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Abstract

We consider self-propelled rigid-bodies interacting through local body-attitude
alignment modelled by stochastic differential equations. We derive a hydrodynamic
model of this system at large spatio-temporal scales and particle numbers in any
dimension n ≥ 3. This goal was already achieved in dimension n = 3, or in any
dimension n ≥ 3 for a different system involving jump processes. However, the
present work corresponds to huge conceptual and technical gaps compared with
earlier ones. The key difficulty is to determine an auxiliary but essential object,
the generalized collision invariant. We achieve this aim by using the geometrical
structure of the rotation group, namely, its maximal torus, Cartan subalgebra and
Weyl group as well as other concepts of representation theory and Weyl’s integration
formula. The resulting hydrodynamic model appears as a hyperbolic system whose
coefficients depend on the generalized collision invariant.
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1 Introduction

In this paper, we consider a system of self-propelled rigid-bodies interacting through local
body-attitude alignment. Such systems describe flocks of birds [40] for instance. The
model consists of coupled stochastic differential equations describing the positions and
body-attitudes of the agents. We aim to derive a hydrodynamic model of this system at
large spatio-temporal scales and particle numbers. This goal has already been achieved
in dimension n = 3 [22, 23, 24] or in any dimension n ≥ 3 for a different model where
the stochastic differential equations are replaced by jump processes [17]. In the present
paper, we realize this objective for the original system of stochastic differential equations
in any dimension n ≥ 3. The resulting hydrodynamic model appears as a hyperbolic
system of first-order partial differential equations for the particle density and mean body
orientation. The model is formally identical with that of [17] but for the expressions of its
coefficients, whose determination is the main difficulty here. It has been shown in [25] that
this system is hyperbolic, which is a good indication of its (at least local) well-posedness.

The passage from dimension n = 3 to any dimension n ≥ 3 involves huge conceptual
and technical difficulties. One of them is the lack of an appropriate coordinate system
of the n-dimensional rotation group SOn, by contrast to dimension n = 3 where the
Rodrigues formula [22] and the quaternion representation [24] are available. This difficulty
was already encountered in [17] and solved by the use of representation theory [28, 34]
and Weyl’s integration formula [48]. Here, additional difficulties arise because an auxiliary
but essential object, the generalized collision invariant (GCI) which will be defined below,
becomes highly non trivial. Indeed, the GCI is the object that leads to explicit formulas for
the coefficients of the hydrodynamic model. In this paper, we will develop a completely
new method to determine the GCI relying on the Cartan subalgebra and Weyl group
of SOn [34]. While biological agents live in a 3-dimensional space, deriving models in
arbitrary dimensions is useful to uncover underlying algebraic or geometric structures
that would be otherwise hidden. This has been repeatedly used in physics where large
dimensions (e.g. in the theory of glasses) or zero dimension (e.g. in the replica method)
have provided invaluable information on real systems. In data science, data belonging to
large-dimensional manifolds may also be encountered, which justifies the investigation of
models in arbitrary dimensions.

Collective dynamics can be observed in systems of interacting self-propelled agents
such as locust swarms [5], fish schools [43] or bacterial colonies [6] and manifests itself by
coordinated movements and patterns (see e.g. the review [51]). The system of interacting
rigid-bodies which motivates the present study is only one among many examples of
collective dynamics models. Other examples are the three-zone model [2, 12], the Cucker-
Smale model [1, 3, 4, 13, 15, 39, 44], the Vicsek model [14, 20, 21, 33, 49, 50] (the literature
is huge and the proposed citations are for illustration purposes only). Other collective
dynamics models involving rigid-body attitudes or geometrically complex objects can be
found in [29, 36, 38, 40, 45, 46, 47].

Collective dynamics can be studied at different scales, each described by a different
class of models. At the finest level of description lie particle models which consist of
systems of ordinary or stochastic differential equations [2, 12, 14, 15, 43, 44, 50]. When
the number of particles is large, a statistical description of the system is substituted, which
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leads to kinetic or mean-field models [3, 7, 13, 18, 20, 30, 35, 37]. At large spatio-temporal
scales, the kinetic description can be approximated by fluid models, which describe the
evolution of locally averaged quantities such as the density or mean orientation of the
particles [8, 9, 19, 25, 49]. The rigorous passage from particle to kinetic models of collective
dynamics has been investigated in [10, 11, 27, 39] while passing from kinetic to fluid models
has been formally shown in [20, 21, 26, 31] and rigorously in [42]. Phase transitions in
kinetic models have also received a great deal of attention [18, 20, 21, 32, 33].

The paper is organized as follows. After some preliminaries on rotation matrices,
Section 2 describes the particle model and its associated kinetic model. The main result,
which is the identification of the associated fluid model, is stated in Section 3. The model
has the same form as that derived in [17], but for the expression of its coefficients. In
classical kinetic theory, fluid models are strongly related to the collision invariants of the
corresponding kinetic model. However, in collective dynamics models, there are often
not enough collision invariants. This has been remediated by the concept of generalized
collision invariant (GCI) first introduced in [26] for the Vicsek model. In Section 4, the
definition and first properties of the GCI are stated and proved. To make the GCI explicit,
we need to investigate the geometry of SOn in more detail. This is done in Section 5 where
the notions of maximal torus, Cartan subalgebra and Weyl group are recalled. After these
preparations, we derive an explicit system of equations for the GCI in section 6 and show
its well-posedness. Once the GCI are known, we can proceed to the the derivation of the
hydrodynamic model in Section 7. This involves again the use of representation theory
and the Weyl integration formula as the results from [17] cannot be directly applied due to
the different shapes of the GCI. Finally a conclusion is drawn in Section 8. In Appendix A,
an alternate derivation of the equations for the GCI is given: while Section 6 uses the
variational form of these equations, Appendix A uses their strong form. The two methods
rely on different Lie algebra formulas and can be seen as cross validations of one another.

2 Microscopic model and scaling

2.1 Preliminaries: rotations and the rotation group

Before describing the model, we need to recall some facts about rotation matrices (see
[16] for more detail). Throughout this paper, the dimension n will be supposed greater
or equal to 3. We denote by Mn the space of n×n matrices with real entries and by SOn

the subset of Mn consisting of rotation matrices:

SOn =
{
A ∈ Mn | AAT = ATA = I and detA = 1

}
,

where AT is the transpose of A, I is the identity matrix of Mn and det stands for the
determinant. For x, y ∈ Rn, we denote by x · y and |x| the euclidean inner product and
norm. Likewise, we define a Euclidean inner product on Mn as follows:

M ·N =
1

2
Tr(MTN) =

1

2

∑
i,j

MijNij, ∀M, N ∈ Mn, (2.1)

where Tr is the trace. We note the factor 1
2
which differs from the conventional defini-

tion of the Frobenius inner product, but which is convenient when dealing with rotation
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matrices. We use the same symbol · for vector and matrix inner products as the context
easily waives the ambiguity. The set SOn is a compact Lie group, i.e. it is a group for
matrix multiplication and an embedded manifold in Mn for which group multiplication
and inversion are C∞, and it is compact. Let A ∈ SOn. We denote by TA the tangent
space to SOn at A. The tangent space TI at the identity is the Lie algebra son of skew-
symmetric matrices with real entries endowed with the Lie bracket [X, Y ] = XY − Y X,
∀X, Y ∈ son. Let A ∈ SOn. Then,

TA = A son = sonA. (2.2)

For M ∈ Mn, we denote by PTA
M its orthogonal projection onto TA. It is written:

PTA
M = A

ATM −MTA

2
=
MAT − AMT

2
A.

A Riemannian structure on SOn is induced by the Euclidean structure of Mn following
from (2.1). This Riemannian metric is given by defining the inner product of two elements
M , N of TA by M · N . Given that there are P and Q in son such that M = AP ,
N = AQ and that A is orthogonal, we have M · N = P · Q. As any Lie-group is
orientable, this Riemannian structure gives rise to a Riemannian volume form and measure
ω. This Riemannian measure is left-invariant by group translation [16, Lemma 2.1] and
is thus equal to the normalized Haar measure on SOn up to a multiplicative constant.
We recall that on compact Lie groups, the Haar measure is also right invariant and
invariant by group inversion. On Riemannian manifolds, the gradient ∇, divergence ∇·
and Laplacian ∆ operators can be defined. Given a smooth map f : SOn → R, the
gradient ∇f(A) ∈ TA is defined by

∇f(A) ·X = dfA(X), ∀X ∈ TA, (2.3)

where dfA is the derivative of f at A and is a linear map TA → R, and dfA(X) is the image
of X by dfA. The divergence of a smooth vector field ϕ on SOn (i.e. a map SOn → Mn

such that ϕ(A) ∈ TA, ∀A ∈ SOn) is defined by duality by∫
SOn

∇ · φf dA = −
∫
SOn

φ · ∇f dA, ∀f ∈ C∞(SOn),

where C∞(SOn) denotes the space of smooth maps SOn → R and where we have denoted
the Haar measure by dA. The Laplacian of a smooth map f : SOn → R is defined by
∆f = ∇ · (∇f).

It is not easy to find a convenient coordinate system on SOn to express the divergence
and Laplace operators, so we will rather use an alternate expression which uses the matrix
exponential exp: son → SOn. Let X ∈ son. Then, ϱ(X) denotes the map C∞(SOn) →
C∞(SOn) such that(

ϱ(X)(f)
)
(A) =

d

dt

(
f(AetX)

)
|t=0, ∀f ∈ C∞(SOn), ∀A ∈ SOn. (2.4)

We note that (
ϱ(X)(f)

)
(A) = dfA(AX) = ∇f(A) · (AX). (2.5)
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Let Fij be the matrix with entries

(Fij)kℓ = δikδjℓ − δiℓδjk. (2.6)

We note that (Fij)1≤i<j≤n forms an orthonormal basis of son for the inner product (2.1).
Then, we have [16, Lemma 2.2]

(∆f)(A) =
∑

1≤i<j≤n

(
ϱ(Fij)

2f
)
(A). (2.7)

The expression remains valid if the basis (Fij)1≤i<j≤n is replaced by another orthonormal
basis of son.

Finally, letM ∈ M+
n where M+

n is the subset of Mn consisting of matrices with positive
determinant. There exists a unique pair (A, S) ∈ SOn × S+

n where S+
n denotes the cone

of symmetric positive-definite matrices, such that M = AS. The pair (A, S) is the polar
decomposition of M and we define a map P : M+

n → SOn, M 7→ A. We note that
P(M) = (MMT )−1/2M . We recall that a positive definite matrix S can be written
S = UDUT where U ∈ SOn and D = diag(d1, . . . , dn) is the diagonal matrix with
diagonal elements d1, . . . , dn with di > 0, ∀i = 1, . . . , n. Then, S−1/2 = UD−1/2UT with
D−1/2 = diag(d

−1/2
1 , . . . , d

−1/2
n ).

2.2 The particle model

We consider a system of N agents moving in an n-dimensional space Rn. They have
positions (Xk(t))

N
k=1 with Xk(t) ∈ Rn at time t. All agents are identical rigid bodies. An

agent’s attitude can be described by a moving direct orthonormal frame (ωk
1(t), . . . , ω

k
n(t))

referred to as the agent’s local body frame or body attitude. Let Rn be endowed with a
reference direct orthonormal frame (e1, . . . , en). We denote by Ak(t) the unique rotation
which maps (e1, . . . , en) to (ωk

1(t), . . . , ω
k
n(t)), i.e. ω

k
j (t) = Ak(t)ej. Therefore, the k-th

agent’s body attitude can be described equivalently by the local basis (ωk
1(t), . . . , ω

k
n(t))

or by the rotation Ak(t).
The particle dynamics is as follows: particles move with speed c0 in the direction of the

first basis vector ωk
1(t) = Ak(t)e1 of the local body frame, hence leading to the equation

dXk = c0Ak(t)e1 dt. (2.8)

Body frames are subject to two processes. The first one tends to relax the particle’s body
frame to a target frame which represents the average of the body frames of the neighboring
particles. The second one is diffusion noise. We first describe how the average of the body
frames of the neighboring particles is computed. Define

J̃k(t) =
1

N Rn

N∑
k=1

K
( |Xk(t)−Xℓ(t)|

R

)
Aℓ(t), (2.9)

where the sensing function K: [0,∞) → [0,∞) and the sensing radius R > 0 are given.
Here we have assumed that the sensing function is radially symmetric for simplicity. Then,
the body frame dynamics is as follows:

dAk = ν PTAk

(
P(J̃k)

)
dt+

√
2DPTAk

◦ dW k
t , (2.10)
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where ν and D are positive constants, dW k
t are independent Brownian motions on Mn

and the symbol ◦ indicates that the stochastic differential equation is meant in the
Stratonovich sense. Here, it is important to stress that these Brownian motions are
defined using the metric induced by the inner product (2.1). According to [41], the sec-
ond term of (2.10) generates a Brownian motion on SOn. In the first term, we note that
the matrix J̃k is projected onto the rotation matrix issued from the polar decomposition
by the map P . For consistency, we need to assume that J̃k(t) remains in M+

n , which
will be true as long as the body frames of neighboring particles are close to each other.
The rotation Γk = P(J̃k(t)) can be seen as the average body frame of the neighbors to
particle k. Finally, the particle system must be supplemented with initial conditions spec-
ifying the values of (Xk, Ak)(0). As discussed in [22], the first term of (2.10) relaxes the
k-th particle body frame to the neighbor’s average body frame Γk and models the agents’
tendency to adopt the same body attitude as their neighbors. The second term of (2.10)
is an idiosyncratic noise term that models either errors in the agent’s computation of the
neighbor’s average body frame or the agent’s will to detach from the group and explore
new environments.

2.3 The mean-field model

When N → ∞, the particle system can be approximated by a mean-field kinetic model.
Denote by f(x,A, t) the probability distribution of the particles, namely f(x,A, t) is the
probability density of the particles at (x,A) ∈ Rn×SOn at time t. Then, provided that K
satisfies ∫

Rn

K(|x|) dx = 1,

∫
Rn

K(|x|) |x|2 dx <∞,

f is the solution of the following system:

∂tf + c0Ae1 · ∇xf + ν∇A ·
(
PTA

(P(J̃f ))f
)
−D∆Af = 0, (2.11)

J̃f (x, t) =
1

Rn

∫
Rn×SOn

K
( |x− y|

R

)
f(y,B, t)B dy dB, (2.12)

where again, in (2.12), the integral over SOn is taken with respect to the normalized Haar
measure. The operators∇A· and ∆A are respectively the divergence and Laplacian on SOn

as defined in Section 2.1. The index A is there to distinguish them from analog operators
acting on the spatial variable x, which will be indicated (as in ∇xf) with an index x. A
small remark may be worth making: according to [41], the stochastic process defined by
the second term of (2.10) has infinitesimal generator D∆̃ where for any f ∈ C∞(SOn),

∆̃f(A) =
n∑

i,j=1

(PTA
Eij · ∇A)

2f(A), ∀A ∈ SOn,

and where (Eij)
n
i,j=1 is any orthogonal basis (for the inner product (2.1)) of Mn. For

instance, we can take the matrices Eij with entries (Eij)kℓ =
√
2δikδjℓ. It is shown in

[16, Lemma 2.2] that ∆̃ coincides with the Laplacian ∆ defined by (2.7). This gives a
justification of the last term in (2.11). We note that (2.11) is a nonlinear Fokker-Planck
equation, where the nonlinearity arises in the third term.
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The proof of the convergence of the particle system (2.8), (2.10) to the kinetic model
(2.11), (2.12) is still open. The difficulty is in the presence of the projection operator P
in (2.10) which requires to control that the determinant of J̃k remains positive. In the
Vicsek case where a similar singular behavior is observed, a local-in-time convergence
result is shown in [11]. This result supports the conjecture that System (2.8), (2.10)
converges to System (2.11), (2.12) in the limit N → ∞ in small time. We will assume it.

2.4 Scaling and statement of the problem

Let t0 be a time scale and define the spatial scale x0 = c0t0. We introduce the following
dimensionless parameters:

D̃ = Dt0, R̃ =
R

x0
, κ =

ν

D
.

Then, we change variables and unknowns to dimensionless variables x′ = x/x0, t
′ = t/t0

and unknowns f ′(x′, A, t′) = xn0f(x,A, t), J̃
′
f ′(x′, t′) = xn0 J̃f (x, t). Inserting these changes

into (2.11), (2.12) leads to (omitting the primes for simplicity):

∂tf + Ae1 · ∇xf + D̃
[
κ∇A ·

(
PTA

(P(J̃f ))f
)
−∆Af

]
= 0, (2.13)

J̃f (x, t) =
1

R̃n

∫
Rn×SOn

K
( |x− y|

R̃

)
f(y,B, t)B dy dB, (2.14)

We introduce a small parameter ε ≪ 1 and make the scaling assumption 1
D̃

= R̃ =

ε, while κ is kept of order 1. By Taylor’s formula, we have J̃f = Jf + O(ε2) where
Jf (x, t) =

∫
SOn

Af(x,A, t) dA. Since the map P is smooth on M+
n , we get P(J̃f ) =

P(Jf ) + O(ε2). Inserting these scaling assumptions and neglecting the O(ε2) terms in
the above expansions (because they would have no influence on the result), we get the
following perturbation problem:

∂tf
ε + Ae1 · ∇xf

ε =
1

ε

[
− κ∇A ·

(
PTA

(P(Jfε))f ε
)
+∆Af

ε
]
, (2.15)

Jf (x, t) =

∫
SOn

f(x,A, t)AdA. (2.16)

The goal of this paper is to provide the formal limit ε→ 0 of this problem. This problem
is referred to as the hydrodynamic limit of the Fokker-Planck equation (2.15).

