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This paper presents a multichannel Wiener filter (MWF) based noise reduction method with preservation of the interaural level difference (ILD). It minimizes the MWF cost function subject to two constraints for ILD preservation. Under this approach, the weighting coefficient that establishes the trade-off between noise reduction and binaural cue preservation takes a physical interpretation, facilitating its design. The proposed approach results in a convex optimization problem that admits a computationally efficient semi-analytical closed-form solution. Simulation experiments in hearing aid applications were performed considering practical acoustic scenarios. Considering an appropriate set of control parameters, the average performance of the proposed method preserves the ILD of a single interfering source in the same way as the conventional MWF-ILD, keeping the same level of noise reduction as the classic MWF, with approximately the same amount of speech ILD distortion. The proposed method is particularly interesting for implementing real-time noise reduction methods in binaural hearing aids.

I. INTRODUCTION

inaural hearing is the ability of the human auditory system to combine and compare information from acoustic signals captured in both ears. It increases speech loudness compared to the case in which only one ear is stimulated [START_REF] Gelfand | Hearing: An introduction to psychological and physiological acoustics[END_REF]. By using signals at both ears, the auditory system creates sound objects facilitating the localization, separation, and identification of sound sources [START_REF] Blauert | Spatial hearing -The psychoacoustics of human sound localization[END_REF].

An example of the binaural hearing advantage occurs when a person listens to the desired speaker while another (undesired speaker) speaks simultaneously. If the spatial positions of both the desired and undesired speakers are close enough, an effect known as "spatial masking" occurs. In such a situation, information from the desired speaker may be missed due to its proximity to the undesired source. Consequently, there may be a decrease in perception and understanding of the desired information content. However, if the undesired speaker moves away, This work was supported by CNPq under grants 315020/2018-0 and 302492/2021-6. D. Carmo is with the Graduate Program in Electrical Engineering, Federal University of Santa Catarina, Florianópolis-SC, Brazil, R. A. Borsoi is with the Centre de Recherche en Automatique de Nancy (CRAN), Université de Lorraine, CNRS, Vandoeuvre-lès-Nancy, France, and M. H. Costa is the spatial masking decreases, leading to an increase in intelligibility and a reduction in the necessary cognitive effort. This phenomenon is called spatial release from masking [START_REF] Ching | Spatial release from masking in normal-hearing children and children who use hearing aids[END_REF] [4] [START_REF] Wagner | Improved binaural speech reception thresholds through small symmetrical separation of speech and noise[END_REF].

Noise reduction methods are an essential part of modern hearing aids (HA) since they may improve the quality and intelligibility of noisy speech [START_REF] Li | Factors influencing intelligibility of ideal binary-masked speech: Implications for noise reduction[END_REF] [START_REF] Hu | Subjective comparison and evaluation of speech enhancement algorithms[END_REF]. Strict-sense binaural noise reduction methods combine noise reduction, which aims to recover the desired speech from noisy observations [START_REF] Benesty | Noise reduction in speech processing[END_REF] [START_REF] Doclo | Binaural speech processing with application to hearing devices[END_REF], with binaural cue preservation, whose goal is to avoid significant distortions of the spatial information associated with the sound sources [START_REF] Doclo | Binaural speech processing with application to hearing devices[END_REF]. Binaural HA constitutes the most advanced noise reduction device for hearing-impaired people. These gadgets employ a wireless communication link between the left and right ears, by which signals and control parameters are exchanged, thus increasing the diversity of information.

Assuming a sound field generated by a pointwise source, the acoustic power in each ear is generally different due to physical phenomena, such as reverberation, reflection, and diffraction [START_REF] Blauert | Spatial hearing -The psychoacoustics of human sound localization[END_REF]. This power dissimilarity allows the human auditory system to identify different sound objects (e.g., speech) and localize their corresponding physical sources (e.g., the person speaking) [START_REF] Blauert | Spatial hearing -The psychoacoustics of human sound localization[END_REF]. The primary spatial information used by the auditory system to localize sound sources is the interaural time difference (ITD). This binaural information is predominant for frequencies below 1500 Hz [START_REF] Blauert | Spatial hearing -The psychoacoustics of human sound localization[END_REF] and is based on time differences between the signals that reach the ears. Complementary spatial information is provided by the acoustic power difference in both ears, known as the interaural level difference (ILD). It is mathematically defined as the difference (in logarithmic scale) between the left and right acoustic powers from the waves reaching the ears [START_REF] Blauert | Spatial hearing -The psychoacoustics of human sound localization[END_REF]. The proportion between the human head's width and the wavelength of audible sounds makes the ILD the primary binaural cue for frequencies above 1500 Hz [START_REF] Blauert | Spatial hearing -The psychoacoustics of human sound localization[END_REF]. This binaural cue is robust to coherence variations [START_REF] Hartmann | Interaural level differences and the level-meter model[END_REF] and carries enough information to create complex acoustic scenarios, such as in amplitude stereo panning techniques, even with headphones [START_REF] Blum | Spatial audio to assist speaker identification in telephony[END_REF].

