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Abstract Nowadays, to improve animal well being in livestock farming ap-
plication, a wireless video sensor network (WVSN) can be deployed to early
detect injury and monitor animals. They are composed of small embedded
video and camera motes that capture video frames periodically and send them
to a specific node called a sink. Sending all the captured images to the sink
consumes a lot of energy on every sensor and may cause a bottleneck at the
sink level. Energy consumption and bandwidth limitation are two important
challenges in WVSNs because of the limited energy resources of the nodes and
the medium scarcity.

In this work, we introduce two mechanisms to reduce the overall number of
frames sensed and sent to the sink. The first approach is applied on each sensor
node, where the FRABID algorithm, a joint data reduction, and frame rate
adaptation on sensing and transmission phases mechanism is introduced. This
approach reduces the number of sensed frames based on a similarity method.
The aim is to adapt the number of sensed frames based on the degree of differ-
ence between two consecutive sensed frames in each period. This adaptation
technique maintains the accuracy of the video while capturing frames holding
new information. This approach is validated through simulations using real
data-sets from video sensors [1]. The results show that the amount of sensed
data is reduced by more than 70% compared to a recent algorithm in [2] while
guaranteeing the detection of all the critical events at the sensor node level.

The second approach exploits the Spatio-temporal correlation between
neighboring nodes to reduce the number of captured frames. For that purpose,
Synchronization with Frame Rate Adaptation SFRA algorithm is introduced
where overlapping nodes capture frames in a synchronized fashion every N−1
periods, where N is the number of overlapping sensor nodes. The results show
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more than 90% data reduction, surpassing other techniques in the literature
at the level of the number of sensed frames by 20% at least.

Keywords Smart Agriculture; Spatio-temporal Correlation; Data Reduction;
Data Prediction; WSN

1 Introduction

Nowadays, the smart agriculture domain faces a lot of challenges for better
usage of its natural resources. However, the agriculture domain includes live-
stock farming. Understanding the wild animals’ behavior would facilitate the
means of protection of cattle in places beyond man’s control. For this reason,
wireless video sensor networks (WVSNs) are deployed in remote sites to moni-
tor livestock that is exposed to threats from wild animals like jackals in South
Africa. WVSNs process in real-time and retrieve multimedia data periodically
to be sent to a sink.

Different architectures have been studied in the literature. Figure 1 repre-
sents the general architecture of a wireless sensor network, where the nodes
capture frames from videos with a given frequency (frame rate) and wirelessly
send them to the sink.

Fig. 1: General architecture of a wireless sensor network

In a WVSN system, nodes capture frames periodically. Due to this periodic
cycle, network energy consumption gets highly stressed by the transmission of
a huge amount of redundant and unnecessary data [3]. Therefore, a method
that can minimize the amount of sensed data at the sensor-node level and
transmitted data is required. Thus, to achieve data reduction on each sensor
node in the overall system, there are three main phases to be studied: The
sensing phase, processing techniques, and the transmission phase.

The main focus of our work is on the sensing and transmission phases.
We introduce a Frame Rate Adaptation Based Image Difference algorithm
(FRABID), which reduces the images sent in two steps. First at the sensing
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level by reducing the number of frame capture, then at the transmission level,
by selecting only a part of them to be sent. To reduce the number of captured
frames, the nature of motion is predicted by comparing the first two sensed
frames in each period.

To be able to set the new frame rate, we apply a comparison based on the
L1 norm Euclidean distance. The sum of the absolute differences between two
consecutive frames provides basic information on the nature of the motion (new
event, slow motion, fast motion...) in a given scenario, then a new frame rate
will be assigned to each period depending on the percentage of the difference
between the frames. If the difference percentage is high, the frame rate will
be set to its maximum. Then, to filter the captured frames and send only
the important frames holding new information, the sensor node compares the
sensed frame with the last sent frame using L1 norm simple Euclidean distance.
If the difference exceeds a predefined threshold, the difference image will be
sent to the sink, otherwise, the frame will not be sent and the sensor node
will stop capturing frames for the current period. Our contribution bypassed
other previous work by 1) assigning a delicate frame rate to each period on
the sensor node and 2) reducing redundant sensed data by more than 90%.

Fig. 2: Overlapping wireless video sensor nodes

We conducted simulations using Python and the results show the validity
of our approach, by reducing the amount of sensed frames to more than 70%
compared to the STAFRA algorithm in [2], and decreasing the redundancy by
reducing the number of similar sensed frames to less than 10%, outperforming
other approaches, while guaranteeing the capture of important events.

