Olivia Proust
email: olivia.proust2@gmail.com

Frédéric Loulergue
email: frederic.loulergue@univ-orleans.fr

Verified Scalable Parallel Computing with Why3

Keywords: software engineering, formal methods, scalable parallel computing, functional programming, deductive verification, Why3 ://ocaml.org

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

High-level approaches to big data analytics such as Hadoop MapReduce [START_REF] White | Hadoop -The Definitive Guide[END_REF] or Apache Spark [START_REF] Armbrust | Scaling Spark in the Real World: Performance and Usability[END_REF] are often inspired by bulk synchronous parallelism (BSP) [START_REF] Valiant | A bridging model for parallel computation[END_REF] a model of scalable parallel computing. In this context, scalable means that the number of processors of the parallel machines running BSP programs could range from a few to several dozens of thousand cores or more. Bulk Synchronous Parallel ML (BSML) [START_REF] Loulergue | Bulk Synchronous Parallel ML: Modular Implementation and Performance Prediction[END_REF] is a pure functional library for the multi-paradigm language OCaml 1 . BSML embodies the principles of the BSP model, at a higher level than libraries such as the BSPlib library [START_REF] Hill | BSPlib: The BSP Programming Library[END_REF] and can easily express patterns [START_REF] Gava | New implementation of a BSP composition primitive with application to the implementation of algorithmic skeletons[END_REF][START_REF] Loulergue | Implementing Algorithmic Skeletons with Bulk Synchronous Parallel ML[END_REF] (or algorithmic skeletons [START_REF] Cole | Algorithmic Skeletons: Structured Management of Parallel Computation[END_REF]) of frameworks such as MapReduce or Spark.

Why3 [START_REF] Bobot | Let's verify this with Why3[END_REF][START_REF] Bobot | The Why3 Platform[END_REF] is a framework for the deductive verification of programs. It provides a specification and programming language named WhyML which can be used directly or as an intermediate language for other tools to verify C [START_REF] Kirchner | Frama-C: A software analysis perspective[END_REF], Java [START_REF] Filliâtre | The Why/Krakatoa/Caduceus Platform for Deductive Program Verification[END_REF], Ada or Rust [START_REF] Denis | Creusot: A foundry for the deductive verification of rust programs[END_REF] programs. The framework itself also provides mini-C and mini-Python front-ends. Why3 generates verification conditions to be verified by external provers. One of the strength of Why3 is 1 that it targets a large variety of provers including Alt-Ergo [START_REF] Conchon | SMT Workshop: International Workshop on Satisfiability Modulo Theories[END_REF], Z3 [START_REF] Mendonça De Moura | Z3: an efficient SMT solver[END_REF] and CVC5. Correctby-construction OCaml code can be extracted from WhyML.

Our contributions are the formalization of BSML and its standard library in WhyML and its use in the specification and verification of a scalable parallel function for the maximum prefix sum problem, using map and reduce skeletons.

The remaining of the paper is organized as follows. In Section 2, we give an overview of Why3 and WhyML, including its limitations when dealing with higher-order functions. We introduce functional bulk synchronous parallel programming with BSML in Section 3. Section 4 is devoted to the formalization of the primitives of BSML and its application to the specification and verification of the BSML standard library. We consider the specification, development and verification of a small application: a parallel function that solves the maximum prefix sum problem in Section 5. We discuss related work in Section 6 and conclude in Section 7.

The set of Why3 modules is called WhyBSML and is available at: https://doi.org/10.5281/zenodo.8166092.

2 An Overview of Why3

Specifying and verifying functional programs with Why3

Why3 is often used in the verification of imperative programs. As BSML is purely functional and BSML applications mostly used the functional features of OCaml, we focus here on the verification of functional programs. This focus is also a necessity as we will explain in the next subsection.

In addition to its core features, Why3 provides a standard library with data structures such as lists and arrays, as well as basic arithmetic logic with integers and reals. We illustrate this short introduction with the example of Figure 1. Note that this figure presents a prettyprinted version of the actual code, for example /\ is rendered as ∧, -> as →, 'a as α, etc.