Techniques based on the multichannel Wiener filter (MWF)
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are among the most studied noise reduction methods for binaural HA. In binaural systems based on the MWF, the binaural cues of the processed speech are unchanged [START_REF] Cornelis | Theoretical analysis of binaural multimicrophone noise reduction techniques[END_REF]. However, the binaural cues of the filtered noise are distorted, inheriting the same spatial characteristics as the speech [START_REF] Cornelis | Theoretical analysis of binaural multimicrophone noise reduction techniques[END_REF]. Due to this behavior, HA users may not take advantage of psychoacoustic mechanisms such as the best ear advantage [START_REF] Hawley | The benefit of binaural hearing in a cocktail party: effect of location and type of interferer[END_REF] or the spatial release from masking [START_REF] Ching | Spatial release from masking in normal-hearing children and children who use hearing aids[END_REF]. Many MWF-based techniques have been proposed to preserve the binaural cues. The MWF with partial noise estimation (MWF-PNE) was proposed in [START_REF] Bogaert | The effect of multimicrophone noise reduction systems on sound source localization by users of binaural hearing aids[END_REF]. Its noise reduction filters have a simple closed form, being defined as the convex combination of the MWF solution and an all-pass filter. This solution may preserve the ILD and IPD of the undesired additive component, by adjusting the amount of unprocessed noise at the output of the gadget, but results in significant loss in noise reduction performance.

An important class of MWF-based techniques achieves (strict-sense) binaural cue preservation of the interference signal through designing and optimizing cost functions incorporating regularization terms that directly penalize distortions in the ILD and IPD. This is the case of the MWF with interaural transfer function preservation (MWF-ITF) [START_REF] Bogaert | Binaural cue preservation for hearing aids using an interaural transfer function multichannel Wiener filter[END_REF]. This technique preserves the interfering source's ILD and IPD at the cost of losing noise reduction performance and/or distorting the binaural cues of the speech source. Despite their advantages, these techniques do not have closed-form solutions, which may prevent their real-time implementation.

MWF-based methods with ILD preservation (MWF-ILD) generally employ cost functions comprised of two terms: i) the conventional MWF cost function, which aims to minimize the power of the overall noise (restraining the speech distortion); and ii) an ILD penalty term, which penalizes solutions that deviate from the original ILD of the input noise [START_REF] Doclo | Extension of the multi-channel Wiener filter with localization cues for noise reduction in binaural hearing aids[END_REF] [17] [START_REF] Carmo | Online approximation of the multichannel Wiener filter with preservation of interaural level difference for binaural hearing aids[END_REF]. A weighting parameter establishes the trade-off between the optimization effort for each term in the cost function.

The first proposed MWF-ILD technique defined the ILD penalty term as the mean squared difference between the input and output ILDs [START_REF] Doclo | Extension of the multi-channel Wiener filter with localization cues for noise reduction in binaural hearing aids[END_REF]. The work in [START_REF] Costa | ILD preservation in the multichannel Wiener filter for binaural hearing aid applications[END_REF] proposed a variation of the ILD penalty term based on an approximation of the logarithm function, resulting in a cost function that equally penalizes positive and negative ILD errors. In both works, the design of the binaural noise reduction filters was based on an unconstrained minimization of the MWF cost function plus the weighted ILD penalty term. However, despite their notable performance in offline experiments, these techniques are inappropriate for online implementation in embedded systems with severe computational limitations, such as in HA applications. Lately, an adaptive filter implementation of the method presented in [START_REF] Costa | ILD preservation in the multichannel Wiener filter for binaural hearing aid applications[END_REF] was proposed in [START_REF] Carmo | Online approximation of the multichannel Wiener filter with preservation of interaural level difference for binaural hearing aids[END_REF] to deal with this problem. This algorithm allows for the practical implementation of the MWF-ILD. However, the slow convergence rate of the adaptive algorithm may lead to suboptimal solutions, compromising the maximum attainable noise reduction and spatial preservation. As a result, previous MWF-ILD methods have some considerable drawbacks, which may be summarized as: i) the design of the binaural filters is based on the unconstrained minimization of a nonconvex and highly nonlinear cost function, which may result in long optimization times unsuitable for HA applications; ii) there is no guarantee of global optimality and algorithm convergence; iii) the weighting parameter employed for setting the trade-off between noise reduction and ILD preservation does not have a direct relationship with physical performance measures, making its design difficult.

Considering the presented facts, this work proposes a new MWF-ILD-based noise reduction method surpassing the abovementioned limitations. The contributions of this paper are the following: Firstly, the original (unconstrained) MWF-ILD optimization problem is changed to a constrained (CO) form (CO-MWF-ILD) and then reformulated to an equivalent nonconvex quadratically constrained quadratic program (QCQP) with two quadratic constraints (QC-MWF-ILD). This makes the parameter design intuitive and directly linked to physical measures. Secondly, a convex semidefinite program (SDP) relaxation of the QC-MWF-ILD is derived (SD-MWF-ILD), which is guaranteed to have a globally optimal solution. Using recent results from nonconvex optimization literature, we show that the SD-MWF-ILD achieves the same solution as the QC-MWF-ILD, which provides a means of computing the globally optimal solution to the CO-MWF-ILD problem. Thirdly, we derive a reformulation of the SD-MWF-ILD, called constrained binaural MWF-ILD (CB-MWF-ILD), as a nonlinear optimization problem with linear constraints by considering the case of single pointwise speech and interfering sources. A semi-analytical closed-form solution requiring only simple algebraic operations is then derived. Thus, we obtain the optimal solution to the original non-convex CO-MWF-ILD cost function at very low computational complexity and without requiring any iterative optimization procedure. This achievement may contribute to the availability of low-cost commercial binaural hearing aid gadgets. Fourthly, the relation between the proposed solution with other techniques described in the literature is presented. Fifthly, computer simulations are provided for an acoustic scenario comprised of one pointwise speech source and one pointwise interfering source, corroborating the effectiveness of the proposed method. Results indicate that the proposed method leads to a computational complexity similar to the MWF algorithm, reducing the computational time to estimate the noise reduction filters and presenting noise reduction and spatial preservation performance equivalent to the conventional (unconstrained) MWF-ILD implementation.