3 Hydrodynamic limit (I): main results and first steps

of the proof

3.1 Statement of the results

We will need the following
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Definition 3.1 (von Mises distribution). Let Γ ∈ SOn and κ > 0. The function MΓ:
SOn → [0,∞) such that

MΓ(A) =
1

Z
exp(κΓ · A), Z =

∫
SOn

exp(κTr(A)/2) dA, (3.1)

is called the von Mises distribution of orientation Γ and concentration parameter κ. It is
the density of a probability measure on SOn.

We note that
∫
MΓ(A) dA =

∫
exp(κTr(A)/2) dA does not depend on Γ thanks to the

translation invariance of the Haar measure.
The first main result of this paper is about the limit of the scaled kinetic System

(2.15), (2.16) when ε → 0. We will need the following notations: for two vector fields
X = (Xi)

n
i=1 and Y = (Yi)

n
i=1, we define the antisymmetric matrices X ∧ Y = (X ∧ Y )ij

and ∇x ∧X = (∇x ∧X)ij by

(X ∧ Y )ij = XiYj −XjYi, (∇x ∧X)ij = ∂xi
Xj − ∂xj

Xi, ∀i, j ∈ {1, . . . n}.

Then, we have

Theorem 3.2. We suppose that there is a smooth solution f ε to System (2.15), (2.16).
We also suppose that f ε → f 0 as ε → 0 as smoothly as needed. Then, there exist two
functions ρ: Rn × [0,∞) → [0,∞) and Γ: Rn × [0,∞) → SOn such that

f 0(x,A, t) = ρ(x, t)MΓ(x,t)(A). (3.2)

Furthermore, for appropriate real constants c1, . . . , c4, ρ and Γ satisfy the following system
of equations:

∂tρ+∇x(ρc1Ω1) = 0, (3.3)

ρ
(
∂tΓ + c2(Ω1 · ∇x)Γ

)
= WΓ, (3.4)

where
Ωk(x, t) = Γ(x, t)ek, k ∈ {1, . . . , n}, (3.5)

and where
W = −c3∇xρ ∧ Ω1 − c4ρ

[(
Γ(∇x · Γ)

)
∧ Ω1 +∇x ∧ Ω1

]
. (3.6)

The notation ∇x ·Γ stands for the divergence of the matrix Γ i.e. (∇x ·Γ)i =
∑n

j=1 ∂xi
Γij

and Γ(∇x · Γ) is the vector arising from multiplying the vector ∇x · Γ on the left by the
matrix Γ.

System (3.3), (3.4) has been referred to in previous works [17, 25] as the Self-Organized
Hydrodynamic model for Body attitude coordination (SOHB). It consists of coupled first
order partial differential equation for the particle density ρ and the average body attitude
Γ and has been shown to be hyperbolic in [25]. It models the system of interacting rigid
bodies introduced in Section 2.2 as a fluid of which (3.3) is the continuity equation. The
velocity of the fluid is c1Ω1. Eq. (3.4) is an evolution equation for the averaged body
orientation of the particles within a fluid element, described by Γ. The left-hand side
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of (3.4) describes pure transport at velocity c2Ω1. In general, c2 ̸= c1, which means that
such transport occurs at a velocity different from the fluid velocity. The right-hand side
appears as the multiplication of Γ itself on the left by the antisymmetric matrix W, which
is a classical feature of rigid-body dynamics. The first term of (3.6) is the action of the
pressure gradient which contributes to rotate Γ so as to align Ω1 with −∇xρ. The second
term has a similar effect with the pressure gradient replaced by the vector Γ(∇x · Γ)
which encodes gradients of the mean body attitude Γ. Finally, the last term encodes self-
rotations of the averaged body frame about the self-propulsion velocity Ω1. The last two
terms do not have counterparts in classical fluid hydrodynamics. We refer to [17, 19, 25]
for a more detailed interpretation.

Remark 3.1. We stress that the density ρ and the differentiation operator ϱ defined
by (2.4) have no relation and are distinguished by the different typography. The notation ϱ
for (2.4) is classical (see e.g. [28]).

The second main result of this paper is to provide explicit formulas for the coefficients
c1, . . . , c4. For this, we need to present additional concepts. Let p = ⌊n

2
⌋ the integer part

of n
2
(i.e. n = 2p or n = 2p+ 1) and

ϵn =

{
0 if n = 2p
1 if n = 2p+ 1

. (3.7)

Let T = [−π, π)p. Let Θ = (θ1, . . . , θp) ∈ T . We introduce

u2p(Θ) =
∏

1≤j<k≤p

(
cos θj − cos θk

)2
, for p ≥ 2, (3.8)

u2p+1(Θ) =
∏

1≤j<k≤p

(
cos θj − cos θk

)2 p∏
j=1

sin2 θj
2
, for p ≥ 1, (3.9)

and

m(Θ) = exp
(κ
2

(
2

p∑
k=1

cos θk + ϵn
))
un(Θ). (3.10)

Let ∇Θ (resp. ∇Θ·) denote the gradient (resp. divergence) operators with respect to Θ
of scalar (resp. vector) fields on T . Then, we define α: T → Rp, with α = (αi)

p
i=1 as a

periodic solution of the following system:

−∇Θ ·
(
m∇Θαℓ

)
+m

∑
k ̸=ℓ

( αℓ − αk

1− cos(θℓ − θk)
+

αℓ + αk

1− cos(θℓ + θk)

)
+ϵnm

αℓ

1− cos θℓ
= m sin θℓ, ∀ℓ ∈ {1, . . . , p}, (3.11)

A functional framework which guarantees that α exists, is unique and satisfies an extra
invariance property (commutation with the Weyl group) will be provided at Section 6.

Remark 3.2. In the case of SO3, we have p = 1 and a single unknown α1(θ1). From
(3.11), we get that α1 satisfies

−∂α1

∂θ1

(
m
∂α1

∂θ1

)
+

mα1

1− cos θ1
= m sin θ1.
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We can compare this equation with [22, Eq. (4.16)] and see that α1 coincides with the
function − sin θ ψ̃0 of [22].

Thanks to these definitions, we have the

Theorem 3.3. The constants c1, . . . , c4 involved in (3.3), (3.4), (3.6) are given by

c1 =
1

n

∫ (
2
∑

cos θk + ϵn

)
m(Θ) dΘ∫

m(Θ) dΘ
, (3.12)

c2 = − 1

n2 − 4
×∫ [

− n
(∑

αk sin θk
)(
2
∑

cos θk + ϵn
)
+ 4

(∑
αk sin θk cos θk

)]
m(Θ)dΘ∫ (∑

αk sin θk
)
m(Θ)dΘ

, (3.13)

c3 =
1

κ
, (3.14)

c4 = − 1

n2 − 4
×∫ [

−
(∑

αk sin θk
)(
2
∑

cos θk + ϵn
)
+ n

(∑
αk sin θk cos θk

)]
m(Θ)dΘ∫ (∑

αk sin θk
)
m(Θ)dΘ

, (3.15)

where the integrals are over Θ = (θ1, . . . , θp) ∈ T and the sums over k ∈ {1, . . . , p}.

Remark 3.3. (i) Letting αk(Θ) = − sin θk, we recover the formulas of [17, Theorem 3.1]
for the coefficients ci (see also Remark 6.1).

(ii) Likewise, restricting ourselves to dimension n = 3, setting α1(θ) = − sin θψ̃0 where ψ̃0

is defined in [22, Prop. 4.6] (see Remark 3.2) the above formulas recover the formulas of
[22, Theorem 4.1] (noting that in [22], what was called c2 is actually our c2 − c4).

(iii) Hence, the results of Theorem 3.3 are consistent with and generalize previous results
on either lower dimensions or simpler models.

We note that these formulas make c1, . . . , c4 explicitely computable, at the expense
of the resolution of System (3.11) and the computations of the integrals involved in the
formulas above. In particular, it may be possible to compute numerical approximations
of them for not too large values of p. For large values of p, analytical approximations
will be required. Approximations of α may be obtained by considering the variational
formulation (6.32) and restricting the unknown and test function spaces to appropriate
(possibly finite-dimensional) subspaces.

The main objective of this paper is to prove Theorems 3.2 and 3.3. While the remainder
of Section 3, as well as Section 4 rely on the same framework as [22], the subsequent
sections require completely new methodologies.
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3.2 Equilibria

For f : SOn → R smooth enough, we define the collision operator

Q(f) = −κ∇A ·
(
PTA

(P(Jf ))f
)
+∆Af with Jf =

∫
SOn

f AdA, (3.16)

so that (2.15) can be recast into

∂tf
ε + Ae1 · ∇xf

ε =
1

ε
Q(f ε). (3.17)

It is clear that if f ε → f0 as ε → 0 strongly as well as all its first-order derivatives
with respect to x and second-order derivatives with respect to A, then, we must have
Q(f 0) = 0. Solutions of this equation are called equilibria.

We have the following lemma whose proof can be found in [17, Appendix 7] and is not
reproduced here:

Lemma 3.4. We have∫
SOn

AMΓ(A) dA = c1Γ, c1 =
〈Tr(A)

n

〉
exp(κTr(A)/2)

,

where for two functions f , g: SOn → R, with g ≥ 0 and g ̸≡ 0, we note

⟨f(A)⟩g(A) =

∫
SOn

f(A) g(A) dA∫
SOn

g(A) dA
.

The function c1: R → R, κ 7→ c1(κ) is a nonnegative, nondecreasing function which
satisfies c1(0) = 0, and limκ→∞ c1(κ) = 1. It is given by (3.12).

From now on, we will use Γf = P(Jf ). We have different expressions of Q expressed
in the following

Lemma 3.5. We have

Q(f) = −κ∇A ·
(
PTA

Γff
)
+∆Af (3.18)

= ∇A ·
[
MΓf

∇A

( f

MΓf

)]
(3.19)

= ∇A ·
[
f∇A

(
− κΓf · A+ log f

)]
. (3.20)

Proof. Formula (3.18) is nothing but (3.16) with Γf in place of P(Jf ). To get the other
two expressions, we note that

∇A(Γ · A) = PTA
Γ, ∀A, Γ ∈ SOn. (3.21)
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Then, (3.20) follows immediately and for (3.19) we have

∇A ·
[
MΓf

∇A

( f

MΓf

)]
= ∆Af −∇A ·

[
f∇A

(
log(MΓf

)
)]

= ∆Af − κ∇A ·
[
fPTA

Γf

]
= Q(f),

which ends the proof.

The following gives the equilibria of Q:

Lemma 3.6. Let f : SOn → R be smooth enough such that f ≥ 0, ρf > 0 and detJf > 0.
Then, we have

Q(f) = 0 ⇐⇒ ∃(ρ,Γ) ∈ (0,∞)× SOn such that f = ρMΓ.

Proof. Suppose f fulfils the assumptions of the lemma and is such that Q(f) = 0.
Using (3.19) and Stokes’ theorem, this implies:

0 =

∫
SOn

Q(f)
f

MΓf

dA = −
∫
SOn

∣∣∣∇A

( f

MΓf

)∣∣∣2MΓf
dA.

Hence, f/MΓf
is constant. So, there exists ρ ∈ (0,∞) such that f = ρMΓf

which shows
that f is of the form ρMΓ for some (ρ,Γ) ∈ (0,∞)× SOn.

Conversely, let f = ρMΓ for some (ρ,Γ) ∈ (0,∞) × SOn. If we show that Γ = Γf , then,
by (3.19) we deduce that Q(f) = 0. By Lemma 3.4, we have JρMΓ

= ρc1Γ with ρc1 > 0.
Thus, Γf = P(ρc1Γ) = Γ, which ends the proof. Note that knowing that c1 > 0 is crucial
in that step of the proof.

Corollary 3.7. Assume that f ε → f0 as ε → 0 strongly as well as all its first-order
derivatives with respect to x and second-order derivatives with respect to A, such that∫
f0(x, v, t)dv > 0, ∀(x, t) ∈ Rn×[0,∞). Then, there exists two functions ρ: Rn×[0,∞) →

(0,∞) and Γ: Rn × [0,∞) → SOn such that (3.2) holds.

Proof. This is an obvious consequence of Lemma 3.6 since, for any given (x, t) ∈ Rn ×
[0,∞), the function f 0(x, ·, t) satisfies Q(f 0(x, ·, t)) = 0.

Now, we are looking for the equations satisfied by ρ and Γ.

3.3 The continuity equation

Proposition 3.8. The functions ρ and Γ involved in (3.2) satisfy the continuity equa-
tion (3.3).
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Proof. By Stokes’s theorem, for all second-order differentiable function f : SOn → R, we
have

∫
SOn

Q(f) dA = 0. Therefore, integrating (3.17) with respect to A, we obtain,∫
SOn

(∂t + Ae1 · ∇x)f
ε dA = 0. (3.22)

For any distribution function f , we define

ρf (x, t) =

∫
SOn

f(x,A, t) dA.

Thus, with (2.16), Eq. (3.22) can be recast into

∂tρfε +∇x · (Jfεe1) = 0. (3.23)

Now, given that the convergence of f ε → f 0 as ε → 0 is supposed strong enough, and
thanks to Lemma 3.4, we have

ρfε → ρf0 = ρρMΓ
= ρ, Jfε → Jf0 = JρMΓ

= ρc1Γ.

Then, passing to the limit ε→ 0 in (3.23) leads to (3.3).

4 Generalized collision invariants: definition and ex-

istence

4.1 Definition and first characterization

Now, we need an equation for Γ. We see that the proof of Prop. 3.8 can be reproduced if
we can find functions ψ: SOn → R such that for all second-order differentiable function
f : SOn → R, we have ∫

SOn

Q(f)ψ dA = 0. (4.1)

Such a function is called a collision invariant. In the previous proof, the collision invariant
ψ = 1 was used. Unfortunately, it can be verified that the only collision invariants of Q
are the constants. Thus, the previous proof cannot be reproduced to find an equation
for Γ. In order to find more equations, we have to relax the condition that (4.1) must be
satisfied for all functions f . This leads to the concept of generalized collision invariant
(GCI). We first introduce a few more definitions.

Given Γ ∈ SOn, we define the following linear Fokker-Planck operator, defined for
second order differentiable functions f : SOn → R:

Q(f,Γ) = ∇ ·
[
MΓ∇

( f

MΓ

)]
.
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For simplicity, in the remainder of the present section as well as in Sections 5 and 6,
we will drop the subscript A to the ∇, ∇· and ∆ operators as all derivatives will be
understood with respect to A.

We note that
Q(f) = Q(f,Γf ). (4.2)

Definition 4.1. Given Γ ∈ SOn, a GCI associated with Γ is a function ψ: SOn → R
such that∫

SOn

Q(f,Γ)ψ dA = 0 for all f : SOn → R such that PTΓ
Jf = 0. (4.3)

The set GΓ of GCI associated with Γ is a vector space.

From this definition, we have the following lemma which gives a justification why this
concept is useful for the hydrodynamic limit.

Lemma 4.2. We have

ψ ∈ GΓf
=⇒

∫
SOn

Q(f)ψ dA = 0. (4.4)

Proof.. By (4.2) and (4.3), it is enough to show that PTΓf
Jf = 0. But Γf = P(Jf ), so

there exists a symmetric positive-definite matrix S such that Jf = ΓfS. So,

PTΓf
Jf = Γf

ΓT
f Jf − JT

f Γf

2
= Γf

S − ST

2
= 0.

The following lemma provides the equation solved by the GCI.

Lemma 4.3. The function ψ: SOn → R belongs to GΓ if and only if ∃P ∈ TΓ such that

∇ ·
(
MΓ∇ψ

)
= P · AMΓ. (4.5)

Proof. On the one hand, we can write∫
SOn

Q(f,Γ)ψ dA =

∫
SOn

f Q∗(ψ,Γ) dA,

where Q∗(·,Γ) is the formal L2-adjoint to Q(·,Γ) and is given by

Q∗(ψ,Γ) =M−1
Γ ∇ ·

(
MΓ∇ψ

)
.
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On the other hand, we have

PTΓ
Jf = 0 ⇐⇒ PTΓ

∫
SOn

f AdA = 0

⇐⇒
∫
SOn

f A · P dA = 0, ∀P ∈ TΓ

⇐⇒ f ∈ {A 7→ A · P | P ∈ TΓ}⊥

where the orthogonality in the last statement is meant in the L2 sense. So, by (4.3),
ψ ∈ GΓ if and only if

{A 7→ A · P | P ∈ TΓ}⊥ ⊂ {Q∗(ψ,Γ)}⊥,

or by taking orthogonals again, if and only if

Span{Q∗(ψ,Γ)} ⊂ {A 7→ A · P | P ∈ TΓ}, (4.6)

because both sets in (4.6) are finite-dimensional, hence closed. Statement (4.6) is equiv-
alent to the statement that there exists P ∈ TΓ such that (4.5) holds true.

4.2 Existence and invariance properties

We now state an existence result for the GCI. First, we introduce the following spaces:
L2(SOn) stands for the space of square integrable functions f : SOn → R endowed
with the usual L2-norm ∥f∥2L2 =

∫
SOn

|f(A)|2 dA. Then, we define H1(SOn) = {f ∈
L2(SOn) | ∇f ∈ L2(SOn)} (where ∇f is meant in the distributional sense), endowed
with the usual H1-norm ∥f∥2H1 = ∥f∥2L2 + ∥∇f∥2L2 . Finally, H1

0 (SOn) are the functions of
H1(SOn) with zero mean, i.e. f ∈ H1

0 (SOn) ⇐⇒ f ∈ H1(SOn) and∫
SOn

f dA = 0. (4.7)

We will solve (4.5) in the variational sense. We note that for P ∈ TΓ, we have∫
SOn

A · P MΓ(A) dA = c1Γ · P = 0,

i.e. the right-hand side of (4.5) satisfies (4.7). Hence, if ψ is a smooth solution of (4.5)
satisfying (4.7), it satisfies∫

SOn

MΓ∇ψ∇χdA = −
∫
SOn

MΓA · P χdA, (4.8)

for all functions χ satisfying (4.7). This suggests to look for solutions of (4.8) in H1
0 (SOn).

