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 

Abstract— This paper presents a multichannel Wiener filter 

(MWF) based noise reduction method with preservation of the in-

teraural level difference (ILD). It minimizes the MWF cost func-

tion subject to two constraints for ILD preservation. Under this 

approach, the weighting coefficient that establishes the trade-off 

between noise reduction and binaural cue preservation takes a 

physical interpretation, facilitating its design. The proposed ap-

proach results in a convex optimization problem that admits a 

computationally efficient semi-analytical closed-form solution. 

Simulation experiments in hearing aid applications were per-

formed considering practical acoustic scenarios. Considering an 

appropriate set of control parameters, the average performance of 

the proposed method preserves the ILD of a single interfering 

source in the same way as the conventional MWF-ILD, keeping 

the same level of noise reduction as the classic MWF, with approx-

imately the same amount of speech ILD distortion. The proposed 

method is particularly interesting for implementing real-time 

noise reduction methods in binaural hearing aids. 

Index Terms— Wiener filter, interaural level difference, binau-

ral hearing aids, noise reduction, speech enhancement. 

 

I. INTRODUCTION 

inaural hearing is the ability of the human auditory system 

to combine and compare information from acoustic signals 

captured in both ears. It increases speech loudness compared to 

the case in which only one ear is stimulated [1]. By using sig-

nals at both ears, the auditory system creates sound objects fa-

cilitating the localization, separation, and identification of 

sound sources [2]. 

An example of the binaural hearing advantage occurs when 

a person listens to the desired speaker while another (undesired 

speaker) speaks simultaneously. If the spatial positions of both 

the desired and undesired speakers are close enough, an effect 

known as “spatial masking” occurs. In such a situation, infor-

mation from the desired speaker may be missed due to its prox-

imity to the undesired source. Consequently, there may be a de-

crease in perception and understanding of the desired infor-

mation content. However, if the undesired speaker moves away, 
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the spatial masking decreases, leading to an increase in intelli-

gibility and a reduction in the necessary cognitive effort. This 

phenomenon is called spatial release from masking [3] [4] [5]. 

Noise reduction methods are an essential part of modern 

hearing aids (HA) since they may improve the quality and in-

telligibility of noisy speech [6] [7]. Strict-sense binaural noise 

reduction methods combine noise reduction, which aims to re-

cover the desired speech from noisy observations [8] [9], with 

binaural cue preservation, whose goal is to avoid significant 

distortions of the spatial information associated with the sound 

sources [9]. Binaural HA constitutes the most advanced noise 

reduction device for hearing-impaired people. These gadgets 

employ a wireless communication link between the left and 

right ears, by which signals and control parameters are ex-

changed, thus increasing the diversity of information. 

Assuming a sound field generated by a pointwise source, the 

acoustic power in each ear is generally different due to physical 

phenomena, such as reverberation, reflection, and diffraction 

[2]. This power dissimilarity allows the human auditory system 

to identify different sound objects (e.g., speech) and localize 

their corresponding physical sources (e.g., the person speaking) 

[2]. The primary spatial information used by the auditory sys-

tem to localize sound sources is the interaural time difference 

(ITD). This binaural information is predominant for frequencies 

below 1500 Hz [2] and is based on time differences between the 

signals that reach the ears. Complementary spatial information 

is provided by the acoustic power difference in both ears, 

known as the interaural level difference (ILD). It is mathemati-

cally defined as the difference (in logarithmic scale) between 

the left and right acoustic powers from the waves reaching the 

ears [2]. The proportion between the human head’s width and 

the wavelength of audible sounds makes the ILD the primary 

binaural cue for frequencies above 1500 Hz [2]. This binaural 

cue is robust to coherence variations [10] and carries enough 

information to create complex acoustic scenarios, such as in 

amplitude stereo panning techniques, even with headphones 

[11]. 

Techniques based on the multichannel Wiener filter (MWF) 
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are among the most studied noise reduction methods for binau-

ral HA. In binaural systems based on the MWF, the binaural 

cues of the processed speech are unchanged [12]. However, the 

binaural cues of the filtered noise are distorted, inheriting the 

same spatial characteristics as the speech [12]. Due to this be-

havior, HA users may not take advantage of psychoacoustic 

mechanisms such as the best ear advantage [13] or the spatial 

release from masking [3]. 

Many MWF-based techniques have been proposed to pre-

serve the binaural cues. The MWF with partial noise estimation 

(MWF-PNE) was proposed in [14]. Its noise reduction filters 

have a simple closed form, being defined as the convex combi-

nation of the MWF solution and an all-pass filter. This solution 

may preserve the ILD and IPD of the undesired additive com-

ponent, by adjusting the amount of unprocessed noise at the out-

put of the gadget, but results in significant loss in noise reduc-

tion performance. 

An important class of MWF-based techniques achieves 

(strict-sense) binaural cue preservation of the interference sig-

nal through designing and optimizing cost functions incorporat-

ing regularization terms that directly penalize distortions in the 

ILD and IPD. This is the case of the MWF with interaural trans-

fer function preservation (MWF-ITF) [15]. This technique pre-

serves the interfering source’s ILD and IPD at the cost of losing 

noise reduction performance and/or distorting the binaural cues 

of the speech source. Despite their advantages, these techniques 

do not have closed-form solutions, which may prevent their 

real-time implementation. 

MWF-based methods with ILD preservation (MWF-ILD) 

generally employ cost functions comprised of two terms: i) the 

conventional MWF cost function, which aims to minimize the 

power of the overall noise (restraining the speech distortion); 

and ii) an ILD penalty term, which penalizes solutions that de-

viate from the original ILD of the input noise [16] [17] [18]. A 

weighting parameter establishes the trade-off between the opti-

mization effort for each term in the cost function. 

The first proposed MWF-ILD technique defined the ILD 

penalty term as the mean squared difference between the input 

and output ILDs [16]. The work in [17] proposed a variation of 

the ILD penalty term based on an approximation of the loga-

rithm function, resulting in a cost function that equally penal-

izes positive and negative ILD errors. In both works, the design 

of the binaural noise reduction filters was based on an uncon-

strained minimization of the MWF cost function plus the 

weighted ILD penalty term. However, despite their notable per-

formance in offline experiments, these techniques are inappro-

priate for online implementation in embedded systems with se-

vere computational limitations, such as in HA applications. 

Lately, an adaptive filter implementation of the method pre-

sented in [17] was proposed in [18] to deal with this problem. 

This algorithm allows for the practical implementation of the 

MWF-ILD. However, the slow convergence rate of the adaptive 

algorithm may lead to suboptimal solutions, compromising the 

maximum attainable noise reduction and spatial preservation. 

As a result, previous MWF-ILD methods have some consider-

able drawbacks, which may be summarized as: i) the design of 

the binaural filters is based on the unconstrained minimization 

of a nonconvex and highly nonlinear cost function, which may 

result in long optimization times unsuitable for HA applica-

tions; ii) there is no guarantee of global optimality and algo-

rithm convergence; iii) the weighting parameter employed for 

setting the trade-off between noise reduction and ILD preserva-

tion does not have a direct relationship with physical perfor-

mance measures, making its design difficult. 

Considering the presented facts, this work proposes a new 

MWF-ILD-based noise reduction method surpassing the above-

mentioned limitations. The contributions of this paper are the 

following: Firstly, the original (unconstrained) MWF-ILD op-

timization problem is changed to a constrained (CO) form (CO-

MWF-ILD) and then reformulated to an equivalent nonconvex 

quadratically constrained quadratic program (QCQP) with two 

quadratic constraints (QC-MWF-ILD). This makes the param-

eter design intuitive and directly linked to physical measures. 

Secondly, a convex semidefinite program (SDP) relaxation of 

the QC-MWF-ILD is derived (SD-MWF-ILD), which is guar-

anteed to have a globally optimal solution. Using recent results 

from nonconvex optimization literature, we show that the SD-

MWF-ILD achieves the same solution as the QC-MWF-ILD, 

which provides a means of computing the globally optimal so-

lution to the CO-MWF-ILD problem. Thirdly, we derive a re-

formulation of the SD-MWF-ILD, called constrained binaural 

MWF-ILD (CB-MWF-ILD), as a nonlinear optimization prob-

lem with linear constraints by considering the case of single 

pointwise speech and interfering sources. A semi-analytical 

closed-form solution requiring only simple algebraic operations 

is then derived. Thus, we obtain the optimal solution to the orig-

inal non-convex CO-MWF-ILD cost function at very low com-

putational complexity and without requiring any iterative opti-

mization procedure. This achievement may contribute to the 

availability of low-cost commercial binaural hearing aid gadg-

ets. Fourthly, the relation between the proposed solution with 

other techniques described in the literature is presented. Fifthly, 

computer simulations are provided for an acoustic scenario 

comprised of one pointwise speech source and one pointwise 

interfering source, corroborating the effectiveness of the pro-

posed method. Results indicate that the proposed method leads 

to a computational complexity similar to the MWF algorithm, 

reducing the computational time to estimate the noise reduction 

filters and presenting noise reduction and spatial preservation 

performance equivalent to the conventional (unconstrained) 

MWF-ILD implementation. 

