
where

q ± k,i+1/2 = h ± k,i+1/2 u ± k,i+1/2 = h ± k,i+1/2 u k,i+ 1 2 ± 1 2 for k = 1, 2. ( 17e 
)
We remark that the reconstructed states consider a continuous reconstructed bottom at the interfaces, which is typical for the hydrostatic reconstruction techniques and will result in the cancellation of the geometric source contributions at the interfaces. Now, we first define a generalized path-conservative Roe matrix of A (w) for the particular choice of segment paths, that is, we set

A i+1/2 =     0 1 0 0 gh 1,i+1/2 -u 2 1,i+1/2 2u 1,i+1/2 gh 1,i+1/2 0 0 0 0 1 grh 2 i+1/2 0 gh 2,i+1/2 -u 2 2,i+1/2 2u 2,i+1/2     (18) 
where

h l,i+1/2 = h - l,i+1/2 + h + l,i+1/2 2 , u l,i+1/2 = h - l,i+1/2 u - l,i+1/2 + h + l,i+1/2 u + l,i+1/2 h - l,i+1/2 + h + l,i+1/2 , for l = 1, 2. (19) 
This matrix satisfies that

A i+1/2 (w + i+1/2 -w - i+1/2 ) = F c (w + i+1/2 ) -F c (w - i+1/2 ) + B i+1/2 (w + i+1/2 -w - i+1/2 ),
where

F c (w) =     q 1 q 2 1 /h 1 q 2 q 2 2 /h 2     and B i+1/2 =     0 0 0 0 gh 1,i+1/2 0 gh 1,i+1/2 0 0 0 0 0 grh 2 i+1/2 0 gh 2,i+1/2 0     .
Thus, the discrete form of the system (2) will take the form

w n+1 i = w n i - ∆t n ∆x F n i+1/2 -F n i-1/2 + ∆t n 2∆x 2 R n i-1/2 + R n i+1/2 . ( 20 
)
The intercell contributions F i+1/2 are defined within the framework of PVM schemes [START_REF] Castro Díaz | A class of computationally fast first order finite volume solvers: PVM methods[END_REF] and based on previous reconstructed states:

F i+1/2 = 1 2 F c (w + i+/2 ) + F c (w - i+/2 ) + B i+1/2 (w + i+1/2 -w - i+1/2 ) -Q i+1/2 ,
where

Q i+1/2 = α i+1/2 0 w + i+1/2 -w - i+1/2 + α i+1/2 1 (F c (w + i+/2 ) -F c (w + i+/2 ) + B i+1/2 (w + i+1/2 -w - i+1/2 )) + α i+1/2 2 A i+1/2 (F c (w + i+/2 ) -F c (w + i+/2 ) + B i+1/2 (w + i+1/2 -w - i+1/2 )), ( 21 
)
with α i+1/2 k
, k = 0, 1, 2 the coefficients of the selected (second-order) polynomial that define the chosen PVM scheme.

Denoting by

B i+1/2 = B i+1/2 (w + i+1/2 -w - i+1/2
) the nonconservative products, they write

B i+1/2 =       0 gh 1,i+1/2 (∆η 1 ) i+1/2 0 gh 2,i+1/2 r (∆η 1 ) i+1/2 + (1 -r) (∆η 2 ) i+1/2       , (22) being 
(∆η 1 ) i+1/2 = (h 1 + h 2 ) + i+1/2 -(h 1 + h 2 ) - i+1/2 , (∆η 2 ) i+1/2 = h + 2,i+1/2 -h - 2,i+1/2 . ( 23 
)
Finally, R i±1/2 are second-order corrections corresponding to the Lax-Wendroff method in case of non-conservative systems (see [START_REF] Castro | On some fast well-balanced first order solvers for nonconservative systems[END_REF]), that will be described later (see [START_REF] Sarno | Some considerations on numerical schemes for treating hyperbolicity issues in two-layer models[END_REF]), being R i±1/2 = 0 for first order finite volume methods.

Remark 2 Notice that the values of (h 1 + h 2 ) ± i+1/2 , h ± 2,i+1/2 could become negative in wet/dry fronts, as the case of an emerging bottom. With the goal of dealing properly these wet/dry situations, in practice we use

(h 1 + h 2 ) ± i+1/2 = max (h 1 + h 2 ) ± i+1/2 , 0 , h ± 2,i+1/2 = max h ± 2,i+1/2 , 0 ,
which preserves the nonnegativity of (h 1 + h 2 ) and h 2 . Let us remark that this assures the nonnegativity of h 1 as well.

Note that the definition of coefficients α i+1/2 k will depend on the choice of the PVM numerical solver. These coefficients actually depend on the approximation of the eigenvalues of the system. Here we will use IFCP solver (see [START_REF] Fernández-Nieto | On an intermediate field capturing Riemann solver based on a parabolic viscosity matrix for the two-layer shallow water system[END_REF]) and PVM-2U ( [START_REF] Castro Díaz | A class of computationally fast first order finite volume solvers: PVM methods[END_REF]) as first order FV solvers. Both schemes are defined in terms of quadratic viscosity matrices. On the one hand, IFCP method uses information on the external and internal waves, producing accurate results for the two-layer shallow water system. On the other hand, PVM-2U method only uses information on the external waves, in a similar way as HLL solver does. Nevertheless, PVM-2U is less diffusive than HLL solver when applied to the two-layer shallow water system (see [START_REF] Castro Díaz | A class of computationally fast first order finite volume solvers: PVM methods[END_REF]).

Moreover, in order to achieve second-order accuracy, both schemes will be combined with the Lax-Wendroff method through a flux-limiter approach. In what follows we describe both approaches as well as the flux-limiter approach interpreted as PVM solver.

IFCP-FL solver

In order to reach second order in space an time in smooth areas, an extension of the IFCP solver based one flux-limiter functions is proposed in this section. The IFCP method introduced in [START_REF] Fernández-Nieto | On an intermediate field capturing Riemann solver based on a parabolic viscosity matrix for the two-layer shallow water system[END_REF] was specially designed for two-layer systems, and the numerical tests presented there showed that IFCP has an accuracy similar to Roe scheme, being around 3 times faster. Concerning the well-balanced property of the scheme, it is straightforward to check that IFCP scheme is exactly well-balanced for the water at rest solutions

q 1 = q 2 = 0, b + h 1 + h 2 = cst, and b + h 2 = cst.
In addition, this scheme is L ∞ -stable with the usual CFL condition (see [START_REF] Fernández-Nieto | On an intermediate field capturing Riemann solver based on a parabolic viscosity matrix for the two-layer shallow water system[END_REF] for details). It is defined by a parabolic viscosity matrix method that uses the information of the intermediate fields. In particular, this method uses the approximation of the slower (S . Here we use

S i+1/2 L = min(S L,i+1/2 , S - L,i+1/2 ), S i+1/2 R = max(S R,i+1/2 , S + R,i+1/2 ).
being S L,k , S R,k the output of Algorithm 1 taking as data the states

w i (k = i), w i+1 (k = i + 1) or the Roe state (19) (k = i + 1/2)).
The intermediate wave speed is defined as

S i+1/2 int = s i+1/2 max | λ - int,i+1/2 |, | λ + int,i+1/2 | with s i+1/2 = sign(S i+1/2 L ) if |S i+1/2 L | ≥ |S i+1/2 R |, sign(S i+1/2 R ) otherwise.
Then, the viscosity matrix Q i+1/2 associated to this IFCP method is the evaluation of the matrix A i+1/2 by the second order polynomial

p IFCP i+1/2 (x) = α IFCP 0,i+1/2 + α IFCP 1,i+1/2 x + α IFCP 2,i+1/2 x 2 , (24) 
in such a way that the polynomial p IFCP i+1/2 (x) satisfies that

p IFCP i+1/2 (S i+1/2 L ) = |S i+1/2 L |, p IFCP i+1/2 (S i+1/2 R ) = |S i+1/2 R | and p IFCP i+1/2 (S i+1/2 int ) = |S i+1/2 int |.
That is, the coefficients α IFCP l , l = 0, 1, 2 are the unique solution of the linear system

  1 S L (S L ) 2 1 S R (S R ) 2 1 S int (S int ) 2     α IFCP 0 α IFCP 1 α IFCP 2   =   |S L | |S R | |S int |   . ( 25 
)
After some straightforward computations, we get

α IFCP 0 = δ L S R S int + δ R S L S int + δ int S L S R , α IFCP 1 = -S L (δ R + δ int ) -S R (δ L + δ int ) -S int (δ L + δ R ), α IFCP 2 = δ L + δ R + δ int , (26) 
with

δ L = |S L | (S L -S R )(S L -S int ) , δ int = |S int | (S int -S L )(S int -S R ) , δ R = |S R | (S R -S L )(S R -S int ) . ( 27 
)
Remark 3 In Section 4 it will be shown that eventually, for some numerical test cases, a lack of numerical viscosity of the IFCP scheme results into a small stationary artificial shock. This is associated to very small values of the intermediate eigenvalue S int . In order to avoid this problem, one may consider the Harten's regularization (see [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF]) for the intermediate eigenvalue. Then, |S int | is replaced by

|S int | + 1 + sign(ϵ -|S int |) 2 ϵ 2 + S 2 int 2ϵ -|S int |
in the computation of δ int in [START_REF] Mangeney-Castelnau | Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme[END_REF], where ϵ is a small parameter. In practice, we use ϵ = 0.25 c ext with c ext defined by (9b). We remark that other entropy-fix techniques could be employed.