WhyML developments are organized in modules. The example defines two modules: Max (lines 1-9) and MaxList (lines 11-33). Defined modules can be used in other modules with the use keyword. We use some modules of Why3 standard library: int.Int about integer arithmetic (lines 2 and 12) and list.List, list.Length, list.NthNoOpt for basic definitions and facts about lists (lines [START_REF] Gava | New implementation of a BSP composition primitive with application to the implementation of algorithmic skeletons[END_REF][START_REF] Hill | BSPlib: The BSP Programming Library[END_REF][START_REF] Kirchner | Frama-C: A software analysis perspective[END_REF].

The module Max is devoted to the specification and definition of a function max which returns the largest of two integers. This function does not have any pre-condition but its post-conditions are introduced by the keyword ensures.

Assuming the file maximum.mlw contains only the module Max, verifying that max satisfies its preconditions using the prover Alt-Ergo can be done with the following command:

{ length l > 0 } ensures { ∀ i:int. 0 ≤ i < length l → result ≥ l[i] } ensures { ∃ i:int. 0 ≤ i < length l ∧ l[i] = result } variant { l } = match l with | Nil → absurd | Cons h Nil → h | Cons h t → (* let _ = assert { ∀ i:int. 0 ≤ i < length t → l[i+1] = t[i] } in *) max h (maximum t) end end Figure 1: A WhyML Example ‡
and the tool answers max indeed satisfies its contract:

File maximum.mlw: Goal max'vc. Prover result is: Valid (0.00s, 8 steps).

In our study, most of the functions to verify are recursive and often manipulate lists.

Lines 19-30 are an example of a recursive function that takes a list of integers and returns the highest value the list contains.

To write the contract of function maximum, we use the notation l[i] to access the i th element of list l. This notation is defined as a binary function in line 17 and is actually an alias for the nth function of the standard library. Note that this definition is introduced by the keyword function instead of the keyword let (as in line 4). The purpose of ([]) is to be used only in specifications while max is code that is meant to be executed. Pure functions may be used in both roles if they are defined using both keywords. In this example, max cannot be used in assertions while the bracket notation cannot be used in programs.

For maximum, we have a larger contract with new clause types. We add a pre-condition (following the keyword requires) to this contract, due to the fact that our function is not defined on empty lists. To ensure termination, we define a variant, which must be decreasing with each recursive call. The recursive call in line 30 is indeed called on the tail of the input list, thus this called is made on strictly smaller argument than l.

We need quantifiers to express our post-conditions. The maximum value must be contained in the list (line 22 using ∃), and must be greater than or equal to all the values in the list (line 21 using ∀).

The definition of the function follows in lines 24-30. It proceeds by pattern matching on the input list. The case of the empty list (constructor Nil) is absurd as the pre-condition specifies the input list should not be empty (expressed as a fact on its length in line 20). If the list is a singleton (case (Cons h Nil)), the result is of course the only element of the list. Otherwise -and let us ignore lines 28-29 for the moment -the result is the maximum of the head and the recursive call on the tail (line 30). Without lines 28-29, the execution of the tool now answers: File maximum.mlw: Goal max'vc. Prover result is: Valid (0.00s, 8 steps). File maximum.mlw: Goal maximum'vc. Prover result is: Timeout (5.00s).

Using Z3 or CVC5, or increasing the timeout, or changing the proof strategy does not change the outcome. It is possible to apply transformations to the goals. Using the Why3 IDE, just splitting the verification condition for maximum gives five verification conditions: one for verifying the empty case is indeed absurd, one to check that the recursive call is indeed decreasing, one to check the pre-condition of the recursive call and one for each postconditions. All these sub-goals are valid but the one corresponding to the post-condition in line 22 which remains unknown. To help the provers, we added lines 28-29 which relate elements of l with elements of its tail via nth. This assertion is easily verified and then eases the verification of the post-condition. The answer of the tool changes to:

Prover result is: Valid (0.09s, 749 steps). To show the limitations of Why3 in handling higher-order functions, let us consider the example of Figure 2. Intuitively, option α extends the type α with a value None and all the other values are encapsulated in the constructor Some.

Limitations with higher-order functions

In lines 1-10, we define a module Concrete containing the definition of a function remove_option that extracts the value encapsulated in an optional value assuming this value is not None. In the module Failure, we apply this function but through a higherorder function apply that just applies a function to a value. The tool fails to verify the function test_KO which intuitively does exactly the same as remove_option. Note that if remove_option was performing side effects or was partial because it may raise exceptions, Why3 would reject the program with an error. Here the problem is less visible. Indeed, the arguments of a higher-order function must be purely functional and total functions. In our case remove_option is not total as its pre-condition excludes None. The manifestation of the problem can be seen in a sub-verification condition generated by Why3: ∀ opt:option α. opt ̸ = None, which is impossible to prove.