The remainder of this paper is structured as follows. Section 

II defines the employed nomenclature. In Section III, the bin-

aural HA application is introduced. Section IV describes the 

conventional MWF and the conventional MWF-ILD methods. 

Section V presents the CO-MWF-ILD and the QC-MWF-ILD. 

The CO-MWF-ILD equivalent dual problem and its semidefi-

nite relaxation form (SD-MWF-ILD) are also shown. In Section 

VI, a semi-analytical closed-form solution (CB-MWF-ILD) is 

derived. Section VII describes the computational simulation 

setup, while in Section VIII, results are presented and dis-

cussed. Finally, Section 0 presents the conclusions of this work. 
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II. DEFINITIONS AND NOTATION 

Throughout this text, lowercase italic symbols represent sca-

lars, while lowercase and uppercase bold symbols denote vec-

tors and matrices, respectively. Subscripts in lowercase italic 

letters {}l denote indexes, while uppercase letters {}L denote 

literals. Terms ‘minimum’, ‘argument that minimizes,’ ‘argu-

ment that maximizes,’ and ‘subject to’ are abbreviated to 

‘min.,’ ‘arg.min.,’ ‘arg.max.,’ and ‘s.t.,’ respectively. The ma-

trix inequality representation A ≻ 0 (A ⪰ 0) means A is posi-

tive (semi-) definite. The vector inequality representation a > 0 

(a ≥ 0) means all elements of a are greater (or equal) than 0. 

Equivalent meaning is considered for a < 0 (a ≤ 0). Zero ma-

trices of dimension mn are represented as 0mn. The identity 

matrix is represented as I, and its order is defined according to 

the context. The sets of real, positive real, and complex numbers 

are represented as ℝ, ℝ++, and ℂ, respectively. The operator 

diag() creates a diagonal matrix, handling different kinds of in-

put arguments, e.g., for the scalar a and square matrix A of or-

der m, diag(a,A) leads to: 

 
1

1

diag( , )
m

m

a
a





 
  
 

0
A

0 A
. (1) 

 

 

Fig. 1. Binaural hearing aid system. 

III. SIGNAL AND SYSTEMS 

Fig. 1 depicts the investigated acoustic scenario constituted 

by a HA user, a desired pointwise source (speaker), an interfer-

ing pointwise source (loudspeaker), and background noise. The 

binaural system comprises two HA: one on the left (L) side with 

ML microphones and another on the right (R) side with MR mi-

crophones. The total number of microphones is M = ML+MR. 

The time-frequency representation of the noisy input signal, 

at the frequency bin index k, time frame index λ, microphone m 

 { 1, 2, …, Mℓ }, and side ℓ ∈ { L, R } is 

 , , ,
( , ) ( , ) ( , )

m m m
y k x k v k    , (2) 

in which xm,ℓ(λ,k) is the desired component (speech); and 

vm,ℓ(λ,k) = um,ℓ(λ,k)+nm,ℓ(λ,k) is the overall noise component, 

which is the sum of the interfering component um,ℓ(λ,k) and 

background noise nm,ℓ(λ,k). 

The noisy-speech input vector yℓ ∈ ℂMℓ at side ℓ is defined as 

 T

,1 ,2 ,( , ) [ ( , ) ( , ) ( , )]Mk y k y k y k   y , (3) 

in which {}T is the transpose operation. The binaural noisy vec-

tor, y(λ,k) ∈ ℂM, is defined as 

 
T T T

L R( , ) [ ( , ) ( , ) ]k k k  y y y . (4) 

This vector is available on both HAs due to a full-duplex com-

munication link and can be decomposed as 

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )k k k k k k         y x v x u n , (5) 

in which x(λ,k), u(λ,k), n(λ,k), and v(λ,k) are, respectively, the 

speech, interference, background noise, and overall noise vec-

tors, all similarly defined as y(λ,k) in (3) and (4). 

The pointwise speech x(λ,k) and interfering u(λ,k) vectors are 

modeled as 

 
x( , ) ( , ) ( , )k s k k  x a , (6) 

 
u( , ) ( , ) ( , )k s k k  u b , (7) 

in which sx(λ,k) and su(λ,k) are the clean speech and interfering 

signals; and vectors a(λ,k) = [ aL,1(λ,k) aL,2(λ,k) … aL,ML
(λ,k) 

aR,1(λ,k) … aR,MR
(λ,k) ]T and b(λ,k) = [ bL,1(λ,k) bL,2(λ,k) … 

bL,ML
(λ,k) bR,1(λ,k) … bR,MR

(λ,k) ]T are the complex M-dimen-

sional acoustic transfer function (ATF) vectors related to the 

speech and interfering sources, which carry information about 

the environment and the head and torso of the HA user. 

In general, a microphone at each HA is defined as the refer-

ence; whose associated signal is defined as: 

 
T

( , ) ( , ) ( , ) ( , )k x k u k n k     q y , (8) 

in which qℓ is a microphone selection vector with entries equal 

to 1 in the position of the reference microphone at the side ℓ and 

zero elsewhere; xℓ(λ,k), uℓ(λ,k), and nℓ(λ,k) are the speech, inter-

ference, and background noise components at the reference mi-

crophones. 

The output signals on the left and right HAs are defined as 

 
H

( , ) ( , ) ( , )z k k k   w y , (9) 

in which wℓ ∈ ℂM are the binaural noise reduction filters on the 

HA at side ℓ. 

IV. THE MWF-ILD NOISE REDUCTION METHOD 

The conventional binaural MWF noise reduction method is 

based on the mean squared error (MSE) criterion. It defines the 

best linear estimators for the speech in the reference micro-

phones, i.e., x̂L(λ,k) and x̂R(λ,k), through the minimization of the 

following cost function [12]: 

 

2
H

L L

MWF H

R R

( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )

x k k k
J k

x k k k

  


  

   
   

   

w y

w y
, (10) 

in which |||| is the Euclidean norm, and 𝔼{} is the expected 

value operator. Considering that speech, interference and noise 

are uncorrelated (𝔼{x(λ,k)vH(λ,k)} = 𝔼{v(λ,k)xH(λ,k)} = 0MM) 

(10) turns to [12] 
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H

MWF yy

H H

xx xx xx

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , )

J k k k k

k k k k p k

   

    



  

w Φ w

w p p w
, (11) 

in which 

 
T T T

L R( , ) [ ( , ) ( , )]k k k  w w w , (12) 

 yy y y
( , ) diag( ( , ), ( , ))k k k  Φ Φ Φ , (13) 

 
T

T T T T

xx L x R x
( , ) ( , ) ( , )k k k     p q Φ q Φ , (14) 

 
T T

xx L x L R x R( , ) ( , ) ( , )p k k k   q Φ q q Φ q . (15) 

The coherence matrices are defined as 

H

y x v( , ) { ( , ) ( , )} ( , ) ( , )k k k k k      Φ y y Φ Φ , (16) 

H

v u n( , ) { ( , ) ( , )} ( , ) ( , )k k k k k      Φ v v Φ Φ , (17) 

x sx

H H
( , ) { ( , ) ( , )} ( , ) ( , ) ( , )k k k p k k k      Φ x x a a , (18) 

u su

H H
( , ) { ( , ) ( , )} ( , ) ( , ) ( , )k k k p k k k      Φ u u b b , (19) 

in which n(λ,k) = 𝔼{n(λ,k)nH(λ,k)}; and psx(λ,k) =𝔼{|sx(λ,k)|2} 

and psu(λ,k) = 𝔼{|su(λ,k)|2} are the power spectrum densities 

(PSD) of the speech and interference, respectively. 

A closed-form solution to the minimum point of the cost 

function defined in (11) can be obtained by taking the gradient 

of JMWF(λ,k) with relation to w(λ,k) and equating it to zero. As-

suming that Φyy(λ,k) ⪰ 0, it results in the generalized MWF (G-

MWF) filter, given by [19] 

 
†

G-MWF yy xx( , ) ( , ) ( , )k k k  w Φ Φ q , (20) 

in which {}† is the Moore-Penrose inverse (pseudo-inverse); 

Φxx(λ,k) = diag(Φx(λ,k),Φx(λ,k)); and q = [ qL
T qR

T ]T. In the 

particular case in which Φyy(λ,k) ≻ 0, then Φ†
yy(λ,k)= Φ−1

yy(λ,k) 

and (20) becomes the conventional binaural MWF [12]. In such 

a situation, considering the pointwise speech source case, it is 

theoretically proven that the binaural cues of both processed 

speech and residual noise at the output are equal to the binaural 

cues of the input speech [12]. As a result, both signals are psy-

choacoustically perceived as arriving from the speech direction 

[18]. 

A. MWF-ILD 

To achieve the correct spatial perception of the interfering 

source at the HA output, some works extend the MWF cost 

function with additional terms for penalizing solutions w(λ,k) 

that distort the original binaural cues of the interference. The 

ILD has been an interesting alternative for achieving this goal. 