Indeed, we have

Proposition 4.4. For a given P ∈ TΓ, there exists a unique ψ ∈ H1
0 (SOn) such that (4.8)

is satisfied for all χ ∈ H1
0 (SOn).
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Proof. This is a classical application of Lax-Milgram’s theorem. We only need to verify
that the bilinear form

a(ψ, χ) =

∫
SOn

MΓ ∇ψ∇χdA,

is coercive on H1
0 (SOn). Since SOn is compact, there exists C > 0 such that MΓ ≥ C. So,

a(ψ, ψ) ≥ C

∫
SOn

|∇ψ|2 dA.

This is the quadratic form associated with the Laplace operator −∆ on SOn. But the
lowest eigenvalue of −∆ is 0 and its associated eigenspace are the constant functions.
Then, there is a spectral gap and the next eigenvalue λ2 is positive. Hence, we have∫

SOn

|∇ψ|2 dA ≥ λ2

∫
SOn

|ψ|2 dA, ∀ψ ∈ H1
0 (SOn), (4.9)

(see e.g. [16, Section 4.3] for more detail). This implies the coercivity of a on H1
0 (SOn)

and ends the proof.

Remark 4.1. Since the functions A 7→MΓ(A) and A 7→MΓ(A)A ·P are C∞, by elliptic
regularity, the unique solution of Prop. 4.4 actually belongs to C∞(SOn).

For any P ∈ TΓ, there exists X ∈ son such that P = ΓX. We denote by ψΓ
X the

unique solution of (4.8) in H1
0 (SOn) associated with P = ΓX. Then, we have the

Corollary 4.5. The space GΓ is given by

GΓ = Span
(
{1} ∪ {ψΓ

X | X ∈ son}
)
, (4.10)

and we have

dimGΓ = dim son + 1 =
n(n− 1)

2
+ 1. (4.11)

Proof. If ψ ∈ GΓ, then, ψ − ψ̄ ∈ GΓ ∩H1
0 (SOn) where ψ̄ =

∫
SOn

ψ dA. Then, ∃X ∈ son
such that ψ − ψ̄ = ψΓ

X , which leads to (4.10). Now, the map son → H1
0 (SOn), X 7→ ψΓ

X

is linear and injective. Indeed, suppose ψΓ
X = 0. Then, inserting it into (4.8), we get that∫

SOn

MΓ(A)A · (ΓX)χ(A) dA = 0, ∀χ ∈ H1
0 (SOn),

and by density, this is still true for all χ ∈ L2(SOn). This implies that

MΓ(A)A · (ΓX) = 0, ∀A ∈ SOn,

and sinceMΓ > 0, that A·(ΓX) = (ΓTA)·X = 0, for all A ∈ SOn. Now the multiplication
by ΓT on the left is a bijection of SOn, so we get that X satisfies

A ·X = 0, ∀A ∈ SOn.
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Then, taking A = etY with Y ∈ son and differentiating with respect to t, we obtain

Y ·X = 0, ∀Y ∈ son,

which shows that X = 0. Hence, GΓ is finite-dimensional and (4.11) follows.

From now on, we will repeatedly use the following lemma.

Lemma 4.6. (i) Let g ∈ SOn and let ℓg, rg and ξg be the left and right translations and
conjugation maps of SOn respectively:

ℓg(A) = gA, rg(A) = Ag, ξg = ℓg ◦ rg−1 = ℓg ◦ rgT , ∀A ∈ SOn. (4.12)

Let f : SOn → R be smooth. Then, we have for any X ∈ son:

∇(f ◦ ℓg)(A) · AX = ∇f(gA) · gAX, (4.13)

∇(f ◦ ξg)(A) · AX = ∇f(gAgT ) · gAXgT . (4.14)

(ii) If f and φ: SOn → R are smooth, then,

∇(f ◦ ℓg)(A) · ∇(φ ◦ ℓg)(A) = ∇f(gA) · ∇φ(gA), (4.15)

∇(f ◦ ξg)(A) · ∇(φ ◦ ξg)(A) = ∇f(gAgT ) · ∇φ(gAgT ), (4.16)

Proof. (i) We show (4.13). (4.14) is shown in a similar way. By (2.5), we have

∇(f ◦ ℓg)(A) · AX =
d

dt

(
(f ◦ ℓg)(AetX)

)
|t=0 =

d

dt

(
f(gAetX)

)
|t=0 = ∇f(gA) · gAX.

(ii) Again, we show (4.15), the proof of (4.16) being similar. Applying (4.13) twice, we
have

∇f(gA) · ∇φ(gA) = ∇(f ◦ ℓg)(A) ·
(
gT∇φ(gA)

)
= ∇φ(gA) ·

(
g∇(f ◦ ℓg)(A)

)
= ∇(φ ◦ ℓg)(A) · ∇(f ◦ ℓg)(A).

Proposition 4.7 (translation invariance). We have

ψI
X(A) = ψΓ

X(ΓA), ∀A, Γ ∈ SOn, ∀X ∈ son. (4.17)

Proof. ψ = ψΓ
X is the unique solution inH1

0 (SOn) of the following variational formulation:∫
SOn

exp
(κ
2
Tr(ΓTA)

)
∇ψ(A) · ∇χ(A) dA

= −1

2

∫
SOn

exp
(κ
2
Tr(ΓTA)

)
Tr(ATΓX)χ(A) dA, ∀χ ∈ H1

0 (SOn).
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By the change of variables A′ = ΓTA, the translation invariance of the Haar measure
and (4.15), we get, dropping the primes for simplicity:∫

SOn

exp(
κ

2
TrA)∇(ψ ◦ ℓΓ)(A) · ∇(χ ◦ ℓΓ)(A) dA

= −1

2

∫
SOn

exp(
κ

2
TrA) Tr(ATX)χ ◦ ℓΓ(A) dA, ∀χ ∈ H1

0 (SOn), (4.18)

We remark that the mapping H1
0 (SOn) → H1

0 (SOn), χ → χ ◦ ℓΓ is a linear isomorphism
and an isometry (the proof is analogous to the proof of Prop. 6.4 below and is omitted).
Thus, we can replace χ ◦ ℓΓ in (4.18) by any test function χ̃ ∈ H1

0 (SOn), which leads to a
variational formulation for ψ ◦ ℓΓ which is identical with that of ψI

X . By the uniqueness
of the solution of the variational formulation, this leads to (4.17) and finishes the proof.

Proposition 4.8 (Conjugation invariance). We have

ψI
X(gAg

T ) = ψI
gTXg(A), ∀A, g ∈ SOn. (4.19)

Proof. The proof is identical to that of Prop. 4.7. We start from the variational
formulation for ψI

X and make the change of variables A = gA′gT in the integrals. Thanks
to (4.15), it yields a variational formulation for ψI

X ◦ ξg, which is noticed to be identical
with that of ψI

gTXg. By the uniqueness of the solution of the variational formulation, we
get (4.19).

From this point onwards, the search for GCI differs significantly from [22] where the
assumption of dimension n = 3 was crucial. We will need further concepts about the
rotation groups which are summarized in the next section.

5 Maximal torus and Weyl group

If g ∈ SOn, the conjugation map ξg given by (4.12) is a group isomorphism. Let A and
B ∈ SOn. We say that A and B are conjugate, and we write A ∼ B, if and only if
∃g ∈ SOn such that B = gAgT . It is an equivalence relation. Conjugation classes can be
described as follows. The planar rotation Rθ for θ ∈ R/(2πZ) is defined by

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. (5.1)

The set T = [−π, π)p will be identified with the torus (R/(2πZ))p. For Θ =: (θ1, . . . , θp) ∈
T , we define the matrix AΘ blockwise by:

• in the case n = 2p, p ≥ 2,

AΘ =


Rθ1 0

Rθ2
. . .

0 Rθp

 ∈ SO2pR, (5.2)
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• in the case n = 2p+ 1, p ≥ 1,

AΘ =



Rθ1 0 0

Rθ2
...

. . .
...

0 Rθp 0
0 . . . . . . 0 1


∈ SO2p+1R. (5.3)

By classical matrix reduction theory, any A ∈ SOn is conjugate to AΘ for some Θ ∈ T .
we define the subset T of SOn by

T = {AΘ | Θ ∈ T }.

T is an abelian subgroup of SOn and the map T → T is a group isomorphism. It can be
shown that T is a maximal abelian subgroup of SOn and for that reason, T is called a
maximal torus. T is a Lie sub-group of SOn and we denote by h its Lie algebra. h is a
Lie subalgebra of son given by

h =
{ p∑

i=1

αiF2i−1 2i | (α1, . . . αp) ∈ Rp
}
,

where we recall that Fij is defined by (2.6). h is an abelian subalgebra (i.e. [X, Y ] = 0,
∀X, Y ∈ h) and is actually maximal among abelian subalgebras. In Lie algebra language,
h is a Cartan subalgebra of son.

Let us describe the elements g ∈ SOn that conjugate an element of T into an element
of T. Such elements form a group called the normalizer of T and denoted by N(T).
Since T is abelian, elements of T conjugate an element of T to itself so we are rather
interested in those elements of N(T) that conjugate an element of T to a different one.
In other words, we want to describe the quotient group N(T)/T (clearly, T is normal in
N(T)) which is a finite group called the Weyl group and denoted by W. The Weyl group
differs in the odd and even dimension cases. It is generated by the following elements g
of N(T) (or stricly speaking by the cosets gT where g are such elements) [34]:

• Case n = 2p even:

- elements g = Cij, 1 ≤ i < j ≤ p where Cij exchanges e2i−1 and e2j−1 on
the one hand, e2i and e2j on the other hand, and fixes all the other basis
elements, (where (ei)

2p
i=1 is the canonical basis of R2p). Conjugation of AΘ

by Cij exchanges the blocks Rθi and Rθj of (5.2), i.e. exchanges θi and θj. It
induces an isometry of Rp (or T ), still denoted by Cij by abuse of notation,
such that Cij(Θ) = (. . . , θj, . . . θi, . . .). This isometry is the reflection in the
hyperplane {ei − ej}⊥;

- elements g = Dij, 1 ≤ i < j ≤ p where Dij exchanges e2i−1 and e2i on the one
hand, e2j−1 and e2j on the other hand, and fixes all the other basis elements.
Conjugation of AΘ by Dij changes the sign of θi in Rθi and that of θj in Rθj ,
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i.e. changes (θi, θj) into (−θi,−θj). It induces an isometry of Rp (or T ), still
denoted by Dij such that Dij(Θ) = (. . . ,−θi, . . .− θj, . . .). The transformation
Cij ◦Dij = Dij ◦ Cij is the reflection in the hyperplane {ei + ej}⊥;

• Case n = 2p+ 1 odd:

- elements g = Cij, 1 ≤ i < j ≤ p identical to those of the case n = 2p;

- elements g = Di, 1 ≤ i ≤ p, where Di exchanges e2i−1 and e2i on the one
hand, maps e2p+1 into −e2p+1 on the other hand, and fixes all the other basis
elements. Conjugation of AΘ by Di changes the sign of θi in Rθi , i.e. changes θi
into −θi. It induces an isometry of Rp (or T ), still denoted by Di such that
Di(Θ) = (. . . ,−θi, . . .). It is the reflection in the hyperplane {ei}⊥.

The group of isometries of Rp (or T ) generated by {Cij}1≤i<j≤p∪{Dij}1≤i<j≤p in the case
n = 2p and {Cij}1≤i<j≤p∪{Di}p1=1 in the case n = 2p+1 is still the Weyl group W. Note
that in the case n = 2p, an element ofW induces only an even number of sign changes of Θ,
while in the case n = 2p+ 1, an arbitrary number of sign changes are allowed. W is also
generated by the orthogonal symmetries in the hyperplanes {ei ± ej}⊥ for 1 ≤ i < j ≤ p
in the case n = 2p. The elements of the set {±ei± ej}1≤i<j≤p are called the roots of SO2p,
while the roots of SO2p+1 are the elements of the set {±ei ± ej}1≤i<j≤p ∪ {±ei}p1=1.

We also need one more definition. A closed Weyl chamber is the closure of a connected
component of the complement of the union of the hyperplanes orthogonal to the roots.
The Weyl group acts simply transitively on the closed Weyl chambers [34, Sect. 14.1],
i.e. for two closed Weyl chambers W1 and W2, there exists a unique W ∈ W such that
W (W1) = W2. A distinguished closed Weyl chamber (that associated with a positive
ordering of the roots) is given by [34, Sect. 18.1]:

• Case n = 2p even:

W =
{
Θ ∈ Rp | θ1 ≥ θ2 ≥ . . . ≥ θp−1 ≥ |θp| ≥ 0

}
,

• Case n = 2p+ 1 odd:

W =
{
Θ ∈ Rp | θ1 ≥ θ2 ≥ . . . ≥ θp−1 ≥ θp ≥ 0

}
,

all other closed Weyl chambers being of the form W (W) for some element W ∈ W. We
have

Rp =
⋃

W∈W

W
(
W

)
, (5.4)

and for any W1, W2 ∈ W,

W1 ̸= W2 =⇒ meas
(
W1

(
W

)
∩W2

(
W

))
= 0, (5.5)

(where meas stands for the Lebesgue measure), the latter relation reflecting that the
intersection of two Weyl chambers is included in a hyperplane. Defining Wper = W ∩
[−π, π]p, we have (5.4) and (5.5) with Rp replaced by [−π, π]p and W replaced by Wper.
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Class functions are functions f : SOn → R that are invariant by conjugation, i.e. such
that f(gAgT ) = f(A), ∀A, g ∈ SOn. By the preceding discussion, a class function can
be uniquely associated with a function φf : T̃ =: T /W → R such that φf (Θ) = f(AΘ).
By a function on T /W, we mean a function on T which is invariant by any isometry
belonging to the Weyl group W. The Laplace operator ∆ maps class functions to class
functions. Hence, it generates an operator L on C∞(T̃ ) such that for any class function
f in C∞(SOn), we have:

Lφf = φ∆f . (5.6)

Expressions of the operator L (called the radial Laplacian) are derived in [16]. They are
recalled in Appendix A. Class functions are important because they are amenable to a
specific integration formula called the Weyl integration formula which states that if f is
an integrable class function on SOn, then,∫

SOnR
f(A) dA = γn

1

(2π)p

∫
T
f(AΘ)un(Θ) dΘ, (5.7)

with un defined in (3.8) and (3.9), and

γn =


2(p−1)2

p!
if n = 2p

2p
2

p!
if n = 2p+ 1

.

We now introduce some additional definitions. The adjoint representation of SOn

denoted by “Ad” maps SOn into the group Aut(son) of linear automorphisms of son as
follows:

Ad(A)(Y ) = AY A−1, ∀A ∈ SOn, ∀Y ∈ son.

Ad is a Lie-group representation of SOnR, meaning that

Ad(A)Ad(B) = Ad(AB), ∀A, B ∈ SOn.

We have
Ad(A)(X) · Ad(A)(Y ) = X · Y, ∀A ∈ SOn, ∀X, Y ∈ son,

showing that the inner product on son is invariant by Ad. The following identity, shown
in [28, Section 8.2] will be key to the forthcoming analysis of the GCI. Let f be a function
SOn → V , where V is a finite-dimensional vector space over R. Then, we have, using the
definition (2.4) of ϱ :(

ϱ
(
Ad(g−1)T − T

)
f
)
(g) =

d

ds

(
f(esTge−sT )

)∣∣
s=0

, ∀g ∈ SOn, ∀T ∈ son. (5.8)

We finish with the following identity which will be used repeatedly.

[Fij, Fkℓ] =
(
δjkFiℓ + δiℓFjk − δikFjℓ − δjℓFik

)
. (5.9)
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6 Generalized collision invariants associated with the

identity

6.1 Introduction of α = (αi)
p
i=1 and first properties

This section is devoted to the introduction of the function α = (αi)
p
i=1, T → Rp which

will be eventually shown to solve System (3.11).
For simplicity, we denote ψI

X simply by ψX and MI by M . Let A, Γ ∈ SOn be fixed.
The map son → R, X 7→ ψΓ

X(A) is a linear form. Hence, there exists a map µΓ: SOn → son
such that

ψΓ
X(A) = µΓ(A) ·X, ∀A ∈ SOn, ∀X ∈ son. (6.1)

We abbreviate µI into µ.
We define H1

0 (SOn, son) as the space of functions χ: SOn → son such that each
component of χ in an orthonormal basis of son is a function of H1

0 (SOn) (with similar
notations for L2(SOn, son) and H

1(SOn, son)). Obviously, the definition does not depend
on the choice of the orthonormal basis. Now, let χ ∈ H1(SOn, son). Then ∇χ(A) (which
is defined almost everywhere) can be seen as an element of son ⊗ TA by the relation

∇χ(A) · (X ⊗ AY ) = ∇(χ ·X)(A) · (AY ), ∀X, Y ∈ son,

where we have used (2.2) to express an element of TA as AY for Y ∈ son and where we
define the inner product on son ⊗ TA by(

X ⊗ AY ·X ′ ⊗ AY ′) = (X ·X ′) (AY · AY ′) = (X ·X ′) (Y · Y ′),

for all X, Y X ′, Y ′ ∈ son. With this identification, if (Fi)
N
i=1 and (Gi)

N
i=1 (with N =

n(n−1)
2

) are two orthonormal bases of son, then (Fi ⊗AGj)
N
i,j=1 is an orthonormal basis of

son ⊗ TA and we can write

∇χ(A) =
N∑

i,j=1

(
∇(χ · Fi)(A) · (AGj)

)
Fi ⊗ AGj.