Still, as most BSML primitives are higher-order functions, and we need to use functions such as remove_option, a work-around was needed. Our solution is shown in module Abstract (lines [START_REF] Loulergue | Bulk Synchronous Parallel ML: Modular Implementation and Performance Prediction[END_REF][START_REF] Loulergue | Formal Derivation and Extraction of a Parallel Program for the All Nearest Smaller Values Problem[END_REF][START_REF] Mendonça De Moura | Z3: an efficient SMT solver[END_REF][START_REF] Ono | Using Coq in specification and program extraction of Hadoop MapReduce applications[END_REF][START_REF] Snir | MPI the Complete Reference[END_REF][START_REF] Tesson | A Verified Bulk Synchronous Parallel ML Heat Diffusion Simulation[END_REF]. Instead of writing a concrete implementation of remove_option, we declare a function remove_option without defining it, and we only give its semantics (with an axiom) when the pre-condition is met. It looks like a total function but if its application does not satisfy the precondition then it is impossible to reason about the result of the application. If the overall verification of a client code works despite an incorrect application of remove_option, it means the result of the incorrect application was not used. In module Success, the same client code as module Failure uses module Abstract instead of module Concrete and the verification succeeds.

Functional Bulk Synchronous Parallelism

The OCaml language is a versatile programming language that combines functional, imperative and object-oriented paradigms. BSML [START_REF] Loulergue | Bulk Synchronous Parallel ML: Modular Implementation and Performance Prediction[END_REF] (Bulk Synchronous Parallel ML) is an OCaml-based library that embodies the principles of the BSP [START_REF] Valiant | A bridging model for parallel computation[END_REF] (Bulk Synchronous Parallel) model. It provides a range of constants and functions to facilitate BSP programming. The BSP machine, viewed as a homogeneous distributed memory system with a point-topoint communication network and a global synchronization unit, serves as the underlying architecture for BSML. BSP programs, composed of consecutive super-steps, run on this kind of machine. The execution of each super-step follows a distinct pattern, starting with the computation phase where each processor-memory pair performs local computations using data available locally. This phase is followed by the communication phase, during which processors can request and exchange data with other processors. Finally, the synchronization phase concludes the super-step, synchronizing all processors globally.

With its collection of four expressive functions and constants like bsp_p representing the number of processors in the BSP machine, BSML empowers developers to create BSP algorithms. While OCaml supports imperative programming and BSML can exploit it [START_REF] Loulergue | A BSPlib-style API for Bulk Synchronous Parallel ML[END_REF], in this paper we only consider the pure functional aspects of OCaml and BSML. This deliberate focus differentiates it from the imperative counterparts provided by libraries such BSPlib for C [START_REF] Hill | BSPlib: The BSP Programming Library[END_REF]. The types and informal semantics of BSML primitives are listed in Figure 3 Let us consider a function f that maps integers to values of type α (denoted as f: int→α in OCaml). The BSML primitive mkpar f produces a parallel vector of type α par when bsp p : int bsp p = p

mkpar : (int → α) → α par mkpar f = ⟨f 0, . . . , f (p -1)⟩ proj : α par → (int → α) proj ⟨v 0 , . . . , v p-1 ⟩ = function 0 → v 0 | . . . | p -1 → v p-1 apply : (α → β)par → α par → β par apply ⟨f 0 , . . . , f p-1 ⟩ ⟨v 0 , . . . , v p-1 ⟩ = ⟨f 0 v 0 , . . . , f p-1 v p-1 ⟩ put : (int → α)par → (int → α)par put ⟨tosend 0 , . . . , tosend p-1 ⟩ = ⟨received 0 , . . . , received p-1 ⟩
where for all src, dst 0 ≤ src, dst < p ⇒ received dst src = tosend src dst Figure 3: BSML primitives applied to function f. Within this parallel vector, each processor, identified by the index value i within the range 0 ≤ i <bsp_p, stores the computed value of f i. For instance, employing the expression mkpar(fun i→i) yields a parallel vector denoted as ⟨0, . . . , bsp p -1⟩ of type int par. Throughout subsequent discussions, we shall refer to this parallel vector as this. Additionally, the function replicate possesses the type α → α par and can be defined as follows: let replicate = fun x → mkpar(fun i → x). By employing the expression replicate x, the value x becomes uniformly available across all processors within the parallel vector. Parallel vectors always have size bsp_p.