The remainder of this paper is structured as follows. Section II defines the employed nomenclature. In Section III, the binaural HA application is introduced. Section IV describes the conventional MWF and the conventional MWF-ILD methods. Section V presents the CO-MWF-ILD and the QC-MWF-ILD. The CO-MWF-ILD equivalent dual problem and its semidefinite relaxation form (SD-MWF-ILD) are also shown. In Section VI, a semi-analytical closed-form solution (CB-MWF-ILD) is derived. Section VII describes the computational simulation setup, while in Section VIII, results are presented and discussed. Finally, Section 0 presents the conclusions of this work.

II. DEFINITIONS AND NOTATION

Throughout this text, lowercase italic symbols represent scalars, while lowercase and uppercase bold symbols denote vectors and matrices, respectively. Subscripts in lowercase italic letters {}l denote indexes, while uppercase letters {}L denote literals. Terms 'minimum', 'argument that minimizes,' 'argument that maximizes,' and 'subject to' are abbreviated to 'min.,' 'arg.min.,' 'arg.max.,' and 's.t.,' respectively. The matrix inequality representation A ≻ 0 (A ⪰ 0) means A is positive (semi-) definite. The vector inequality representation a > 0 (a ≥ 0) means all elements of a are greater (or equal) than 0. Equivalent meaning is considered for a < 0 (a ≤ 0). Zero matrices of dimension mn are represented as 0mn. The identity matrix is represented as I, and its order is defined according to the context. The sets of real, positive real, and complex numbers are represented as ℝ, ℝ++, and ℂ, respectively. The operator diag() creates a diagonal matrix, handling different kinds of input arguments, e.g., for the scalar a and square matrix A of order m, diag(a,A) leads to: 

m m m y k x k v k    , ( , ) ( , ) ( , ) 
     y , (3) 
in which {} T is the transpose operation. The binaural noisy vector, y(λ,k) ∈ ℂ M , is defined as

T T T LR ( , ) [ ( , ) ( , ) ] k k k     y y y . ( 4 
)
This vector is available on both HAs due to a full-duplex communication link and can be decomposed as

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) k k k k k k            y x v x u n , (5) 
in which x(λ,k), u(λ,k), n(λ,k), and v(λ,k) are, respectively, the speech, interference, background noise, and overall noise vectors, all similarly defined as y(λ,k) in ( 3) and ( 4).

The pointwise speech x(λ,k) and interfering u(λ,k) vectors are modeled as In general, a microphone at each HA is defined as the reference; whose associated signal is defined as: T ( , ) ( , ) ( , ) ( , )

x ( , ) ( , ) ( , ) k s k k     xa , ( 6 
) u ( , ) ( , ) ( , ) k s k k     ub , ( 7 
k x k u k n k        qy , (8) 
in which qℓ is a microphone selection vector with entries equal to 1 in the position of the reference microphone at the side ℓ and zero elsewhere; xℓ(λ,k), uℓ(λ,k), and nℓ(λ,k) are the speech, interference, and background noise components at the reference microphones.

The output signals on the left and right HAs are defined as

H ( , ) ( , ) ( , ) z k k k     wy , ( 9 
)
in which wℓ ∈ ℂ M are the binaural noise reduction filters on the HA at side ℓ.

IV. THE MWF-ILD NOISE REDUCTION METHOD

The conventional binaural MWF noise reduction method is based on the mean squared error (MSE) criterion. It defines the best linear estimators for the speech in the reference microphones, i.e., x̂L(λ,k) and x̂R(λ,k), through the minimization of the following cost function [START_REF] Cornelis | Theoretical analysis of binaural multimicrophone noise reduction techniques[END_REF]: 

2 H LL MWF H RR ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) x k k k Jk x k k k            
( , ) ( , ) ( , ) ( , ) ( , )

J k k k k k k k k p k              w Φw w p p w , (11) in which 
T T T LR ( , ) [ ( , ) ( , )] k k k     w w w , (12) yy y y 
( , ) diag( ( , ), ( , ))

k k k     Φ Φ Φ , (13) 
T T T T T xx L x R x ( , ) ( , ) ( , ) k k k       pq Φ q Φ , ( 14 
) TT xx L x L R x R ( , ) ( , ) ( , ) p k k k     q Φ q q Φ q . ( 15 
)
The coherence matrices are defined as

H y x v ( , ) { ( , ) ( , )} ( , ) ( , ) k k k k k        Φ y y Φ Φ , (16) 
H v u n ( , ) { ( , ) ( , )} ( , ) ( , ) k k k k k        Φ v v Φ Φ , (17) 
x sx

HH ( , ) { ( , ) ( , )} ( , ) ( , ) ( , ) k k k p k k k        Φ x x a a , (18) 
u su HH ( , ) { ( , ) ( , )} ( , ) ( , ) ( , ) k k k p k k k         Φ u u b b , (19) 
in which n(λ,k) = 𝔼{n(λ,k)n H (λ,k)}; and psx(λ,k) =𝔼{|sx(λ,k)| 2 } and psu(λ,k) = 𝔼{|su(λ,k)| 2 }
are the power spectrum densities (PSD) of the speech and interference, respectively. A closed-form solution to the minimum point of the cost function defined in [START_REF] Blum | Spatial audio to assist speaker identification in telephony[END_REF] can be obtained by taking the gradient of JMWF(λ,k) with relation to w(λ,k) and equating it to zero. Assuming that Φyy(λ,k) ⪰ 0, it results in the generalized MWF (G-MWF) filter, given by [START_REF] Chaumette | On the general conditions of existence for linear MMSE filters: Wiener and Kalman[END_REF] 