The goal here is to obtain a second order method as combination of the IFCP method and the Lax-Wendroff method. The resulting scheme will reduce to IFCP method in non-smooth regions and to Lax-Wendroff in smooth areas, achieving second order accuracy in smooth regions. To this aim, first the viscosity matrix of IFCP and Lax-Wendroff schemes are defined by means of a polynomial evaluation: p IFCP i+1/2 (x) is given by ( 24) and the one for the Lax-Wendroff method is

p LW i+1/2 (x) = ∆t ∆x x 2 .
So, both viscosity matrices are the evaluation of the corresponding polynomial on the Roe matrix. To combine them, we consider the polynomial associated to the IFCP-FL method:

p IFCP-FL i+1/2 (x) = α IFCP-FL 0,i+1/2 + α IFCP-FL 1,i+1/2 x + α IFCP-FL 2,i+1/2 x 2 , (28) 
with the coefficients α IFCP-FL k defined in terms of a flux limiter function, such that the resulting polynomial coincides with the one associated to IFCP in non-smooth regions and with the Lax-Wendroff one in smooth areas.

Considering the flux limiter functions χ L , χ R , which will be defined later (see ( 29)), we define α IFCP-FL k as the solutions of the linear system (25) whose right-hand side is replaced by

   Λ(S L , χ L ) Λ(S R , χ R ) Λ(S int , χ L + χ R 2 )    , with Λ(λ, χ) = (1 -χ)|λ| + χ ∆t ∆x λ 2 .
Notice that Λ(λ, 0) = |λ| and Λ(λ, 1) = ∆t ∆x λ 2 , then we recover IFPC or Lax-Wendroff methods as expected when χ = 0 or χ = 1, respectively.

It is straightforward to check that α IFCP-FL l are defined as α IFCP l (26), for l = 0, 1, 2, by taking in this case

δ L = Λ(S L , χ L ) (S L -S R )(S L -S int ) , δ int = Λ(S int , χ L + χ R 2 ) (S int -S L )(S int -S R ) , δ R = Λ(S R , χ R ) (S R -S L )(S R -S int )
.

We have the following result:

Proposition 1 The IFCP-FL scheme defined by p IFCP-FL i+1/2 (x) (28) satisfies: a) If χ L = χ R = 1
, it coincides with a Lax-Wendroff method for noncoservative problems introduced in [START_REF] Castro | On some fast well-balanced first order solvers for nonconservative systems[END_REF], which is second order accurate.

b) If χ L = χ R = 0, it coincides with the first order IFCP method introduced in [START_REF] Fernández-Nieto | On an intermediate field capturing Riemann solver based on a parabolic viscosity matrix for the two-layer shallow water system[END_REF].

Here we consider the Beam-Warming limiter (see [START_REF] Toro | Shock-capturing methods for free-surface shallow flows[END_REF]) to define χ

i+1/2 K , K = L, R. Concretely, χ i+1/2 K = 1, if |w i+1 -w i | < ε, min(max(0, r i+1/2 K ), 1), otherwise, (29a) 
where

r i+1/2 K , K = L, R, is defined by r i+1/2 K =          minmod(w i -w i-1 , (w i+1 -w i-1 )/2, w i+1 -w i ) w i+1 -w i , if S i+1/2 K ≥ 0, minmod(w i+1 -w i , (w i+2 -w i )/2, w i+2 -w i+1 ) w i+1 -w i , otherwise, (29b) 
with {w j } j=i+2 j=i-1 a representative set of scalar values that we want use, ε is a small parameter, and the minmod limiter is defined as usual 

In practice we use

{w j } j=i+2 j=i-1 = {η 1,j } j=i+2 j=i-1 if |η 1,i+1 -η 1,i | > |η 2,i+1 -η 2,i | , {η 2,j } j=i+2 j=i-1 otherwise,
that is, we take as indicator the interface (internal of free surface) where there is a greater spatial gradient at the intercell x i+1/2 . Finally, the second-order correction of the Lax-Wendroff method R i±1/2 for non-conservative system reads (see [START_REF] Castro Díaz | A second order PVM flux limiter method. application to magnetohydrodynamics and shallow stratified flows[END_REF] for details)

R i+1/2 = g χ i+1/2 L χ i+1/2 R 0, γ i+1/2 , 0, -r γ i+1/2 T , (30) 
with

γ i+1/2 = q + 1,i+1/2 -q - 1,i+1/2 h + 2,i+1/2 -h - 2,i+1/2 -q + 2,i+1/2 -q - 2,i+1/2 h + 1,i+1/2 -h - 1,i+1/2 .

PVM-2U-FL solver

For the sake of completeness, let us describe in this subsection the PVM-2U method and the PVM-2U-FL solver introduced in [START_REF] Castro Díaz | A second order PVM flux limiter method. application to magnetohydrodynamics and shallow stratified flows[END_REF]. The viscosity matrix of the PVM-2U method (see [START_REF] Castro Díaz | A class of computationally fast first order finite volume solvers: PVM methods[END_REF]) is the evaluation on the Roe matrix of the quadratic polynomial p PVM-2U i+1/2 (x) satisfying

p PVM-2U i+1/2 (S i+1/2 L ) = |S i+1/2 L |, p PVM-2U i+1/2 (S i+1/2 R ) = |S i+1/2 R |, and 
p PVM-2U i+1/2 ′ (S i+1/2 M ) = sign(S i+1/2 M ), with S M = S L if |S L | ≥ |S R | , S R otherwise.
Its second-order extension, that is denoted PVM-2U-FL, considers the viscosity matrix as the evaluation on the Roe matrix of the polynomial (see [START_REF] Castro Díaz | A second order PVM flux limiter method. application to magnetohydrodynamics and shallow stratified flows[END_REF] for details)

p PVM-2U-FL i+1/2 (x) = α PVM-2U-FL 0,i+1/2 + α PVM-2U-FL 1,i+1/2 x + α PVM-2U-FL 2,i+1/2 x 2 ,
with its coefficients given by

α PVM-2U-FL 0 = -2 S R S L S R -S L ((1 -γ R ) β R -(1 -γ L ) β L ) , α PVM-2U-FL 1 = β L + β R + S R + S L S R -S L ((1 -2γ R ) β R -(1 -2γ L ) β L ) , α PVM-2U-FL 2 = 2 S R -S L (γ R β R -γ L β L ) ,
where, for K = L, R, we define and

β K = sign(S L ) (1 -χ K ) 2 + S L χ K 2 ∆t ∆x ,
γ K = 1 -(1 -χ K ) (1 -γ) , with γ = (S R -S L )sign(S M ) -(S R + S L ) 4S M -2(S R + S L ) ,
and the flux limiter χ K given by [START_REF] Parés | Numerical methods for nonconservative hyperbolic systems: a theoretical framework[END_REF].

We can compare how diffusive these methods are by looking at the graph of their associated polynomials, which define the viscosity terms Q i+1/2 given by ( 21) for each method. In Figure 6 we show the graph of the polynomials for all the methods, using χ L = 0.2, χ R = 0.8 for the IFCP-FL and PVM-2U-FL methods. Notice that IFCP and IFCP-FL are less diffusive than PVM-2U and PVM-2U-FL, respectively. The graph of the FL versions are between the first order method and the parabola y = x 2 ∆t/∆x corresponding to the Lax-Wendroff method. We see that at λ = S L the FL-methods are closer to their first order versions since χ L = 0.2, whereas at λ = S L they are near the Lax-Wendroff method because χ R = 0.8. Both methods, IFCP-FL and PVM-2U-FL, exactly match with the Lax-Wendroff method if χ L = χ R = 1, and with its first order version if χ L = χ R = 0, as it is proven theoretically.

Numerical treatment for the loss of hyperbolicity

As we have previously detailed, the two-layer shallow water system (1) loses its hyperbolicity in some situations. This is usually related to the presence of Kelvin-Helmotz instabilities. Although theoretically the model is no longer valid in such situations, it is desirable to propose some simple modifications to the original model, that could be applied in those situations . In next paragraphs we explain the different alternatives that we consider, which will be discussed in the numerical tests section.