The MWF-ILD was originally defined as [16] [17] 

 
u

MWF-ILD MWF ILD( , ) ( , ) ( , ) ( , )J k J k k J k      , (21) 

in which (λ,k) ∈ ℝ++ is a frequency-dependent weighting pa-

rameter, which impacts the tradeoff between noise reduction 

and ILD preservation, and Ju
ILD is the interference ILD penalty 

term, generically defined as [16] [17] [20] 

 
2

u u u

ILD ou in
( , ) (ILD ( , )) (ILD ( , ))J k g k g k      , (22) 

in which g() = 10‧log10(), and ILDu
in(λ,k) and ILDu

ou(λ,k) are 

the input and output ILDs of the interfering source, respectively 

defined as [16][17] 

 

T

u L u L

in T

R u R

( , )
ILD ( , )

( , )

k
k

k







q Φ q

q Φ q
, (23) 

and 

H

u L u L

ou H

R u R

( , ) ( , ) ( , )
ILD ( , )

( , ) ( , ) ( , )

k k k
k

k k k

  


  


w Φ w

w Φ w
, (24) 

in which qR
TΦu(λ,k)qR > 0 and wR

H(λ,k)Φu(λ,k)wR(λ,k) >0. 

The first ILD penalty term was proposed in [16], correspond-

ing to a first-order Taylor series approximation for g(), i.e., 

g(x) ≅ x−1. A more accurate approximation for (22) was pro-

posed in [17] based on the inverse hyperbolic tangent function 

approximation of the logarithm, i.e., g(x) ≅ (x−1)/(x+1). 

The optimum noise reduction filter that minimizes (21) can 

be obtained by solving the conventional (unconstrained) MWF-

ILD problem: 

 MWF-ILD MWF-ILD
( , )

( , ) arg. min. ( , )
k

k J k


 
w

w . (25) 

It has been shown that the optimal filter obtained from (25) 

provides adequate noise reduction as well as psychoacoustic 

spatial preservation for g(x) ≅ x−1 and g(x) ≅ (x−1)/ (x+1) ap-

proximations [16] [17] [18]. However, compared to the closed-

form solution of the conventional MWF in (20) the formulated 

minimization problem in (25) has some inconveniences. Firstly, 

there is no direct relation between the parameter α(λ,k) and the 

maximum tolerated input-output ILD error, which imposes dif-

ficulties in its design. Secondly, the cost function Ju
ILD(λ,k) is 

nonconvex and highly nonlinear. Consequently, usual ap-

proaches to solve (25) may result in considerable additional 

computational burden compared to (20), as general-purpose op-

timization solvers have to be applied. Moreover, these ap-

proaches are not guaranteed to find the optimal global solution 

and may get trapped at local minima. These disadvantages mo-

tivate a reformulation of the conventional MWF-ILD method. 

The following sections omit the time-frame λ and the fre-

quency index k for space-saving and clarity. 

V. CONVEX FORMULATION OF THE MWF-ILD 

In this section, an equivalent convex formulation for the con-

ventional (unconstrained) MWF-ILD problem presented in (25) 

is proposed. It aims to provide tractable means for computing 

the globally optimal solution to the original problem. 

A. Constrained MWF-ILD 

An alternative ILD penalty term can be defined as: 

 
u u u 2

ILD-REL ILD in(ILD )J J g


  , (26) 

for g(ILDu
in) ≠ 0, i.e., the interference source is not positioned 

directly in front of the HA user. The ILDu
in = 1 scenario is not 

considered in this work because, in this case, the classic MWF 

will impose no binaural cue distortions. 

Unlike the Ju
ILD penalty term presented in (22), Ju

ILD-REL in-

corporates a scale factor that weights the input-output ILD error 

according to the input ILD. Thus, it measures relative ILD de-

viations. 

Constraining (26) in a given range, limited by δ ∈ ℝ++ (the 

ILD relative error tolerance), the constrained MWF-ILD (CO-

MWF-ILD) noise reduction method can be defined as [21]: 
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CO-MWF-ILD MWF

u 2

ILD-REL

arg.min.

      s.t.

J

J 





w

w
, (27) 

in which wCO-MWF-ILD is the optimal solution. By using this ap-

proach, we change the original problem, which consists of de-

termining the value of α in (21) (which is hard to design because 

it does not have a physical interpretation) by defining δ (which 

is an easier task because it is directly related to the maximum 

tolerable amount of ILD relative error). 

To write the constraint in (27) in a mathematically tractable 

form, we apply the antilogarithm and rearrange the ratio, which 

results in two cases with two quadratic inequalities: 

i) If ILDu
in > 1 then 

 
H H

L u L 1 R u R 0 w Φ w w Φ w , (28) 

 
H H

L u L 2 R u R 0 w Φ w w Φ w , (29) 

ii) If 0 < ILDu
in < 1 then 

 
H H

L u L 1 R u R 0 w Φ w w Φ w , (30) 

 
H H

L u L 2 R u R 0 w Φ w w Φ w , (31) 

in which 

 
u 1

1 in(ILD )
 

  and 
u 1

2 in(ILD )
 

 . (32) 

We can generically represent (28)-(31) using (12), leading to: 

 
T

1 H H

cc 1 cc 2 2 1
( 1) ( ) ( )

t  


    w Φ w w Φ w 0 , (33) 

in which 
cc u u( ) diag( , )  Φ Φ Φ , (34) 

for  {1,2} and t defined as 

 

u

in

u

in

1 , ILD 1

2 , 0 ILD 1
t

 
 

 
. (35) 

Using (33), the constrained problem in (27) is equivalently 

represented as 

 
QC-MWF-ILD MWF 2 1

arg.min. s.t. ( )J


 
w

w c w 0 . (36) 

where c(w) is defined as the left-hand side of (33). 

Both optimization problems in (27) and (36) are equivalent, 

resulting in wCO-MWF-ILD = wQC-MWF-ILD. 

The reformulation of the unconstrained (conventional) 

MWF-ILD problem (defined in (25)) into the MWF-ILD with 

two quadratic constraints (QC-MWF-ILD) in (36) yields a 

straightforward form to control the ILD distortion. The problem 

defined in (36) is known as a quadratically constrained quad-

ratic problem (QCQP), and is widely studied in the optimization 

literature [22] [23] [24]. 

B. Convex Reformulation of the QC-MWF-ILD 

The QC-MWF-ILD problem in (36) is hard to solve because 

it is non-convex. This section defines a convex reformulation 

of the QC-MWF-ILD with theoretical guarantees to achieve the 

globally optimal solution. 

Computing the Lagrangian of (36) results in 

 
T

MWF( , ) ( ) ( )J J w τ w τ c w , (37) 

in which  = [1 2 ]T are the Lagrange multipliers. Substituting 

 
1 The QC-MWF-ILD is strictly feasible if there exists w that satisfies the con-

straints c(w), such that c(w) < 0. 

(11) and (33) in (37) leads to: 

 H H H

yc xx xx xx( , ) ( )J p   w τ w Φ τ w w p p w , (38) 

in which 

 
2

1

yc yy cc

1

( ) ( 1) ( 1) ( )
t j

j j

j

 



   Φ τ Φ Φ . (39) 

Using (13), (16), and (34) in (39) results in 

 
yc yu 1 yu 2( ) diag( ( ( )), ( ( ))) Φ τ Φ τ Φ τ , (40) 

in which: 

 
yu y u( ( )) ( )r r  Φ τ Φ τ Φ , (41) 

 
1 T

( ) ( 1)
t

r r 
 τ δ τ , (42) 

for r  {1, 2}, 1 = [1 1]T, and 2 = [1 2]T. 

From (38), the Lagrangian dual problem of the QC-MWF-

ILD is defined as [22]: 

 
opt opt

0
( , ) = max. min. ( ,J J

τ w
w τ w τ) . (43) 

in which wopt is the optimal solution, and opt denotes the opti-

mal Lagrange multipliers. The dual problem, defined in (43), 

can be formulated for any constrained optimization problem 

and has two essential properties [22]: i) it is always a concave 

problem, whatever the form of the primal problem; and ii) for 

any τ ≥ 0 it defines a lower bound for the QC-MWF-ILD ob-

jective function, i.e., 

 opt

MWF QC-MWF-ILD ,J J(w ) (w τ) . (44) 

The inequality in (44) is not necessarily tight. However, con-

sidering that the QC-MWF-ILD in (36) is a QCQP (in complex 

variables) with two quadratic constraints, and assuming that it 

is strictly feasible1, then the optimal solution of both the primal 

problem JMWF(wQC-MWF-ILD) and the dual problem Jℒ(wopt,opt) 

are the same [23]. Thus, the inequality in (44) holds with equal-

ity, and wopt = wQC-MWF-ILD [22] [23], i.e., 

 opt

MWF QC-MWF-ILD QC-MWF-ILD( ) ( , )J Jw w τ . (45) 

The result in (45) is known as the strong duality property 

[22]. As a consequence, the solution to the QC-MWF-ILD 

problem in (36) can be computed precisely by (43), i.e., 

 
MWF QC-MWF-ILD

0
( )  max. min. ( , )J J




τ w
w w τ . (46) 