Our second contribution aims to reduce redundant data between neighbor-
ing nodes. Neighboring nodes are defined by their field of view (FoV). Over-
lapping FoVs in dense networks causes wasting power of the system because
of redundant sensing of area [4]. Figure 2 represents three neighboring sensor
nodes that have overlapping FoV. To achieve data reduction between over-
lapping sensors, we proposed a Synchronization with Frame Rate Adaptation
(SFRA) algorithm. The main aim of the proposed synchronization method
is energy conservation and prolonging network lifetime while preserving all
needed information.
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Different approaches have introduced strategies to detect neighboring nodes.
After having all overlapping sensor nodes in a stable state (a stable state is
defined when no motion is detected), the nodes will start synchronization.
Each node will capture frames in a different time slot from its overlapping
nodes with the minimum frame rate. The addition of the SFRA algorithm to
other approaches presented in the literature for overlapping sensor nodes is
the synchronization fashion, which reduces the number of sensed frames while
still preserving almost the needed information. This method has shown more
than 90% reduction of data compared to other methods and added 33% more
data reduction on a sensor node when combined with the FRABID algorithm.
In both algorithms (FRABID and SFRA) we are concerned with data reduc-
tion at the sensor-node level which affects proportionally energy consumption
and bandwidth limitation. The remainder of this paper is structured as fol-
lows: Section 2 presents a general review of previous contributions presented
in the literature. Section 3 describes the system model. Section 4 presents the
algorithm for data reduction on each sensor. Section5 illustrates the proposed
algorithm for data reduction in overlapping sensor nodes. Section 6 experimen-
tal results. In Section 7, the results for combing both algorithms is illustrated,
and finally, the conclusions are drawn in Section 8 with perspective on future
work.

2 Background and Related Work

Different techniques and research work have been proposed in the literature
to reduce energy consumption and data redundancy in Wireless Video Sensor
Networks (WVSNs). In this section, we will browse some of these approaches
while focusing on the data reduction at the sensing phase, transmission phase,
and between overlapping sensor nodes at the application level.

Several research work for energy reduction has been proposed to decrease
data redundancy: Scheduling methods [4–7], Data aggregation [8], Geometrical
criteria [9–11], prediction techniques [12], frame rate adaptation [2, 13–16],
the usage of edge and fog computing [17–19]. In [12], the authors used the
kinematics functions to predict the next location of the intrusion in the area
of interest in order to increase the frame rate adaptation of the targeted nodes,
this approach comes as a complementary solution to our method to detect the
position of the intrusion.

For data reduction at the transmission level, several approaches dealt with
frame analysis to achieve this aim. A wireless video sensor-node captures a
series of frames to form the video at the receiver side. A frame is a group
of bytes represented as pixels sent over the network. Sending all the frames
over the network will increase the energy consumption at the sensor node
level and congestion problems on the limited bandwidth of the network. Thus
the analysis helps send only the different frames to the sink that holds new
information. For that, in [14] the authors used image comparison based on
color and edge properties to find similarities between frames, to decide which
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frame to send, where the edge property detects any change in the form of
the objects in the area of interest or detects a new object that enters the
scene. The color property detects any change in the colors of the scene. While
in [2] and [13] each frame is compared to the last frame sent to the sink using
norm L2 simple euclidean distance similarity method to compare images. In
our approach the adaptation replaces the above methods with L1 norm simple
euclidean distance, which will reduce the processing time on each sensor-node.

For data reduction at the sensing phase, different approaches aimed to
adapt the frame rate on the sensor node. In [2] and [14], the authors approach
reduces the frame rate of each sensor node at the sensing phase according to
the event happening in the zone of interest. In [14], the authors worked on
reducing the number of frames captured by adapting the frame rate of each
video-sensor node based on the number of critical frames detected in several
consecutive past periods, while in [2], the authors’ approach tends to adapt the
frame rate of a period based on the number of critical frames of the previous
period. Results show that the second approach gives better results since it
changes the frame rate earlier. Unfortunately, these studies manage to adapt
the frame rate based on the criticality of the previous periods, so in a scenario
with a frequent motion, the frame rate will always be high, since there are
always critical frames. In our approach the frame rate is adapted according to
the difference between the first two frames in each period, which is more like
a prediction to the nature of motion in the current period, and so the frame
rate is adapted according to the conditions of each period.

To further reduce the redundancy of captured data, the overlapping field of
views (FoVs) of sensor nodes is exploited to achieve data reduction. Nodes can
considerably prevent wasting power by avoiding redundant sensing, process-
ing, or sending similar multimedia data. Thus, it prolongs network lifetime,
particularly in dense networks that are usually deployed with a high number
of low power, low resolution, and inexpensive multimedia nodes randomly [4].
Several approaches tried to solve the issue of data redundancy by taking into
consideration overlapping sensor nodes. The authors in [2,13,14] used geomet-
rical conditions to detect overlapping sensors. After detecting the overlapping
sensor nodes, the authors in [13] defined a stable situation, where no motion
is detected in the monitored area. In the stable situation, the node with less
residual energy will decrease its frame rate to its minimum, while the other
overlapping sensor node will continue sensing with its initial frame rate. This
approach [13] outperforms the algorithm in [14] where in every period, the
video shots are compared using a similarity process, and if the two shots sur-
pass a predefined threshold then one of the sensor nodes will send the frame.
In [20] Priyadarshini et al. investigated the overlapping method, which reduces
redundancies by turning off certain cameras and activating the appropriate
number of cameras based on the overlapping FOVs (field of view) of various
cameras.