The first strategy that we are going to propose is to switch from IFCP-FL to PVM-2U-FL method depending on the hyperbolicity region where the states defining the numerical fluxes are located.

Note that both methods are within the framework of path-conservative PVM methods, namely both define the numerical diffusion matrix as the evaluation of a quadratic polynomial. As explained above, the main difference between these schemes is the number of waves that they employ: IFCP is defined in terms of the approximations of the external wave speeds and some bound of the internal ones, whereas only the maximum and minimum waves speeds are necessary in the PVM-2U method.

In order to deal with numerical simulations with the presence of complex eigenvalues in some areas we propose to switch between these two PVM schemes, since, even though IFCP (or IFCP-FL) is more accurate that PVM-2U (or PVM-2U-FL) method, it can be only used when the approximations of the four eigenvalues are known. Thus, let us define four zones (see Figure 7) depending on the hyperbolic nature of the system: (I) Hyperbolic region on the left-hand side of the upper limit of the non-hyperbolic region, where

|u 1 -u 2 | < F (L) new (h 1 , h 2 ).
(II) Estimated non-hyperbolic region, which satisfies

F (L) new (h 1 , h 2 ) < |u 1 -u 2 | < F (R) h1=h2 (h 1 , h 2 ).
(III) Hyperbolic region at the right-hand side of the lower limit of the non-hyperbolic region but where we have not an approximation of the internal eigenvalues, that is

F (R) h1=h2 (h 1 , h 2 ) < |u 1 -u 2 | < F (R) new (h 1 , h 2 ).
(IV) Hyperbolic region at the right-hand side of the lower limit of the non-hyperbolic region where we have approximations of the internal eigenvalues, given by

F (R) new (h 1 , h 2 ) < |u 1 -u 2 |.
Note than in zones (I) and (IV) (see Figure 7), where all the eigenvalues are real, (9) gives a reliable approximations and therefore we could apply IFCP-FL solver that requires information from the internal and external eigenvalues. In zones (II) and (III) the PVM-2U-FL solver will be applied. In that case, we only need bounds for the external eigenvalues. Note that in zone (III) λ ± bound defined by [START_REF] Castro Díaz | A class of computationally fast first order finite volume solvers: PVM methods[END_REF] are bounds of the external eigenvalues, while in zone (II), we will use Algorithm 1 using (11) as initial guess.

In practice, the determination of the different zones will be done by considering the values at each interface h l,i+1/2 , u l,i+1/2 . In particular, we use the IFCP-FL method in zones (I) and (IV) in Figure 7, i.e., when

F (L) new (h 1,i+1/2 , h 2,i+1/2 ) < |u 1,i+1/2 -u 2,i+1/2 | < F (R) new (h 1,i+1/2 , h 2,i+1/2 ) with F ( L / R )
new defined in (16b), is satisfied. Otherwise, PMV-2U-FL is used in zones (II) and (III). In Figure 8 we show some examples (case r = 0.3, h 1 + h 2 = 1 in Figure 3) of the characteristic polynomials (exact and approximated) and the eigenvalues approximations for three cases: Figure 8a represents the hyperbolic case (zone (I) and (IV) in Figure 7), Figure 8b the non-hyperbolic case (zone (II) in Figure 7), and Figure 8c the case where the system is hyperbolic but we have not a good approximation of the eigenvalues Figure 8: representation Sketch of the non-hyperbolic region according the our approximation of the exact region, and the scheme applied in each zone: IFCP-FL in (I) and (IV) (hyperbolic region), PVM-2U-FL in (II) (non-hyperbolic region) and (III) (hyperbolic region but without a reliable approximation of the eigenvalues).

(zone (III) in Figure 7). In this figure, we have denoted by S L and S R the output of the Algorithm 1 starting from λ ± ext or λ ± bound , depending on where we are located with respect to the hyperbolic region, zones (I-IV) or (II-III), respectively. These are the approximations used for the external eigenvalues. As commented before, they are bounds of the maximum and minimum wave speeds, respectively. In addition, notice that in this case the classic eigenvalues approximations [START_REF] Berthon | An efficient splitting technique for two-layer shallow-water model[END_REF] are not bounds of the real eigenvalues in any of the cases, even in the hyperbolic region. The same behaviour is observed for r = 0.99.

Despite the use of IFCP or PVM-2U solver depending on the hyperbolicity region, this is not enough to ensure the stability of the scheme when complex eigenvalues appear. In the next section we propose three different strategies to be applied when complex eigenvalues appear: two of them based on the use of a friction term and a local change of the model.

Friction correction term

In [START_REF] Castro-Díaz | Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system[END_REF] a numerical treatment is proposed, which consists on introducing a numerical (artificial) friction. This term makes that, whenever we locally are in the (estimated) complex region, we add a dissipative term that reduces the velocity difference, |u 1 -u 2 |, in order to get back to the limit of the hyperbolic region. This is justified by the fact that such instabilities and mixing of the fluid will dissipate energy. Moreover, they have an associated stabilization time. This numerical treatment enforces the stabilization time to reduce to the discrete ∆t time step.

The friction term is then included in a semi-implicit form at each control volume V i as follows:

       u n+1 1,i = u * 1,i -∆t C i h n+1 1,i (u n+1 1,i -u n+1 2,i ), u n+1 2,i = u * 2,i + r∆t C i h n+1 2,i (u n+1 1,i -u n+1 2,i ),
where (u * 1,i , u * 2,i ) are the approximations of the two-layer system by the numerical scheme (20) described in Subsection 3.1. The coefficient C i is computed as follows: C i = 0 and u n+1 k,i = u * k,i , k = 1, 2 unless we are in the non-hyperbolic region. In the later case, C i will be the value making that the numerical approximation w n+1 i is in the boundary F (L) (h n+1 1,i , h n+1 2,i ), where the definition of F (L) depends on the eigenvalues approximation considered. In particular, we define

C i = h n+1 1,i h n+1 2,i ∆t(h n+1 2,i + r h n+1 1,i ) max |u n+1 1,i -u n+1 2,i | F (L) (h n+1 1,i , h n+1 2,i ) -1 , 0 . (31) 
in any cell i where we fall onto the non-hyperbolic region. Notice that C i ≥ 0.

Depending on the approximation of the eigenvalues of the system, we get two different friction treatments:

(CFT): Classic Friction Treatment.

In this case, the definition of the friction is based on the classical approximation of the eigenvalues [START_REF] Berthon | An efficient splitting technique for two-layer shallow-water model[END_REF]. This means that we estimate that we are in the non-hyperbolic region if

F SS (h n+1 1,i , h n+1 2,i ) < |u * 1,i -u * 2,i |, (32) 
with F SS defined by [START_REF] Castro-Díaz | Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system[END_REF]. Then, C i is given by [START_REF] Schijf | Theoretical considerations on the motion of salt and fresh water[END_REF] with 32) is satisfied and C i = 0 otherwise. Considering this treatment means that we only know the lower limit for the non-hyperbolicity region. Therefore, a numerical correction is applied in situations where it is not really necessary. Concretely, when we are in zones (III) and (IV) in Figure 7, there is no real reason to apply any treatment, since the model is hyperbolic in these regions. This is a major drawback, since the solution is significantly modified in that case.

F (L) = F SS if (
(NFT): New Friction Treatment.

In this case, the definition of the friction is based on the new approximation of the eigenvalues [START_REF] Castro | Well-Balanced Schemes and Path-Conservative Numerical Methods[END_REF]. This means that we estimate that we are in the non-hyperbolic region if

F (L) new (h n+1 1,i , h n+1 2,i ) < |u * 1,i -u * 2,i | < F (R) h1=h2 (h n+1 1,i , h n+1 2,i ), (33) 
with

F (L) new , F (R)
h1=h2 defined by [START_REF] Fernández-Nieto | A new Savage-Hutter type model for submarine avalanches and generated tsunami[END_REF]. Then, C i is given by [START_REF] Schijf | Theoretical considerations on the motion of salt and fresh water[END_REF] with 33) is satisfied, and C i = 0 otherwise.

F (L) = F (L) new if (
This treatment has two advantages with respect to previous one. First, the proposed eigenvalues approximation improves the approximation of the left limit of the non-hyperbolic region (F (L) ), and therefore the magnitude of the friction coefficient is optimized. Second, we are able to estimate the right boundary (F (R) ) and therefore we are not modifying the solution in those situations where we are in the hyperbolic region (zones (III) and (IV) in Figure 7).