To apply a parallel vector of functions (which is not a function) to a parallel vector of values, one has to use the primitive apply. Both mkpar and apply are executed within the pure computation phase of a super-step. For communications and an implicit synchronization barrier, the last two primitives proj and put should be applied. proj is essentially an inverse of mkpar but the resulting function is partial and only defined on the domain [0, p-1]. As the first constant constructor of any inductively defined type is considered as the empty message, put allows to program any communication pattern of a BSP super-step. In the input vector of put, each function encodes the message to be sent to other processors by the processor holding it. In the result vector, each function represents the message received from other processors by the processor holding the function.

Figure 4 presents a small BSML example using its primitives and parfun which is part of its standard library. List.map and List.fold_left are part of the OCaml standard library and are sequential map and reduce functions.

Lines 4-5, we define a function list_of_par which converts a parallel vector into a list. This function requires a full super-step for its execution because it needs data exchanges. Also part of the BSML standard library, procs has type int list and is the list [0;. . .;bsp_p-1].

Lines 7-8, we define an algorithmic skeleton: a parallel map that operates on a distributed list (represented here as a value of type α list par). This function also requires the com-putation phase of a super-step and does not need any data exchange or synchronization.

Lines 10-13, we define the reduce algorithmic skeleton, using a binary associative operation op and a neutral element e, it "sums" a distributed list into a single value. It proceeds in two steps. First, each processor compute a partial "sum" of the list it holds locally. Second, this vector of partial sums is transformed into a list which is finally summed up. As we call list_of_par, a full super-step is required.

Finally, in lines 15-18, we implement a parallel function to solve the maximum prefix sum problem. Computing at the same time the maximum prefix sum and the sum of a list (in a pair) can be implemented using map and reduce. For example, on a machine with at least 4 processors, the value of mps (mkpar(function|0→

[1;2]|1→[-1;2]|2→[-1;3]|3→[-4]|_→[])) is 6.
Indeed, the argument of mps is a distributed version (on 4 processors) of the list [1;2;-1;2;-1;3;-4] and its prefix with the largest sum is the list without its last element. We specify and prove the correctness of mps in Section 5. To be able to specify and write BSML programs, we need BSML primitives in WhyML. BSML primitives are implemented in parallel on top of MPI [START_REF] Snir | MPI the Complete Reference[END_REF] called throught OCaml's Foreign Function Interface (FFI). Therefore, we cannot provide BSML in WhyML as an implementation. We need to give a BSML theory: a set of constant, axioms and function declarations. The axiomatization of BSML primitives can be found in Figure 5. The semantics of functions mkpar, apply, proj and put are expressed in their contract (lines 12-24) while the strict positivity condition on bsp_p is given as an axiom on line 4. The type of parallel vector is abstract. Still we need to be able to observe parallel vectors. That is the role of logic function get which is a ghost function: it can only be used in specifications. A parallel vector is fully defined by the values all the processors hold as expressed by the axiom extensionnality in lines 9-10. The axiomatization is very close to the informal se- It is possible to realize this theory by a sequential implementation, for example implementing parallel vectors with sequential lists or arrays. This ensures the consistency of this theory.

(∀ i: int. 0≤i<bsp_p → get v i = get v' i) → v = v'
To illustrate the use of this theory, we now specify, implement and verify several of the functions provided in the BSML standard library. The first one is replicate:

let replicate (x: α) : par α ensures { ∀ i:int. 0 ≤ i < bsp_p → get result i = x } = mkpar(fun _ → x)
This verified function has only one post-condition: the result of replication is parallel vector which contains the same value everywhere.

In Section 3, we mentioned the function parfun without defining it. Its implementation and specification follows, as well as the definition of function parfun2:

let parfun (f : α → β) (v: par α) : par β ensures { ∀ i:int. 0 ≤ i < bsp_p → get result i = f (get v i) } = apply (replicate f) v let parfun2 (f : α → β → γ) (u : par α) (v : par β) : par γ ensures { ∀ i:int. 0 ≤ i < bsp_p → get result i = f (get u i) (get v i) } = apply (parfun f u) v
It shows how to use the apply primitive. There is also a parfun3 function omitted here.