† G-MWF yy xx ( , ) ( , ) ( , ) k k k     w Φ Φ q , ( 20 
)
in which {} † is the Moore-Penrose inverse (pseudo-inverse); Φxx(λ,k) = diag(Φx(λ,k),Φx(λ,k)); and q = [ qL T qR T ] T . In the particular case in which Φyy(λ,k) ≻ 0, then

Φ † yy(λ,k)= Φ -1 yy(λ,k)
and ( 20) becomes the conventional binaural MWF [START_REF] Cornelis | Theoretical analysis of binaural multimicrophone noise reduction techniques[END_REF]. In such a situation, considering the pointwise speech source case, it is theoretically proven that the binaural cues of both processed speech and residual noise at the output are equal to the binaural cues of the input speech [START_REF] Cornelis | Theoretical analysis of binaural multimicrophone noise reduction techniques[END_REF]. As a result, both signals are psychoacoustically perceived as arriving from the speech direction [START_REF] Carmo | Online approximation of the multichannel Wiener filter with preservation of interaural level difference for binaural hearing aids[END_REF].

A. MWF-ILD

To achieve the correct spatial perception of the interfering source at the HA output, some works extend the MWF cost function with additional terms for penalizing solutions w(λ,k) that distort the original binaural cues of the interference. The ILD has been an interesting alternative for achieving this goal. The MWF-ILD was originally defined as [START_REF] Doclo | Extension of the multi-channel Wiener filter with localization cues for noise reduction in binaural hearing aids[END_REF] 

[17] u MWF-ILD MWF ILD ( , ) ( , ) ( , ) ( , ) J k J k k J k       , (21) 
in which (λ,k) ∈ ℝ++ is a frequency-dependent weighting parameter, which impacts the tradeoff between noise reduction and ILD preservation, and J u ILD is the interference ILD penalty term, generically defined as [START_REF] Doclo | Extension of the multi-channel Wiener filter with localization cues for noise reduction in binaural hearing aids[END_REF] 

[17] [20] 2 u u u ILD ou in ( , ) (ILD ( , )) (ILD ( , )) J k g k g k       , ( 22 
)
in which g() = 10‧log10(), and ILD u in(λ,k) and ILD u ou(λ,k) are the input and output ILDs of the interfering source, respectively defined as [START_REF] Doclo | Extension of the multi-channel Wiener filter with localization cues for noise reduction in binaural hearing aids[END_REF][17]

T u L u L in T R u R ( , ) ILD ( , ) ( , ) k k k     q Φq q Φq , (23) and H 
u L u L ou H R u R ( , ) ( , ) ( , ) ILD ( , ) ( , ) ( , ) ( , ) k k k k k k k         w Φw w Φw , (24) 
in which qR T Φu(λ,k)qR > 0 and wR H (λ,k)Φu(λ,k)wR(λ,k) >0. The first ILD penalty term was proposed in [START_REF] Doclo | Extension of the multi-channel Wiener filter with localization cues for noise reduction in binaural hearing aids[END_REF], corresponding to a first-order Taylor series approximation for g(), i.e., g(x) ≅ x-1. A more accurate approximation for [START_REF] Boyd | Convex optimization[END_REF] was proposed in [START_REF] Costa | ILD preservation in the multichannel Wiener filter for binaural hearing aid applications[END_REF] based on the inverse hyperbolic tangent function approximation of the logarithm, i.e., g(x) ≅ (x-1)/(x+1).

The optimum noise reduction filter that minimizes ( 21) can be obtained by solving the conventional (unconstrained) MWF-ILD problem:

MWF-ILD MWF-ILD ( , ) ( , ) arg. min. ( , ) k k J k    w w . ( 25 
)
It has been shown that the optimal filter obtained from (25) provides adequate noise reduction as well as psychoacoustic spatial preservation for g(x) ≅ x-1 and g(x) ≅ (x-1)/ (x+1) approximations [START_REF] Doclo | Extension of the multi-channel Wiener filter with localization cues for noise reduction in binaural hearing aids[END_REF] [17] [START_REF] Carmo | Online approximation of the multichannel Wiener filter with preservation of interaural level difference for binaural hearing aids[END_REF]. However, compared to the closedform solution of the conventional MWF in [START_REF] Raspaud | Binaural source localization by joint estimation of ILD and ITD[END_REF] the formulated minimization problem in (25) has some inconveniences. Firstly, there is no direct relation between the parameter α(λ,k) and the maximum tolerated input-output ILD error, which imposes difficulties in its design. Secondly, the cost function J u ILD(λ,k) is nonconvex and highly nonlinear. Consequently, usual approaches to solve (25) may result in considerable additional computational burden compared to [START_REF] Raspaud | Binaural source localization by joint estimation of ILD and ITD[END_REF], as general-purpose optimization solvers have to be applied. Moreover, these approaches are not guaranteed to find the optimal global solution and may get trapped at local minima. These disadvantages motivate a reformulation of the conventional MWF-ILD method.

The following sections omit the time-frame λ and the frequency index k for space-saving and clarity.

V. CONVEX FORMULATION OF THE MWF-ILD

In this section, an equivalent convex formulation for the conventional (unconstrained) MWF-ILD problem presented in [START_REF] Horn | Matrix Analysis[END_REF] is proposed. It aims to provide tractable means for computing the globally optimal solution to the original problem.