Notice that the same treatment is applied in [START_REF] Sarno | Some considerations on numerical schemes for treating hyperbolicity issues in two-layer models[END_REF][START_REF] Krvavica | Analytical implementation of Roe solver for two-layer shallow water equations with accurate treatment for loss of hyperbolicity[END_REF], where the authors computed exactly whether the cell data falls in the hyperbolic or non-hyperbolic region by analysing the discriminant of the characteristic polynomial. However, they did not use an explicit expression for the boundary F (L) and an iterative algorithm is used to compute C i such that the problem becomes hyperbolic. In our case, we can explicitly compute C i since we know the boundary explicitly thank to our eigenvalues approximation, which is not exact but it is an accurate approximation, as illustrated in Subsection 2.2. Thus, our method is more efficient in terms of the computational cost.

Nevertheless, in will show that even this procedure may produce inaccurate results. In particular, in the situations where the state are located in the hyperbolic zone with F (R) < |u 1 -u 2 |, and it evolves towards the non-hyperbolic region, then this treatment will apply a friction force in these control volumes in order to correct the regime and move it to zone (I). As a consequence, it produces strong local modifications of the regime that may produce strong shocks and non-physical solutions when going towards the non-hyperbolic region through the right boundary F (R) (see Test 6 in Subsection 4.2.2). Similar behaviour, is observed the approach considered [START_REF] Sarno | Some considerations on numerical schemes for treating hyperbolicity issues in two-layer models[END_REF][START_REF] Krvavica | Analytical implementation of Roe solver for two-layer shallow water equations with accurate treatment for loss of hyperbolicity[END_REF] is applied. In these situations we propose to locally modify the model, in particular the pressure terms of the model.

Locally changing to a hyperbolic two-layer system

A different strategy consists of locally changing the model where we detect a loss of hyperbolicity, in such a way that the model approximated in those control volumes is indeed hyperbolic. Looking at the momentum equation for the lower layer in system (1), the pressure terms can be written as

gh 2 r∂ x η 1 + gh 2 (1 -r)∂ x η 2 .
Under the hypothesis of small variations of the free surface ∂ x η 1 = O (ε), the first term in previous equation (just in the momentum equation for the lower layer) is neglected, and then this momentum equation results

∂ t q 2 + ∂ x q 2 2 /h 2 + g(1 -r)h 2 ∂ x (h 2 + b) = 0. ( 34 
)
Consequently, the last row in the generalized Roe matrix A i+1/2 = (a ij ) 1≤i,j≤4 [START_REF] Gallardo | On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas[END_REF] is modified by setting

a 41 = 0, a 43 = g(1 -r)h 2,i+1/2 -u 2 2,i+1/2 .
The pressure terms are now

B i+1/2 =     0 gh 1,i+1/2 (η 1,i+1 -η 1,i ) 0 gh 2,i+1/2 (1 -r)(η 2,i+1 -η 2,i )    
and the exact eigenvalues of the system are

u 1 ± gh 1 , u 2 ± g(1 -r)h 2 .
Therefore, the model obtained when the momentum equation for the lower layer in ( 1) is replaced by ( 34) is hyperbolic. As we will see, this is a sensible choice for landslide generated tsunamis modelled by means of two-layer Savage-Hutter type model. In the next section we will describe the modifications that we introduced in the numerical scheme for the simulation of landslide generated tsunamis. Thus, we consider the following treatment for the loss of hyperbolicity:

(CHMT): Change to Hyperbolic Model Treatment.

We locally change to a hyperbolic model in those cells falling in the complex region (zone (II) in Figure 7) by considering equation [START_REF] Viroulet | Tsunami generated by a granular collapse down a rough inclined plane[END_REF]. The new approximation of the eigenvalues proposed here shall be considered, so that this correction is applied when (33) is satisfied.

Numerical tests

We consider in this section a wide variety of numerical tests with the goal of evaluating the accuracy of the proposed IFCP-FL scheme and discussing the different treatments for the loss of hyperbolicity proposed in Subsection 3.2. We will consider the case of immiscible fluids with high and low density ratio. Several test cases are included, with different initial conditions, which cover all the possible zones with respect of the hyperbolicity nature of the system. As a particular test case, we will show the case of a transcritical flow over a topography which simulates a lock-exchange problem between two fluids with different densities. This is in fact related to what happens in the Strait of Gibraltar where the Atlantic water, less dense, flows over the more dense Mediterranean water, producing a similar lock-exchange. Finally, a complex realistic test is included that simulates a granular mass falling downhill into a water body. This involves wet/dry areas, for both water and grain material, and transitions between hyperbolicity zones. In all the presented tests, CF L = 0.8 is used and a uniform meshes with constant size ∆x.

Fluids with high density ratio r = 0.99

In this subsection, we perform some tests that consider two fluids with similar densities (r = 0.99) in simple configurations. Whether we are in hyperbolic region or not will depend mainly on the velocity difference |u 1 -u 2 |. In the whole subsection we use a constant mesh step ∆x = 0.01, and a flat bottom b(x) = 0, unless otherwise specified.

Test 1: hyperbolic conditions with |u

1 -u 2 | < F (L)
We start by considering a small difference velocity in order to not fall into the non-hyperbolic region. We perform this test in order to illustrate how accurate the IFPC-FL scheme is.

The initial conditions are

h 2 (x, 0) = 0.6 if |x| < 0.5 0.5 otherwise , h 1 (x, 0) = 1 -h 2 (x, 0), u 1 (x, 0) = 0.05, u 2 (x, 0) = -0.15, (35) 
i.e., the free surface is flat (η 1 (x) = 1), the interface η 2 has two discontinuities, and the fluids, whose density ratio is r = 0.99, have opposite velocities with |u 1 -u 2 | = 0.2.

-0. Figure 9 shows the evolution of the interface between the layers (η 2 ) and the velocity u 2 . The variations on η 1 , u 1 are small in this test case and thus are not shown here. We show the results computed with the IFCP and PVM-2U methods, and also with their flux-limiter versions: IFCP-FL and PVM-2U-FL, respectively. A reference solution has been computed using a first order HLL method with ∆x ref = 5 × 10 -5 . We see that only the IFCP-FL scheme is able to reproduce accurately the two-steps shape of the interface and the velocity near x = ±0.5 at t = 0.3 s. For larger times, we see that the PVM-2U-FL and IFCP methods also reproduce well the reference solution, being the IFCP-FL method more accurate. Interestingly, the IFCP method produces similar results to the PVM-2U-FL method despite of being first-order accurate, still with qualitatively good accuracy, in the sense that it is able to reproduce the shape of the reference solution, in contrast to the PVM-2U scheme.

Here we observe that the ICFP method is much more accurate than the PVM-2U scheme.

-0. Notice that in this test we have two shock traveling at a very small velocity. In particular, this makes that the internal wave velocity S int is very small. In such cases, the IFCP-FL method may develop spurious oscillation as result of the lack of numerical viscosity, similarly to what it is observed for the Roe's method close to sonic points. To avoid this problem, we could use the Harten's regularization (see Remark 3) for the computation of the internal eigenvalue. In Figure 10 we show the results of the IFCP-FL method with/without the regularization. We see some oscillations near the advancing fronts, which does not disappear neither at larger times nor refining the spatial mesh. This behavior will also be seen in Test 3 (Subsection 4. 1.3).

In what follows, we will focus on the IFCP-FL scheme, unless otherwise specified. 

F (R) < |u 1 -u 2 |
As it has been explained, the non-hyperbolic region has a left (F (L) ) and a right (F (R) ) boundary. One of the main advantages of the proposed approximation with respect to the classic one is the fact that it is possible to approximate F (R) . We consider now the same initial conditions for the heights given in (35) and take u 1 (x, 0) = 4, u 2 (x, 0) = -5. Then |u 1 -u 2 | = 9 and we are in the hyperbolic region beyond F (R) , that is, in zone (IV) in Figure 7. Here no treatment is needed since the system is hyperbolic. However, treatment (CFT) applies the friction correction after the first time iteration by reducing the velocity difference to go to zone (I), since it estimate that we are in a non-hyperbolic region. On the contrary, treatments (NFT) and (CHMT) detect that the regime is hyperbolic and no correction is applied.

Figure 11 shows the results in this case for the interfaces η 1 , η 2 and the velocities u 1 , u 2 . We see that very different results are obtained when applying the treatment (CFT) whereas no corrections are made with (NFT) and (CHMT). In particular, we see how the velocities are modified to dramatically reduce |u 1 -u 2 | after the first time iteration. It even changes the sign of the velocity u 1 , making this treatment fully useless in these situations.

Test 3: non-hyperbolic initial conditions

F (L) < |u 1 -u 2 | < F (R)
We consider now the same initial conditions for the heights given in ( 35), but with a velocity difference |u 1 -u 2 | in order to fall into the non-hyperbolic region. Concretely, we consider |u 1 -u 2 | = 0.5 with u 1 (x, 0) = 0.2, u 2 (x, 0) = -0.3.