In [17], the authors proposed a multi-cloud to multi-fog architecture and
design two kinds of service models by employing containers to improve the
resource utilization of fog nodes and reduce the service delay. The algorithm
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is based on the transmission energy consumption of terminal devices and uses
a dynamic threshold strategy to schedule requests in real time. This algorithm
can reduce service latency, improve fog node efficiency, and prolong WSNs life
cycle through energy balancing. Such approaches can be complementary to
our approach which focuses more on the node side.

Based on the different approaches mentioned above and presented in the
literature we introduced two approaches for data reduction at the sensor node
level, where the FRABID algorithm a joint data reduction, and frame rate
adaptation on sensing and transmission phases mechanism is introduced. This
approach reduces the number of sensed frames based on a similarity method
that outperforms other techniques since it is based on a real-time prediction
in every period. Then a complementary technique for data reduction on sensor
node level exploits the condition of overlapping nodes to reduce the redundant
sensed data. This approach is based on the synchronization between overlap-
ping nodes and achieved an important reduction at the level of sensed data
outperforming other techniques presented in the literature.

3 Assumptions and System Model

In our scenario, the wireless video sensor network (WVSN) is composed of two
different kinds of nodes: the video sensor nodes and the sink node as shown in
Fig 1. In this system model, frames are captured periodically and sent directly
to the sink. At the very beginning of the sensing, the initial frame rate is
set to its maximum (FRmax = FRinit), then after the activation of our data
reduction algorithm, a new frame rate (NFRi ) is dynamically computed at
every period ∆ti.

We assume in our topology that a wireless video sensor network is homo-
geneous, where all sensors have the same storage, processing, battery power,
sensing, and communication capabilities. In this system model and in a normal
situation, all nodes will have the same battery power over time (since they are
capturing with the same frame rate). The sensor nodes are deployed outdoors,
and they are battery devices. Battery depletion has been identified as one of
the primary causes of the lifetime limitation of these networks [21]. Replacing
them regularly is impractical in large networks or may even be impossible in
hostile environments [21].

The nodes are prone to failure for any internal or external reasons or die
of the battery however stops functioning. By the time, after applying any
algorithm that may put some nodes into sleep mode, or power-saving mode,
we will get a group of sensor nodes with different battery power percentages.
Suppose nodes x, y, and z are homogeneous, and node x is in power-saving
mode, then basically its battery lifetime will last more than y and z. These
variations and variables will help in the identification of our approaches in the
upcoming sections.
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4 Data Reduction on each Sensor

4.1 Sensing Phase: Frame Rate Adaptation

We address the energy and bandwidth reduction by reducing the number of
frames first captured and then sent over the air. To achieve this aim, we
introduce the Frame Rate Adaptation Based Image Difference (FRABID) al-
gorithm that performs in two steps: 1) it adapts the rate at which the frames
are captured, and 2) it selects among the captured frames the pertinent to
send. Algorithm 1 details FRABID.

In this part, inspired by [2] and [14], we focus on the data reduction at
the sensing phase by reducing the number of captured frames in each period
on every video-sensor node. The FRABID algorithm adapts the frame rate
of every sensor node dynamically and independently from the others for ev-
ery period ∆i, the time needed to capture frames with a specific frame rate.
Figure 3 illustrates the steps in each period for frame rate adaptation. It is
based on image comparison. It adapts the frame acquisition rate by comparing
consecutive images with the L1 norm. The L1 norm is the sum of the absolute
values of the pixel-by-pixel difference between the two images. Figures 7 and
8 show what we can achieve from the succession of images of Figures 4, 5, and
6.

Our main contribution for frame rate adaptation is related to the gener-
ated image difference, since from this difference we can conclude two points:
first, the detection of a motion, and second, the nature of the motion in a
given scenario. To support these two points, Figures 7 and 8 show the image
difference between Frames of Figure 4, 5 and 6, the difference generated in the
frame is due to the motion of the man. If the difference generated in the frame
is approximately negligible, then we can deduce the absence of motion.

Now, suppose that the Frames pictured in Figures 4, 5 and 6 are three
consecutive frames. We generate the image difference between images 4, 5 to
get the image of Figure 7, and the difference image between frames of Figures
5 and 6 to get the frame in Figure 8.