Consequently, if µ ∈ H1(SOn, son) is another function, we have, thanks to Parseval’s
formula and (2.5):

∇µ(A) · ∇χ(A) =
N∑

i,j=1

(
∇(µ · Fi)(A) · AGj

) (
∇(χ ·Gi)(A) · AGj

)
=

N∑
i,j=1

((
ϱ(Gj)(µ · Fi)

)
(A)

)((
ϱ(Gj)(χ · Fi)

)
(A)

)
. (6.2)

In general, we will use (6.2) with identical bases (Fi)
N
i=1 = (Gi)

N
i=1, but this is not necessary.

The construction itself shows that these formulae are independent of the choice of the
orthonormal bases of son.

Now, we have the following properties:
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Proposition 6.1 (Properties of µ).
(i) The function µ is the unique variational solution in H1

0 (SOn, son) of the equation

M−1∇ ·
(
M ∇µ

)
(A) =

A− AT

2
, ∀A ∈ SOn, (6.3)

where the differential operator at the left-hand side is applied componentwise. The varia-
tional formulation of (6.3) is given by

µ ∈ H1
0 (SOn, son),∫

SOn

∇µ · ∇χM dA = −
∫
SOn

A− AT

2
· χM dA, ∀χ ∈ H1

0 (SOn, son),
(6.4)

with the interpretation (6.2) of the left-hand side of (6.4).

(ii) We have (conjugation invariance):

µ(gAgT ) = gµ(A)gT , ∀A, g ∈ SOn. (6.5)

(iii) We have (translation invariance):

µΓ(A) = µ(ΓTA), ∀Γ, A ∈ SOn. (6.6)

Proof. (i) Since X is antisymmetric, we have A · X = A−AT

2
· X. Hence, (4.5) (with

Γ = I) can be written(
M−1∇ ·

(
M∇µ

)
− A− AT

2

)
·X = 0, ∀X ∈ son.

Since the matrix to the left of the inner product is antisymmetric and the identity is
true for all antisymmetric matrices X, we find (6.3). We can easily reproduce the same
arguments on the variational formulation (4.8) (with Γ = I), which leads to the variational
formulation (6.4) for µ.

(ii) (4.19) reads
µ(gAgT ) ·X = µ(A) · (gTXg) =

(
gµ(A)gT

)
·X,

hence (6.5).

(iii) (4.17) reads
µ(A) ·X = µΓ(ΓA) ·X,

hence (6.6).

The generic form of a function satisfying (6.5) is given in the next proposition.

Proposition 6.2. (i) Let χ: SOn → son be a smooth map satisfying

χ(gAgT ) = gχ(A)gT , ∀A, g ∈ SOn. (6.7)

Define p such that n = 2p or n = 2p+ 1.
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(i) There exists a p-tuple τ = (τi)
p
i=1 of periodic functions τi: T → R such that

χ(AΘ) =

p∑
k=1

τk(Θ)F2k−1 2k, ∀Θ ∈ T . (6.8)

Furthermore, τ commutes with the Weyl group, i.e.

τ ◦W = W ◦ τ, ∀W ∈ W. (6.9)

(ii) χ has expression

χ(A) =

p∑
k=1

τk(Θ) gF2k−1 2kg
T , (6.10)

where g ∈ SOn and Θ ∈ T are such that A = gAΘg
T .

Proof. (i) Let A, g ∈ T. Then, since T is abelian, gAgT = A and (6.7) reduces to

gχ(A)gT = χ(A), ∀A, g ∈ T. (6.11)

Fixing A, letting g = etX with X ∈ h and differentiating (6.11) with respect to t, we get

[X,χ(A)] = 0, ∀X ∈ h.

This means that h ⊕ (χ(A)R) is an abelian subalgebra of son. But h is a maximal
subalgebra of son. So, it implies that χ(A) ∈ h. Hence, there exist functions τi: T → R,
Θ 7→ αi(Θ) for i = 1, . . . , p such that (6.8) holds.

Now, we show (6.9) on a set of generating elements of W. For this, we use (6.7) with
such generating elements g, reminding that W ≈ N(T)/T as described in Section 5. We
distinguish the two parity cases of n.

Case n = 2p even. In this case, the Weyl group is generated by (Cij)1≤i<j≤p and
(Dij)1≤i<j≤p (see Section 5). First, we take g = Cij as defined in Section 5. Then,
conjugation by Cij exchanges F2i−1 2i and F2j−1 2j and leaves F2k−1 2k for k ̸= i, j invariant.
On the other hand conjugation by Cij changes AΘ into ACijΘ where we recall that, by
abuse of notation, we also denote by Cij the transformation of Θ generated by conjugation
by Cij. Thus, from (6.7) and (6.8) we get

χ(ACijΘ) =
∑
k ̸=i, j

τk(Θ)F2k−1 2k + τi(Θ)F2j−1 2j + τj(Θ)F2i−1 2i.

On the other hand, direct application of (6.8) leads to

χ(ACijΘ) =

p∑
k=1

τk(CijΘ)F2k−1 2k.

Equating these two expressions leads to

τk
(
Cij(Θ)

)
= τk(Θ), ∀k ̸= i, j.

τi
(
Cij(Θ)

)
= τj(Θ), τj

(
Cij(Θ)

)
= τi(Θ),
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Hence, we get
τ
(
Cij(Θ)

)
= Cij

(
τ(Θ)

)
. (6.12)

Next, we take g = Dij. Conjugation by Dij changes F2i−1 2i into −F2i−1 2i and F2j−1 2j into
−F2j−1 2j and leaves F2k−1 2k for k ̸= i, j invariant. Besides, conjugation by Dij changes
AΘ into ADijΘ. Thus, using the same reasoning as previously, we get

τk
(
DijΘ

)
= τk(Θ), ∀k ̸= i, j,

τi
(
DijΘ

)
= −τi(Θ), αj

(
DijΘ

)
= −αj(Θ).

Hence, we find
τ
(
Dij(Θ)

)
= Dij

(
τ(Θ)

)
.

Case n = 2p + 1 odd. Here, the Weyl group is generated by (Cij)1≤i<j≤p and (Di)
p
1=1.

Taking g = Cij as in the previous case, we get (6.12) again. Now, taking g = Di,
conjugation by Di changes F2i−1 2i into −F2i−1 2i and leaves F2k−1 2k for k ̸= i invariant.
Besides, conjugation by g changes AΘ into ADiΘ. Thus, we get

τk
(
DiΘ

)
= τk(Θ), ∀k ̸= i,

τi
(
DiΘ

)
= −τi(Θ).

Thus, we finally get
τ
(
Di(Θ)

)
= Di

(
τ(Θ)

)
,

which ends the proof.

(ii) The fact that τ commutes with the Weyl group guarantees that formula (6.10) is well
defined, i.e. if (g,Θ) and (g′,Θ′) are two pairs in SOn × T such that A = gAΘg

T =
g′AΘ′g′T , then, the two expressions (6.10) deduced from each pair are the same. Apply-
ing (6.7) to (6.8) shows that (6.10) is necessary. It can be directly verified that (6.10)
satisfies (6.7) showing that it is also sufficient.

The following corollary is a direct consequence of the previous discussion:

Corollary 6.3. Let µ be the solution of the variational formulation (6.3). Then, there
exists α = (αi)

p
i=1: T → Rp such that

µ(AΘ) =

p∑
k=1

αk(Θ)F2k−1 2k, ∀Θ ∈ T , (6.13)

and α commutes with the Weyl group,

α ◦W = W ◦ α, ∀W ∈ W.

Remark 6.1. The context of [17] corresponds to µ(A) = A−AT

2
, i.e. αk(Θ) = − sin θk,

see Remark 3.3.
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Now, we wish to derive a system of PDEs for α. There are two ways to achieve this
aim.

- The first one consists of deriving the system in strong form by directly computing
the differential operators involved in (6.3) at a point AΘ of the maximal torus T.
This method applies the strategy exposed in [28, Section 8.3] and used in [16] to
derive expressions of the radial Laplacian on rotation groups. However, this method
does not give information on the well-posedness of the resulting system. We develop
this method in Appendix A for the interested reader and as a cross validation of the
following results.

- The second method, which is developed below, consists of deriving the system in
weak form, using the variational formulation (6.4). We will show that we can restrict
the space of test functions χ to those satisfying the invariance relation (6.7). This
will allow us to derive a variational formulation for the system satisfied by α which
will lead us to its well-posedness and eventually to the strong form of the equations.

6.2 Reduction to a conjugation-invariant variational formula-
tion

We first define the following spaces:

L2
inv(SOn, son) =

{
χ ∈ L2(SOn, son) such that

χ satisfies (6.7) a.e. A ∈ SOn, ∀g ∈ SOn

}
,

H1
inv(SOn, son) =

{
χ ∈ H1(SOn, son) such that

χ satisfies (6.7) a.e. A ∈ SOn ∀g ∈ SOn

}
,

where a.e. stands for “for almost every”. Concerning these spaces, we have the

Proposition 6.4. (i) L2
inv(SOn, son) and H

1
inv(SOn, son) are closed subspaces of L

2(SOn, son)
and H1(SOn, son) respectively and consequently, are Hilbert spaces.

(ii) We have H1
inv(SOn, son) ⊂ H1

0 (SOn, son).

Proof. (i) Let g ∈ SOn. We introduce the conjugation map Ξg mapping any function χ:
SOn → son to another function Ξgχ: SOn → son such that

Ξgχ(A) = gTχ(gAgT )g, ∀A ∈ SOn.

We prove that Ξg is an isometry of L2(SOn, son) and of H1(SOn, son) for any g ∈ SOn.
The result follows as

L2
inv(SOn, son) =

⋂
g∈SOn

kerL2(Ξg − I), H1
inv(SOn, son) =

⋂
g∈SOn

kerH1(Ξg − I).

Thanks to the cyclicity of the trace and the translation invariance of the Haar measure,
we have ∫

SOn

|Ξgχ(A)|2 dA =

∫
SOn

(
gTχ(gAgT )g

)
·
(
gTχ(gAgT )g

)
dA

=

∫
SOn

|χ(gAgT )|2 dA =

∫
SOn

|χ(A)|2 dA,
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where, for X ∈ son, we have denoted by |X| = (X · X)1/2 the euclidean norm on son.
This shows that Ξg is an isometry of L2(SOn, son).

Now, with (6.2) and (6.7), we have

|∇(Ξgχ)(A)|2 =
1

2

n∑
i,j=1

∇(Ξgχ)ij · ∇(Ξgχ)ij

=
1

2

n∑
i,j,k,ℓ,k′,ℓ′=1

gki gℓj gk′i gℓ′j ∇(χkℓ ◦ ξg)(A) · ∇(χk′ℓ′ ◦ ξg)(A)

=
1

2

n∑
k,ℓ=1

|∇χkℓ(gAg
T )|2 = |∇χ(gAgT )|2,

where we used that
∑n

i=1 gkigk′i = δkk′ and similarly for the sum over j, as well as (4.16).
Now, using the translation invariance of the Haar measure, we get∫

SOn

|∇(Ξgχ)(A)|2 dA =

∫
SOn

|∇χ(A)|2 dA,

which shows that Ξg is an isometry of H1(SOn, son).

(ii) We use the fact that, for any integrable function f : SOn → son, we have∫
SOn

f(A) dA =

∫
SOn

(∫
SOn

f(gAgT ) dg
)
dA. (6.14)

Let χ ∈ H1
inv(SOn, son). With (6.7), we have∫

SOn

χ(gAgT ) dg =

∫
SOn

gχ(A)gT dg.

We define the linear map T : son → R, X 7→
∫
SOn

(gχ(A)gT ) dg · X. By translation

invariance of the Haar measure, we have T (hXhT ) = T (X), for all h ∈ SOn. Thus, T in-
tertwines the representation son of SOn (i.e. the adjoint representation Ad) and its trivial
representation R. Ad is irreducible except for dimension n = 4 where it decomposes into
two irreducible representations. Neither of these representations is isomorphic to the triv-
ial representation. Then, by Schur’s Lemma, T = 0. This shows that

∫
SOn

χ(gAgT ) dg = 0

and by application of (6.14), that
∫
SOn

χ(A) dA = 0.

We now show that the space H1
inv(SOn, son) may replace H1

0 (SOn, son) in the varia-
tional formulation giving µ. More specifically, we have the

Proposition 6.5. (i) µ is the unique solution of the variational formulation (6.4) if and
only if it is the unique solution of the variational formulation

µ ∈ H1
inv(SOn, son),∫

SOn

∇µ · ∇χM dA = −
∫
SOn

A− AT

2
· χM dA, ∀χ ∈ H1

inv(SOn, son).
(6.15)
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(ii) The variational formulation (6.15) can be equivalently written
µ ∈ H1

inv(SOn, son),∫
T
(∇µ · ∇χ)(AΘ)M(AΘ)un(Θ) dΘ

= −
∫
T

AΘ − AT
Θ

2
· χ(AΘ)M(AΘ)un(Θ) dΘ, ∀χ ∈ H1

inv(SOn, son).

(6.16)

Proof. (i) We remark that (6.15) has a unique solution. Indeed, (4.9) can be extended
componentwise to all ψ ∈ H1

0 (SOn, son), and in particular, to all ψ ∈ H1
inv(SOn, son).

Thus, the bilinear form at the left-hand side of (6.15) is coercive on H1
inv(SOn, son).

Existence and uniqueness follow from Lax-Milgram’s theorem.

Let µ be the solution of (6.4). Since µ satisfies (6.5), it belongs to H1
inv(SOn, son).

Furthermore, restricting (6.4) to test functions in H1
inv(SOn, son), it satisfies (6.15).

Conversely, suppose that µ is the unique solution of (6.15). We will use (6.14). Let
χ ∈ H1

0 (SOn, son). Thanks to (4.16) and to the fact that M is a class function, we have

I(A) =:

∫
SOn

M(gAgT )∇µ(gAgT ) · ∇χ(gAgT ) dg

=
1

2

n∑
i,j=1

∫
SOn

M(A)∇µij(gAg
T ) · ∇χij(gAg

T ) dg

=
1

2

n∑
i,j=1

∫
SOn

M(A)∇(µij ◦ ξg)(A) · ∇(χij ◦ ξg)(A) dg.

Now, by (6.5), we have (µij ◦ ξg)(A) =
∑n

k,ℓ=1 gik gjℓ µkℓ(A). We deduce that

I(A) =
1

2

n∑
k,ℓ=1

M(A)∇µkℓ(A) · ∇
( n∑

i,j=1

∫
SOn

gik gjℓ (χij ◦ ξg) dg
)
(A)

=
1

2

n∑
k,ℓ=1

M(A)∇µkℓ(A) · ∇χ̄kℓ(A) =M(A)∇µ(A) · ∇χ̄(A),

where χ̄ is defined by

χ̄(A) =

∫
SOn

gTχ(gAgT )g dg, ∀A ∈ SOn. (6.17)

Similarly, we have

J(A) =:

∫
SOn

M(gAgT )
(
g
A− AT

2
gT

)
· χ(gAgT ) dg

=M(A)
A− AT

2
·
(∫

SOn

gTχ(gAgT )g dg
)
=M(A)

A− AT

2
· χ̄(A).
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Applying (6.14) we get that∫
SOn

(
∇µ · ∇χ+

A− AT

2
· χ

)
M dA =

∫
SOn

(I(A) + J(A)) dA

=

∫
SOn

(
∇µ · ∇χ̄+

A− AT

2
· χ̄

)
M dA. (6.18)

Now, we temporarily assume that

χ̄ ∈ H1
inv(SOn, son), (6.19)

Then, because µ is the unique solution of (6.15), the right-hand side of (6.18) is equal to
zero. This shows that µ is the unique solution of (6.4).

Now, we show (6.19). That χ̄ satisfies the invariance relation (6.7) is obvious. We now
show that ∥χ̄∥H1 ≤ ∥χ∥H1 .

We first show that ∥χ̄∥L2 ≤ ∥χ∥L2 . By Cauchy-Schwarz inequality, Fubini’s theorem
and the translation invariance of the Haar measure, we have∫
SOn

|χ̄(A)|2 dA =

∫
SOn

∣∣∣ ∫
SOn

gTχ(gAgT )g dg
∣∣∣2 dA ≤

∫
SOn

(∫
SOn

|gTχ(gAgT )g|2 dg
)
dA

=

∫
SOn

(∫
SOn

|χ(gAgT )|2 dA
)
dg =

∫
SOn

|χ(A)|2 dA.

We now show that ∥∇χ̄∥L2 ≤ ∥∇χ∥L2 . Differentiating (6.17) with respect to A and
using (4.14), we get

|∇χ̄(A)|2 = 1

2

n∑
k,ℓ=1

|∇χ̄kℓ(A)|2 =
1

2

n∑
k,ℓ=1

∣∣∣ ∫
SOn

( n∑
i,j=1

gik gjℓ g
T∇χij(gAg

T )g
)
dg

∣∣∣2.
Applying Cauchy-Schwarz formula, this leads to

|∇χ̄(A)|2 ≤ 1

2

n∑
k,ℓ=1

∫
SOn

∣∣∣ n∑
i,j=1

gik gjℓ g
T∇χij(gAg

T )g
∣∣∣2 dg

=
1

2

n∑
i,j,i′,j′,k,ℓ=1

∫
SOn

gik gjℓ gi′k gj′ℓ
(
gT∇χi′j′(gAg

T )g
)
·
(
gT∇χij(gAg

T )g
)
dg

=
1

2

n∑
i,j=1

∫
SOn

∇χij(gAg
T ) · ∇χij(gAg

T ) dg,

where we have applied that
∑n

k=1 gikgi′k = δii′ and similarly for the sum over ℓ. Thus,∫
SOn

|∇χ̄(A)|2 dA ≤ 1

2

n∑
i,j=1

∫
SOn

(∫
SOn

∇χij(gAg
T ) · ∇χij(gAg

T ) dA
)
dg

=
1

2

n∑
i,j=1

∫
SOn

∇χij(A) · ∇χij(A) dA =

∫
SOn

|∇χ(A)|2 dA,
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which shows the result and ends the proof of (i)

(ii) Let χ ∈ H1
inv(SOn, son). Then, the functions A 7→ M(A)∇µ(A) · ∇χ(A) and A 7→

M A−AT

2
· χ(A) are class functions (the proof relies on similar computations as those just

made above and is omitted). Then, (6.16) is simply a consequence of Weyl’s integration
formula (5.7). This ends the proof.