In this case, a correction is needed in order to obtain meaningful results, as shown in Figure 12. In this figure, we show the solution when applying the treatment for the loss of hyperbolicity explained in Subsection 3.2, and also without considering any treatment. In the latter case, we see spurious perturbations growing in time, in contrast to the case where we consider corrections (CFT), (NFT) or (CHMT). On the one hand, there is no significant differences between corrections (CFT) and (NFT) in this case, since the left boundaries of the non-hyperbolic region (F SS and F (L) new , respectively) almost coincide for r = 0.99 (see Figures 3,4 and 5). In this case, the friction correction moves the flow to zone (I) after a single time iteration, and these corrections are activated again if the flow goes to zone (II) in any iteration. Usually, they act just in the first time iteration for this flow configuration. In order to see more differences between corrections (CFT) and (NFT), we should consider a lower density ratio, as we will see in Subsection 4.2. On the other hand, correction (CHMT), which changes to a simplified hyperbolic two-layer system but does not modify the hyperbolicity zone (the flow is in zone (II) during all the simulation), widely differs from the ones applying friction. When looking at the velocities, we see that their magnitudes are not modified, in contrast to corrections based on adding friction. Thus, this correction (CHMT) is an interesting alternative since it avoids the numerical problems related to the loss of hyperbolicity and does not significantly change the magnitude of the variables (specially the velocities).

In this test, when the treatments (CFT) or (NFT) are applied, the velocity difference is reduced after a single iteration to fall in the hyperbolic region. Then, we have again a shock traveling at a very slow velocity. In Figure 13 we observe that it makes appear some spurious oscillations in the shock in all the variables related to the (almost) vanishing intermediate eigenvalue S int . As it has been previously commented in Test 1, it could be avoid by using the Harten's regularization. We also show how these oscillations does not disappear when reducing the mesh step to ∆x/4.

Test 4: transcritical flow with barotropic tidal forcing

We consider now a classical test case consisting on a transcritical flow over a topography. In particular, we consider the configuration showed in [START_REF] Castro-Díaz | Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system[END_REF]. The computational domain is [0, 10] and the initial conditions are q 1 (x, 0) = q 2 (x, 0) = 0, and

b(x) = 0.5e -(x-5) 2 -1, h 1 (x, 0) = 0.5 if x < 5, 0 otherwise; b(x) + h 1 (x, 0) + h 2 (x, 0) = 0.
This initial condition corresponds to an internal dam break problem. Free-outflow boundary conditions are assumed. The upper layer then flows from the left to the right (u 1 > 0) while the opposite happens for the lower layer (u 2 < 0). After some time, a steady state is reached, which exhibits an internal hydraulic jump (see Figure 14 (left)). In this figure, we see that different steady states, with different location for the internal shock, depending on the considered treatment for the loss of hyperbolicity. We see that the solution reached with the treatment (CHMT) is almost identical to the case of no applying a treatment, whereas the treatments based on adding friction ((NFT) and (CFT)) move the location of the shock on the interface. We see that around x = 4.5 the flow goes into zone (II) in Figure 7, where the treatments are applied. Notice that (NFT) and (CFT) produce identical solutions since the left boundaries (F SS and F (L) new ) of the non-hyperbolic region are quite close for this case (r = 0.99), as it has been previously commented.

Here we also consider a barotropic tidal force at the right boundary for t > 200 s. To this end, we consider free-outflow boundary conditions for all the variables, except for h 1 . For this variable we take h 1 (10, t) = free-outflow if t ≤ 200, h 1 (10, 200) + h 2 (10, 200) + 0.005 cos (t/50 + π/4) otherwise; Thus, we obtain an oscillatory behavior of the solution. In Figure 14 (right) we show the interface η 2 at two different times, together with the hyperbolic zones for each case. Again, the solution when considering the treatment (CHMT) is almost identical to not applying a treatment, in contrast to the solution when a friction treatment is applied.

In Figure 15 we analyze the time evolution of the interface at locations x = 4.15, 4.45, 6. We see differences between the results with the friction treatments and (CHMT). We see that the model with (CHMT) is always closer tot he solution without any correction. It is even more evident at x = 4.15. Focusing now on the evolution at x = 4.45, Figure 15b shows a zoom, where we see that the model without correction produces small oscillation of the solution, whereas it is smother with the (CHMT). Remark that this spurious oscillations are small and they do not affect neither the stability of the scheme nor the appearance of bigger oscillations.

Figure 16 shows the evolution on time and space of the variable z = F

(L) new / |u 1 -u 2 |.
Notice that values z > 1 represent zones in the hyperbolic region whereas the values z < 1 correspond to points falling into the non-hyperbolic region. Notice that the plotted cyan and green curves are the isolines corresponding to the points over the boundary

F (L) new = |u 1 -u 2 |.
That is, the closed region by these curves corresponds to states falling into the non-hyperbolic region. We observe that the results with the correction (CHMT) and with no correction exhibits a similar behavior of the solution both in the steady and the tidal periods. However, values with F (L) new / |u 1 -u 2 | ≤ 1 do not appear when applying a friction treatment. In general, we can conclude that for this case, although the results with the treatment (CHMT) are much closer to the those results obtained when no treatment is applied, all the treatments for the loss of hyperbolicity could be used, since all the results are similar. We remark that for this test, we have not observed relevant spurious oscillations on the solutions when no treatment is considered. In this case, the scheme described in Subsection 3.1 is able to deal with this loss of hyperbolicity thanks to the better approximation of the eigenvalues bounds, and the fact of switching to the PVM-2U-FL scheme in zone (II).

4.2 Fluids with low density ratio r = 0.3

In previous tests, we have shown the relevance of estimating the right boundary of the non-hyperbolic region F (R) (see Figure 11). However, there is no significant differences in previous test cases for treatments on the left boundary of (CFT) and (NFT), since the boundaries F SS and F (L) new are very close for r ≈ 1. We perform here some tests consisting of two fluids with r = 0.3. In this case we expect to have differences between (CFT) and (NFT), where the left boundaries of the non-hyperbolic boundaries differs (see Figure 5).

Test

5: r = 0.3, non-hyperbolic initial conditions F (L) < |u 1 -u 2 | < F (R)
Let us consider the initial conditions

h 2 (x, 0) = 0.4 if |x| < 0.5 0.3 otherwise , h 1 (x, 0) = 0.6 -h 2 (x, 0), u 1 (x, 0) = -1.5, u 2 (x, 0) = 1.5.
Here we use again ∆x = 0.01 and b(x) = 0. These initial conditions fall into the non-hyperbolic region. Therefore, treatments (CFT) and (NFT) will reduce |u 1 -u 2 | after a single iteration to move the velocity difference to the hyperbolic region configuration. In this sense, the behavior is similar to previous test, where the treatments (CFT) and (NFT) act only in the first time iteration in order to go to zone (I), whereas treatment (CHMT) does not modify the hyperbolicity zone in which we are and it will be zone (II) for all the simulation time.

We see in Figure 17 that the (CFT) applies a bigger friction force than (NFT) in order to reduce the velocity difference, as excepted. It is clear looking at the layer velocities, and it leads to different results. We also see that meaningless results are obtained if no treatment is considered. A very different solution is observed by changing the model (CHMT), especially for the first layer. We see that the free surface is creating a discontinuous profile in the location of the first step in the interface, which remind us to the hydraulic jump that appears in a transcritical flow over a bottom. In Figure 18 we see how applying a treatment for the loss of hyperbolicity based on adding friction dramatically change the flow regime in this test. For instance, focusing on the upper layer (i = 1), we see that at initial time the internal Froude number is always greater than 1 (F r 1 > 1) and it has change to F r 1 < 1 after a single iteration. It makes that the model reproduces a totally different solution. This is an important drawback of adding friction to deal with the loss of hyperbolicity, since we lose these particular solutions. In this sense, the treatment based on changing the model (CHMT) does not change the flow regime, even though some information is lost due to the simplifications made to deal with a hyperbolic model.

We want to show now that the solution obtained by changing the model is indeed a reasonable solution. The discontinuity observed at the free surface is related to the almost stationary discontinuity at the interface η 2 . It has a similar behavior to what is obtained by the Shallow Water model with a bottom topography given by b(x) = η 2 (x, 0). In Figure 19 we see this comparison for t = 0.3 and t = 1.5 s. 