Since the Lagrangian is a quadratic function over w, (46) can 

be reduced to a single maximization problem. Firstly, the inner 

minimization problem must be solved, which can be done by 

equating the gradient of (38) with respect to w to zero, which 

leads to the following linear system: 

 yc xx( ) Φ τ w p . (47) 

Assuming Φyc() ⪰ 0, without loss of generality, an analyti-

cal solution to (47) is given by 

 
†

opt

yc xx
( ) ( )w Φ τ p . (48) 

Substituting (48) in (38) leads to 

opt H †

xx yc xx xx( ( ), ) min. ( , ) ( )J J p   
w

w τ τ w τ p Φ τ p . (49) 
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Without the optimal , the solution wopt() in (48) is not nec-

essarily equal to wQC-MWF-ILD, it only determines a lower bound 

solution. To find wQC-MWF-ILD, it is necessary to find  that max-

imizes (49). This is obtained by introducing constraints  ≥ 0 

and Φyc() ⪰ 0 (which are required for the existence of a finite 

solution to the inner optimization problem in (46)) explicitly in 

the maximization problem, i.e., 

 

opt H †

xx yc xx xx

yc

= arg.max. ( )

s.t. 0, ( ) 0

p 



τ

τ p Φ τ p

τ Φ τ
. (50) 

This problem can be written as a convex semidefinite (SD) pro-

gramming (SDP) of the form (see [22] and [23] for details) 

 opt opt

g
,

, arg min{ s.t. 0; ( ) 0}


  
τ

τ τ Φ τ  , (51) 

in which 

 
yc xx

g H

xx xx

( )
( )

p 

 
  

 

Φ τ p
Φ τ

p
. (52) 

Finally, replacing opt in (48) leads to: 

 opt † opt

SD-MWF-ILD yc xx( ) ( )w τ Φ τ p . (53) 

As a consequence of the strong duality of the QCQP in (36), it 

is proven in [23] that wSD-MWF-ILD = wQC-MWF-ILD. Therefore, one 

approach to determine wQC-MWF-ILD is to find opt solving the 

convex SDP in (51) (which is performed in polynomial time 

[22]) and replace its optimal solution in (53).  

VI. SEMI-ANALYTICAL CLOSED-FORM SOLUTION 

This section presents an efficient semi-analytical closed-

form procedure to the original CO-MWF-ILD optimization 

problem. The procedure is based on solving the concave dual 

problem presented in (50). Firstly, the bidimensional dual prob-

lem in (50) is transformed into two univariate problems; then, 

the semidefinite constraint is converted into a set of linear con-

straints. 

A. Reducing the Dimensionality of the Maximization Prob-

lem 

To reduce the dimensionality of the bidimensional maximi-

zation problem in (50), (37) is substituted in (45), leading to the 

following form for the strong duality property: 

 
MWF QC-MWF-ILD MWF QC-MWF-ILD

opt T

QC-MWF-ILD

( ) ( )

( ) ( )

J J



w w

τ c w
, (54) 

which necessarily implies that: 

 opt T

QC-MWF-ILD 0( ) ( ) τ c w . (55) 

Due to the non-negativity of the elements τopt and non-posi-

tivity of the entries in c(wQC-MWF-ILD), the identity in (55) can be 

represented as: 

 opt 2 H

QC-MWF-ILD cc QC-MWF-ILD( 1) ( ) 0t j

j j   w Φ w , (56) 

for j  {1, 2}. The identity in (56) implies that (55) is true. This 

occurs in the following situations: i) j
opt = 0; ii) wQC-MWF-ILD-

HΦcc(δj)wQC-MWF-ILD = 0; or iii) j
opt = 0 and wQC-MWF-ILD-

HΦcc(δj)wQC-MWF-ILD = 0, for j  {1, 2}. 

Considering that wQC-MWF-ILD must be a feasible solution to 

the problem in (36) and since δj > 0, the constraint in (36) im-

plies that the feasible solution must satisfy one of the following 

three cases: 

i) only the first constraint is active: 

 H

QC-MWF-ILD cc 1 QC-MWF-ILD( 1) ( ) 0t   w Φ w , (57) 

 H

QC-MWF-ILD cc 2 QC-MWF-ILD( 1) ( ) 0t  w Φ w . (58) 

ii) only the second constraint is active: 

 H

QC-MWF-ILD cc 1 QC-MWF-ILD( 1) ( ) 0t   w Φ w , (59) 

 H

QC-MWF-ILD cc 2 QC-MWF-ILD( 1) ( ) 0t  w Φ w . (60) 

iii) both constraints are inactive: 

 H

QC-MWF-ILD cc 1 QC-MWF-ILD( 1) ( ) 0t   w Φ w , (61) 

 H

QC-MWF-ILD cc 2 QC-MWF-ILD( 1) ( ) 0t  w Φ w . (62) 

From (57) to (62), it is possible to verify that any optimal 

solution wQC-MWF-ILD
 will lead to at least one inactive constraint, 

which implies that at least one optimal Lagrange multiplier 

must be zero. Therefore, the optimal Lagrange multiplier opt 

will be one out of two kinds: 1=[ 1 0 ]T, associated with (57)-

(58); or 2=[ 0 2 ]T, associated with (59)-(60). The Lagrange 

multiplier associated with (61)-(62) is a particular case of 1 or 

2. Consequently, we can find the optimal solution to the prob-

lem in (50) by equivalently solving two univariate optimization 

problems corresponding to each of the situations above. These 

problems can be formulated as: 

 

opt H †

xx yc xx xx

yc

 arg.max.  ( )

 s.t. 0, ( ) 0

j

j j

j j

p


 

 

  



p Φ p

Φ

 (63) 

for j  {1, 2}, in which (40), (41), and (42) turn into 

 yc yu 1 yu 2( ) diag( ( ( )), ( ( )))j j j   Φ Φ Φ , (64) 

 yu y u
( ( )) ( )

r j r j
    Φ Φ Φ , (65) 

 1( )( ) ( 1) j

t j r

r j

r

j      , (66) 

for r  {1, 2}. Solving (63) for j = 1 and j = 2 leads to 1
opt and 

2
opt, respectively. The optimal solution to (50) is the one that 

maximizes the dual cost function, i.e., 

 
opt opt opt

1 2= arg.max.{ ( ), ( ) }J Jτ τ τ . (67) 

Finally, the solution wQC-MWF-ILD is obtained by substituting 

the resulting opt in (53). 

B. Simplification of the Constraint 

The positive semidefinite constraint of Φyc(j) makes the so-

lution to the (63) computationally intensive. Here, we show that 

it is possible to write the semidefinite constraint equivalently in 

the form of a set of linear constraints. 

Defining (A) as the vector containing the eigenvalues of a 

generic diagonalizable matrix A and considering the block di-

agonal structure of Φyc(j), then (Φyc(j)) = [ T(Φyu(β1(j))) 

T(Φyu(β2(j))) ]T comprises the eigenvalues of the diagonal 

blocks [25]. Thus, matrix Φyc(j) is positive semi-definite if and 

only if (Φyu(β1(j))) ≥ 0 and (Φyu(β2(j))) ≥ 0, i.e., 
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yc yu( ) 0    ( ( ( ))) 0j r j   Φ Φ , (68) 

for r  {1, 2}. Therefore, we need to determine conditions in 

which all eigenvalues of Φyu(βr(j)) are nonnegative. The fol-

lowing theorem provides this: 

Theorem I. Considering that Φyu(βr(j)) = Φy+βr(j)Φu, 

with Φy defined in (16), Φu defined in (19) and βr(j) defined 

in (66); if Φy is a symmetric positive semidefinite matrix 

and Φu is a symmetric rank-1 matrix, then the eigenvalues 

of Φyu(βr(j))) are non-negative if and only if 

 1 1

b( 1) ( )t j r r

j j        , (69) 

for r  {1, 2} and ηb = psubHΦy
†b = trace(Φy

†Φu). 

Proof: See Appendix A. 

Considering (69) and the constraint j ≥ 0, the feasible region 

of (63) can be written as: 

 1 1

b{ 0} {( 1) ( ) }t j r r

j j j           , (70) 

for r  {1, 2}. Considering the cases for r = 1 and r = 2, the 

interval in (70) is given by 

    1 1 1

b b{ 0} ( 1) ( 1)t j t j

j j j j                 . (71) 

Considering (71), the feasible regions of (63) for t = 1 and 

t = 2 are defined, respectively, as 

 
1 1

b0 ( )
j

j j   
  , (72)

 
1 2

b
0 ( ) j

j j
     . (73) 

The intervals in (72) and (73) can be generically represented by 

 
1

b0 ( )
f

j j  
   (74) 

in which f = (−1)t (j −t). Using (74) in (63), leads to the follow-

ing optimization problem: 

 

opt H †

xx yc xx xx

1

b

 arg.max.  ( )

 s.t. 0 ( )

j

j j

f

j j

p


 

  

  

 

p Φ p

. (75) 

For each j  {1, 2}, the optimization problem described in 

(75) encompasses a concave cost function with a linear interval 

constraint. Therefore, its stationary point will be either in the 

interior of this interval, or it is one of the limits of the feasible 

region. 