6.3 Derivation and well-posedness of System (3.11) for α

Now, we investigate how the condition χ ∈ H1
inv(SOn, son) translates onto τ and define

the following spaces:

• C∞,W
per (T ,Rp) is the set of periodic, C∞ functions T → Rp which commute with the

Weyl group, i.e. such that (6.9) is satisfied in T , for all W ∈ W,

• H is the closure of C∞,W
per (T ,Rp) for the norm

∥τ∥2H =:

p∑
i=1

∫
T
|τi(Θ)|2 un(Θ) dΘ,

• V is the closure of C∞,W
per (T ,Rp) for the norm

∥τ∥2V =: ∥τ∥2H +

∫
T

{ p∑
i,j=1

∣∣∣ ∂τi
∂θj

(Θ)
∣∣∣2 + ∑

1≤i<j≤p

( |(τi − τj)(Θ)|2

1− cos(θi − θj)

+
|(τi + τj)(Θ)|2

1− cos(θi + θj)

)
+ ϵn

p∑
i=1

|τi(Θ)|2

1− cos θi

}
un(Θ) dΘ.

Remark 6.2. We note that for τ ∈ C∞,W
per (T ,Rp), we have ∥τ∥V < ∞, which shows that

the definition of V makes sense. Indeed Since τ commutes with W, we have

(τi − τj)(. . . , θi, . . . , θj . . .) = τi(. . . , θi, . . . , θj . . .)− τi(. . . , θj, . . . , θi . . .)

= (θj − θi)
(( ∂

∂θj
− ∂

∂θi

)
τi

)
(. . . , θi, . . . , θi . . .) +O

(
(θj − θi)

2
)
= O

(
|θj − θi|

)
,

as θj − θi → 0, while

1− cos(θi − θj) = 2 sin2
(θi − θj

2

)
=

1

2
|θj − θi|2 +O

(
|θj − θi|4

)
.

Thus,
|(τi − τj)(Θ)|2

1− cos(θi − θj)
<∞.

The same computation holds when θj + θi → 0 and, in the odd-dimensional case, when
θi → 0.
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Proposition 6.6. χ ∈ H1
inv(SOn, son) if and only if χ is given by (6.8) with τ ∈ V.

Proof. Let χ ∈ C∞
inv(SOn, son), an element of the space of smooth functions satisfying the

invariance relation (6.7). Then, τ associated with χ through (6.8) belongs to C∞,W
per (T ,Rp).

For such χ and τ , we temporarily assume that

∥χ∥2H1 =
γn

(2π)p
∥τ∥2V . (6.20)

We also temporarily assume that

C∞
inv(SOn, son) is dense in H1

inv(SOn, son). (6.21)

Let now χ ∈ H1
inv(SOn, son) and (χq)q∈N a sequence of elements of C∞

inv(SOn, son) which
converges to χ in H1

inv(SOn, son). Then, the associated sequence (τ q)q∈N is such that
τ q ∈ C∞,W

per (T ,Rp) and by (6.20) (τ q)q∈N is a Cauchy sequence in V . Thus, there is an
element τ ∈ V such that τ q → τ in V . Now, up to the extraction of subsequences, we
have χq → χ, a.e. in SOn and τ q → τ , a.e. in T . Hence

χq =

p∑
i=1

τ qi F2i−1 2i →
p∑

i=1

τiF2i−1 2i a.e.,

showing that χ =
∑p

i=1 τiF2i−1 2i. Hence, χ ∈ H1
inv(SOn, son) if and only if χ is associated

with τ ∈ V through (6.8).
We now show (6.21). Let χ ∈ H1

inv(SOn, son). Since C∞(SOn, son) is dense in
H1(SOn, son), there exists a sequence (χq)q∈N in C∞(SOn, son) such that χq → χ. Now,
χ̄q obtained from χq through (6.17) belongs to C∞

inv(SOn, son). And because the map
χ 7→ χ̄ is continuous on H1(SOn, son) (see proof of Prop. 6.5), we get χ̄q → χ̄ as q → ∞.
But since χ satisfies (6.8), we have χ̄ = χ, which shows the requested density result.

We now show (6.20). Let χ ∈ C∞
inv(SOn, son). Since the function A 7→ |χ(A)|2 is a

class function, we have, thanks to Weyl’s integration formula (5.7):

∥χ∥2L2 =
γn

(2π)p

∫
T
|χ(AΘ)|2 un(Θ) dΘ =

γn
(2π)p

∫
T

p∑
i=1

|τi(Θ)|2 un(Θ) dΘ, (6.22)

which shows that ∥χ∥L2 = γn
(2π)p

∥τ∥V .
Now, we show that

∥∇χ∥2L2 =
γn

(2π)p

∫
T

{ p∑
i,j=1

∣∣∣ dτi
dθj

(Θ)
∣∣∣2 + ∑

1≤i<j≤p

( |(τi − τj)(Θ)|2

1− cos(θi − θj)
+

|(τi + τj)(Θ)|2

1− cos(θi + θj)

)
+ϵn

p∑
i=1

τ 2i (Θ)

1− cos θi

}
un(Θ) dΘ. (6.23)

The function A 7→ |∇χ(A)|2 is a class function (the proof relies on similar computations
to those made in the proof of Prop. 6.5 and is omitted) and we can use Weyl’s integration
formula to evaluate ∥∇χ∥2L2 . For this, we need to compute |∇χ(AΘ)|2. This will be done
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by means of (6.2), which requires to find a convenient basis of son and to compute the
action of the derivation operator ϱ on each term. The latter will be achieved thanks
to (5.8). Given that χ satisfies (6.7), we get, for all A ∈ SOn and X ∈ son:

d

dt

(
χ(etXAe−tX)

)∣∣
t=0

=
d

dt

(
etXχ(A)e−tX

)∣∣
t=0

= [X,χ(A)].

When inserted into (5.8), this leads to(
ϱ
(
Ad(A−1)X −X

)
χ
)
(A) = [X,χ(A)], ∀A ∈ SOn, ∀X ∈ son. (6.24)

We will also use the formula(
ϱ(F2k−1 2k)(χ)

)
(AΘ) =

d

dt
χ(AΘe

tF2k−1 2k)
∣∣
t=0

=
d

dt
χ(A(θ1,...,θk−t,...,θp))

∣∣
t=0

=

p∑
ℓ=1

d

dt
τℓ(θ1, . . . , θk − t, . . . , θp)

∣∣
t=0

F2ℓ−1 2ℓ = −
p∑

ℓ=1

∂τℓ
∂θk

(Θ)F2ℓ−1 2ℓ, (6.25)

which is a consequence of (6.8).
It will be convenient to first treat the special examples of dimension n = 3 and n = 4,

before generalizing them to dimensions n = 2p and n = 2p+ 1.

Case of SO3: This is an even-dimensional case n = 2p + 1 with p = 1. We have
Θ = θ1. Then, AΘ = Rθ1 (where Rθ is given by (5.1)) and we have χ(AΘ) = τ1(θ1)F12.
The triple (F12, G

+, G−) with G± = 1√
2
(F13 ± F23) is an orthonormal basis of so3 which

we will use to compute (6.2). Thanks to (6.25), we first have(
ϱ(F12)χ

)
(AΘ) = −dτ1

dθ1
(θ1)F12.

Now, we apply (6.24) with A = AΘ and X = G+ or G−. Since A−1
Θ = A−Θ, easy

computations (see also [16]) lead to

Ad(A−Θ)G
+ −G+ = (cos θ1 − 1)G+ − sin θ1G

−,

Ad(A−Θ)G
− −G− = − sin θ1G

+ + (cos θ1 − 1)G−,

and, using (5.9),

[G+, χ(AΘ)] = −τ1(θ1)G−, [G+, χ(AΘ)] = τ1(θ1)G
+.

Thus ((
(cos θ1 − 1)ϱ(G+)− sin θ1ϱ(G

−)
)
χ
)
(AΘ) = −τ1(θ1)G−,((

− sin θ1ϱ(G
+) + (cos θ1 − 1)ϱ(G−)

)
χ
)
(AΘ) = τ1(θ1)G

+,

which leads to(
ϱ(G+)χ

)
(AΘ) = − τ1(θ1)

2(1− cos θ1)

(
sin θ1G

+ + (cos θ1 − 1)G−),
(
ϱ(G−)χ

)
(AΘ) =

τ1(θ1)

2(1− cos θ1)

(
(cos θ1 − 1)G+ − sin θ1G

−).
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From (6.2), it follows that

|∇χ(AΘ)|2 =
∣∣∣dτ1
dθ1

(θ1)
∣∣∣2 + τ 21 (θ1)

1− cos θ1
,

which leads to (6.23) for n = 3.

Case of SO4: this is an odd-dimensional case n = 2p with p = 2. We have Θ = (θ1, θ2)
and

χ(AΘ) = τ1(θ1, θ2)F12 + τ2(θ1, θ2)F34.

The system (F12, F34, H
+, H−, K+, K−) withH± = 1√

2
(F13±F24) andK

± = 1√
2
(F14±F23)

is an orthonormal basis of so4, which will be used to express (6.2). Then, we have(
ϱ(F12)χ

)
(AΘ) = −dτ1

dθ1
(Θ)F12 −

dτ2
dθ1

(Θ)F34, (6.26)(
ϱ(F34)χ

)
(AΘ) = −dτ1

dθ2
(Θ)F12 −

dτ2
dθ2

(Θ)F34. (6.27)

Now, we compute:

Ad(A−Θ)H
+ −H+ = (c1c2 + s1s2 − 1)H+ − (c1s2 − s1c2)K

−,

Ad(A−Θ)H
− −H− = −(c1s2 + s1c2)K

+ + (c1c2 − s1s2 − 1)H−,

Ad(A−Θ)K
+ −K+ = (c1c2 − s1s2 − 1)K+ + (c1s2 + s1c2)H

−,

Ad(A−Θ)K
− −K− = (c1s2 − s1c2)H

+ + (c1c2 + s1s2 − 1)K−,

with ci = cos θi and si = sin θi, i = 1, 2. We also compute, using (5.9):

[H+, χ(AΘ)] = (−τ1 + τ2)K
−, [H−, χ(AΘ)] = (τ1 + τ2)K

+,

[K+, χ(AΘ)] = −(τ1 + τ2)H
−, [K−, χ(AΘ)] = (τ1 − τ2)H

+.

where we omit the dependence of τi on Θ for simplicity. Applying (6.24), we get two
independent linear systems of equations for ((ϱ(H+)χ)(AΘ), (ϱ(K

−)χ)(AΘ)) on one hand,
and ((ϱ(K+)χ)(AΘ), (ϱ(H

−)χ)(AΘ)) on the other hand, which can both easily be resolved
into (

ϱ(H+)χ
)
(AΘ) =

1

2
(τ1 − τ2)

(
K− − sin(θ1 − θ2)

1− cos(θ1 − θ2)
H+

)
, (6.28)

(
ϱ(K−)χ

)
(AΘ) =

1

2
(τ1 − τ2)

(
− sin(θ1 − θ2)

1− cos(θ1 − θ2)
K− −H+

)
, (6.29)

(
ϱ(H−)χ

)
(AΘ) =

1

2
(τ1 + τ2)

(
−K+ − sin(θ1 + θ2)

1− cos(θ1 + θ2)
H−

)
, (6.30)

(
ϱ(K+)χ

)
(AΘ) =

1

2
(τ1 + τ2)

(
− sin(θ1 + θ2)

1− cos(θ1 + θ2)
K+ +H−

)
. (6.31)

Taking the squared norms in so4 of (6.26) to (6.31), we get

|∇χ(AΘ)|2 =
2∑

i,j=1

∣∣∣ dτi
dθj

∣∣∣2 + |τ1 − τ2|2

1− cos(θ1 − θ2)
+

|τ1 + τ2|2

1− cos(θ1 + θ2)
,
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which leads to (6.23) for n = 4.

Case of SO2p: Define H±
jk =

1√
2
(F2j−1 2k−1±F2j 2k) and K

±
jk =

1√
2
(F2j−1 2k ±F2j 2k−1)

for 1 ≤ j < k ≤ p. Then, the system
(
(F2j−1 2j)j=1,...,p, (H

+
jk, H

−
jk, K

+
jk, K

−
jk)1≤j<k≤p

)
is the

orthonormal basis of so2pR which will be used to evaluate (6.2). Then, we remark that the
computations of Ad(A−Θ)H

±
jk and Ad(A−Θ)K

±
jk only involve the 4 × 4 matrix subblock

corresponding to line and column indices belonging to {2j − 1, 2j} ∪ {2k − 1, 2k}. Thus,
restricted to these 4×4 matrices, the computations are identical to those done in the case
of SO4R. This directly leads to (6.23) for n = 2p.

Case of SO2p+1: this case is similar, adding to the previous basis the elements
G±

j = 1√
2
(F2j−1 2p+1 ± F2j 2p+1). These additional terms contribute to terms like in the

SO3 case, which leads to (6.23) for n = 2p+ 1.

This finishes the proof of (6.23) and of the proposition.

We can now write the variational formulation obeyed by α in the following:

Proposition 6.7. Let µ be the unique solution of the variational formulation (6.16).
Then, µ is given by (6.13) where α = (αi)

p
i=1 is the unique solution of the following

variational formulation {
α ∈ V ,
A(α, τ) = L(τ), ∀τ ∈ V , (6.32)

and with

A(α, τ) =

∫
T

{ p∑
i,j=1

∂αi

∂θj

∂τi
∂θj

+
∑

1≤i<j≤p

((αi − αj)(τi − τj)

1− cos(θi − θj)

+
(αi + αj)(τi + τj)

1− cos(θi + θj)

)
+ ϵn

p∑
i=1

αiτi
1− cos θi

}
m(Θ) dΘ, (6.33)

L(τ) =

∫
T

( p∑
i=1

sin θi τi

)
m(Θ) dΘ. (6.34)

Proof. A and L are just the expression of the left-hand and right-hand sides of (6.16)
when µ and χ are given the expressions (6.13) and (6.8) respectively. The computation
of (6.33) follows closely the computations made in the proof of Prop. 6.6 and is omitted.
That of (6.34) follows from

AΘ − AT
Θ

2
= −

p∑
ℓ=1

sin θℓ F2ℓ−1 2ℓ. (6.35)

which is a consequence of (5.2), (5.3).
To show that the variational formulation (6.32) is well-posed we apply Lax-Milgram’s

theorem. A and L are clearly continuous bilinear and linear forms on V respectively. To
show that A is coercive, it is enough to show a Poincaré inequality

A(τ, τ) ≥ C∥τ∥2H, ∀τ ∈ V ,
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for some C > 0. Since 1− cos(θi ± θj) ≤ 2, we have

A(τ, τ) ≥
∫
T

∑
1≤i<j≤p

( |τi − τj|2

1− cos(θi − θj)
+

|τi + τj|2

1− cos(θi + θj)

)
m(Θ) dΘ

≥ 1

2

∑
1≤i<j≤p

∫
T

(
|τi − τj|2 + |τi + τj|2

)
m(Θ) dΘ

=
∑

1≤i<j≤p

∫
T

(
|τi|2 + |τj|2

)
m(Θ) dΘ = (p− 1)∥τ∥2H,

which ends the proof.

The variational formulation (6.32) gives the equations satisfied by α in weak form. It
is desirable to express this system in strong form and show that the latter is given by
System (3.11). This is done in the following proposition.

Proposition 6.8. Let α be the unique solution of the variational formulation (6.32).
Then, α is a distributional solution of System (3.11) on the open set

O =
{
Θ ∈ T | θℓ ̸= ±θk, ∀k ̸= ℓ and, in the case n even, θℓ ̸= 0, ∀ℓ ∈ {1, . . . , p}

}
.

Proof. A function f : T → R is invariant by the Weyl group if and only if f ◦W = f ,
∀W ∈ W. It is easily checked that the functions inside the integrals defining A and L
in (6.33) and (6.34) are invariant by the Weyl group. If f ∈ L1(T ) is invariant by the
Weyl group, we can write, using (5.4) and (5.5) (with Rp replaced by T and W by Wper):∫

T
f(Θ) dΘ =

∑
W∈W

∫
Wper

f ◦W (Θ) dΘ = Card(W)

∫
Wper

f(Θ) dΘ (6.36)

Thus, up to a constant which will factor out from (6.32), the integrals over T which are
involved in the definitions of A and L in (6.33) and (6.34) can be replaced by integrals
over Wper.

Now, given ℓ ∈ {1, . . . p}, we wish to recover the ℓ-th equation of System (3.11)
by testing the variational formulation (6.32) with a convenient p-tuple of test functions
τ = (τ1, . . . , τp). A natural choice is by taking τℓ = φ(Θ) for a given φ ∈ C∞

c (Int(Wper))
(where C∞

c stands for the space of infinitely differentiable functions with compact support
and Int for the interior of a set), while τi = 0 for i ̸= ℓ. However, this only defines τ on
Wper and we have to extend it to the whole domain T and show that it defines a valid
test function τ ∈ V .