A. Constrained MWF-ILD

An alternative ILD penalty term can be defined as:

u u u 2 ILD-REL ILD in (ILD ) J J g   , ( 26 
)
for g(ILD u in) ≠ 0, i.e., the interference source is not positioned directly in front of the HA user. The ILD u in = 1 scenario is not considered in this work because, in this case, the classic MWF will impose no binaural cue distortions.

Unlike the J u ILD penalty term presented in [START_REF] Boyd | Convex optimization[END_REF], J u ILD-REL incorporates a scale factor that weights the input-output ILD error according to the input ILD. Thus, it measures relative ILD deviations.

Constraining [START_REF] Castro-González | Expressions for the Moore-Penrose inverse of block matrices involving the Schur complement[END_REF] in a given range, limited by δ ∈ ℝ++ (the ILD relative error tolerance), the constrained MWF-ILD (CO-MWF-ILD) noise reduction method can be defined as [START_REF] Werner | A Noise-reduction method with coherence enhancement for binaural hearing aids[END_REF]:

CO-MWF-ILD MWF u2 ILD-REL arg.min. s.t. J J    w w , (27) 
in which wCO-MWF-ILD is the optimal solution. By using this approach, we change the original problem, which consists of determining the value of α in [START_REF] Werner | A Noise-reduction method with coherence enhancement for binaural hearing aids[END_REF] (which is hard to design because it does not have a physical interpretation) by defining δ (which is an easier task because it is directly related to the maximum tolerable amount of ILD relative error).

To write the constraint in [START_REF] Kohno | A matrix pseudo-inver-sion lemma for positive semidefinite hermitian matrices and its application to adaptive blind deconvolution of MIMO systems[END_REF] in a mathematically tractable form, we apply the antilogarithm and rearrange the ratio, which results in two cases with two quadratic inequalities:

i) If ILD u in > 1 then HH L u L 1 R u R 0   w Φ w w Φ w , ( 28 
) HH L u L 2 R u R 0   w Φ w w Φ w , ( 29 
) ii) If 0 < ILD u in < 1 then HH L u L 1 R u R 0   w Φ w w Φ w , ( 30 
) HH L u L 2 R u R 0   w Φ w w Φ w , ( 31 
) in which u1 1 in (ILD )     and u1 2 in (ILD )     . ( 32 
)
We can generically represent ( 28)-( 31) using ( 12), leading to: (33) in which

T 1 H H cc 1 cc 2 2 1 ( 1) ( ) ( ) t         w Φ w w Φ w 0 ,
cc u u ( ) diag( , )   Φ Φ Φ , (34) 
for  {1,2} and t defined as

u in u in 1 , ILD 1 2 , 0 ILD 1 t         . ( 35 
)
Using [START_REF] Cornelis | Performance analysis of multichannel Wiener filter-based noise reduction in hearing aids under second order statistics estimation errors[END_REF], the constrained problem in [START_REF] Kohno | A matrix pseudo-inver-sion lemma for positive semidefinite hermitian matrices and its application to adaptive blind deconvolution of MIMO systems[END_REF] 36) where c(w) is defined as the left-hand side of [START_REF] Cornelis | Performance analysis of multichannel Wiener filter-based noise reduction in hearing aids under second order statistics estimation errors[END_REF].

Both optimization problems in ( 27) and ( 36) are equivalent, resulting in wCO-MWF-ILD = wQC-MWF-ILD.

The reformulation of the unconstrained (conventional) MWF-ILD problem (defined in [START_REF] Horn | Matrix Analysis[END_REF]) into the MWF-ILD with two quadratic constraints (QC-MWF-ILD) in (36) yields a straightforward form to control the ILD distortion. The problem defined in [START_REF] Gößling | Binaural LCMV beamforming with partial noise estimation[END_REF] is known as a quadratically constrained quadratic problem (QCQP), and is widely studied in the optimization literature [START_REF] Boyd | Convex optimization[END_REF] [23] [START_REF] Lin | Robust downlink transmit optimization under quantized channel feedback via the strong duality for QCQP[END_REF].

B. Convex Reformulation of the QC-MWF-ILD

The QC-MWF-ILD problem in [START_REF] Gößling | Binaural LCMV beamforming with partial noise estimation[END_REF] is hard to solve because it is non-convex. This section defines a convex reformulation of the QC-MWF-ILD with theoretical guarantees to achieve the globally optimal solution.

Computing the Lagrangian of (36) results in

T MWF ( , ) ( ) ( ) JJ  w τ w τ c w , (37) 
in which  = [1 2 ] T are the Lagrange multipliers. Substituting [START_REF] Blum | Spatial audio to assist speaker identification in telephony[END_REF] and ( 33) in [START_REF] Gößling | Optimal binaural LCMV beamforming in complex acoustic scenarios: Theoretical and practical insights[END_REF] 

tj jj j         Φ τ Φ Φ . ( 39 
)
Using ( 13), [START_REF] Doclo | Extension of the multi-channel Wiener filter with localization cues for noise reduction in binaural hearing aids[END_REF], and ( 34) in [START_REF] Markovich | Multichannel eigenspace beamforming in a reverberant environment with multiple interfering speech signals[END_REF] results in

yc yu 1 yu 2 ( ) diag( ( ( )), ( ( )))   Φ τ Φ τ Φ τ , (40) 
in which:

yu y u ( ( )) ( ) rr   Φ τ Φ τ Φ , ( 41 
) 1T ( ) ( 1) t rr    τ δ τ , (42) 
for r  {1, 2}, 1 = [1 1] T , and 2 = [1 2] T . From [START_REF] Pertila | Online own voice detection for a multi-channel multi-sensor in-ear device[END_REF], the Lagrangian dual problem of the QC-MWF-ILD is defined as [START_REF] Boyd | Convex optimization[END_REF]:

opt opt 0 ( , ) = max. min. ( , JJ  τw w τ w τ) . ( 43 
)
in which w opt is the optimal solution, and  opt denotes the optimal Lagrange multipliers. The dual problem, defined in [START_REF] Rix | Perceptual evaluation of speech quality (PESQ)-a new method for speech quality assessment of telephone networks and codecs[END_REF], can be formulated for any constrained optimization problem and has two essential properties [START_REF] Boyd | Convex optimization[END_REF]: i) it is always a concave problem, whatever the form of the primal problem; and ii) for any τ ≥ 0 it defines a lower bound for the QC-MWF-ILD objective function, i.e.,

opt MWF QC-MWF-ILD , JJ  (w ) (w τ) . (44) 
The inequality in [START_REF] Taal | A shorttime objective intelligibility measure for time-frequency weighted noisy speech[END_REF] is not necessarily tight. However, considering that the QC-MWF-ILD in ( 36) is a QCQP (in complex variables) with two quadratic constraints, and assuming that it is strictly feasible1 , then the optimal solution of both the primal problem JMWF(wQC-MWF-ILD) and the dual problem Jℒ(w opt , opt ) are the same [START_REF] Beck | Strong duality in nonconvex quadratic optimization with two quadratic constraints[END_REF]. Thus, the inequality in [START_REF] Taal | A shorttime objective intelligibility measure for time-frequency weighted noisy speech[END_REF] holds with equality, and w opt = wQC-MWF-ILD [START_REF] Boyd | Convex optimization[END_REF] [23], i.e.,

opt MWF QC-MWF-ILD QC-MWF-ILD ( ) ( , ) JJ  ww τ . ( 45 
)
The result in ( 45) is known as the strong duality property [START_REF] Boyd | Convex optimization[END_REF]. As a consequence, the solution to the QC-MWF-ILD problem in [START_REF] Gößling | Binaural LCMV beamforming with partial noise estimation[END_REF] can be computed precisely by [START_REF] Rix | Perceptual evaluation of speech quality (PESQ)-a new method for speech quality assessment of telephone networks and codecs[END_REF] 

Since the Lagrangian is a quadratic function over w, [START_REF] Loizou | Speech Enhancement: Theory and Practice[END_REF] can be reduced to a single maximization problem. Firstly, the inner minimization problem must be solved, which can be done by equating the gradient of [START_REF] Pertila | Online own voice detection for a multi-channel multi-sensor in-ear device[END_REF] with respect to w to zero, which leads to the following linear system:

yc xx ()  Φ τ w p . ( 47 
)
Assuming Φyc() ⪰ 0, without loss of generality, an analytical solution to [START_REF] Koutrouvelis | Relaxed binaural LCMV beamforming[END_REF] 

is given by † opt yc xx ( ) ( )  w Φ τ p  . ( 48 
)
Substituting [START_REF] Werner | Improved spatialization performance for joint speech dereverberation and noise reduction in binaural hearing aids[END_REF] in [START_REF] Pertila | Online own voice detection for a multi-channel multi-sensor in-ear device[END_REF] 

J J p     w w τ τ w τ p Φ τ p . ( 49 
)
Without the optimal , the solution w opt () in ( 48) is not necessarily equal to wQC-MWF-ILD, it only determines a lower bound solution. To find wQC-MWF-ILD, it is necessary to find  that maximizes [START_REF] Ding | Eigenvalues of rank-one updated matrices with some applications[END_REF]. This is obtained by introducing constraints  ≥ 0 and Φyc() ⪰ 0 (which are required for the existence of a finite solution to the inner optimization problem in [START_REF] Loizou | Speech Enhancement: Theory and Practice[END_REF]) explicitly in the maximization problem, i.e., 

This problem can be written as a convex semidefinite (SD) programming (SDP) of the form (see [START_REF] Boyd | Convex optimization[END_REF] and [START_REF] Beck | Strong duality in nonconvex quadratic optimization with two quadratic constraints[END_REF] for details) 

p       Φ τ p Φτ p . ( 52 
)
Finally, replacing  opt in (48) leads to:

opt † opt SD-MWF-ILD yc xx ( ) ( )  w τ Φ τ p . ( 53 
)
As a consequence of the strong duality of the QCQP in [START_REF] Gößling | Binaural LCMV beamforming with partial noise estimation[END_REF], it is proven in [START_REF] Beck | Strong duality in nonconvex quadratic optimization with two quadratic constraints[END_REF] that wSD-MWF-ILD = wQC-MWF-ILD. Therefore, one approach to determine wQC-MWF-ILD is to find  opt solving the convex SDP in (51) (which is performed in polynomial time [START_REF] Boyd | Convex optimization[END_REF]) and replace its optimal solution in (53).

VI. SEMI-ANALYTICAL CLOSED-FORM SOLUTION

This section presents an efficient semi-analytical closedform procedure to the original CO-MWF-ILD optimization problem. The procedure is based on solving the concave dual problem presented in (50). Firstly, the bidimensional dual problem in (50) is transformed into two univariate problems; then, the semidefinite constraint is converted into a set of linear constraints.