F (R) < |u 1 -u 2 |
We consider now a configuration where both internal Froude number are greater than 1 along the domain and hyperbolic initial condition such that

F (R) < |u 1 -u 2 |.
That is, we are in zone (III) or (IV) according to Figure 7. To this aim, we consider

h 2 (x, 0) = 0.4 if |x| < 0.5 0.3 otherwise , h 1 (x, 0) = 1.0 -h 2 (x, 0), u 1 (x, 0) = -3, u 2 (x, 0) = 3.
Notice that if |u 1 -u 2 | is large enough to be into the hyperbolic region (zones (III) and (IV)) throughout the time iterations, we would obtain similar conclusions to Test 2 (4.1.2). That is, no correction is made when considering treatments (NFT) and (CHMT) whereas the velocities are reduced if (CFT) is used. Then, for this test we choose a velocity difference |u 1 -u 2 | = 6 that falls into zones (III) or (IV) (hyperbolic region), but it is not far from the right boundary of the non-hyperbolic region F (R) . Then, when the flow dynamics starts, some of the cells of the domain will come into the non-hyperbolic region and the corresponding correction (NFT or CHMT) will be applied. However, when considering (CFT) the whole velocity field will be modified in order to get |u 1 -u 2 | < F (L) , since the classic treatment does not consider the right boundary of the non-hyperbolic region F (R) . We see this behavior in Figure 20, where we plot the free surface/interface, layer velocities, and also the zone in which each cell is according to Figure 7, at times t = 0.05 and 0.5 s. Let us describe the results for each treatment of the loss of hyperbolicity: (CFT), (NFT), (CHMT) and with no correction (no treat.).
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• No treatment: spurious oscillations appear as in previous tests due to the lack of hyperbolicity.

• (CFT): after a single iteration, the velocity difference is reduced in the whole domain to achieve |u 1 -u 2 | < F (L) , as excepted. It is done even in those areas where the system is hyperbolic.

• (CHMT): In those areas where the system becomes non-hyperbolic (zone (II):

F (L) < |u 1 -u 2 | < F (R) )
we change to the hyperbolic model in Subsection 3.2.2. For instance, for t = 0.5 s it is done just for those cells V i with 0.37 < x i < 1.04. In the rest of the domain no treatment is needed.

• (NFT): Once a cell moves into zone (II), the velocity difference is reduced in this cell and not in the rest of the domain. This creates arbitrary shocks in those areas, so that results with no physical meaning are obtained after a few time iterations. As we observe in Figure 20, they are even worse than those where no treatment is considered. Finally, notice that similar conclusions for this test would be obtained when considering the procedures and techniques introduced in previous works [START_REF] Sarno | Some considerations on numerical schemes for treating hyperbolicity issues in two-layer models[END_REF][START_REF] Krvavica | Analytical implementation of Roe solver for two-layer shallow water equations with accurate treatment for loss of hyperbolicity[END_REF].

According to these results, we can conclude that applying a treatment based on adding friction and taking into account the right boundary of the non-hyperbolic region (F (R) ) is not appropriate in practical situations where a large velocity difference may occur. Let us remark that situations where the flow goes from zone (I) towards (III,IV), and after some time it returns to zone (I) (through zone (II)) arise in many practical applications of two-layer systems. This is the case, for instance, of a granular mass falling into the water, i.e., submarine avalanches. This is the case which we deal with in next subsection, where we perform a test including a non-flat bathymetry with wet/dry areas, and strong transitions where the changes on the hyperbolicity zone arise.

Test 7: landslide over a channel

In this test, we consider a granular mass that flows downhill of a mountain towards the water. That is, an aerial landslide that falls into a mass of water such as a lake, a river or a coastal area. This can be simulated using the two-layer models described in Appendix A. Actually, this is a realistic simulation where we find transition between the hyperbolicity regions: zone (I) while the material is flowing downhill, and it goes directly to zones (III) and (IV) when the granular mass is going into the water due to the large velocity difference (u 2 ≫ u 1 = 0). After that, the velocity difference decreases and it goes to zones (II) and (I). For this problem, treatments based on applying a friction produces unrealistic shape of the water in the entrance of granular material in the water, since they apply a large friction to move |u 1 -u 2 | to the hyperbolic zone, as we will see later.

We consider the domain [-22.5, 7.5] and a uniform ∆x = 0.02. The bottom topography is b(x) = max(x + 5, 0), and the initial conditions (see Figure 21)

h 2 (x, 0) = max (12.5 -b(x), 0) if x > 5, 0 otherwise; h 1 (x, 0) = max (5 -h 2 (x, 0) -b(x), 0) ,
and q 1 (x, 0) = q 2 (x, 0) = 0. The friction coefficient is µ s = tan 30.5 • .

Remark 4 Notice that the initial condition depicted in Figure 21 does not correspond to a two-layer system. In that case, for the small times, we have to different fluids: a water body and an aerial avalanche. This means that the system should be adapted in order to describe this situation. For the ambient water, where the avalanche will fall into, no major modifications are needed. Indeed, system (1) degenerates to a shallow water system when the second layer vanishes and only the upper layer (with index 1) remains. Moreover, the scheme described in Section 3 correctly handles such situations. For the case of the aerial avalanche, some simple modifications are needed, namely, r = 0 must be assumed when the material is out of the water (see Appendix A for more details). Figure 22 shows the evolution of the water free surfaces and the granular mass for all the treatments, as well as the hyperbolicity zones for the treatments (NFT) and (CHMT). We do not show the hyperbolicity region for treatment (CFT) since it is always (I), as it is expected for this treatment. At the beginning, when the granular mass reaches the water surface, its velocity (u 2 ) is approximately 10 m/s. This makes that the system is in zone (IV) during the times while the material is going into the water. In such situations, the system is hyperbolic and no treatment is needed. This is indeed the case when applying treatments (NFT) and (CHMT), whereas treatment (CFT) acts to reduce the velocity difference, increasing the magnitude of the water velocity (u 1 ). This makes that the water is strongly dragged, creating then a big wave (see for instance t = 1, 1.5 s in Figure 22). Concerning the results with treatment (NFT), they are good till the moment that the flow goes into the complex region (zone (II)) from zone (III). At this moment, a friction is applied to move to the hyperbolic region and a shock is created at this location, similarly to what has been exposed in Test 6 (see Subsection 4.2.2). It can be observed looking at Figure 22 (t = 1 s). Once it happens, the results are qualitatively similar to what it is obtained when considering the classical friction treatment (CFT). However, quite different results are obtained when applying the treatment (CHMT), where the model is modified to its hyperbolic simplification just in those areas in zone (II). We see huge differences between the results obtained when this treatment is considered and those results with (CFT) and (NFT): (i) the generated wave in the water surface has a much smaller amplitude than the big wave generated when a friction treatment is considered; (ii) the granular material position is completely different, since the treatment based on adding friction has notably stopped it, in contrast with treatment (CHMT). We also see that spurious oscillations appear if no treatment is considered because of the non-hyperbolic nature of the system in some parts of the domain. It can be seen, for instance, for t = 2.5, 3.45 s, and also in larger times over the surface of the granular material. In this figure, we also see that the granular material is almost steady with a non-flat surface at time t = 6.5, although it is not steady yet because of the water movement. It is only possible thanks to the correction of the numerical diffusion accounting for the friction force, as explained in Appendix A. Actually, the friction makes that the oscillations appearing in the granular surface, when no treatment is applied, do not become smoother and remain steady.

It is clear that a treatment is needed in this test, and (NFT) is not appropriate. In Figure 22 we see that, when considering a friction treatment, a larger water wave is generated, and the water and granular mass are stuck at the front (where water and granular join) at early times, generating a shock in the water free surface. On the contrary, the results computed with (CHMT) are smoother, especially at the front. So, a natural question is treatment, (CFT) or (CHMT), is more appropriate for these applications. Although the system introduced here is a very simplified model for avalanches, taking a look at the laboratory experiments in [START_REF] Viroulet | Tsunami generated by a granular collapse down a rough inclined plane[END_REF], in particular the entrance of the granular material into the water at early times, we see that the shape of the data at the front position is much closer to the one obtained when using the treatment (CHMT). On the contrary, the shock produced when considering the treatment (CFT) has no physical sense. We remark that we do not expect an accurate and and exhaustive comparison with the laboratory results by using the simplified model presented here. To do so, one should consider non-hydrostatic effects and a more sophisticated model for the granular media (appropriate rheological law, dilatancy effects, friction between fluid/granular layers,...), which is out of the scope of this paper. Nevertheless, a qualitative comparison tells us that (CHMT), for these applications, the treatment (CHMT) is more appropriate than those based on applying a friction.

Conclusions

In this work we deal with the numerical approximation of the two-layer shallow water system. The contributions of this work covers several aspects.