The difference shown in Figure 7 is small, so we can deduce from the image
differences that the man has a slow movement, then he moves faster in the
second two frames and so Figure 8 displays a much higher difference.

In each period ∆i, each sensor node captures the first two frames F0 and F1

at frame rate FRinit. The first frame F0 is sent to the sink, and F1 is compared
to F0. We thus generate the image difference (imgdiff ) by calculating the
absolute difference between image pixels of F0 and F1 as shown in the equation
below:

imgdiff = abs(F0 − F1) (1)

According to the definition of the L1 norm, we still need to sum the dif-
ference presented in imgdiff . imgdiff is thus transformed into an array Γdiff

containing the value of each pixel of imgdiff . Then, we sum the data presented
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Fig. 3: Frame rate adaptation during period ∆ti

Fig. 4: First Frame
Fig. 5: Second
Frame

Fig. 6: Third Frame

in this array as follows:

sumdiff =

nbcomp∑
p=0

Γdiffp (2)

where Γdiffp is the value of pixel p of imgdiff and nbcomp is the size of the
image in the number of pixels. As a result, we get sumdiff that represents the
value of the difference between two frames, then the difference percentage per
is computed from the sumdiff as follows:

per =
sumdiff × 100

maxval × nbcomp
(3)

Where maxval is the maximum value that can be assigned to a pixel (In a
gray-scale RGB image, maxval = 255).
Now, the new frame rate NFRi of Period ∆i is calculated as follows:

NFRi = FRinit − (
FRinit

v
× per) (4)

where v represents the convergence speed of FRi. The higher v, the quicker
the frame rate is adapted but the more likely to miss important frames. Also,
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note that we use FRinit and not FRi−1 since images could be very different
from one period to another one and we could miss important events.

Yet, the frame rate is adapted based on the value of the percentage differ-
ence between the first two sensed frames in each period ∆i. If NFRi < 0, the
frame rate of the period ∆i is set to FRmax, since this means there is a high
difference between two successive frames and so either a new event appears in
the frame, or there is a fast motion as explained above. In both cases, we need
a high frame rate to capture all frames in a critical scenario.

Algorithm 1 FRABID run at every node

1: while True do
2: # Sensor-node starts sensing
3: for all Period ∆i do
4: Capture two first frames F0 and F1

5: Send F0 to the sink
6: Generate imgdiff between F0 and F1

7: Compute per with equation 3
8: NFRi = FRinit − (per × FRinit/v) (Eq. 4)
9: if (NFRi < 0) then
10: Set NFRi = FRinit

11: end if
12: if per < thdiff then
13: Stop capturing frames for period ∆i

14: else
15: Send imgdiff to the sink
16: end if
17: end for
18: end while

4.2 Transmission Phase: Data Reduction

To reduce the energy consumption related to transmission level, we take the
advantage of the similarity of consecutive frames as in [2] and [13] to reduce
the number of sent frames to the sink. Every sensed frame is compared with
the last sent frame using the method described in 4.1 and as shown in details
on Figure 9. First, difference image will be generated (using Equation 1), then
from Equation 3, we will get the percentage difference per between two frames.
Figure 7 shows the output of the generated image difference. Based on the value
of the percentage difference per the frame will be sent if per > thdiff .
where thdiff is a predefined threshold set according to the criticality of the
scenario monitored. If we are dealing with a delicate situation in which we
need to catch even the tiniest movement, the threshold should be set to its
minimum.

So, if the difference between two frames exceeds thdiff , the generated frame
(like Figure 7 and 8) will be sent to the coordinator instead of sending the orig-
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Fig. 7: Image difference between
Figures 4 and 5

Fig. 8: Image difference between
Figures 5 and 6

inal image. In our approach since we are using L1 norm to compare the frames,
we are reducing energy consumption for processing time, since the difference
image is already generated, while in other approaches like STAFRA algorithm
in [2], frames are compared using the L2 norm, then another function is used
to generate the difference image. The sent image is called a critical frame in
the remainder of this paper because it means that an event is happening in
the area of interest [2]. If the percentage per does not exceed thdiff , the frame
will not be sent, and the sensor node will stop sensing for the current period
(Figure 9). The frame will be called a similar frame.

Fig. 9: Video sensor node behavior during period ∆ti

5 Data Reduction in Overlapping Sensor-nodes

In section 4, we were interested in reducing the amount of sensed and sent
frames from each node to the sink by applying the FRABID algorithm at
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the sensor node itself. To furthermore reduce the data transmission, we now
focus on the spatial correlation between neighboring sensor nodes to reduce
the redundant sensed frames between overlapping sensor nodes by applying a
new approach based on synchronization.