A. Reducing the Dimensionality of the Maximization Problem

To reduce the dimensionality of the bidimensional maximization problem in (50), [START_REF] Gößling | Optimal binaural LCMV beamforming in complex acoustic scenarios: Theoretical and practical insights[END_REF] is substituted in [START_REF] Servetti | 802.11 MAC protocol with selective error detection for speech transmission[END_REF], leading to the following form for the strong duality property:

MWF QC-MWF-ILD MWF QC-MWF-ILD opt T QC-MWF-ILD ( ) ( ) 
( ) ( ) JJ   ww τ c w , (54) 
which necessarily implies that:

opt T QC-MWF-ILD 0 ( ) ( )  τ c w . ( 55 
)
Due to the non-negativity of the elements τ opt and non-positivity of the entries in c(wQC-MWF-ILD), the identity in (55) can be represented as: Considering that wQC-MWF-ILD must be a feasible solution to the problem in [START_REF] Gößling | Binaural LCMV beamforming with partial noise estimation[END_REF] and since δj > 0, the constraint in [START_REF] Gößling | Binaural LCMV beamforming with partial noise estimation[END_REF] implies that the feasible solution must satisfy one of the following three cases: i) only the first constraint is active:

H QC-MWF-ILD cc 1 QC-MWF-ILD ( 1) ( ) 0 t     w Φw , ( 57 
) H QC-MWF-ILD cc 2 QC-MWF-ILD ( 1) ( ) 0 t   w Φw . ( 58 
)
ii) only the second constraint is active:

H QC-MWF-ILD cc 1 QC-MWF-ILD ( 1) ( ) 0 t     w Φw , ( 59 
) H QC-MWF-ILD cc 2 QC-MWF-ILD ( 1) ( ) 0 t   w Φw . ( 60 
)
iii) both constraints are inactive:

H QC-MWF-ILD cc 1 QC-MWF-ILD ( 1) ( ) 0 t     w Φw , ( 61 
) H QC-MWF-ILD cc 2 QC-MWF-ILD ( 1) ( ) 0 t   w Φw . ( 62 
)
From ( 57) to (62), it is possible to verify that any optimal solution wQC-MWF-ILD will lead to at least one inactive constraint, which implies that at least one optimal Lagrange multiplier must be zero. Therefore, the optimal Lagrange multiplier  opt will be one out of two kinds: 1=[ 1 0 ] T , associated with (57)-(58); or 2=[ 0 2 ] T , associated with (59)-(60). The Lagrange multiplier associated with (61)-( 62) is a particular case of 1 or 2. Consequently, we can find the optimal solution to the problem in (50) by equivalently solving two univariate optimization problems corresponding to each of the situations above. These problems can be formulated as: ( ) diag( ( ( )), ( ( )))

j j j     Φ Φ Φ , ( 64 
) yu y u ( ( )) ( ) r j r j      Φ Φ Φ , (65) 1 () 
( ) ( 1) j t j r rj r j        , (66) 
for r  {1, 2}. Solving (63) for j = 1 and j = 2 leads to 1 opt and 2 opt , respectively. The optimal solution to (50) is the one that maximizes the dual cost function, i.e.,

opt opt opt 12 = arg.max.{ ( ), ( ) } JJ τ τ τ . ( 67 
)
Finally, the solution wQC-MWF-ILD is obtained by substituting the resulting  opt in (53).

B. Simplification of the Constraint

The positive semidefinite constraint of Φyc(j) makes the solution to the (63) computationally intensive. Here, we show that it is possible to write the semidefinite constraint equivalently in the form of a set of linear constraints.

Defining (A) as the vector containing the eigenvalues of a generic diagonalizable matrix A and considering the block diagonal structure of Φyc(j), then (Φyc(j)) = [  T (Φyu(β1(j)))  T (Φyu(β2(j))) ] T comprises the eigenvalues of the diagonal blocks [START_REF] Horn | Matrix Analysis[END_REF]. Thus, matrix Φyc(j) is positive semi-definite if and only if (Φyu(β1(j))) ≥ 0 and (Φyu(β2(j))) ≥ 0, i.e., yc yu ( ) 0 ( ( ( ))) 0 ( 1) ( )

j r j     ΦΦ  , (68) 
t j r r jj           , ( 69 
)
for r  {1, 2} and ηb = psub H Φy † b = trace(Φy † Φu). Proof: See Appendix A.

Considering (69) and the constraint j ≥ 0, the feasible region of (63) can be written as:

11 b { 0} {( 1) ( ) } t j r r j j j              , ( 70 
)
for r  {1, 2}. Considering the cases for r = 1 and r = 2, the interval in (70) is given by

    1 1 1 bb { 0} ( 1) ( 1) 
t j t j j j j j                    . (71) 
Considering (71), the feasible regions of (63) for t = 1 and t = 2 are defined, respectively, as

11 b 0 ( ) j jj      , ( 72 
) 12 b 0 ( ) j jj      . ( 73 
)
The intervals in ( 72) and ( 73) can be generically represented by

1 b 0 ( ) f jj      (74) 
in which f = (-1) t (j -t). Using (74) in (63), leads to the following optimization problem: For each j  {1, 2}, the optimization problem described in (75) encompasses a concave cost function with a linear interval constraint. Therefore, its stationary point will be either in the interior of this interval, or it is one of the limits of the feasible region.

C. Rewriting the Cost Function of the Dual Problem

Considering the expressions for the pseudo-inverse of a block diagonal matrix such as yc, and of the sum of a positive semidefinite and a rank-1 matrix such as Φyu(βr(j)), given respectively in [START_REF] Castro-González | Expressions for the Moore-Penrose inverse of block matrices involving the Schur complement[END_REF] and [START_REF] Kohno | A matrix pseudo-inver-sion lemma for positive semidefinite hermitian matrices and its application to adaptive blind deconvolution of MIMO systems[END_REF], the cost function of (75) is defined as .t. 0 ( )

j j f j j j J           , (77) 
in which J𝓛(τj) is defined in (76). There are two possibilities for j opt in (77). Either it belongs to the interior of the feasible region (0 < τj opt < ηb -1 δj f ), in which case it is a stationary point of (76), or it is one of the limits of the feasible interval, i.e., τj opt = 0 or τj opt = ηb -1 δj f . Thus, (77) can be solved by computing the set of possible solutions and finding the one that maximizes the objective function.