First, a novel approximation of the eigenvalues of the system has been proposed, which satisfies some interesting properties. In particular, it matches with the exact ones in the case of equal heights or equal velocities of the layers. Based on this approximation, we give a simple algorithm to obtain bounds for the external eigenvalues, even in the case of loss of hyperbolicity, which allows us to construct efficient and stable numerical schemes. Actually, we have shown how the classic approximation of the external eigenvalues in [START_REF] Schijf | Theoretical considerations on the motion of salt and fresh water[END_REF] are not bounds of the true external eigenvalues in some cases, even in the hyperbolic case.

We obtain an accurate approximation [START_REF] Fernández-Nieto | A new Savage-Hutter type model for submarine avalanches and generated tsunami[END_REF] of the non-hyperbolic region of the system for large and small values of r. It results from combining the new eigenvalues approximation and the exact ones in the case h 1 = h 2 . Moreover, we have seen experimentally that they provide a good bound of the non-hyperbolic region. This criterion allows us to divide the hyperbolicity region in four zones, where just zone (II) corresponds with the non-hyperbolic zone and needs a numerical treatment for the loss of hyperbolicity. The advantages of this approximation is that: (i) we approximate the left and right boundaries of the non-hyperbolic region in the plane |u 1 -u 2 | -(h 1 + h 2 ), denoted by F (L) and F (R) , respectively, and not only F (L) as the classic approximation does; (ii) we have a simple, and easy to evaluate, explicit expression to compute F (L) , F (R) and therefore the treatment of the loss of hyperbolicity is more efficient that those in [START_REF] Sarno | Some considerations on numerical schemes for treating hyperbolicity issues in two-layer models[END_REF][START_REF] Krvavica | Analytical implementation of Roe solver for two-layer shallow water equations with accurate treatment for loss of hyperbolicity[END_REF].

Thanks to the eigenvalues approximation and the algorithm to compute bounds of the external eigenvalues, we design an efficient and accurate scheme as a combination of a novel solver introduced in this work, named IFCP-FL method, and the PVM-2U-FL scheme. Both methods reduce to the Lax-Wendroff method in smooth areas. Moreover, we have identified a problem of IFCP method when the internal eigenvalue is small, making that some spurious oscillations appear. We solve this issue by applying the Harten's regularization. In the numerical tests we have also shown the bigger accuracy of the proposed IFCP-FL solver (see Subsection 4.1.1).

Different treatments for the loss of hyperbolicity have been discussed in the numerical tests for small and large density ratio. We show that considering a treatment based on adding friction produce reasonable results in some situations, in particular for r = 0.99 and |u 1 -u 2 | close to the left boundary of the non-hyperbolic region F (L) . However, it could completely change the nature of the expected solutions in some cases (see Test 5 for r = 0.3 in Subsection 4.2.1). We have compared two treatment based on adding friction, the classic one (CFT) where only F (L) is considered and the one accounting for both boundaries F (L) and F (R) (NFT). When |u 1 -u 2 | is large enough to be greater than F (R) , but always in the hyperbolic region (zones (III) and (IV)) the treatment (NFT) does not modify the solution as expected, in contrast to (CFT) for which the solution is completely different. However, if some cells values (not in the whole domain) go into the complex region through the boundary F (R) (reaching zone (II) from zone (III)) the treatment (NFT) produces nonphysical results since it creates shocks locally in these cells. This is a shared problem with any procedure based on adding friction and considering the upper boundary of the non-hyperbolic region F (R) , as in [START_REF] Sarno | Some considerations on numerical schemes for treating hyperbolicity issues in two-layer models[END_REF][START_REF] Krvavica | Analytical implementation of Roe solver for two-layer shallow water equations with accurate treatment for loss of hyperbolicity[END_REF]. A different treatment (CHMT) has been also discussed, consisting in modifying the model in the cells where a loss of hyperbolicity is detected. This model neglects the influence of the free surface over the lower layer, resulting in a hyperbolic model. We have seen that this model produces reasonable results for all the tests presented here. For instance, it allows us to reproduces a completely different solution in Test 5, where the treatments (CFT) and (NFT) change the regime of the flow. Moreover, we have seen that the treatment (CHMT) produces similar results to what one would obtain when not applying any treatment in the case of a barotropic tide in a transcritical flow, while avoiding the appearance of spurious oscillations. In that test, the friction treatments produce reasonable results, although they change slightly the position of the transcritical shock.

These treatments have been also applied to submarine landslide by taking into account a Coulomb friction force and a well-balance discretization of this term. We have performed a realistic test case where we have transitions between the hyperbolicity zones. In this test (Subsection 4.2.3), we see that the treatment (CHMT) gives better results than treatments (CFT) and (NFT). In particular, the entrance of the granular material into the water, observed in the experiments in [START_REF] Viroulet | Tsunami generated by a granular collapse down a rough inclined plane[END_REF], is much better represented when considering the treatment (CHMT).

Therefore, we conclude that the treatment (CHMT) is the most reasonable treatment, since it produces satisfactory results in all the considered configurations for r = 0.99 and r = 0.3, including academic and physically meaningful tests. On the contrary, the friction treatment produces reasonable results in some situations, but fails in others, as the case of submarine avalanches.
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 1 Figure 1: Two-layer sketch: unknowns h 1 , h 2 and bottom b. The internal interface is η 2 and the free surface η 1 .
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 1 r) ∼ O(δ 2 ) and (u 1 -u 2 ) ∼ O(ϵ), then: (a) λ ± ext and λ ± int are approximations of order O(ϵ + δ) and O(ϵ 2 + δ 2 + ϵδ) of the classical approximations λ SS ± ext and λ SS ± int (5), respectively. (b) λ ± ext , and λ ± int are approximations of order O(ϵ + δ) and O(ϵ + δ 2 ) of the exact external and internal eigenvalues, respectively.

Figure 2 :

 2 Figure 2: Boundaries of the non-hyperbolic region defined by the proposed approximation of the eigenvalues on the plane h 1 -h 2 -|u 1 -u 2 | for r = 0.3, 0.5, 0.9 and 0.99.

Figure 3 :

 3 Figure3: Projection of the non-hyperbolic region on the plane (h 1 +h 2 )-|u 1 -u 2 | for the case h 1 = 0.1(h 1 +h 2 ), h 2 = 0.9(h 1 + h 2 ) and r = 0.3, 0.5, 0.9, 0.99 (upper left, upper right, lower left and lower right respectively). Comparison of exact region (red zone) and the approximated boundaries given by the classical (12) (dashdotted green lines) and proposed (13) (dashed blue lines) boundaries for the hyperbolic region. Also the exact boundaries for the case h 1 = h 2 (15) (dotted black lines).

Figure 4 :

 4 Figure 4: Projection of the non-hyperbolic region on the plane (h 1 +h 2 )-|u 1 -u 2 | for the case h 1 = 0.3(h 1 +h 2 ), h 2 = 0.7(h 1 + h 2 ) and r = 0.3, 0.5, 0.9, 0.99 (upper left, upper right, lower left and lower right respectively).Comparison of exact region (red zone) and the approximated boundaries given by the classical (12) (dashdotted green lines) and proposed (13) (dashed blue lines) boundaries for the hyperbolic region. Also the exact boundaries for the case h 1 = h 2 (15) (dotted black lines).

Figure 5 :

 5 Figure5: Projection of the non-hyperbolic region on the plane (h 1 +h 2 )-|u 1 -u 2 | for the case h 1 = h 2 = 0.5(h 1 + h 2 ) and r = 0.3, 0.5, 0.9, 0.99 (upper left, upper right, lower left and lower right respectively). Comparison of exact region (red zone) and the approximated boundaries given by the classical (12) (dash-dotted green lines) and proposed (13) (dashed blue lines) boundaries for the hyperbolic region. Also the exact boundaries for the case h 1 = h 2 (15) (dotted black lines).

  i+1/2 L ) and faster (S i+1/2 R ) waves of the Riemann problem associated to intercell x i+1/2 combined with an intermediate wave speed S i+1/2 int

  minmod(a, b, c) = sign(a) + sign(b) 2 sign(b) + sign(c) 2 min(|a|, |b|, |c|).

Figure 6 :

 6 Figure6: Graphs of the polynomials associated to PVM-2U, IFCP, PVM-2U-FL and IFCP-FL methods with χ L = 0.2, χ R = 0.8. In the case χ L = χ R = 1 both methods (PVM-2U-FL and IFCP-FL) coincide with Lax-Wendroff scheme (y = x 2 ∆t/∆x).
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 7 Figure 7: Sketch of the non-hyperbolic region according the our approximation of the exact region, and the scheme applied in each zone: IFCP-FL in (I) and (IV) (hyperbolic region), PVM-2U-FL in (II) (non-hyperbolic region) and (III) (hyperbolic region, but without a reliable approximation of the eigenvalues).
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 9 Figure 9: Test 1: Interface η 2 between the fluids (left-hand side) and velocity of the lower layer u 2 (right-hand side) at times t = 0.3, 0.5, 1.5 s, computed with the IFCP and PVM-2U methods, and their -FL versions. Inner figures in the right-hand side figures are zooms around x = 0.5.
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 10 Figure 10: Test 1: Interface η 2 between the fluids at times t = 0.5, 1.5 s, computed with the IFCP-FL method and also considering the Harten's regularization for the intermediate eigenvalue.