Before describing the Synchronization with Frame Rate Adaptation (SFRA)
approach, we introduce the video sensing model and the characteristics of ev-
ery video sensor node to proceed with the SFRA algorithm.

5.1 Video Sensing Model

We consider a 2-D model of a video sensor node where z = 0 (XOY plane) and
all the captured frames are compared as 2-D images not taking into account
the third dimension. A video sensor node S is represented by the Field of View
(FoV) of its camera. A FoV covers only a part of the surrounding area of a

video sensor. A FoV is a vector of 4-tuple S(P;Rs;
−→
V ;θ) where P is the position

of S, Rs is its sensing range,
−→
V is the vector representing the line of sight of

the camera’s FoV e.g. its sensing direction, and θ is the offset angle of the FoV
as shown in Figure 10.

As mentioned before, we assume that all video sensor nodes are identical
with fixed lenses providing a θ angle FoV thus the same sensing range Rs ,
densely deployed randomly.

Each node Si covers a sector area in its FoV. We define USi
as the set of

sensors that have an intersecting coverage zone (FoV).

Fig. 10: Video sensor node be-
havior during period ∆ti

Fig. 11: FoV Coverage [5]
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5.2 The Overlapping Method and Coverage

As mentioned above, in our topology sensor nodes are deployed randomly.
This may increase the spatial correlation between neighboring sensor nodes,
so the sensing range of two or more sensor-nodes may overlap (Figure 11). In
such a scenario, the sensors capture typically redundant data of a given target
since the same event may be captured by multiple sensors. Several approaches
studied how to detect overlapping sensor-nodes [2,4,13,14]. In our work we will
consider that the overlapping nodes are already detected using the geometric
condition method presented in [13]. Suppose S1, S2 and S3 are selected as
overlapping sensor nodes with a stable state to test the synchronization with
frame rate adaptation algorithm (SFRA) as explained in the next section.

5.3 SFRA Algorithm

The idea behind synchronization is to reduce the number of sensed frames
while preserving all needed information. As mentioned earlier, the synchro-
nization phase starts when all overlapping sensor nodes (Usi) are in a stable
state.

Inspired by [13], a stable situation is a state where the sensor node is
not capturing new information. Using the equations from 1 and 3 the sensor
will compute the similarity between the captured frames. If two consecutive
sensed frames are estimated as similar (no new information is represented in
the second frame), the node does not send the second frame to the coordinator.
The node counts the number of consecutive similar frames, if it surpasses nb
(the required number of consecutive similar frames), the state of the area of
interest monitored by the node is considered as stable (situation=1).

To activate the SFRA algorithm, each node should know:

– The set of overlapping nodes (Usi) with its FoV
– The state of each node that belongs to Usi

When all overlapping nodes that belong to Usi are in a stable state (situation
= 1), they will set their frame rate to its minimum (FRmin) and synchronize
capturing frames between each other as illustrated in Figure 12.

One of the main challenges in the SFRA algorithm is to guarantee that the
nodes are well synchronized. We assume that the system is well synchronized,
where the clock drift which is the result of the clock skew (the difference
between the two clocks frequency [22]) is approximately negligible.
The capturing phenomenon will be as follows:
In each period one sensor node that belongs to Usi will be capturing frames
with (FRmin). The other nodes will be in sleep mode. So, each node will sense
at period ∆i then sleeps for N − 1 periods, where N is the number of sensor
nodes that belong to Usi .

Figure 12 represents the behavior of sensor-nodes when starting the syn-
chronization.
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Fig. 12: Synchronization behaviour

Each captured frame will be compared with the last sent frame to the sink
(Flast) using the method explained in section 4.2, which is based on the L1
norm. If the difference surpasses a predefined threshold thdiff , the sensor-
node will return to its normal state with frame rate FRmax and will notify
the other nodes that belong to Usi to deactivate SFRA algorithm, since the
newly captured frame represents a new event as explained in algorithm 2.

Algorithm 2 SFRA run at node S1

1: Get situation2 and situation3

2: Get Flast the last sent frame to the sink
3: Set N the number of overlapping nodes
4: while situation1 = 1 and situation2 = 1 and situation3 = 1 do
5: FRS1 = 1 fps
6: sleep (N - 1)
7: Capture frame F0

8: Generate imgdiff between F0 and Flast

9: Compute per with equation 3
10: if per > thdiff then
11: Stop synchronization phase
12: Set FRS1

= FRmax

13: Notify all overlapping nodes
14: Send imgdiff to the sink
15: end if
16: end while

6 Experimental Results

6.1 FRABID Algorithm

In this section, we present the results that validate our approach and compare
them to the STAFRA algorithm in [2].