Next, we use the communication primitive proj. As we wrote in Section 3, proj is essentially the inverse of mkpar. If we forget the cost of communication and synchronization, this function allows us to obtain the value of a vector v at a given processor i. However, it should not be used for such individual vector access, otherwise the performances would be extremely poor. The use of proj should be thought as a collective operation. Note that proj and get have the same semantics. However, the intent is very different: get is written only in specifications, can be thought as an indexed array access, and is used for local reasoning, while proj is used only in programs and requires a full super-step to execute. proj should rather be thought as a global (i.e. concerning and involving all the processors) conversion of a parallel vector into a function.

To illustrate proj, we define the list_of_par. As we mentioned before this function requires a complete super-step to run. Again it should be seen as a global conversion from parallel vectors to lists:

let function list_of_par (v : par α) : list α ensures { ∀ i:int. 0 ≤ i < bsp_p → result[i] = get v i } ensures { length result = bsp_p } = map (proj v) (procs())
As in the BSML/OCaml version we call procs -which needs to be a function for Why3 to accept the code. procs returns the list of all processor identifiers. The definition of procs relies on a function from_to itself implemented using a init function. Our contribution does also contain a library of sequential functions, mostly on lists, as well as verified lemmas stating their properties. These functions can in most cases be used both in programs and in specifications.

Finally, the put primitive is illustrated to implement a broadcast function. This data exchange (and implicit global synchronization) function is more precise than proj. We remind that after a put, for all processors d and s, the result function at destination processor d, applied to the identifier of source processor s retuns the value of the input function at source processor s applied to destination processor d.

The definition of the bcast_direct function of the standard library follows. This function is used to broadcast a value from a root processor to all other processors. To do so, first, we prepare a function vector for the processors to make the messages to send to each other (local definitions make_msg and to_send). It is clear that only the root processor with send data. The other processors' message is None which is interpreted by the BSML/OCaml implementation as an empty message. Second, the local definition received proceeds with the data exchange and ends the super-step. received is a parallel vector of functions. What we are interested in is the value sent by processor root. That is why the local definition optional_result then applies this parallel vector of functions to the replicated value root. Of course, the obtained message is encapsulated in a Some constructor. Therefore, all the processors finally apply remove_option to yield the final result. The broadcast is meaningless if root is not a valid processor identifier. In this case, the exception Bcast is raised:

let bcast_direct (root : int) (v : par α) ensures { 0 ≤ root < bsp_p → ∀ i:int. 0 ≤ i < bsp_p → get result i = get v root } raises { Bcast } = if (0 ≤ root) && (root < bsp_p)
then let make_msg src load = fun _ → if src = root then Some load else None in let to_send = apply (mkpar make_msg) v in let received = put to_send in let optional_result = apply received (replicate root) in parfun remove_option optional_result else raise Bcast Our BSML theory allows us to write BSML programs and their specifications and is expressive enough for the Why3 3 framework to verify that they indeed satisfy their specifications.

We only presented a sub-set of the functions of the BSML standard library we implemented, and we refer to the companion artifact for the complete set of functions. For example, we also provide the shift, shift_right and shift_left communication functions, which offer a different communication pattern than bcast_direct: Each data item is shifted by a certain number of processors.

Verified Scalable Maximum Prefix Sum

To exercise the formalization presented in the previous section, we specify and verify an implementation of the maximum prefix sum informally presented in Section 3. As in the BSML implementation, the implementation with WhyML relies on algorithmic skeletons. The skeleton par_map is defined in lines 1-6 of Figure 6. The only different with its BSM-L/OCaml counterpart is the post-conditions including one expressed as a correspondence with the sequential map. Given a distributed list dl (of type par(list α)), one obtains the same result by either applying map_par then transforming the obtained distributed list into a list with to_list, or applying the sequential map to the sequentialization of the distributed list. Line 5 is just a hint for the provers: an application of lemma flatten_map that basically commute map and flatten.