C. Rewriting the Cost Function of the Dual Problem 

Considering the expressions for the pseudo-inverse of a 

block diagonal matrix such as yc, and of the sum of a positive 

semidefinite and a rank-1 matrix such as Φyu(βr(j)), given re-

spectively in [26] and [27], the cost function of (75) is defined 

as 

 

x

in

b b

1 2

( 1) ILD ( 1)
( )

( 1) 1 ( 1)1

j t j t

j j j

j j t j t

j j j

J c c
  


    

 

 

 


 

 
   

   
, (76) 

in which c1 = pxR|ηab|2; c2 = (ILDin
x+1)pxR|ηa|2; ηa = psxaHΦy

†a = 

trace(Φy
†Φx); ηb = psubHΦy

†b = trace(Φy
†Φu); |ηab|2 = psx psu 

|aHΦy
†b|2 = trace(Φy

†ΦxΦy
†Φu); psx = 𝔼{|sx|2}; psu = 𝔼{|su|2}; 

pxR = qR
TxqR; and ILDx

in = qL
TxqL(qR

Tx qR)1. 

Therefore, the dual problem in (75) can be represented as 

 opt 1

b
( ) sarg.max. .t. 0 ( )

j

j

f

j j jJ


      , (77) 

in which J𝓛(τj) is defined in (76). There are two possibilities for 

j
opt in (77). Either it belongs to the interior of the feasible region 

(0 < τj
opt < ηb

−1δj 
f), in which case it is a stationary point of (76), 

or it is one of the limits of the feasible interval, i.e., τj
opt = 0 or 

τj
opt = ηb

−1δj 
f. 

Thus, (77) can be solved by computing the set of possible 

solutions and finding the one that maximizes the objective func-

tion. 

D. The Stationary Point Inside the Feasible Region 

Since the dual problem is always concave, and considering 

the Hessian of J(τj) is not singular, there is at most one station-

ary point inside the feasible region, in which case it is the opti-

mal Lagrange multiplier. To obtain it, we compute the gradient 

of (76), leading to: 

 
x

11 in

2 2

b b

( ) ( 1)( 1) ILD

(( 1) ) (( 1) )

t jt j
j j

t j t j

j j j j

J cc 

     



 

 
  

    
. (78) 

Equating (78) to zero results in two possible solutions: 

 
b 1

b

( 1)
( 1)

( 1)

t j

j j i

jt j

j

  


 







 
 

 
, (79) 

in which i ∈{1, 2}; and 

 1/ 2 x 1/ 2

in( )j j ILD   . (80) 

Rearranging (79) leads to: 

 1

b( 1) (1 ( 1) ) ( ( 1) )t j i i

j j j j           . (81) 

Therefore, the generic representation for the stationary points 

(sp) of the dual problem in (75) is given by: 

 
1

sp

,

b

1 ( 1)( 1)

( 1)

it j
j

j i i

j j




  

   


 
. (82) 

 

TABLE I. 

CONDITIONS FOR THE STATIONARY POINTS IN (82) TO BE CONTAINED IN 

THE FEASIBLE REGION OF (77), FOR t  {1,2}, j  {1,2}, and i  {1,2}. 

  i = 1 i = 2 

t = 1 

j = 1 
1

b 1 1 b

11 1
0



   


 


 1

b 1 1 b

11 1
0



   


 


 

j = 2 
2

b 2 2 b 2

11 1
0



    


 


 2

b 2 2 b 2

11 1
0



    


 


 

t = 2 

j = 1 
1

b 1 1 b 1

11 1
0



    


 


 1

b 1 1 b 1

1+1 1
0



    
 


 

j = 2 
2

b 2 2 b

11 1
0



   


 


 2

b 2 2 b

1+1 1
0



   
 


 

 

Note that (82) represents two solutions, one for i = 1 and an-

other for i = 2. However, one can be eliminated since at most 

one of the stationary points will be a feasible solution to the dual 

problem. This can be verified by replacing (82) in the feasible 

region of (77) considering the values for t, j, and i that lead to 
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the conditions for the stationary points to be feasible solutions, 

as shown in TABLE I. Manipulating the inequalities for each 

entry of TABLE I leads to the equivalent interval representa-

tions shown in TABLE II. 

 
TABLE II. 

EQUIVALENT REPRESENTATION OF THE FEASIBLE REGIONS IN TABLE I. 

  i = 1 i = 2 

t = 1 
j = 1 1 1{ 1} { 1}      

1 1 1
{ } { 1}       

j = 2 2 2
{ 1} { 1}      

2 2 2{ } { 1}       

t = 2 
j = 1 1 1{ 1} { 1}      

1 1 1
{ } { 1}       

j = 2 2 2
{ 1} { 1}      

2 2 2{ } { 1}       

 
TABLE III 

PSEUDOCODE FOR THE CB-MWF-ILD PROPOSED METHOD. 

Input: Φy, Φu, Φx, δ 

Output: wCB-MWF-ILD 

If  ILDu
in ≠ 1 

   Compute δ1 and δ2 using (32) and δ 

   Compute ILDin
x using Φx in (23) 

   Compute ψ1 and ψ2 using (80) and ILDin
x 

   Initialize τ1
opt = 0 and τ2

opt = 0 
If  t = 1 and ψ1 ≥ 1 then 

  Compute τ1
opt = τ1,1

ifr using (83), for t = 1 and j = 1 
end If 
If  t = 1 and ψ2 ≤ 1 then 
  Compute τ2

opt = τ2,1
ifr using (83), for t = 1 and j = 2 

end If 
    If  t = 2 and ψ1 ≤ 1 then 

  Compute τ1
opt = τ1,2

ifr using (83), for t = 2 and j = 1 
end If 

    If  t = 2 and ψ2 ≥ 1 then 
  Compute τ2

opt= τ2,2
opt using (83), for t = 2 and j = 2 

end If 
 
    If J𝓛(τ1

opt) ≥ J𝓛(τ2
opt) then 

          τopt = [ τ1
opt  0 ]T 

    else 

          τopt = [ 0  τ2
opt ]T 

     end If 

 
     wCB-MWF-ILD = Φ†

yc(τopt)pxx 

else 

     wMWF-ILD = Φ†
yypxx 

end If 

 

Since δj > 0 (see (32)) and ψj > 0 (see (80)), the stationary 

points associated with column i = 2 in TABLE II. will never be 

inside of the feasible region (since this would require that 

δj < 0). Therefore, the stationary points inside the feasible re-

gion (ifr) can only be those for which i = 1, i.e., 

 
1

ifr

,

b

1( 1)t j
j

j t

j j




  

  



. (83) 

E. The Stationary Points Outside the Feasible Region 

If the stationary points are outside the feasible region, the 

maximum value of the dual problem is achieved at one of the 

limits of the feasible region. Considering the problem in (77), 

τj = 0 always leads to J(τj) = c2. Also, as τj approaches ηb
−1δj 

f 

the value of J(τj) approaches −∞. Therefore, the upper limit of 

the feasible interval is not a solution to the problem for any 

combination of f  { 1,2 } and j  { 1,2 }, since J(0) > 

J(ηb
−1δj

f). Therefore, the optimal Lagrange multiplier is zero 

(τj
opt = 0) when the stationary point of the cost function is out-

side the feasible region. 

F. Implementation 

TABLE III presents the pseudocode to implement the pro-

posed semi-analytical closed-form solution to the constrained 

binaural MWF-ILD named CB-MWF-ILD noise reduction 

method. It comprises equations (53), (83) and the reasoning pre-

sented in Section VI.E. It is worth noting that for ILDu
in = 1, the 

conventional MWF is the solution to the problem; its closed 

formula may be directly applied to speed up the calculation. 

G. Relationship of the CB-MWF-ILD with other techniques 

Assuming Φy ≻ 0, the CB-MWF-ILD filters are given by: 

 
1opt opt

CB-MWF-ILD yc xx( ) ( )


w τ Φ τ p . (84) 

The left and right filters in (84) can be written as: 

 
1opt opt

CB-MWF-ILD, yu xx( ) ( ( ))r


w τ Φ τ Φ q , (85) 

in which r = 1 when ℓ = L and r = 2 when ℓ = R. Using (19) in 

(41), replacing the result in (85), and finally using the Sherman-

Morrison formula [25], the left and right CB-MWF-ILD solu-

tions can be decomposed as: 

 
*

x u1 ba L
CB-MWF-ILD, MWF, MWF,*

1 b su L

( )

1 ( )

a

p b

 

 
 



τ
w w w

τ
, (86) 

in which φba = bHΦy
−1a; φb = bHΦy

−1b; wx
MWF,ℓ = Φy

−1Φxqℓ is 

the conventional binaural MWF, while wu
MWF,ℓ=Φy

−1Φuqℓ is its 

counterpart related to the interfering source. In the light of this 

decomposition, the CB-MWF-ILD can be related to the MVDR 

beamformer, leading to [12]: 

 
*

x u1 ba L b
CB-MWF-ILD, a MVDR, MVDR,*

1 b su L

( )( )

(1 ( ) )

a

p b

  


 
 



τ
w w w

τ
, (87) 

in which υa = psx/(1+psx φa); φa = aHΦy
−1a; υb = psx/(1+psx φb); 

φb = bHΦy
−1b; wx

MVDR,ℓ = a*
ℓΦy

−1a/φa is the conventional 

MVDR, while wu
MVDR,ℓ = b*

ℓΦy
−1b/φb is its counterpart related 

to the interfering source. 