We implement the algorithms (FRABID and STAFRA) using Python Imag-
ing Library (PIL), that has light image processing tools. First we get the
difference image imagediff between frames F0 and F1. Then we used Numpy
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library to transform images into arrays and get the sum of the generated image
difference. We made our simulations on a data-set [1] that provides a realistic,
camera-captured, diverse set of videos that cover a wide range of detection
challenges.

In our real scenario, we expect frequent motion, with different variations,
since the video sensor-nodes are deployed to monitor wildlife. This scenario is
exposed to continuous, periodic motion. For that, we have selected from the
data-set [1] the videos that are captured outdoors, with different variations of
motion, as detailed later.

The initial frame rate to capture the video is set to 30 frames per second
(FRinit = 30 fps) for the sensor-node, which is the maximum frame rate
(FRmax = FRinit = 30). Each period is ∆t = 1s and the threshold to detect
critical frames is set to thdiff = 1%, and speed convergence is set to v = 2.

6.2 Data Reduction: Sensing Phase

The main purpose in this work is to sense the frames that represent the critical
situations and decrease the number of similar sensed frames.

For similar frames, they are only sensed and not sent to the sink, so we
are capturing useless information. So, the FRABID algorithm decreased the
number of similar sensed frames, thus reduced the power consumption on
useless data. Note that a full compressed image size is equal to 30KB and the
difference image imgdiff size is 20KB. The thresholds and all the parameters
can be adapted according to the application and the QoS required.

The simulation is done using two data-sets from [1]: The first selected video
is called Highway1, where there is frequent motion with a slight dynamic
background. The second selected video is called Tramstop, it presents more
challenges for having different variations of motion and speed.

6.3 Highway Data-set

The video is captured for 1700 periods. Table 1 shows the initial recorded data
in a normal state of the sensor-node when no reduction algorithm is activated.

Table 1: Initial Highway Data-set Records

Total Critical Similar
Number of Frames 1700 600 400

For the sensing phase, the frame rate in each sensor node changes inde-
pendently according to the technique explained in the above sections, where

1 http://changedetection.net/
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the difference between the first two sensed frames in each period will be the
reference to select a new frame rate for the current period. From 1700 frames,
all frames are sensed and sent to the coordinator.

Tables 1 and 2 show that, after activating the FRABID algorithm, the
number of sensed frames decreased from 1700 to 971 so a reduction of 43%
(Table 2). The number of similar frames sensed in a normal state without
the activation of any data reduction algorithm is 400, while after activating
FRABID algorithm, it decreased to 8, so a reduction of 98%.

Fig. 13: Frame Rate and Sent Frames in FRABID Algorithm

Table 2: Records After Applying FRABID Algorithm

Sensed Critical Similar
Number of Frames 971 963 8

Figure 13 shows the frame captured and sent in each period. The difference
between both values never surpasses 5 frames and in the rest of the periods the
number of sensed frames is equal to the frame rate. This affirms the validity
of our approach in sensing only frames with critical events.

6.4 Comparison

Our approach is compared to the STAFRA algorithm in [2], where the number
of critical frames in each period affects the frame rate of the sensor-node for
the next period.

Figure 14 shows the frame rate and the sent frames in each period after
applying the STAFRA algorithm. The new frame rate is in most of the periods
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Fig. 14: Frame Rate and Sent Frames in STAFRA algorithm

Fig. 15: Initial number of similar frames before and after STAFRA and FRA-
BID activation

Table 3: Records Comparison Between FRABID and STAFRA on Tramstop
Data-set

FRABID STAFRA
Total 3200 3200
Sensed 1254 3200
Sent 1232 2914

Similar 22 286

still set to its highest value (30 fps). This is due to the high rate of motion in
the monitored scenario, which leads to keeping the frame rate high.

Figure 15 shows the initial number of similar frames (the frames that do
not hold new information) and the number of similar frames sensed by the
sensor-node in both algorithms FRABID and STAFRA. The FRABID algo-
rithm senses approximately 2% of the similar frames, while with the STAFRA
algorithm almost all similar frames are captured. From Table 3 we can see
the number of similar frames sensed with FRABID algorithm activation is 22,
while in STAFRA it is 286. The number of similar frames sensed in FRABID
is reduced by 92% compared to STAFRA. This is related to the FRABID
algorithm’s idea to stop sensing if two frames are similar. So, data reduction
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is achieved at the sensing level, and the power consumption at the processing
phase is reduced.

Table 4: Records Comparison Between FRABID and STAFRA on Highway
Data-set

FRABID STAFRA
Total 1700 1700
Sensed 971 1684
Sent 963 1594

Similar 8 90

6.5 SFRA Algorithm

In this section, we present the results that validate our approach and compare
them to the INS algorithm in [13]. We implement the algorithms (SFRA and
INS) using Python Imaging Library (PIL) that has light image processing
tools. First we used the function from PIL imaging library in Python for
image comparison to generate imagediff , the difference image between frames
F0 and F1.