More precisely, we claim that we can construct a unique τ ∈ V such that

τi(Θ) = φ(Θ)δiℓ, ∀Θ ∈ Int(Wper), ∀i ∈ {1, . . . p}. (6.37)

Indeed, we can check that

O =
⋃

W∈W

Int
(
W (Wper)

)
.
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Thus, if Θ ∈ O, there exists a unique pair (W,Θ0) with W ∈ W and Θ0 ∈ Int(Wper) such
that Θ = W (Θ0). Then, by the fact that τ must commute with the elements of the Weyl
group, we necessarily have

τ(Θ) = τ ◦W (Θ0) = W ◦ τ(Θ0). (6.38)

Since τ(Θ0) is determined by (6.37), then τ(Θ) is determined by (6.38) in a unique way.
It remains to determine τ on T \ O. But since φ is compactly supported in Int(Wper) its
value on the boundary of ∂Wper of Wper is equal to 0. By the action of the Weyl group
on ∂Wper, we deduce that τ must be identically 0 on T \ O. In particular, τ is periodic
on T . So, the so-constructed τ is in C∞,W

per (T ,Rp) and thus, in V . The so-constructed τ
is unique because we proceeded by necessary conditions throughout all this reasoning.

We use the so-constructed τ as a test function in (6.32) with T replaced by Wper

in (6.33) and (6.34). This leads to∫
Wper

{ p∑
k=1

∂αℓ

∂θk

∂φ

∂θk
+
[∑

k ̸=ℓ

( (αℓ − αk)

1− cos(θℓ − θk)
+

(αℓ + αk)

1− cos(θℓ + θk)

)
+ϵn

αℓ

1− cos θℓ

]
φ
}
m(Θ) dΘ =

∫
Wper

sin θℓ φm(Θ) dΘ,

for all ℓ ∈ {1, . . . , p}, for all φ ∈ C∞
c (Int(Wper)), which is equivalent to saying that α is

a distributional solution of (3.11) on Int(Wper). Now, in (6.36), Wper can be replaced by
W (Wper) for any W ∈ W. This implies that α is a distributional solution of (3.11) on
the whole open set O, which ends the proof.

Remark 6.3. Because of the singularity of System (3.11) it is delicate to give sense of it
on T \ O. Observe however that since µ ∈ C∞(SOn, son) (by elliptic regularity), then τi:
Θ 7→ µ(AΘ) · F2i−1 2i belongs to C

∞(T ).

7 Hydrodynamic limit II: final steps of the proof

7.1 Use of the generalized collision invariant

Here, we note a slight confusion we have made so far between two different concepts. The
reference frame (e1, . . . , en) is used to define a rotation (temporarily noted as γ) which
maps this frame to the average body frame (Ω1, . . . ,Ωn) (i.e. Ωj = γ(ej), see (3.5)).
Now to identify the rotation γ with a rotation matrix Γ, we can use a coordinate basis
(f1, . . . , fn) which is different from the reference frame (e1, . . . , en). The rotation matrix Γ
is defined by γ(fj) =

∑n
i=1 Γijfi. So far, we have identified the rotation γ and the matrix Γ,

but of course, this requires to specify the coordinate basis (f1, . . . , fn). Note that Γ can
be recovered from (e1, . . . , en) and (Ω1, . . . ,Ωn) by Γ = TST where S and T are the
transition matrices from (f1, . . . , fn) to (e1, . . . , en) and (Ω1, . . . ,Ωn) respectively.
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We denote by e1m the m-th coordinate of e1 in the coordinate basis (f1, . . . , fn) and
we define a matrix P and a four-rank tensor S as follows:

P = ΓT (∇xρ⊗ e1)− (∇xρ⊗ e1)
TΓ + κρΓT∂tΓ, (7.1)

Sijmq =
1

2

n∑
k,ℓ=1

Γki
∂Γkj

∂xℓ

(
Γℓme1 q + Γℓqe1m

)
, (7.2)

where in (7.2), S is read in the coordinate basis (f1, . . . , fn). The symbol ⊗ denotes the
tensor product of two vectors. Hence, the matrix ∇xρ ⊗ e1 has entries (∇xρ ⊗ e1)ij =
(∇xρ)ie1 j. We note that P is an antisymmetric matrix while S is antisymmetric with
respect to (i, j) and symmetric with respect to (m, q). We denote by Sn the space of n×n
symmetric matrices. Now, we define two maps L and B as follows:

• L is a linear map son → son such that

L(P ) =

∫
SOn

(A · P )µ(A)M(A) dA, ∀P ∈ son. (7.3)

• B: son × son → Sn is bilinear and defined by

B(P,Q) =

∫
SOn

(A · P ) (µ(A) ·Q) A+ AT

2
M(A) dA, ∀P, Q ∈ son. (7.4)

We can now state a first result about the equation satisfied by Γ.

Proposition 7.1. The functions ρ and Γ involved in (3.2) satisfy the following equations:

L(P)rs + κρ
n∑

m,q=1

Bmq(S··mq, Frs) = 0, ∀r, s ∈ {1, . . . , n}, (7.5)

where S··mq stands for the antisymmetric matrix (S··mq)ij = Sijmq, Frs is given by (2.6) and
Bmq(P,Q) is the (m, q)-th entry of the symmetric matrix B(P,Q) (for any P, Q ∈ son).

Proof. Recalling the definition (6.1) of µΓ, we have, thanks to (4.4)∫
SOn

Q(f ε)µΓfε dA = 0.

It follows from (3.17) that∫
SOn

[
∂tf

ε + (Ae1) · ∇xf
ε
]
µΓfε dA = 0.

Letting ε→ 0 and noting that µΓ is a smooth function of Γ and that Γfε → Γ, we get∫
SOn

[
∂tf

0 + (Ae1) · ∇xf
0
]
µΓ dA = 0. (7.6)
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With (3.21), we compute

∂tf
0 + (Ae1) · ∇xf

0 =MΓ

{
∂tρ+ (Ae1) · ∇xρ+ κρPTΓ

A ·
[
∂tΓ +

(
(Ae1) · ∇x

)
Γ
]}
,

where (Ae1) · ∇x stands for the operator
∑n

i=1(Ae1)i∂xi
. We insert this expression

into (7.6) and we make the change of variables A′ = ΓTA with dA = dA′ owing to
the translation invariance of the Haar measure. With (6.6) and the fact that MΓ(A) =

M(ΓTA) and PTΓ
(ΓA) = ΓA−AT

2
, we get (dropping the primes for clarity):∫

SOn

{
∂tρ+(ΓAe1) ·∇xρ+κρ

A− AT

2
·
(
ΓT

[
∂tΓ+

(
(ΓAe1) ·∇x

)
Γ
])}

M(A)µ(A) dA = 0.

Now, changing A to AT in (6.3), we notice that µ(AT ) and −µ(A) satisfy the same
variational formulation. By uniqueness of its solution, we deduce that µ(AT ) = −µ(A).

Then, making the change of variables A′ = AT = A−1 and remarking that the Haar
measure on SOn is invariant by group inversion, we have, thanks to the fact thatM(A) =
M(AT ),∫
SOn

{
∂tρ+(ΓATe1)·∇xρ−κρ

A− AT

2
·
(
ΓT

[
∂tΓ+

(
(ΓATe1)·∇x

)
Γ
])}

M(A)µ(A) dA = 0.

Subtracting the last two equations and halfing the result, we get

0 =

∫
SOn

{
(Γ
A− AT

2
e1) · ∇xρ+ κρ

A− AT

2
· (ΓT∂tΓ)

+κρ
A− AT

2
·
(
ΓT

[(
(Γ
A+ AT

2
e1) · ∇x

)
Γ
])}

M(A)µ(A) dA =: aO+ bO+ cO. (7.7)

We have

(Γ
A− AT

2
e1) · ∇xρ = (

A− AT

2
e1) · (ΓT∇xρ) = 2

A− AT

2
·
(
ΓT (∇xρ⊗ e1)

)
=

A− AT

2
·
(
ΓT (∇xρ⊗ e1)− (∇xρ⊗ e1)

TΓ
)
,

where the first two dots are vector inner products and the last two ones are matrix
inner products. The factor 2 in the last expression of the first line arises because of the
definition (2.1) of the matrix inner product. Finally, the second line is just a consequence
of the fact that A − AT is an antisymmetric matrix. Thus, the first two terms in (7.7)
can be written as

1 + 2 =

∫
SOn

A− AT

2
·
[
ΓT (∇xρ⊗ e1)− (∇xρ⊗ e1)

TΓ + κρΓT∂tΓ
]
M(A)µ(A) dA

=

∫
SOn

(A · P)M(A)µ(A) dA = L(P). (7.8)

To compute 3 , we first state the following lemma:
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Lemma 7.2. For a vector w ∈ Rn, we have

(
ΓT (w · ∇x)Γ

)
ij
=

n∑
k,ℓ=1

Γkiwℓ
∂Γkj

∂xℓ
. (7.9)

This lemma is not totally obvious as the differentiation is that of a matrix in SOn. It is
proved in [16] in its adjoint form (with ΓT to the right of the directional derivative). The
proof of the present result is similar and is skipped.

Then, applying this lemma, we have(
ΓT

[(
(Γ
A+ AT

2
e1) · ∇x

)
Γ
])

ij
=

n∑
k=1

Γki

n∑
ℓ,m,q=1

Γℓm
Amq + Aqm

2
e1 q

∂Γkj

∂xℓ

=
n∑

m,q=1

Amq + Aqm

2
S̃ijmq =

n∑
m,q=1

Amq + Aqm

2
Sijmq,

with

S̃ijmq =
n∑

k,ℓ=1

ΓkiΓℓme1 q
∂Γkj

∂xℓ
and Sijmq =

S̃ijmq + S̃ijqm

2
.

Thus,

3 = κρ
n∑

i,j,m,q=1

∫
SOn

(A− AT

2

)
ij

(A+ AT

2

)
mq
M(A)µ(A) dA Sijmq.

Now, because µ(A)rs = (µ(A) · Frs) and Sijmq is antisymmetric with respect to (i, j), the
(r, s) entry of the matrix cO is given by

3 rs = κρ
n∑

m,q=1

∫
SOn

(A · S··mq) (µ(A) · Frs)
(A+ AT

2

)
mq
M(A) dA

= κρ
n∑

m,q=1

Bmq(S··mq, Frs). (7.10)

Now, combining (7.8) and (7.10), we get (7.5).

7.2 Expressions of the linear map L and bilinear map B

Now, we give expressions of L and B defined in (7.3) and (7.4).

Proposition 7.3. (i) We have

L(P ) = C2 P, ∀P ∈ son, (7.11)

39



with

C2 =
2

n(n− 1)

∫
SOn

(µ(A) · A)M(A) dA (7.12)

= − 2

n(n− 1)

∫
T

( p∑
k=1

αk(Θ) sin θk

)
m(Θ) dΘ∫

T
m(Θ) dΘ

, (7.13)

where ϵn is given by (3.7) and m by (3.10).

(ii) We have

B(P,Q) = C3Tr(PQ)I + C4

(PQ+QP

2
− 1

n
Tr(PQ)I

)
∀P, Q ∈ son, (7.14)

with

C3 = − 1

n2(n− 1)

∫
SOn

(µ(A) · A) Tr(A)M(A) dA (7.15)

=
1

n2(n− 1)

∫
T

( p∑
k=1

αk(Θ) sin θk

)(
2

n∑
k=1

cos θk + ϵn

)
m(Θ) dΘ∫

T
m(Θ) dΘ

,

(7.16)

and

C4 =
2n

n2 − 4

(
− 2C3 + C ′

4

)
, (7.17)

where

C ′
4 =

1

n(n− 1)

∫
SOn

Tr
{
µ(A)

(A+ AT

2

)(A− AT

2

)}
M(A) dA (7.18)

=
2

n(n− 1)

∫
T

( p∑
k=1

αk(Θ) sin θk cos θk

)
m(Θ) dΘ∫

T
m(Θ) dΘ

. (7.19)

Proof. The proof of (7.11) and (7.14) relies on Schur’s Lemma. We refer to [17, Sect. 6]
for a list of group representation concepts which will be useful for what follows. The proof
will follow closely [17, Sect. 8 & 9] but with some differences which will be highlighted
when relevant.

(i) Proof of (7.11). Using (6.5) and the translation invariance (on both left and right) of
the Haar measure, we easily find that

L(gPgT ) = gL(P )gT , ∀P ∈ son, ∀g ∈ SOn. (7.20)
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Denote V = Cn (the standard complex representation of SOn) and by Λ2(V ) = V ∧ V
its exterior square. We recall that Λ2(V ) = SpanC{v ∧ w | (v, w) ∈ V 2} where v ∧ w =
v⊗w−w⊗ v is the antisymmetrized tensor product of v and w. Λ2(V ) = sonC where is
sonC is the complexification of son. So, by linearity, we can extend L into a linear map
Λ2(V ) → Λ2(V ), which still satisfies (7.20) (with now P ∈ Λ2(V )). Thus, L intertwines
the representation Λ2(V ).

• For n ≥ 3 and n ̸= 4, Λ2(V ) is an irreducible representation of SOn. Thus, by
Schur’s Lemma, we have (7.11) (details can be found in [16, Sect. 8]).

• For n = 4, Λ2(V ) is not an irreducible representation of SOn. Still, (7.11) remains
true but its proof requires additional arguments developed in Section 7.4.1.

Now, we show (7.12) and (7.13). Taking the matrix inner product of (7.11) with P , we
get ∫

SOn

(A · P ) (µ(A) · P )M(A) dA = C2(P · P ).

For P = Fij with i ̸= j, this gives

C2 =

∫
SOn

Aij − Aji

2
µ(A)ij M(A) dA.

Averaging this formula over all pairs (i, j) with i ̸= j leads to (7.12). Now, thanks to (6.5),
the function A 7→ (A ·µ(A))M(A) is a class function. So, we can apply Weyl’s integration
formula (5.7). For A = AΘ, we have,

Tr(AΘ) = 2
n∑

k=1

cos θk + ϵn, (7.21)

so that

M(AΘ) =
1

Z
exp

(κ
2

(
2

n∑
k=1

cos θk + ϵn
))
. (7.22)

Besides, dotting (6.13) with (6.35), we get

(
AΘ · µ(AΘ)

)
= −

p∑
k=1

αk(Θ) sin θk. (7.23)

Expressing the integral involved in Z (see (3.1)) using Weyl’s integration formula (5.7) as
well and collecting (7.22) and (7.23) into (7.12), we get (7.13).

(ii) Proof of (7.14). By contrast to [16, Sect. 9], the bilinear form B is not symmetric.
Thus, we decompose

B(P,Q) = Bs(P,Q) +Ba(P,Q),

Bs(P,Q) =
1

2

(
B(P,Q) +B(Q,P )

)
, Ba(P,Q) =

1

2

(
B(P,Q)−B(Q,P )

)
. (7.24)
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Again, using (6.5), we get

B(gPgT , gQgT ) = gB(P,Q)gT , ∀P, Q ∈ son, ∀g ∈ SOn, (7.25)

and similar for Bs and Ba. Both Bs and Ba can be extended by bilinearity to the complex-
ifications of son and Sn which are Λ2(V ) and ∨2(V ) respectively (where ∨2(V ) = V ∨V is
the symmetric tensor square of V , spanned by elements of the type v∨w = v⊗w+w⊗v,
for v, w in V ). By the universal property of the symmetric and exterior products, Bs

and Ba generate linear maps B̃s: ∨2(Λ2(V )) → ∨2(V ) and B̃a: Λ
2(Λ2(V )) → ∨2(V ) which

intertwine the SOn representations. By decomposing ∨2(Λ2(V )), Λ2(Λ2(V )) and ∨2(V )
into irreducible SOn representations and applying Schur’s lemma, we are able to provide
generic expressions of B̃s and B̃a.

For B̃s, this decomposition was done in [17, Sect. 9] and we get the following result.

• For n ≥ 3 and n ̸= 4, there exists real constants C3 and C4 such that

Bs(P,Q) = C3Tr(PQ)I + C4

(PQ+QP

2
− 1

n
Tr(PQ)I

)
∀P, Q ∈ son. (7.26)

• For n = 4, we still have (7.26) but this requires additional arguments developed in
Section 7.4.2.

For B̃a, thanks to Pieri’s formula [34, Exercise 6.16] we have Λ2(Λ2(V )) = S(2,1,1)

where S(2,1,1) denotes the Schur functor (or Weyl module) associated to partition (2, 1, 1)
of 4. As a Schur functor, S(2,1,1) is irreducible over slnC, the Lie algebra of the group
of unimodular matrices SLnC. We apply Weyl’s contraction method [34, Sect. 19.5] to
decompose it into irreducible representations over sonC.

It can be checked that all contractions with respect to any pair of indices of Λ2(Λ2(V ))
are either 0 or coincide (up to a sign), with the single contraction K defined as follows:

K : Λ2(Λ2(V )) → Λ2(V )

(v1 ∧ v2) ∧ (v3 ∧ v4) 7→ (v1 · v3)v2 ∧ v4 + (v2 · v4)v1 ∧ v3
−(v1 · v4)v2 ∧ v3 − (v2 · v3)v1 ∧ v4, ∀(v1, . . . , v4) ∈ V 4.

K is surjective as soon as n ≥ 3. Indeed, Let (ei)
n
i=1 be the canonical basis of V . Then,

K
(
(ei ∧ ej) ∧ (ei ∧ ek)

)
= ej ∧ ek, ∀i, j, k all distinct.

We have kerK = S[2,1,1] where S[2,1,1] denotes the intersection of S(2,1,1) with all the kernels
of contractions with respect to pairs of indices (see [34, Sect. 19.5]) and consequently

Λ2(Λ2(V )) ∼= S[2,1,1] ⊕ Λ2(V ),

is a decomposition of Λ2(Λ2(V )) in subrepresentations. We must discuss the irreducibility
of S[2,1,1] and Λ2(V ) according to the dimension.
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• If n ≥ 7, by [34, Theorem 19.22], S[2,1,1] and Λ2(V ) are respectively the irreducible
representations of sonC of highest weights 2L1+L2+L3 and L1+L2 (where (Li)

p
i=1

is the basis of the weight space, i.e. is the dual basis (in h∗C) of the basis (F2i−1,2i)
p
i=1

of hC, the complexification of h). On the other hand, ∨2(V ) = S[2] ⊕C I (where S[2]

is the space of symmetric trace-free matrices) is the decomposition of ∨2(V ) into
irreducible representations over sonC and corresponds to decomposing a symmetric
matrix into a trace-free matrix and a scalar one. We note that S[2] has highest
weight 2L1 while C I has highest weight 0. By [34, Prop. 26.6 & 27.7] the corre-
sponding representations of son are irreducible and real. Hence, they are irreducible
representations of SOn. Since the weights of S[2,1,1] and Λ2(V ) and those of S[2] and
C I are different, no irreducible subrepresentation of Λ2(Λ2(V )) can be isomorphic
to an irreducible subrepresentation of ∨2(V ). Consequently, by Schur’s Lemma we
have

Ba(P,Q) = 0 ∀P, Q ∈ son, (7.27)

• Case n ∈ {3, . . . , 6}.