The implementation (lines 8-20) of the parallel reduction reduce_par is also very close to its BSML/OCaml counterpart of Figure 4. As expected, the post-condition on line 16 is expressed with respect to the sequential reduction here implemented with the usual fold_left function. As the result is already a sequential value there is no need to sequentialize it. However, this correspondence is true only if op is associative and e is its neutral element which are two pre-conditions stated lines 10-11. There are two additional pre-conditions and a ghost argument, i.e. an argument only used in the contract (and possible annotations) of the function. The reason is again to deal with a form of partial functions. op is a total function, but it may not have the desired properties (associativity, neutral element) on all the values of its input type. Indeed, the OCaml version of op for mps that we will also use in the WhyML version of mps, is not associative if we consider all pairs of integers. In the maximum prefix sum problem, the first component of such a pair represents the maximum prefix sum, it is therefore positive, and the second component the sum of the list, thus it is lower or equal to the first component. The ghost argument inv expresses such properties on the values manipulated during the reduction. This is an invariant: op should preserve the property (line 12) and the input values e and dl should satisfy this property (line 13). The predicates associative, neutral, preserves and satisfies are defined in Figure 7. Such definitions work also well when there is no need for an invariant: in this case we simply use the constant boolean function always returning true.

With these skeletons, it is possible to implement a parallel function to compute the maximum prefix sum of a distributed list as we did in Section 3. First, we define a specification as an inefficient function but direct translation of the informal specification: the mps_spec function on lines 1-2 of Figure 8. We also define op (lines 7-8) and f (line 10) which are the arguments to map and reduce as in the BSML/OCaml example of Figure 4. This time they are not local definitions because we need to state and verify some lemmas about them and because we have two versions of mps: mps_seq and map_par. The invariant explained above is defined lines 12-13. We need an auxiliary function to verify the correctness of our functions with respect to the specification: ms (line 4-5) is the tupling of mps_spec and sum. The rest of the code in Figure 8 is the definitions of the sequential and parallel versions of the maximum prefix sum computation. Both of them are expressed as a composition of map and reduce. The proof that mps_seq indeed implements the specification mps_spect proceeds by using the first homomorphism theorem. This theorem states that a homomorphic function can be implemented as a composition of map and reduce. A function f is homomorphic when there exists a binary operation ⊙ such that: ∀ l1 l2: list α. f(l1++l2) = (f l1) ⊙ (f l2) where ++ denotes list concatenation. mps_spec is not homomorphic but ms is. Two lines of annotations are necessary to guide the provers in the sequential case (lines 17-18). The parallel case does need any annotation: basically the contracts of map_par and reduce_par state their correspondence with their sequential counterpart thus the correspondence of the parallel mps_par-with the sequential mps_seq, and mps_seq satisfies mps_spec.

The full development is about 600 lines of WhyML with about 45% of specifications and 55% of code. It generates 74 goals, 100% of which are proved. Their verification produces 37 sub-goals. The strategy Auto level 2 is used: it tries the provers CVC4, Alt-Ergo, CVC5 and Z3 with a short timeout (1s). If the goal is not proved then it splits the goal and try on the sub-goals with the same timeout and finally if necessary tries with a larger timeout (10s). Alt-Ergo version 2.4.3 proved 11 goals taking between 0.02s and 0.56s (when successful) and CVC4 version 1.6 proved 91 goals taking between 0.04s and 2.45s. Several sub-goals can contribute to a goal to be proved. For example the verification condition of mps_seq is split in 3 sub-goals. In the number of the goals proved by CVC4 and Alt-Ergo the root goals verified because their sub-goals are proved are not counted. In our case, only 9 goals needed to be split to achieve their proofs.

Related Work

BSP-WHY [START_REF] Fortin | BSP-WHY: an intermediate language for deductive verification of BSP programs[END_REF][START_REF] Fortin | BSP-Why: A tool for deductive verification of BSP algorithms with subgroup synchronisation[END_REF] also uses (a previous version of) Why to verify bulk synchronous parallel programs. However, the two approaches are very different. BSP-WHY considers BSP programs written in an imperative style close to BSPlib [START_REF] Hill | BSPlib: The BSP Programming Library[END_REF]. The verification proceeds by transforming well-formed programs -a sub-class of what has been formally defined later by Dabrowski as textually aligned programs [START_REF] Dabrowski | A denotational semantics of textually aligned SPMD programs[END_REF] -into sequential simulating programs that are then verified using Why. The BSP-WHY code cannot be run on parallel machines.