Equation (87) also relates the CB-MWF-ILD with the para-

metric unconstrained beamformer (see Section IV in [28]). 

VII. COMPUTER SIMULATIONS 

In this section, computer simulations are presented to assess 

the performance of the CB-MWF-ILD semi-analytical closed-

form solution provided in TABLE III. Comparisons were per-

formed with four techniques: i) the conventional MWF de-

scribed in (20); ii) the conventional MWF-ILD described in 

This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2023.3291530

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



(25); iii) the MWF-ITF (JMWF-ITF = JMWF+Ju
ITF) whose cost 

function is given by [12] [15]: 

 
H

u u1
ITF H

u2

( )J 
w Φ w

w
w Φ w

, (88) 

in which: 

  

u *

u in u

u1 u u 2

in u in u

ITF

ITF ITF

( )

| |





 
  
 

Φ Φ
Φ

Φ Φ
, u2

u

M M M M

M M

 



 
  
 

0 0
Φ

0 Φ
, (89) 

ITFin
u = (qL

TΦuqL)/(qR
TΦuqR), and ()* is the complex conju-

gate operation; and iv) the MWF-PNE [12], whose solution is 

given by: 

 
MWF-PNE MWF(1 )   w w q , (90) 

in which κ is the scaling parameter, and q is the selection vector. 

A. Acoustic Scenario 

The acoustic scenario comprises two pointwise sources (the 

desired speech and the interfering source) and additive (envi-

ronmental and electrical) noise. Pointwise sources were simu-

lated by convolving signals with the corresponding acoustic 

transfer functions (ATFs). The ATFs characterize the acoustic 

path between the source location and the acquisition micro-

phones in a pair of behind-the-ear HA mounted on an artificial 

head and torso mannequin. The room reverberation time is 

T60  300 ms [29]. Thirty different speech signals were selected 

from the database presented in [30]. Half of them were consid-

ered speech of interest, while the other half were interference. 

Signals are two seconds long on average and uttered by a single 

speaker. 

The total number of microphones is M = 6 (3 on each side). 

The desired source was emulated at 0° azimuth (in front of the 

HA), while the azimuth of the interfering source (θu) was varied 

from −90° (left side) to 90° (right side) in steps of 10°, resulting 

in 19 different azimuths. Both pointwise sources’ elevation an-

gle and radial distance were set at 0° and 3 m, respectively. 

The environmental noise was assumed cylindrical and iso-

tropic. It was generated according to the procedure defined in 

[31] and [32].  

The long-term signal-to-interference ratio (SIR) and signal-

to-noise ratio (SNR) were both set to 0 dB, resulting in a signal-

to-interference-plus-noise ratio (SINR) of 3 dB. 

For each noise reduction technique, 285 simulations (15 sets 

of signals and 19 azimuths for the interfering source) were per-

formed. 

B. Time-Frequency Representation 

The input signals were sampled at 16 kHz and processed in 

frames of 256 samples with 50% overlap. Frames were 

weighted by an analysis window and transformed to the fre-

quency domain using the Short-time Fourier transform with 

K = 512 points, using zero padding. After filtering by the noise 

reduction method, the processed signals were transformed back 

to the time domain using the inverse Fourier transform. A syn-

thesis window weighted adjacent frames, and an overlap-and-

add algorithm was applied to restore the filtered signal to the 

time domain. The square root of the Hann window was used for 

both analysis and synthesis. 

For obtaining an upper bound performance, a batch proce-

dure for estimating the required coherence matrices was imple-

mented, resulting in a unique coefficient vector w per bin, 

which was calculated a priori and then employed for filtering 

the whole noisy speech [32] [33] [34]. 

The methodology used to estimate the coherence matrices 

was the same used in [35], [36], and [37]. We assume the use 

of a (own) voice activity detector [38] for segmenting back-

ground noise, interference plus noise, and speech plus noise 

epochs to estimate Φn; Φun = Φu+Φn and Φxn = Φx+Φn using: 

 
d

H

d

1d

1ˆ ( ) ( , ) ( , ),
P

k k k
P 

 


 Φ d d  (91) 

in which d  { n, un, xn }; and Pd is the number of frames used 

to estimate the coherence matrices. 

Estimation of Φx and Φu was performed using the covariance 

whitening method [35] [36] [37] [39] [40]. Firstly, a squared-

root decomposition of Φ̂n is performed, resulting in: 

 1/2 H/2

n n n
ˆ ˆ ˆ( ) ( ) ( ).k k kΦ Φ Φ  (92) 

Then, matrices Φ̂xn and Φ̂un are prewhitened using (92), i.e., 

 w 1/2 H/2

xn n xn n
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ),k k k k Φ Φ Φ Φ  (93) 

 w 1/2 H/2

un n un n
ˆ ˆ ˆ ˆ( ) ( ) ( ).k k k Φ Φ Φ Φ  (94) 

Finally, Φx and Φu were estimated as rank-1 matrices accord-

ing to: 

 H

x sx
ˆ ˆ ˆˆ( ) ( ) ( ) ( ),k p k k kΦ a a  (95) 

 H

u su
ˆ ˆ ˆˆ( ) ( ) ( ) ( ),k p k k kΦ b b  (96) 

in which  

 w

sx xn
ˆˆ ( ) { }p k  Φ , w

su xu
ˆˆ ( ) { }p k  Φ , (97) 

 w

n xn
ˆ ˆˆ( ) { }k a Φ f Φ , w

n un
ˆ ˆ ˆ( ) { },k b Φ f Φ  (98) 

where ν{} is the largest eigenvalue of the matrix in its argu-

ment; and f{} is its associated eigenvector. This method is 

widely used for speech (Φx) and interference (Φu) coherence 

matrix estimation in low-SNR complex acoustic scenarios [41]. 

C. Parameters and Optimization Algorithms 

The ‘fmincon’ routine from Matlab was employed to obtain 

the optimal solution for the conventional MWF-ILD method 

defined in (25) [42] and the MWF-ITF with cost function pre-

sented in (88) [15]. Both gradient and Hessian (see Appendix 

B) for equations (21) and (88) were provided to the solver. Pa-

rameters α(,k) and (,k) were defined through the iterative 

algorithm presented in Appendix C and kept fixed for all . 

Vector α ∈ ℝG
++ was defined by G = 500 elements linearly dis-

tributed in the logarithm scale between 10−10 and 1. This itera-

tive algorithm is similar to the algorithm presented in [32]. The 

ILD tolerance δ(,k) was set to 10−6. 

D. Objective Performance Measures 

Seven objective measures were used to assess the noise re-

duction and binaural cue preservation performances of the in-

vestigated methods. 

Speech quality for the left and right ears was measured by the 
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wideband perceptual evaluation of the speech quality (PESQ) 

[43], and intelligibility was estimated with the short-time objec-

tive indelibility (STOI) [44]. 

The signal-to-interfering-plus-noise ratio variation (ΔSINR), 

the signal-to-interfering ratio variation (ΔSIR), and the signal-

to-noise ratio variation (ΔSNR) are defined as [35] 

 LR LR

LR LR

zx v

10

1 zv x

( ) ( )10
SINR log

( ) ( )

K

k

p k p k

K p k p k

 
   

 
 

 , (99) 

 LR LR

LR LR

zx u

10

1 zu x

( ) ( )10
SIR log

( ) ( )

K

k

p k p k

K p k p k

 
   

 
 

 , (100) 

 LR LR

LR LR

zx n

10

1 zn x

( ) ( )10
SNR log

( ) ( )

K

k

p k p k

K p k p k

 
   

 
 

 , (101) 

in which pzdLR
 = wL

HdwR; pdLR
 = qL

TdqR; and d ∈ { n,u,x }. 

The ILD and IPD variations, which measure the input-output 

binaural cue preservation, are defined respectively as [17] [32] 

 L R

R L

zd d

d 10

1 zd d

( ) ( )10
ILD log

( ) ( )

K

k

p k p k

K p k p k

 
   

 
 

 , (102) 

 
LR LRd zd d

1

1
IPD ( ) ( )

K

k

p k p k
K 

    , (103) 

in which pzdℓ
 = wℓ

Hdwℓ; pdℓ
 = qℓ

Tdqℓ; and d ∈ { n,u,x }. The 

global performance for each noise reduction technique was cal-

culated for all signals and interference azimuths (285 values). 

VIII. RESULTS AND DISCUSSION 

This section presents performance results for the proposed 

CB-MWF-ILD method and compares it with the conventional 

MWF, MWF-ILD, MWF-ITF, and MWF-PNE. 

The dissimilarity between the employed objective criteria for 

the left and right sides results from the input/output ILD defini-

tions presented in (23) and (24), as described in [17]. 