- Case n = 3. We have Λ2(V ) ∼= V by the isomorphism η: Λ2(V ) → V such that
(η(v ∧ w) · z) = det(v, w, z), ∀(v, w, z) ∈ V 3. Consequently Λ2(Λ2(V )) ∼= V as
well. But V is an irreducible representation of so3C with highest weight L1.
Hence, it can be isomorphic to neither S[2] nor C I. Therefore, by Schur’s
lemma, (7.27) is true again.

- Case n = 4. By [34, p. 297], the partitions (2, 1, 1) and (2) are associated in
the sense of Weyl. Hence S[2,1,1]

∼= S[2] as so4C representations. Since ∨2(V )
decomposes into irreducible representations according to ∨2(V ) = S[2] ⊕ CI,
we see that Schur’s lemma allows the possibility of a non-zero B̃a mapping the
component S[2,1,1] of Λ

2(Λ2(V )) into the component S[2] of ∨2(V ). Likewise,
Λ2(V ) is reducible. To show that (7.27) is actually true requires additional
arguments which are developed in Section 7.4.3.

- Case n = 5. Like in the case n = 4, we find that the partitions (2, 1, 1) and
(2, 1) are associated and thus, S[2,1,1]

∼= S[2,1]. The latter is an irreducible
representation of so5C of highest weight 2L1 + L2. Likewise, Λ2(V ) is an
irreducible representation of highest weight L1 + L2. By [34, Prop. 26.6]
these are real irreducible representation of so5. Thus, they are irreducible
representations of SO5. Having different highest weights from those of S[2] or
CI, by the same argument as in the case n ≥ 7, (7.27) holds true.

- Case n = 6. In this case, the partition (2, 1, 1) is self-associated. By [34, The-
orem 19.22 (iii)], S[2,1,1] decomposes into the direct sum of two non-isomorphic
representations of so6C of highest weights 2L1 + L2 + L3 and 2L1 + L2 − L3.
On the other hand, Λ2(V ) is an irreducible representation of highest weight
L1 +L2. By [34, 27.7] the corresponding representations of so6 are irreducible
and real and thus generate irreducible representations of SO6. Having different
weights from those of S[2] and CI, the same reasoning applies again and (7.27)
holds true.
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Finally by adding (7.25) and (7.27), we get (7.14), which finishes the proof of Point (ii).

We now show (7.15) and (7.16). Taking the trace of (7.14), we get

C3 =
Tr

(
B(P,Q)

)
nTr(PQ)

, ∀P, Q ∈ son.

Taking P = Q = Fij for i ̸= j and owing to the fact that Tr(F 2
ij) = −2Fij · Fij = −2, we

find

C3 = − 1

2n

∫
SOn

Aij − Aji

2
µ(A)ij Tr(A)M(A) dA.

Now, averaging this formula over all pairs (i, j) with i ̸= j leads to (7.15). Again, the func-
tion A 7→ (A · µ(A)) Tr(A)M(A) is a class function and Weyl’s integration formula (5.7)
can be applied. Inserting (7.21), (7.22), (7.23) into (7.15) leads to (7.16).

We finish with showing (7.17)-(7.19). We now insert P = Fij and Q = Fiℓ with i ̸= j,
i ̸= ℓ and j ̸= ℓ. Then, Fij · Fiℓ = 0, so that Tr(FijFiℓ) = 0. A small computation shows
that

FijFiℓ + FiℓFij

2
= −Ejℓ + Eℓj

2
,

where Ejℓ is the matrix with (j, ℓ) entry equal to 1 and the other entries equel to 0. It
follows that

−C4
Ejℓ + Eℓj

2
=

∫
SOn

(A− AT

2

)
ij
µ(A)iℓ

A+ AT

2
M(A) dA. (7.28)

Now, taking P = Q = Fij with i ̸= j, and noting that F 2
ij = −(Eii+Ejj) and Tr(F 2

ij) = −2,
we get

−2C3I + C4

(
− (Eii + Ejj) +

2

n
I
)
=

∫
SOn

(A− AT

2

)
ij
µ(A)ij

A+ AT

2
M(A) dA. (7.29)

Take i, j with i ̸= j fixed. For any ℓ ̸= j, taking the (ℓ, j)-th entry of (7.28), we get

C4

2
=

∫
SOn

µ(A)iℓ

(A+ AT

2

)
ℓj

(A− AT

2

)
ji
M(A) dA. (7.30)

Likewise, taking the (j, j)-th entry of (7.29), we get

2C3 − C4

(
− 1 +

2

n

)
=

∫
SOn

µ(A)ij

(A+ AT

2

)
jj

(A− AT

2

)
ji
M(A) dA. (7.31)

Now, summing (7.30) over ℓ ̸= j and adding (7.31), we find

2C3 + C4
n2 + n− 4

2n
=

n∑
ℓ=1

∫
SOn

µ(A)iℓ

(A+ AT

2

)
ℓj

(A− AT

2

)
ji
M(A) dA.
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Then, averaging this equation over all pairs (i, j) such that i ̸= j, we get (7.17) with C ′
4

given by (7.18). Again, one can check that the functionA 7→ Tr{µ(A)(A+AT

2
)(A−AT

2
)}M(A)

is a class function. Thanks to (6.13), (6.35) and to the fact that

AΘ + AT
Θ

2
=

p∑
k=1

cos θk(E2k−1 2k−1 + E2k 2k) + ϵnEnn, (7.32)

we get

µ(AΘ)
(AΘ + AT

Θ

2

)(AΘ − AT
Θ

2

)
=

p∑
k=1

αk(Θ) cos θk sin θk (E2k−1 2k−1 + E2k 2k),

and thus,

Tr
{
µ(AΘ)

(AΘ + AT
Θ

2

)(AΘ − AT
Θ

2

)}
= 2

p∑
k=1

αk(Θ) cos θk sin θk,

which leads to (7.19).

7.3 Final step: establishment of (3.4)

Now, we can finish with the following

Proposition 7.4. The functions ρ and Γ involved in (3.2) satisfy (3.4). The constants
c2 and c4 are given by

c2 = − 2

C2

(
C3 −

C4

n

)
(7.33)

=
1

n2 − 4

∫ [
n(µ(A) · A)Tr(A) + 2Tr

(
µ(A)

A+ AT

2

A− AT

2

)]
M(A)dA∫

(µ(A) · A)M(A)dA
(7.34)

c4 =
C4

2C2

(7.35)

=
1

2(n2 − 4)

∫ [
2(µ(A) · A)Tr(A) + nTr

(
µ(A)

A+ AT

2

A− AT

2

)]
M(A)dA∫

(µ(A) · A)M(A)dA
(7.36)

(7.37)

where C2, C3 and C4 are given in Prop. 7.3. Then, c2, c3 and c4 are given by (3.13), (3.14)
and (3.15) respectively.
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Proof. We simplify (7.5) in light of (7.11) and (7.14). From (7.11), we have L(P) = C2P.
With (7.1) and recalling that Ω1 is defined by (3.5), this leads to

ρ∂tΓ =
[
− 1

κ

(
(∇xρ⊗ e1)Γ

T − Γ(e1 ⊗∇xρ)
)
+

1

C2

ΓL(P)ΓT
]
Γ

=
[
− 1

κ
∇xρ ∧ Ω1 +

1

C2κ
ΓL(P)ΓT

]
Γ. (7.38)

Now, we compute ΓL(P)ΓT thanks to (7.5) and the expressions (7.14) of B and (7.2) of S.
We have

B(P,Q) = C ′
3Tr(PQ)I + C4

PQ+QP

2
, ∀P, Q ∈ son,

with C ′
3 = C3 − C4

n
. This leads to

n∑
m,q=1

Bmq(S··mq, Frs) =
n∑

m,q=1

[
C ′

3Tr(S··mqFrs)δmq + C4

(
S··mq Frs + Frs S··mq

)
mq

2

]
. (7.39)

We compute, for m, q, r, s, u, v in {1, . . . , n}:(
S··mq Frs

)
uv

= Surmqδsv − Susmqδrv,
(
Frs S··mq

)
uv

= Ssvmqδru − Srvmqδsu.

Hence, Tr(S··mqFrs) = −2Srsmq and

n∑
m,q=1

Tr(S··mqFrs)δmq = −2
n∑

m=1

Srsmm = −2
n∑

m,k,ℓ=1

Γkr
∂Γks

∂xℓ
Γℓme1m

= −2
n∑

k,ℓ=1

Γkr
∂Γks

∂xℓ
Ω1ℓ = −2

n∑
k=1

Γkr (Ω1 · ∇x)Γks, (7.40)

where we have used Lemma 7.2. On the other hand, we have

n∑
m,q=1

(
S··mq Frs + Frs S··mq

)
mq

2
=

1

2

n∑
m,q=1

(
Smrmqδsq − Smsmqδrq + Ssqmqδrm − Srqmqδsm

)
=

1

2

n∑
m=1

(
Smrms − Smsmr + Ssmrm − Srmsm

)
=

n∑
m=1

(
Smrms − Smsmr

)
=

1

2

n∑
k,ℓ,m=1

(
Γkm

∂Γkr

∂xℓ

(
Γℓme1 s + Γℓse1m

)
− Γkm

∂Γks

∂xℓ

(
Γℓme1 r + Γℓre1m

))
. (7.41)

Inserting (7.40) and (7.41) into (7.39) and using (7.5) and Lemma 7.2 leads to

L(P)rs = −κρ
{
− 2C ′

3

n∑
k=1

Γkr (Ω1 · ∇x)Γks

+
C4

2

n∑
k,ℓ,m=1

(
Γkm

∂Γkr

∂xℓ

(
Γℓme1 s + Γℓse1m

)
− Γkm

∂Γks

∂xℓ

(
Γℓme1 r + Γℓre1m

))}
.
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Thus,

(
ΓL(P)ΓT

)
ij
=

n∑
r,s=1

ΓirL(P)rsΓis

= −κρ
{
− 2C ′

3

n∑
k=1

(Ω1 · ∇x)Γis Γjs +
C4

2

( n∑
k,r,s=1

(∂Γkr

∂xk
ΓirΓjse1 s −

∂Γks

∂xk
ΓirΓjse1 r

)
+

n∑
k,m,r=1

(
Γkm

∂Γkr

∂xj
Γire1m − Γkm

∂Γkr

∂xi
Γjre1m

))}
,

where we have used Lemma 7.2 again as well as that
∑n

r=1 ΓjrΓir = δij and similar
identities. We note that

n∑
k,r=1

∂Γkr

∂xk
Γir =

(
Γ(∇x · Γ)

)
i
,

with ∇x · Γ being the divergence of the tensor Γ defined in the statement of Prop. 7.4.
On the other hand, since

n∑
k=1

Γkm
∂Γkr

∂xj
= −

n∑
k=1

∂Γkm

∂xj
Γkr,

we have
n∑

k,m,r=1

Γkm
∂Γkr

∂xj
Γire1m = −

n∑
m=1

∂Γim

∂xj
e1m = −∂Ω1 i

∂xj
,

because e1 does not depend on space nor time. Thus, we get

ΓL(P)ΓT = −κρ
{
− 2C ′

3(Ω1 · ∇x)Γ ΓT +
C4

2

(
Γ(∇x · Γ)

)
∧ Ω1 +∇x ∧ Ω1

)}
. (7.42)

Inserting (7.42) into (7.38) yields (3.4) with (3.6) and formulas (7.33), (3.14), (7.35) for
the coefficients. Formulas (7.34), (3.13), (7.36), (3.15) follow with a little bit of algebra
from the formulas of Prop. 7.3.

7.4 Case of dimension n = 4

In this subsection, we prove Prop. 7.3 for the special case n = 4.

7.4.1 Proof of (7.11)

If n = 4, there exists an automorphism β of Λ2(V ) (with V = C4) characterized by the
following relation (see [17, Sect. 8])(

β(v1 ∧ v2)
)
· (v3 ∧ v4) = det(v1, v2, v3, v4), ∀(v1, . . . , v4) ∈ V 4, (7.43)

47



and where the dot product in Λ2(V ) extends that of so4, namely (v1 ∧ v2) · (v3 ∧ v4) =
(v1 · v3)(v2 · v4) − (v1 · v4)(v2 · v3). In addition, β intertwines Λ2(V ) and itself as SO4

representations. It is also an involution (i.e. β−1 = β) with

β(F12) = F34, β(F13) = −F24, β(F14) = F23. (7.44)

The map β has eigenvalues ±1 with associated eigenspaces Λ± such that

Λ± = Span{F12 ± F34, F13 ∓ F24, F14 ± F23}.

Thus, dimΛ± = 3, each Λ± is an irreducible representation of SO4 and σ is the orthogonal
symmetry in Λ+. Thanks to this, it was shown in [17, Sect. 8] that for a map L: so4 → so4
satisfying (7.20), there exist two real constants C2, C

′
2 such that

L(P ) = C2 P + C ′
2 β(P ), ∀P ∈ so4.

In [17, Sect. 8] it was used that L commutes, not only with conjugations with elements
of SO4 (inner automorphisms) through (7.20), but also with those of O4 \ SO4 (outer
automorphisms). This simple observation allowed us to conclude that C ′

2 = 0. However,
here, it is not true any more that L commutes with outer automorphisms. Hence, we
have to look for a different argument to infer that C ′

2 = 0. This is what we develop now.
Taking the inner product of L(P ) with β(P ) and using (7.3), we get∫

SO4

(A · P ) (µ(A) · β(P ))M(A) dA = C2(P · β(P )) + C ′
2(β(P ), β(P )).

We apply this equality with P = Fij for i ̸= j and we note that (β(Fij) · Fij) = 0, ∀i, j,
and that (β(P ).β(P )) = (P.P ) and (µ(A) · β(P )) = (β ◦ µ(A) · P ) due to the fact that β
is an orthogonal self-adjoint transformation of so4. This leads to

C ′
2 =

∫
SO4

Aij − Aji

2
(β ◦ µ(A))ij M(A) dA.

Averaging over (i, j) such that i ̸= j, we get

C ′
2 =

1

6

∫
SO4

(A− AT

2
·
(
β ◦ µ(A)

))
M(A) dA. (7.45)

Due to the fact that β is an intertwining map, the function A 7→ (A · (β ◦ µ(A)))M(A)
is a class function. Thus, we can apply Weyl’s integration formula (5.7). Using (6.35),
(6.8), (7.22), (7.44) and the fact that (Fij)i<j forms an orthonormal basis of so4, we get

C ′
2 = −

∫
T2

(
sin θ1α2(Θ) + sin θ2α1(Θ)

)
m(Θ) dΘ

6

∫
T2
m(Θ) dΘ

, (7.46)

with Θ = (θ1, θ2) and m(Θ) = eκ(cos θ1+cos θ2) (cos θ1 − cos θ2)
2. Now, we define

α̃1(θ1, θ2) = −α1(−θ1, θ2), α̃2(θ1, θ2) = α2(−θ1, θ2). (7.47)
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We can check that α̃ = (α̃1, α̃2) belongs to V . Furthermore, using τ̃ as a test function
where τ̃ is obtained from τ by the same formulas (7.47), we realize that α̃ is another
solution of the variational formulation (6.32). Since the solution of (6.32) is unique and
equal to α, we deduce that α̃ = α, hence,

α1(−θ1, θ2) = −α1(θ1, θ2), α2(−θ1, θ2) = α2(θ1, θ2).

Thus, changing θ1 into −θ1 in the integrals, the numerator of (7.46) is changed in its
opposite, while the denominator is unchanged. It results that C ′

2 = 0, ending the proof.

7.4.2 Proof of (7.26)

In [17, Sect. 9] a symmetric bilinear map Bs: so4 × so4 → S4 satisfying (7.25) is shown
to be of the form

Bs(P,Q) = C3Tr(PQ)I + C4

(PQ+QP

2
− 1

4
Tr(PQ)I

)
+ C5(β(P ) ·Q)I, ∀P, Q ∈ so4,

(7.48)
where C3, C4 and C5 are real constants and β is the map defined by (7.43). To show that
C5 = 0, we adopt the same method as in the previous section. Taking the trace of (7.48)
and applying the resulting formula with Q = β(P ), we get, with (7.24) and (7.4):

1

2

∫
SO4

{(A− AT

2
· P

)(
β ◦ µ(A) · P

)
+
(
β
(A− AT

2

)
· P

)(
µ(A) · P

)}
Tr(A)M(A) dA

= 4C5(P · P ), ∀P ∈ so4.

Applying this relation with P = Fij and averaging the result over i, j, such that i ̸= j,
we get

8C5 =
1

6

∫
SO4

{(A− AT

2
· β ◦ µ(A)

)
+
(
β
(A− AT

2

)
· µ(A)

)}
Tr(A)M(A) dA

=
1

3

∫
SO4

(A− AT

2
· β ◦ µ(A)

)
Tr(A)M(A) dA.

This formula is similar to (7.45) but for the additional factor Tr(A). This factor adds one
more factor to the formula corresponding to (7.46) and this additional factor is an even
function of the θk. Thus, the conclusion remains that the corresponding integral vanishes
by antisymmetry, and this leads to C5 = 0.