The work closest to our is the specification, verification and extraction of BSML programs using the Coq proof assistant. Early contributions started with the work of Gava [START_REF] Gava | Formal Proofs of Functional BSP Programs[END_REF]. A formalization of BSML primitives in a style very close to the Why3 formalization presented in this paper was proposed by Tesson and Loulergue [START_REF] Tesson | A Verified Bulk Synchronous Parallel ML Heat Diffusion Simulation[END_REF] and used in a framework, named SyDPaCC, for the verification of BSP functional programs [8,[START_REF] Loulergue | Formal Derivation and Extraction of a Parallel Program for the All Nearest Smaller Values Problem[END_REF]. The two main differences with our work is that: proofs are much less automated in Coq than in Why3 but the framework leverages the type-class resolution mechanism of Coq to automatically parallelize programs. For example in this framework, the user does not need to write the code for mps_seq and mps_par, but only needs to write mps_spec and to prove that its tupling with sum is leftwards and rightwards (i.e. can be written as calls to fold_left and fold_right) and exhibits a weak right inverse. The framework would then use transformation theorems to automatically obtain mps_seq and then verified correspondences as expressed in the postconditions of map_par and reduce_par to automatically produce mps_par [START_REF] Loulergue | Calculating Parallel Programs in Coq using List Homomorphisms[END_REF].

Ono et al. [START_REF] Ono | Using Coq in specification and program extraction of Hadoop MapReduce applications[END_REF] employed Coq to verify Hadoop MapReduce programs and extract Haskell code for Hadoop Streaming or directly write Java programs annotated with JML, utilizing Krakatoa [START_REF] Filliâtre | The Why/Krakatoa/Caduceus Platform for Deductive Program Verification[END_REF] to generate Coq lemmas. The first part of their work is functional and therefore closest to our work. However, it is limited to MapReduce which is more general than the map_par and reduce_par skeletons but is less expressive than BSML. The second part of their work is more imperative.

Conclusion and Future Work

We were able to formalize the primitives of the parallel programming library BSML with WhyML and leverage Why3 for verifying a large part of the BSML standard library as well as an application written in BSML. We plan to experiment the extracted code more thoroughly and on larger parallel machines with a few thousand cores.

WhyML offers exceptions and references thus allows to write imperative programs. How-ever, such programs cannot be passed as arguments to higher-order functions. It therefore limits the usage of imperative features with BSML as all primitives are higher-order functions. The code outside BSML primitives can be imperative thus the sequencing of BSP super-steps could be imperative. It is also possible to use imperative features to implement pure functions passed as arguments to BSML primitives. Also, it is possible to deal with partial functions as we did with remove_some. We plan to explore all these possibilities in the future.

 why3 prove --prover alt-ergo maximum.mlw module Max use int.Int let max (x : int) (y : int) : int ensures { result = x ∨ result = y } ensures { result ≥ x ∧ result ≥ y } = if x < y then y else x end module MaxList use int.Int use list.List use list.Length use list.NthNoOpt use Max function ([]) (l : list α) (i : int) : α = nth i l let rec maximum (l : list int) : int requires

=Figure 2 :

 2 Figure 2: Limitations with Higher-Order Functions

3 4 6 7Figure 4 :

 364 Figure 4: A BSML Example

7 val 9 ∀

 79 ghost function get (_ : par α) (_ : int) : α 8 axiom extensionality: v v': par α.

10

 10

11 12 24 (25 endFigure 5 :

 1124255 Figure 5: BSML Theory in WhyML

 let map_par (f: α→β) (dl: par (list α)) : par (list β) ensures { ∀ i:int. 0 ≤ i < bsp_p → get result i = map f (get dl i) } ensures { to_list result = map f (to_list dl) } = let ghost _ = flatten_map f (list_of_par dl) in parfun (map f) dl let reduce_par (ghost inv: α→bool) (op: α→α→α) (e: α) (dl: par(list α)) : α requires { associative inv op } requires { neutral inv op e } requires { preserves inv op } requires { inv e } requires { ∀ i:int. 0 ≤ i < bsp_p → satisfies inv (get dl i) } ensures { result = fold_left op e (to_list dl) } = let ghost _ = fold_left_flatten inv op e (list_of_par dl) in let reduce_seq l = fold_left op e l in let partial_reductions = parfun reduce_seq dl in reduce_seq (list_of_par partial_reductions)

Figure 6 :Figure 7 :

 67 Figure 6: Verified Algorithmic Skeletons in WhyML

1 3 4 5 = 6 7 13 = 0 ≤ 23 =Figure 8 :

 356130238 Figure 8: Verified Maximum Prefix Sum in WhyML