Fig. 2 and Fig. 3 depict input-output ILD variation for the 

interference and speech signals, respectively. As expected, the 

conventional MWF severely distorts the interference ILD com-

pared to the MWF-ITF and MWF-ILD techniques. This obser-

vation is corroborated by the ∆ILDu (for all θu) presented in TA-

BLE IV, in which: ∆ILDu = 8.8 dB, ∆ILDu = 3.2 dB, 

∆ILDu = 2.4 dB, and ∆ILDu = 2.4 dB for the MWF, MWF-ITF, 

MWF-ILD, and CB-MWF-ILD, respectively. The proposed 

method and the MWF-ILD result in similar ILD preservation 

for interference. Both MWF-ILD techniques present a differ-

ence of 0.8 dB on the median ∆ILDu compared to the MWF-

ITF. The CB-MWF-ILD results in the same speech ILD distor-

tion as both the MWF-ILD and the MWF-ITF and approxi-

mately the same as the conventional MWF. 

Fig. 4 and Fig. 5 show ∆IPDu and ∆IPDx. The speech ∆IPD 

of the proposed method is very small and is in the same range 

as the MWF, MWF-ILD, and MWF-ITF. The interference 

 
2 Audio files with some examples obtained from the investigated acoustic sce-

narios can be found in https://github.com/diego-carmo/Closed-MWF-ILD 

/blob/main/README.md 

∆IPD is not negligible but in the same range as the MWF and 

the MWF-ILD techniques. This side effect may influence the 

localization of low-frequency interfering acoustic sources by 

the HA user due to incoherent ILD and IPD binaural cues. How-

ever, this situation was not observed in the processed signals2. 

The MWF-ITF presents lower interference ∆IPD values than 

the MWF and MWF-ILD techniques at the cost of a higher 

speech ∆IPD for azimuths near 0. This behavior is expected 

since the ITF cost function accounts for interference IPD and 

ILD preservation. TABLE IV also indicates that despite some 

variations, ∆IPDu and ∆IPDx for all interference azimuths and 

methods are in the same range. 

 

 
Fig. 2. Interference ∆ILD calculated from 15 input signals for each 

θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD 

in red (), and MWF-ITF in yellow (○). 

 

 
Fig. 3. Speech ∆ILD calculated from 15 input signals for each 

θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD 

in red (), and MWF-ITF in yellow (○). 
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Fig. 4. Interference ∆IPD calculated from 15 input signals for each 

θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD 

in red (), and MWF-ITF in yellow (○). 

 

 
Fig. 5. Speech ∆IPD calculated from 15 input signals for each 

θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD 

in red (), and MWF-ITF in yellow (○). 

 

 
Fig. 6. ∆SINR calculated from 15 different input signals for each 

θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD 

in red (), and MWF-ITF in yellow (○). 

 

 
Fig. 7. ∆SIR calculated from 15 different input signals for each 

θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD 

in red (), and MWF-ITF in yellow (○). 

 

 
Fig. 8. ∆SNR calculated from 15 different input signals for each 

θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD 

in red (), and MWF-ITF in yellow (○). 

 

 
Fig. 9. ∆PESQL calculated from 15 different input signals for each 

θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD 

in red (), and MWF-ITF in yellow (○). 

 

This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2023.3291530

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



TABLE IV 

GLOBAL MEDIAN AND STANDARD DEVIATION (M ± Σ) FOR SPEECH (X) AND INTERFERING (U) ∆ILD AND ∆IPD. 

 ∆ILDu [dB] ∆ILDx [dB] ∆IPDu [rad/π] ∆IPDx [rad/π] 

MWF 8.8 ± 3.3 0.5 ± 0.1 0.5 ± 610−2 210−2 ± 510−3 

MWF-ITF 3.2 ± 1.5 0.6 ± 0.2 0.1 ± 710−2 210−2 ± 710−3 

MWF-ILD 2.4 ± 1.4 0.6 ± 0.2 0.5 ± 610−2 210−2 ± 510−3 

CB-MWF-ILD 2.4 ± 1.4 0.6 ± 0.2 0.5 ± 610−2 210−2 ± 510−3 

 
TABLE V 

GLOBAL MEDIAN AND STANDARD DEVIATION (M ± Σ) FOR ∆SINR, ∆SIR, AND ∆SNR. 

 ∆SINR [dB] ∆SIR [dB] ∆SNR [dB] 

MWF 11.1 ± 1.8 15.1 ± 3.9 9.3 ± 1.3 

MWF-ITF 11.0 ± 1.9 17.3 ± 4.7 8.9 ± 1.3 

MWF-ILD 11.1 ± 1.8 15.3 ± 4.0 9.3 ± 1.3 

CB-MWF-ILD 11.1 ± 1.8 15.3 ± 4.0 9.3 ± 1.3 

 

TABLE VI 

AVERAGE TIME FOR CALCULATING THE OPTIMAL FILTERS (WL AND WR) IN THE ASSESSED ACOUSTIC SCENARIOS. 

 MWF MWF-ITF  MWF-ILD CB-MWF-ILD 

Time [s] 7105 3.2  2.6 2104 

 

 

Fig. 6 to Fig. 8 show ∆SINR, ∆SIR, and ∆SNR for distinct 

θu ≠ θx = 0, respectively. The proposed method presents a 

∆SINR reduction performance equivalent to the conventional 

MWF and MWF-ILD for all interference azimuths (TABLE V). 

Considering the ∆SIR, the MWF-ITF presents a performance of 

2 dB higher than the MWF and MWF-ILD techniques. On the 

other hand, considering the ∆SNR, the MWF-ITF presents a re-

duction of 0.5 dB compared to the other techniques. 

Fig. 9 to Fig. 12 show ΔPESQL, ΔPESQR, ΔSTOIL, and 

ΔSTOIR, respectively. Differences between PESQ median val-

ues are lower than 0.2 units indicating no relevant perceptual 

variation in speech quality [45]. Similar results are observed for 

intelligibility, since STOI differences, for both left and right 

sides, are lower than 0.1 [46]. 

Fig. 13 and Fig. 14 present comparisons of the CB-MWF-

ILD performance with the MWF-ITF and MWF-PNE methods 

for θu = 60. ∆ILDu and ΔSINR criteria were evaluated for the 

following set of parameters: δ (CB-MWF-ILD),  (MWF-ITF) 

and, κ (MWF-PNE)  { 10−6 0.1, 0.2, …, 1 }. The leftmost 

point in each plot is δ =  =  = 10−6. Note that these parameters 

have different interpretations, despite setting the trade-off be-

tween noise reduction and spatial preservation of the interfer-

ence source. Results presented in both Fig. 13 and Fig. 14 indi-

cate that CB-MWF-ILD and MWF-ITF are barely influenced 

by changes of δ and  in the range analyzed. On the contrary, 

the choice of κ strongly impacts the MWF-PNE performance. 

Furthermore, comparing CB-MWF-ILD and MWF-PNE for the 

same ∆ILDu setpoint (∆ILDu = 4.85 dB), the CB-MWF-ILD 

presents 3.3 dB higher ΔSINR than the MWF-PNE. Consider-

ing the case where both methods have the same ∆SINR setpoint 

(∆SINR = 11.75 dB), the CB-MWF-ILD results in 7.7 dB 

lower ∆ILDu than the MWF-PNE. Therefore, considering the 

same setpoint for a given metric, the CB-MWF-ILD performs 

better than the MWF-PNE. 

Massive simulations performed on a desktop personal com-

puter with an Intel Core i7-3770 processor, running at 

3.40 GHz, and Matlab indicated that the numerical process re-

quired for obtaining the optimal filters (wL and wR) for the CB-

MWF-ILD is 13,000 and 16,000 times faster than for the con-

ventional (unconstrained) MWF-ILD and the MWF-ITF meth-

ods, respectively; but only 0.35 times slower than the conven-

tional MWF, on average (see TABLE VI). 

 

 
Fig. 10. ∆PESQR calculated from 15 different input signals for each 

θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD 

in red (), and MWF-ITF in yellow (○). 
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Fig. 11. ∆STOIL calculated from 15 different input signals for each 

θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD 

in red (), and MWF-ITF in yellow (○). 

 

 
Fig. 12. ∆STOIR calculated from 15 different input signals for each 

θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD 

in red (), and MWF-ITF in yellow (○). 

 
Fig. 13. Interference ∆ILD for CB-MWF-ILD in red (), MWF-ITF in 

yellow (○), and MWF-PNE in purple (☆). The abscissa (concomi-

tantly) indicates parameters  and , respectively required by the CB-

MWF-ILD and MWF-PNE. θu = 60. The inset shows the CB-MWF-

ILD performance for 106    6102. 

 
Fig. 14. ∆SINR for CB-MWF-ILD in red (), MWF-ITF in yellow (○), 

and MWF-PNE in purple (☆). The abscissa (concomitantly) indicates 

parameters  and , respectively required by the CB-MWF-ILD and 

MWF-PNE. θu = 60. The inset shows the CB-MWF-ILD perfor-

mance for 106    6102. 