7.4.3 Proof of (7.27)

We have already shown that Λ2(Λ2(V )) = W ⊕ Z, where W ∼= S[2] and Z ∼= Λ(V ). If
n = 4, Λ(V ) is not irreducible. Instead, it decomposes into two irreducible representations
of highest weights L1 + L2 and L1 − L2. On the other hand, S2 decomposes into the
irreducible representations S[2] and C I, which have highest weights 2L1 and 0. Thus, by

Schur’s lemma, a non-zero intertwining map B̃a: Λ
2(Λ2(V )) → S2 must be an isomorphism
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between W and S[2] and equal to zero on the complement Z of W in Λ2(Λ2(V )). We now
identify such a map.

If n = 4, there exists an isomorphism ζ: Λ3(V ) → V such that ζ(v1 ∧ v2 ∧ v3) · v4 =
det(v1, v2, v3, v4), ∀(v1, . . . , v4) ∈ V 4. Now, we define the map R as follows:

R : Λ2(Λ2(V )) → ∨2(V )

(v1 ∧ v2) ∧ (v3 ∧ v4) 7→ ζ(v1 ∧ v2 ∧ v3) ∨ v4 − ζ(v1 ∧ v2 ∧ v4) ∨ v3
−ζ(v3 ∧ v4 ∧ v1) ∨ v2 + ζ(v3 ∧ v4 ∧ v2) ∨ v1, ∀(v1, . . . , v4) ∈ V 4.

R intertwines the representations Λ2(Λ2(V )) and ∨2(V ) of so4C. Thus, its kernel and
image are subrepresentations of Λ2(Λ2(V )) and ∨2(V ) of so4C respectively. One has

Tr
{
R
(
(v1 ∧ v2) ∧ (v3 ∧ v4)

)}
= 0.

Hence im(R) ⊂ S[2]. Furthermore im(R) ̸= {0}. Indeed,

R
(
(e1 ∧ e2) ∧ (e3 ∧ e4)

)
= −(e1 ∨ e1 + e2 ∨ e2) + e3 ∨ e3 + e4 ∨ e4 ̸= 0,

where (ei)
4
i=1 is the canonical basis of V = C4. Since S[2] is irreducible, we have im(R) =

S[2]. We have dimΛ2(Λ2(V )) = 15, dim S[2] = 9, hence by the rank nullity theorem,
dim(kerR) = 6 = dimΛ2(V ). Thus, kerR = Z (indeed, kerR has to be a subrepre-
sentation of Λ2(Λ2(V )) and Z ∼= Λ2(V ) is the only such representation which has the
right dimension). Consequently, R is an isomorphism from the complement W of Z in
Λ2(Λ2(V )) onto S[2] and is zero when restricted to Z. This shows that R is the map
that needed to be identified. By Schur’s lemma, there is a constant C6 ∈ C such that
B̃a = C6R.

We have

ζ(ei ∧ ej ∧ ek) =
4∑

m=1

εijkmem,

where εijkm is equal to zero if two or more indices i, j, k,m are equal and equal to the
signature of the permutation (

1 2 3 4
i j k m

)
,

otherwise. Then,

R
(
(ei ∧ ej) ∧ (ek ∧ eℓ)

)
=

4∑
m=1

[
εijkmem ∨ eℓ − εijℓmem ∨ ek − εkℓimem ∨ ej + εkℓjmem ∨ ei

]
.

It follows that

Ba(Fij, Fik)iℓ = C6R
(
(ei ∧ ej) ∧ (ei ∧ ek)

)
iℓ
= 2C6εikjℓ.

Thus, ∑
i,j,k,ℓ

ϵijkℓBa(Fij, Fik)iℓ = 2C6

∑
i,j,k,ℓ

ϵijkℓεikjℓ = −2C6Card(S4) = −48C6.
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On the other hand,∑
i,j,k,ℓ

ϵijkℓBa(Fij, Fik)iℓ =
1

2

∫
SO4

∑
i,j,k,ℓ

ϵijkℓ

[(A− AT

2

)
ij
µ(A)ik

−µ(A)ij
(A− AT

2

)
ik

](A+ AT

2

)
iℓ
M(A) dA

= −
∫
SO4

∑
j,k,ℓ,i

ϵjkℓi

(A− AT

2
ei

)
j

(
µ(A)ei

)
k

(A+ AT

2
ei

)
ℓ
M(A) dA

= −
∫
SO4

∑
i

ζ
(A− AT

2
ei ∧ µ(A)ei ∧

A+ AT

2
ei

)
· ei M(A) dA

= −
∫
SO4

∑
i

det
(A− AT

2
ei, µ(A)ei,

A+ AT

2
ei, ei

)
M(A) dA,

where we have used that

ζ(u ∧ v ∧ w) =
∑
i,j,k,ℓ

ϵijkℓuivjwkeℓ,

with ui the i-th coordinates of u in the basis (ei)
n
i=1 and similarly for vj and wk. Now,

for a given A ∈ SO4, there exists g ∈ SO4 and Θ = (θ1, θ2) ∈ T2 such that A = gAΘg
T .

Then,

det
(A− AT

2
ei, µ(A)ei,

A+ AT

2
ei, ei

)
= det

(
g
AΘ − AT

Θ

2
gT ei, gµ(AΘ)g

T ei, g
AΘ + AT

Θ

2
ei, ei

)
= det

(AΘ − AT
Θ

2
gT ei, µ(AΘ)g

T ei,
AΘ + AT

Θ

2
gT ei, g

T ei

)
=

∑
j,k,ℓ,m

gij gik giℓ gim det
(AΘ − AT

Θ

2
ej, µ(AΘ)ek,

AΘ + AT
Θ

2
eℓ, em

)
. (7.49)

Now, thanks to (6.35), (6.8), (7.32), detailed inspection shows that the determinant
in (7.49) is non-zero only if and only if i, j, k, ℓ are all distinct and (({i, j} = {1, 2}
and {k, ℓ} = {3, 4}) or ({i, j} = {3, 4} and {k, ℓ} = {1, 2})). Let us consider for instance
the cases (i, j, k, ℓ) = (1, 2, 3, 4) and (2, 1, 3, 4). We have

det
(AΘ − AT

Θ

2
e1, µ(AΘ)e2,

AΘ + AT
Θ

2
e3, e4

)
= −α1(Θ) sin θ1 cos θ2 (7.50)

= −det
(AΘ − AT

Θ

2
e2, µ(AΘ)e1,

AΘ + AT
Θ

2
e3, e4

)
. (7.51)

On the other hand, the expression gij gik giℓ gim is symmetric under permutations of
(j, k, ℓ,m). Thus, the contributions of the two determinants (7.50) and (7.51) to the
sum (7.49) cancel each other. We make the same observations for the pairs of quadru-
ples ((1243), (2143)), ((3412), (4312)) and ((3421), (4321)). As observed before, the terms
corresponding to other quadruples are zero. Hence, the sum (7.49) is equal to zero which
results in the fact that C6 = 0 and ends the proof.
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8 Conclusion

In this paper, we have derived a fluid model for a system of stochastic differential equations
modelling rigid bodies interacting through body-attitude alignment in arbitrary dimen-
sions. This follows earlier work where this derivation was done in dimension 3 only on
the one hand, or for simpler jump processes on the other hand. This extension was far
from being straightforward. The main output of this work is to highlight the importance
of concepts from Lie-group theory such as maximal torus, Cartan subalgebra and Weyl
group in this derivation. We may anticipate that these concepts (which were hidden al-
though obviously present in earlier works) may be key to more general collective dynamics
models in which the control variables of the agents, i.e. the variable that determines their
trajectory, belongs to a Lie group or to a homogeneous space (which can be regarded as
the quotient of a Lie group by one of its subgroups). At least when these Lie groups
or homogeneous spaces are compact, we may expect that similar concepts as those de-
veloped in this paper are at play. Obviously, extensions to non-compact Lie-groups or
homogeneous spaces may be even more delicate.

Appendix

A Direct derivation of strong form of equations sat-

isfied by (αk)
p
k=1

Beforehand, we need to give an expression of the radial Laplacian, defined by (5.6).

Lφ =

p∑
j=1

(∂2φ
∂θ2j

+ ϵn
sin θj

1− cos θj

∂φ

∂θj

)
+

∑
1≤j<k≤p

2

cos θk − cos θj

((
sin θj

∂φ

∂θj
− sin θk

∂φ

∂θk
)
)

(A.1)

=

p∑
j=1

[∂2φ
∂θ2j

+
(∑

k ̸=j

2

cos θk − cos θj
+

ϵn
1− cos θj

)
sin θj

∂φ

∂θj

]
. (A.2)

=
1

un
∇Θ ·

(
un∇Θφ

)
, (A.3)

with ϵn given by (3.7).
In this section, we give a direct derivation of the strong form of the equations satisfied

by (αk)
p
k=1. For this, we use a strategy based on [28, Section 8.3] (See also [16]). It relies

on the following formula. Let f be a function SOn → V , where V is a finite-dimensional
vector space over R. Then, we have

ϱ
(
Ad(A−1)X −X

)2
f(A)− ϱ

(
[Ad(A−1)X,X]

)
f(A) =

d2

dt2
(
f(etXAe−tX)

)∣∣
t=0
. (A.4)

for all X ∈ son and all A ∈ SOn, where ϱ is defined at (2.4). We note in passing
that ϱ is a Lie algebra representation of son into C∞(SOn, V ), i.e. it is a linear map
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son → L(C∞(SOn, V )) (where L(C∞(SOn, V )) is the space of linear maps of C∞(SOn, V )
into itself) which satisfies

ϱ([X, Y ])f = [ϱ(X), ϱ(Y )]f, ∀X, Y ∈ son, ∀f ∈ C∞(SOn, V ).

In the previous formula, the bracket on the left is the usual Lie bracket in son while the
bracket on the right is the commutator of two elements of L(C∞(SOn, V )).

The following proposition gives the equation satisfied by (αk)
p
k=1 in strong form.

Proposition A.1. (i) The functions (αk)
p
k=1 defined by (6.8) satisfy the following system

of partial differential equations:

Lαℓ − κ
( p∑

k=1

sin θk
∂

∂θk

)
αℓ −

∑
k ̸=ℓ

( αℓ − αk

1− cos(θℓ − θk)
+

αℓ + αk

1− cos(θℓ + θk)

)
−ϵn

αℓ

1− cos θℓ
+ sin θℓ = 0, ∀ℓ = 1, . . . , p (A.5)

(ii) System (A.5) is identical with (3.11).

Proof. (i) Eq. (6.3) can be equivalently written

∆µ(A) + (∇ logM · ∇µ)(A) = A− AT

2
. (A.6)

We evaluate (A.6) at A = AΘ for Θ ∈ T . We recall the expression (6.35) of
AΘ−AT

Θ

2
.

Besides, with (3.1) and (3.21), we get

∇ logM = κ∇(A · I) = κPTA
I = κA

AT − A

2
,

which, thanks to (6.35) and (2.5), leads to

(∇ logM · ∇µ)(AΘ) = κ

p∑
k=1

sin θk (∇µ)(AΘ) · (AΘF2k−1 2k)

= κ

p∑
k=1

sin θk
(
ϱ(F2k−1 2k)(µ)

)
(AΘ). (A.7)

We recall (6.25). The following identity is proved in the same manner:

(
ϱ(F2k−1 2k)

2(µ)
)
(AΘ) =

p∑
ℓ=1

∂2αℓ

∂θ2k
(AΘ)F2ℓ−1 2ℓ . (A.8)

Inserting (6.25) into (A.7), we eventually get

(∇ logM · ∇µ)(AΘ) =

p∑
ℓ=1

(
− κ

p∑
k=1

sin θk
∂αℓ

∂θk
(AΘ)

)
F2ℓ−1 2ℓ (A.9)
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It remains to find an expression of ∆µ(AΘ). We use Formula (2.7) for ∆. For A = AΘ,
we see that ϱ(F2k−1 2k)

2(µ) for k = 1, . . . , p is explicit thanks to (A.8). On the other hand,
ϱ(Fij)

2(µ) for (i, j) ̸∈ {(2k − 1, 2k), k = 1, . . . , p} is not. To compute them, we apply the
same strategy as in [28, Section 8.3] and in [16] based on (A.4). Given (6.5), we get, after
a few lines of computations

d2

dt2
(
µ(etXAe−tX)

)∣∣
t=0

=
d2

dt2
(
etXµ(A)e−tX

)∣∣
t=0

=
[
X, [X,µ(A)]

]
,

and so, (A.4) leads to

ϱ
(
Ad(A−1)X −X

)2
µ(A)− ϱ

(
[Ad(A−1)X,X]

)
µ(A) =

[
X, [X,µ(A)]

]
. (A.10)

We adopt the same proof outline as in [16] for the determination of the radial Laplacian.
As in the proof of Prop. 6.6, we successively treat the cases of SO3, SO4, SO2p, SO2p+1.
We refer to the proof of Prop. 6.6 for the notations.

Case of SO3. We use (A.10) with A = AΘ and with X = G+ and X = G−

successively and we add up the resulting equations. The details of the computations of
what comes out of the left-hand side of (A.10) can be found in [16]. On the other hand,
after easy computations using (5.9), the right-hand side gives[

G+, [G+, µ(AΘ)]
]
+
[
G−, [G−, µ(AΘ)]

]
= −2α1(θ1)F12.

Thus, we get:

2(1− cos θ)
((
ϱ(G+)2 + ϱ(G−)2

)
µ
)
(AΘ) + 2 sin θ

(
ϱ(F12)µ

)
(AΘ) = −2α1(θ1)F12.

With (6.25) and (A.8), this yields

∆µ(AΘ) =
(∂2α1

∂θ21
(θ1) +

sin θ1
1− cos θ1

∂α1

∂θ1
(θ1)−

1

1− cos θ1
α1(θ1)

)
F12

=
(
(Lα1)(θ1)−

1

1− cos θ1
α1(θ1)

)
F12.

Case of SO4. We use (A.10) with A = AΘ and with X = H+ and X = K−

successively and we add up the resulting equations. We do similarly with X = H− and
X = K+. Again, what results from the left-hand sides of (A.10) can be found in [16],
while the right-hand sides, using (5.9), give:[

H+, [H+, µ(AΘ)]
]
+
[
K−, [K−, µ(AΘ)]

]
= 2

(
− α1 + α2

)
(Θ)

(
F12 − F34

)
,[

H−, [H−, µ(AΘ)]
]
+
[
K+, [K+, µ(AΘ)]

]
= −2

(
α1 + α2

)
(Θ)

(
F12 + F34

)
.

We get

2
(
1− cos(θ2 − θ1)

)((
ϱ(H+)2 + ϱ(K−)2

)
µ
)
(AΘ)

−2 sin(θ2 − θ1)
((
ϱ(F12)− ϱ(F34)

)
µ
)
(AΘ) = 2

(
− α1 + α2

)
(Θ)

(
F12 − F34

)
,

2
(
1− cos(θ1 + θ2)

)((
ϱ(H−)2 + ϱ(K+)2

)
µ
)
(AΘ)

+2 sin(θ1 + θ2)
((
ϱ(F12) + ϱ(F34)

)
µ
)
(AΘ) = −2

(
α1 + α2

)
(Θ)

(
F12 + F34

)
,
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Collecting the results and using (6.25) and (A.8), we get

∆µ(AΘ) =
{
(Lα1)(Θ)−

( (α1 − α2)(Θ)

1− cos(θ1 − θ2)
+

(α1 + α2)(Θ)

1− cos(θ1 + θ2)

)}
F12

+
{
(Lα2)(Θ)−

( (α2 − α1)(Θ)

1− cos(θ2 − θ1)
+

(α2 + α1)(Θ)

1− cos(θ2 + θ1)

)}
F34.

Case of SO2p. The computations are straighforward extensions of those done in the
case of SO4R and lead to

∆µ(AΘ) =

p∑
ℓ=1

{
Lαℓ(Θ)−

∑
k ̸=ℓ

( (αℓ − αk)(Θ)

1− cos(θℓ − θk)
+

(αℓ + αk)(Θ)

1− cos(θℓ + θk)

)}
F2ℓ−1 2ℓ. (A.11)

Case of SO2p+1. In this case, we combine the computations done for the cases SO2p

and SO3. They lead to

∆µ(AΘ) =

p∑
ℓ=1

{
Lαℓ(Θ)−

∑
k ̸=ℓ

( (αℓ − αk)(Θ)

1− cos(θℓ − θk)
+

(αℓ + αk)(Θ)

1− cos(θℓ + θk)

)
−ϵn

αℓ(Θ)

1− cos θℓ

}
F2ℓ−1 2ℓ. (A.12)

Now, collecting (6.35), (A.9) and (A.11) or (A.12) (according to the parity of n) and
inserting them into (A.6) gives a matrix identity which is decomposed on the basis vectors
(F2ℓ−1 2ℓ)

p
ℓ=1 of h. Hence it must be satisfied componentwise, which leads to (A.5) and

ends the proof of Point (i).

(ii) We have
m−1∇Θ ·

(
m∇Θαℓ

)
= ∆Θαℓ +∇Θ logm · ∇Θαℓ, (A.13)

where ∆Θ is the Laplacian with respect to Θ (i.e. ∆Θφ = ∇Θ · (∇Θφ) for any smooth
function φ ∈ T ). Then, from [16, Eq. (4.6) & (4.7)], we have

∂ logm

∂θj
= −κ sin θj +

∂ log un
∂θj

= sin θj

(
2
∑
k ̸=j

1

cos θk − cos θj
+

ϵn
1− cos θℓ

− κ
)
.

Inserting this into (A.13) and using (A.2), we find that the first term at the left-hand
side of (3.11) corresponds to the first two terms of (A.5). The other terms of (3.11) have
exact correspondence with terms of (A.5), which shows the identity of these equations.
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