Figure 11 :

 11 Figure 11: Test 2: Interfaces η 1 , η 2 (left-hand side) and velocities u 1 , u 2 (right-hand side) at times t = 0.2, 0.5 s in the case |u 1 -u 2 | = 9 (hyperbolic initial condition), computed with the IFCP-FL scheme and the different treatments for the loss of hyperbolicity: (CFT), (NFT) and (CHMT).
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 12 Test 2: hyperbolic conditions with

Figure 12 :

 12 Figure 12: Test 3: Interfaces η 1 , η 2 (left-hand side) and velocities u 1 , u 2 (right-hand side) at times t = 0.5, 1.0, 1.5 s in the case |u 1 -u 2 | = 5 (non-hyperbolic initial condition), computed with the IFCP-FL scheme and the different treatments for the loss of hyperbolicity: (CFT), (NFT), (CHMT) and with no correction (no treat.).

18 Figure 13 :

 1813 Figure13: Test 3: η 1 , u 1 , η 2 , u 2 at time t = 1.5 s computed with the IFCP-FL method with the treatment (NFT) with mesh steps ∆x and ∆x/4, and with the Harten's regularization for the internal eigenvalue (mesh steps ∆x). Inner figures are zoom.

Figure 14 :

 14 Figure 14: Test 4: η 2 and hyperbolicity zones at times t = 200, 2200, 2330 s computed with the IFCP-FL scheme and the different treatments for the loss of hyperbolicity: (CFT), (NFT), (CHMT), and with no correction (no treat.).

Figure 15 :

 15 Figure 15: Test 4: η 2 evolution at locations x i = 4.15, 4.5, 6 m computed with the IFCP-FL scheme and the different treatments for the loss of hyperbolicity: (CFT), (NFT), (CHMT), and with no correction (no treat.).

Figure 16 :

 16 Figure 16: Test 4: z = F (L) new / |u 1 -u 2 | (z > 1 zone (I), z < 1 zone (II), in Figure 7) evolution (t ∈ [0, 200] lefthand side, t ∈ [2000, 5000] right-hand side) computed with the IFCP-FL scheme and the different treatments for the loss of hyperbolicity: (no treatment) upper row and (NFT) lower row. Cyan (respectively green) lines are the isolines corresponding to F (L) new = |u 1 -u 2 | computed with no correction (respectively (CHMT)).

Figure 17 :

 17 Figure 17: Test 5: Interfaces η 1 , η 2 (left-hand side) and velocities u 1 , u 2 (right-hand side) at times t = 0.5, 1.0, 1.5 s in the case |u 1 -u 2 | = 3 (non-hyperbolic initial condition), computed with the IFCP-FL scheme and the different treatments for the loss of hyperbolicity: (CFT), (NFT), (CHMT), and with no correction (no treat.).

Figure 18 :

 18 Figure 18: Test 5: (a) Interfaces η 1 , η 2 ; (b) velocities u 1 , u 2 ; (c,d) composite (G) (4) and internal Froude numbers (F r i = |u i | / (g (1 -r) h i )) at initial time and t = 0.1 s for the model considering treatments (NFT) and (CHMT) for the loss of hyperbolicity.

Figure 19 :

 19 Figure 19: Test 5: Interfaces η 1 , η 2 (left-hand side) and velocities u 1 , u 2 (right-hand side) at times t = 0.3 and t = 1.5 s in the case for the model with treatment (CHMT) and the Shallow Water model with a fixed topography given by η 2 (x, 0).

Figure 20 :

 20 Figure 20: Test 6: Interfaces η 1 , η 2 (upper row), velocities u 1 , u 2 (middle row) and hyperbolicity zones (lower row) at times t = 0.05 (left column) and t = 0.5 (right column) in the case |u 1 -u 2 | = 5 (non-hyperbolic initial condition), computed with the IFCP-FL scheme and the different treatments for the loss of hyperbolicity: (CFT), (NFT), (CHMT) and with no correction (no treat.).

Figure 21 :

 21 Figure 21: Test 7: Initial conditions for the bottom, water free surface and granular mass.

Figure 22 :

 22 Figure 22: Test 7: Interfaces η 1 , η 2 and hyperbolic zone according to Figure 7 at times t = 0, 1, 1.5, 2.5, 4.5, 6.5 and 10 s computed with the IFCP-FL scheme and the different treatments for the loss of hyperbolicity: (CFT), (NFT), (CHMT) and with no correction (no treat.). Subfigures (b),(d) are zooms of subfigures (a),(c), respectively.
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A Application to a submarine avalanches model

This appendix is devoted to explain how system (1) may be easily adapted to the submarine avalanches model proposed in [START_REF] Fernández-Nieto | A new Savage-Hutter type model for submarine avalanches and generated tsunami[END_REF]. In such scenarios the lower layer represent a granular material and the density ratio is small, being an example r ≈ 0.3.

The lower layer should be then modeled by means of Savage-Hutter equations. In particular, one of the most important aspects when modeling these gravity driven flows is accounting for the friction between the bottom and the granular media. Let us remark that, in principle, a friction between the fluid and the granular mass should be also included in real simulations. Here, for the sake of simplicity we do not consider it. In what follows, we explain how the two-layer model is adapted for submarine avalanches and how the numerical scheme is be corrected.

We consider the two-layer model proposed in [START_REF] Fernández-Nieto | A new Savage-Hutter type model for submarine avalanches and generated tsunami[END_REF] to study submarine avalanches. Although local coordinates could be considered for these phenomena, let us focus here on a Cartesian coordinates framework, as it is the case for the two-layer model [START_REF] Abgrall | Two-layer shallow water system: A relaxation approach[END_REF]. The main difference is then the inclusion of a Coulomb friction term in the momentum equation of the granular layer. More explicitly, the momentum equation for the second layer in ( 1) is replaced by

with µ s = tan δ 0 the tangent of the repose angle, which depends on the material. Other definitions of µ s can be considered (see e.g. [START_REF] Jop | A constitutive law for dense granular flows[END_REF]). This term will result on a broader definition of water-at-rest steady solutions of the system, which in this case take the form

Remark that the water-at-rest steady state solutions correspond now to the case of flat water free surface, zero velocities, and where the slope of the granular mass is lower than µ s . We consider a splitting procedure to discretize the friction term as in [START_REF] Mangeney-Castelnau | Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme[END_REF][START_REF] Garres-Díaz | A weakly non-hydrostatic shallow model for dry granular flows[END_REF]. This treatment consists of applying the friction in a second step in a particular way. Concretely, the friction term is applied if it is smaller than the rest of terms. Otherwise, the flow must stop.

In order to achieve this behavior, the discharge values of the second layer are then modified by the friction terms. This means that denoting by q ⋆,n+1/2 2,i the output of FV solver associated to the hyperbolic part of the system (20), the discharge value q 2 is updated as

where we set

) /2 (see [START_REF] Garres-Díaz | A weakly non-hydrostatic shallow model for dry granular flows[END_REF] for details).

Finally, in order to obtain a well-balanced scheme for such steady states (36), we must modify the numerical diffusion of the scheme [START_REF] Helfrich | Time-dependent two-layer hydraulic exchange flows[END_REF], in such a way that it becomes 0 at steady states. We proceed as follows: first we modify the hydrostatic reconstruction following [START_REF] Garres-Díaz | A weakly non-hydrostatic shallow model for dry granular flows[END_REF]. More explicitly, rather than (17b), we define

where now ∆Z 2,i+1/2 accounts for the Coulomb friction term:

where

and

∆x .

The values u 2,i+1/2 and (∆η 2 ) i+1/2 are computed as in [START_REF] Garres-Díaz | A weakly non-hydrostatic shallow model for dry granular flows[END_REF] and [START_REF] Jop | A constitutive law for dense granular flows[END_REF], respectively.

We consider now the reconstructed states

2 for k = 1, 2. Now, the viscosity term ( 21) is replaced by

and ( 22) is replaced by

.

Remark that only the third and forth components have been modified with respect to w ± i+1/2 defined by (17d), and they differ from w ± i+1/2 just in case of being in the steady state thanks to the definition f i+1/2 (37). In particular, it means that previous definition of the numerical diffusion differs from [START_REF] Helfrich | Time-dependent two-layer hydraulic exchange flows[END_REF] just in the steady state case.