The CB-MWF-ILD was designed for acoustic scenarios with 

a single interference source. In the case of multiple sources, the 

rank-1 assumption is violated, and the performance of the semi-

analytical closed-form solution is not guaranteed to be the same 

as the conventional MWF-ILD. However, note that the conven-

tional forms of the MWF-ILD and MWF-ITF, presented in (21) 

and (88), are inappropriate for multiple interferences. In this 

case, other procedures are required to estimate the coherence 

matrices, and additional cost functions must be included. Meth-

ods such as the parametric unconstrained beamforming [28] or 

the relaxed binaural LCMV [47] can be alternatively used. It is 

also expected that an increase in the reverberation time would 

lead to a performance decrease, but keeping the correspondence 

with the conventional MWF-ILD. In such case, spatial preser-

vation of the late reverberation would require control over the 

interaural coherence, and the ILD, ITD, and ITF cost functions 

are no longer adequate [48]. 

IX. CONCLUSION 

This paper presented a new multichannel Wiener filter 

(MWF) based noise reduction method with interaural level dif-

ference (ILD) preservation. It minimizes the MWF cost func-

tion subject to two constraints (with physical meaning) for ILD 

preservation. Theoretical analysis shows that the resulting con-

vex optimization problem leads to the same optimal solution as 

the conventional nonconvex MWF-ILD. However, differently 

from it, the proposed technique has a semi-analytical closed-

form solution, which is a very interesting and desired character-

istic for real-time applications. Simulation results indicate that 

the proposed method results in approximately the same signal-

to-interference-plus-noise ratio performance presented by the 

conventional MWF and ILD preservation comparable to the 

conventional MWF-ILD. The proposed semi-analytical closed 

form leads to a considerable decrease (up to 13,000 times less) 

in the optimization time compared to the conventional MWF-
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ILD method, which makes this method very attractive for bin-

aural hearing aid applications. 

APPENDIX A 

PROOF OF THEOREM I 

Decompose Φy as 

 H

y y y yΦ Q Λ Q , (104) 

in which Λy is the diagonal matrix of eigenvalues ordered from 

the largest to the smallest; and Qy is an orthonormal matrix with 

the corresponding eigenvectors. Assuming Φy ⪰ 0 then (104) 

can be described as: 

 
H

y y y y ( ) ( ) y y
diag( , )

M T M T  
       Φ C N Σ 0 C N , (105) 

in which Σy is a diagonal matrix of order T  M, whose diagonal 

entries are the non-zero eigenvalues of Λy; and matrices Cy 

(with dimension MT) and Ny (with dimension M(M−T)) are 

formed by the eigenvectors corresponding to the non-zero ei-

genvalues and the zero eigenvalues of Λy, respectively. From 

(16), (17), and (19) it can be verified that vector b is in the col-

umn space of y. Using the eigenvectors of y as a basis, vector 

b can be written as 

 
T

T

y y y 1 ( )M T 
      b C N b 0 , (106) 

in which by is the component of b in the column space of y. 

Using (105) and (106), (65) can be defined as: 

yu

H H

y y su y y ( ) ( ) y

( ( ))

diag( ( ) , )

j

r j

r

M T M T
p

 

 
  

 

Φ

Q Σ b b 0 Q
. (107) 

Because Qy is invertible, pre- and post-multiplication of (107) 

by Qy and its conjugate transpose preserves its positive definite-

ness characteristic [25]. Thus, the block diagonal structure of 

the inner matrix in (107) implies that Φyu(βr(j)) is positive sem-

idefinite if and only if 

 H

y su y y( ) 0r jp  Σ b b , (108) 

which can be expressed as: 

 1/2 1/2 H 1/2 1/2

y su y y y y y( ( ) ) 0r j p   Σ I Σ b b Σ Σ . (109) 

Because the columns of Cy in (106) consist of unity norm, 

orthogonal, and linearly independent vectors, the following re-

lation between by and b can be established: 

 H

y yb C b . (110) 

Pre-multiplying both sides of (110) by Σy
−1/2 leads to: 

 1/2 1/2 H

y y y y

 Σ b Σ C b . (111) 

Using (111) in (109), leads to: 

 1/2 1/2 H H 1/2 1/2

y y y y y y( ( ) ) 0r j   Σ I Σ C bb C Σ Σ  (112) 

The matrix inside the parenthesis in (112) is an identity ma-

trix plus a rank-1 matrix. Thus, its eigenvalues are 1 (T−1 

times) and 1+βr(τj)psuby
HCyΣy

−1Cy
Hb [49]. Therefore, since 

(112) consists in a congruence relation, Φyu(βr(j)) is positive 

semidefinite if and only if:  

 

H 1 H

su y y y

H †

su y

0 1 ( )

( )

1 (

1

)
b

r j

r j

r j

p

p



 

 

 

 

 

 

b C Σ C b

b Φ b  (113) 

in which ηb = psubHΦy
†b = trace(Φy

†Φu), and Φ†
y is the Moore-

Penrose inverse of matrix Φy, defined as Φ†
y = Qydiag(Σy

−1, 

0(M−t)(M−t))Qy
H. Considering ηb > 0, equation (113) results in 

 1

b( )r j     . (114) 

Replacing (66) in (114) completes the proof. 

APPENDIX B 

GRADIENT AND HESSIAN OF JMWF, JILD, AND JITF 

Since Φyy = Φyy
H, the JMWF cost function defined in (11) can 

be written as: 

 H H

MWF yy xx xx( ) { } 2 { }J p    w w Φ w w p . (115) 

Defining 

 
T T T T T T

[ { } { }] [ ]    w w w w w  (116) 

and using it in (115), leads to 

 
T T

MWF yy xx xx
( ) 2J p  w w Φ w w p , (117) 

in which 

yy yy

yy

yy yy

{ } { }

{ } { }

  
  

   

Φ Φ
Φ

Φ Φ
 and 

xx

xx

xx

{ }

{ }

 
  

 

p
p

p
. (118) 

Calculating the gradient of JMWF with respect to ͝w leads to: 

 MWF yy xx
( ) 2 2J  

w
w Φ w p , (119) 

while its Hessian matrix is given by: 

 
2

MWF yy
( ) 2J 

w
w Φ . (120) 

The gradient of Ju
ILD in (22) can also be defined as a function 

of w̆: 

 u

ILD ILD

e

40
( ) ( ) ( )

log (10)
J e 

w
w w p w , (121) 

in which 

 
u u

ILD 10 ou 10 ou( ) 10log (ILD ( )) 10log (ILD )e  w w , (122) 

 1 2

T T

1 2

( )  
Φ w Φ w

p w
w Φ w w Φ w

, (123) 

and 1 u
diag( { }, )

M M
 Φ Φ 0 , (124) 

 2 u
diag( , { })

M M
 Φ 0 Φ . (125) 

The Hessian matrix of the JILD(w̆) is given by 

 

2 u

ILD ILD

e

T

ILD

e

40
( ) ( ) ( )

log (10)

40
( ) ( )

log (10)

J e

e

  

 

w w

w

w w p w

w p w

 (126) 

The cost function in (88) can be written with respect to w̆ 

leading to: 
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T

u 3
ITF T

4

( )J 
w Φ w

w
w Φ w

, (127) 

in which: 

 u1 u1

3

u1 u1

{ } { }

{ } { }

  
  

  

Φ Φ
Φ

Φ Φ
, (128) 

 4

u2{ }

M M M M

M M

 



 
  

 

0 0
Φ

0 Φ
. (129) 

The gradient of (127) is given by: 

 
T T

u u1 u2 u2 u1
ITF T 2

u2

( ) 2
( )

J
  

 
w

Φ w w Φ w Φ w w Φ w
w

w Φ w
 (130) 

Also, the Hessian matrix of (127) is given by: 

 

T T
2 u u1 u1 u1 u1

ITF T 2

u2

T T

u1 u1 u2
u1 T 2 T 2

u2 u2

T
Tu2 u2

u1T 3

u2

( ) 4
( )

4 2
( ) ( )

4
( )

J
 

 

 

 

w

Φ w Φ w Φ ww Φ
w

w Φ w

w Φ w Φ ww Φ
Φ

w Φ w w Φ w

Φ ww Φ
w Φ w

w Φ w

 (131) 

APPENDIX C 

ITERATIVE ALGORITHM FOR OBTAINING OPTIMUM / AND W FOR THE 

UNCONSTRAINED MWF-ILD OR MWF-ITF. 

Algorithm: Iterative search for finding α and w in each 

discrete frequency k = 1, …, N. 

Input: δ2, ILDin, ITFin, α, Φu, Φy, Φx 

Output: w 

Choose J(λ,k)  { JILD(λ,k), JITF(λ,k) } 

Set G as the length vector α 

Set e2
ILD = ∞ 

Set i = 0 

Set w with random initialization 

While e2
ILD > δ2 and i < G 

   i = i + 1 

   Considering αi = α(i), find the binaural filters solving: 

  MWF ( , ) + ( , )( ) arg.min.i iJ k J k   
w

w  

   wUNC = w(αi) 

   e2
ILD = Ju

ILD(w(αi)) using (22) 

End While 

Return w = wUNC 
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