We made our simulations on a data-set named ToCaDa [23], containing
two sets of 25 temporally synchronized videos corresponding to two scripted
scenarios. 25 cameras were scattered around the university campus of Paul
Sabatier University in Toulouse. 8 among the cameras were located in front
of the building and filmed it with large overlapping fields of view as it can
be seen in the figure 16. Cameras C4, C5 and C7 are selected for our simula-
tion to test the SFRA algorithm. Due to the lack of datasets from the smart
agriculture domain, this dataset is considered as a convenient substitute for
our simulation since the selected scenario includes fast motion of cars and slow
motion of people with variation of sizes of the moving object, plus the presence
of sensitive cases like trees that moves with the wind.

The initial frame rate to capture the video is set to 30 frames per second
(FRinit = 30 fps) which is the maximum frame rate (FRmax = FRinit = 30),
and the minimum frame rate is set to 1 frame per second (FRmin = 1 fps)
for each camera. Each period is ∆t = 1s, and initial frame rate is equal to
FRinit = 30 frames per second. The threshold to detect critical frames is set
to thdiff = 1.3%. The aim is to reduce the number of captured frames in a
stable state by reducing the frame rate and applying synchronization between
the overlapping nodes.
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Fig. 16: Scenario

6.6 Data Reduction: Sensing Phase

The selected videos are captured for 10204 periods. Table 5 presents the initial
recorded data in a normal state of the three cameras C4, C5, and C7 when no
reduction algorithm is activated, where Initial Event Detected represents the
number of the frame where the intrusion is detected.

A stable state is detected at the following time intervals:
C4: 20s from 900 to 1512
C5: 20s from 900 to 1500
C7: 21s from 900 to 1540

C5 first detected the event at frame number 1500, then C4 at frame number
1512, and for C7 the event appears in period 5 at frame number 1540.

A stable state is defined after having 60 consecutive similar frames (nb = 60)
which means 2 seconds of stability. The thresholds and all the parameters can
be adapted according to the application and the QoS required.

The SFRA algorithm is activated after satisfying the conditions explained
in 5.3. Synchronization starts at period 33 (frame number 990), since the first
3sec are dedicated to detecting the stable state and exchanging information
needed to start synchronization. So, the SFRA algorithm is tested on the
three overlapping cameras (C4, C5, and C7) in the stable state from periods
30 to 50. There are different ways to start the synchronization depending on
the selected order for the nodes to capture frames. For that we made different
simulations taking into consideration the different order possibilities of camera
sensor nodes to achieve the synchronization phase and observe the results
under different conditions.

After activating the SFRA algorithm, the results presented in tables 6,
show a reduction of 98% of the captured frames in a stable state. The simula-
tions show the different scenarios of capturing frames which are based on the
order of cameras selected to start synchronization.

Scenario 2 in Table 6 shows the results of the number of captured frames
by the overlapping nodes, where C5 was first selected to start synchronization
then C4 and C7 respectively. C5 first detected the new event in period 51
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Table 5: Data-set Records for overlapping cameras C4,C5 and C7 before acti-
vating any algorithm

Total Captured Frames Initial Event Detected
Camera 4 612 1512

Camera 5 600 1500

Camera 7 640 1540

Table 6: Number of sensed frames after activating SFRA algorithm in different
synchronization scenarios

Scenario Order Sensors Sensed First Frame Detected
C4 8 1531

1 C4,C5,C7 C5 8 1561
C7 8 1591
C4 8 1561

2 C5,C4,C7 C5 8 1531
C7 8 1591
C4 12 1861

3 C7,C5,C4 C5 8 1561
C7 9 1621
C4 8 1531

4 C4,C7, C5 C5 7 1500
C7 8 1591

(frame number 1531). The impact of synchronization delayed the detection of
the intrusion by one period at maximum for all overlapping nodes (at period
52, all the overlapping nodes will set their frame rate to FRmax for each period
returning to their initial state). While based on the records of scenario 3, where
the order of camera selection is C7, C5, and C4 respectively show that C5 first
detected the event at period 52, which is a delay of at most 2 periods from
detecting the event on time.

Scenario 4 in Table 6 presents the results of the best case which is detecting
the new event on time. As we can see C5 first detected the event at period 50
(frame number 1500), which is the first event captured by all the overlapping
sensor nodes as shown in table 5. For that, the best case will be when the
synchronization technique selects C5 to be the last node to capture.

6.7 Comparison

The SFRA algorithm is compared to the INS algorithm in [13]. In the INS
algorithm one out of the selected overlapping nodes that has more residual
energy is selected to sense frames with FRmax, and the other nodes will go to
transmission idle mode where the frame rate is set to its minimum (FRmin = 1
frame per second).
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The simulation is done in the stable state from period 33 to period 50 on
the three selected overlapping cameras C4, C5, and C7. We assume that C4
has more residual energy, so for the INS algorithm, C4 will capture frames
with FRmax = 30 frame per second while C5 and C7 with FRmin = 1 frame
per second.

In INS we can guarantee the capture of the new event in time, while in
SFRA we may miss a few frames due to the impact of synchronization. The
difference between those approaches in terms of data reduction is shown in
Table 7. The results show that the SFRA algorithm outperforms the INS
algorithm [13] in terms of sensing data reduction. INS achieved 65% data
reduction while SFRA 98%. So, the SFRA algorithm added 33% more data
reduction than the INS algorithm.

Table 7: SFRA and INS comparison

Initial Captured Frames INS SFRA
C4 510 510 8
C5 510 17 8
C7 510 17 8

Total 1530 544 24

The overall power consumption reduction cannot be specified since there
are different levels to be studied like the cost of synchronization which is based
on the mechanism used to achieve this aim. The cost of using GPS, type of the
used hardware. Our main focus is on data reduction, which can be achieved
regardless of other constraints.

7 Combining FRABID and SFRA algorithms

In this section, we have tested the impact of activating both algorithms FRA-
BID and SFRA on the sensor node.

Simulation is done on the same data set in 6.6. The algorithms are tested on
the three Cameras C4, C5, and C7 from period 29 to period 70 (41 sec). Table 8
shows the results after running the FRABID algorithm and then activating the
SFRA algorithm when a stable state is detected with the overlapping sensor
nodes. In the initial state, before activating any algorithm the total number
of frames captured by the three sensors is 3690 frames. When running the
FRABID algorithm the total captured frames decreased to 209. Then when
activating both algorithms (FRABIB + SFRA) on the three sensor nodes
the number of sensed frames decreased to 153, so we added 27% more data
reduction in all three overlapping nodes while guaranteeing the detection of
critical events. This is due to the synchronization fashion that occurred in the
stable state from period 33 to period 50.
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Table 8: FRABID and SFRA data reduction

Initial FRABID FRABID + SFRA
C4 1230 83 53
C5 1230 68 54
C7 1230 58 46

Total 3690 209 153

8 Conclusion and Future Work

In this work we have tackled the problem of energy consumption and band-
width limitation in WVSNs for smart agriculture especially for livestock farm-
ing applications. Two complementary algorithms are proposed dedicated for
data reduction at the level of each sensor node and between overlapping wire-
less video sensor nodes to monitor livestock in areas where man has no control.

The first approach is FRABID algorithm. Simulations based on real data
sets show an important reduction in the scenarios with periodic, continuous
motion when activating the FRABID algorithm since the frame rate is adapted
according to the variation of speed in the monitored zone, plus a reduction in
the number of sensed similar frames. Thus, it reduces the energy consumption
needed for the sensing process. The algorithm creates a different image between
two frames, in case the frames are similar, the second frame will not be sent
to the sink, otherwise, the difference image will be sent which is 30% smaller
than the original image. This approach reduced energy consumption at the
processing level, and for the transmission process on the sensor-node level by
reducing the number and the size of sent frames to the sink.

To further reduce the redundant sensed data, we exploit the condition of
overlapping sensor nodes by proposing the SFRA algorithm. When a stable
state is detected in the monitored area, the overlapping nodes will decrease
their frame rate to the minimum and capture frames in a synchronized fashion.
When one of the overlapping nodes captures an event, all nodes must return to
their initial state with maximum frame rate. Simulations were conducted on a
real data set. The results showed a reduction up to 98% in stable states. The
selected order of nodes to achieve synchronization will even lead to a best case,
where the event will be detected in time, or intrusion detection will be delayed
at maximum N periods which is considered the worst case. The evaluation of
the results depends on the criticality of the use case. In our scenario, missing
a few critical frames is not considered a big loss, since the case is not delicate
and the nature of motion is not of high speed.

In this work we have selected datasets that resembles the real-life situation
of livestock monitoring due to the unavailability for the moment of datasets
collected in livestock monitoring use case, thus as a future work we want to
adjust our algorithms on a real-life situation. Then we will investigate in the
performance of our algorithms on different use cases such as remote surveil-
lance (property intruders, forest fire), smart cities, etc. to expand the usage
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of the algorithms. Then we will test the impact of the different parameters
such as the convergence speed v of the new frame rate setting, the threshold
value thdiff above which an action is taken, and the value which detects the
stable state. Then, a general study of the energy consumption taking into con-
sideration the real cost of processing at the sensor node level and the cost of
synchronization. Finally our approach will be enhanced by getting an inclu-
sion of a mobility prediction scheme to follow the motion and ”wake up” only
concerned sensors and real experimentation will be conducted on real sensor
nodes.
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