D. The Stationary Point Inside the Feasible Region

Since the dual problem is always concave, and considering the Hessian of J  (τj) is not singular, there is at most one stationary point inside the feasible region, in which case it is the optimal Lagrange multiplier. To obtain it, we compute the gradient of (76), leading to: 

x 1 1 in 22 bb ( ) ( 1) ( 1) ILD (( 1) ) ( ( 1) 
tj jj i j tj j            , ( ( 1) ( 1) 
) 79 
in which i ∈{1, 2}; and

1/ 2 x 1/ 2 in () jj ILD    . (80) 
Rearranging (79) leads to:

1 b ( 1) (1 ( 1) ) ( ( 1) 
)

t j i i j j j j             . ( 81 
)
Therefore, the generic representation for the stationary points (sp) of the dual problem in (75) is given by: 

1 sp , b 1 ( 1) ( 1) ( 1) 
i = 1 i = 2 t = 1 j = 1 1 b 1 1 b 1 11 0         1 b 1 1 b 1 11 0         j = 2 2 b 2 2 b 2 1 11 0          2 b 2 2 b 2 1 11 0          t = 2 j = 1 1 b 1 1 b 1 1 11 0          1 b 1 1 b 1 1+ 11 0         j = 2 2 b 2 2 b 1 11 0         2 b 2 2 b 1+ 11 0       
Note that (82) represents two solutions, one for i = 1 and another for i = 2. However, one can be eliminated since at most one of the stationary points will be a feasible solution to the dual problem. This can be verified by replacing (82) in the feasible region of (77) considering the values for t, j, and i that lead to the conditions for the stationary points to be feasible solutions, as shown in I. Since δj > 0 (see [START_REF] Marquardt | Coherence preservation in multi-channel Wiener filtering based noise reduction for binaural hearing aids[END_REF]) and ψj > 0 (see (80)), the stationary points associated with column i = 2 in TABLE II. will never be inside of the feasible region (since this would require that δj < 0). Therefore, the stationary points inside the feasible region (ifr) can only be those for which i = 1, i.e.,

i = 1 i = 2 t = 1 j = 1 11 { 1} { 1}      1 1 1 { } { 1}        j = 2 22 { 1} { 1}      2 2 2 { } { 1}        t = 2 j = 1 11 { 1} { 1}      1 1 1 { } { 1}        j = 2 22 { 1} { 1}      2 2 2 { } { 1}       
1 ifr , b 1 ( 1) tj j jt jj           . ( 83 
)

E. The Stationary Points Outside the Feasible Region

If the stationary points are outside the feasible region, the maximum value of the dual problem is achieved at one of the limits of the feasible region. Considering the problem in (77), τj = 0 always leads to J  (τj) = c2. Also, as τj approaches ηb -1 δj f the value of J  (τj) approaches -∞. Therefore, the upper limit of the feasible interval is not a solution to the problem for any combination of f  { 1,2 } and j  { 1,2 }, since J  (0) > J  (ηb -1 δj f ). Therefore, the optimal Lagrange multiplier is zero (τj opt = 0) when the stationary point of the cost function is outside the feasible region.

F. Implementation

TABLE III presents the pseudocode to implement the proposed semi-analytical closed-form solution to the constrained binaural MWF-ILD named CB-MWF-ILD noise reduction method. It comprises equations ( 53), ( 83) and the reasoning presented in Section VI.E. It is worth noting that for ILD u in = 1, the conventional MWF is the solution to the problem; its closed formula may be directly applied to speed up the calculation.

G. Relationship of the CB-MWF-ILD with other techniques

Assuming Φy ≻ 0, the CB-MWF-ILD filters are given by:

1 opt opt CB-MWF-ILD yc xx ( ) ( )   w τ Φ τ p . ( 84 
)
The left and right filters in (84) can be written as:

1 opt opt CB-MWF-ILD, yu xx ( ) ( ( )) r    w τ Φ τ Φ q , ( 85 
)
in which r = 1 when ℓ = L and r = 2 when ℓ = R. Using [START_REF] Chaumette | On the general conditions of existence for linear MMSE filters: Wiener and Kalman[END_REF] in [START_REF] Markovich-Golan | Performance comparison of the covariance-whitening and the covariance-subtraction methods for estimating the relative transfer function[END_REF], replacing the result in (85), and finally using the Sherman-Morrison formula [START_REF] Horn | Matrix Analysis[END_REF], the left and right CB-MWF-ILD solutions can be decomposed as: Φuqℓ is its counterpart related to the interfering source. In the light of this decomposition, the CB-MWF-ILD can be related to the MVDR beamformer, leading to [START_REF] Cornelis | Theoretical analysis of binaural multimicrophone noise reduction techniques[END_REF]:

* xu 1 ba L b CB-MWF-ILD, a MVDR, MVDR, * 1 b su L ( )( ) (1 ( ) ) a pb        τ w w w τ , (87) 
in which υa = psx/(1+psx φa); φa = a H Φy -1 a; υb = psx/(1+psx φb); φb = b H Φy -1 b; w x MVDR,ℓ = a * ℓΦy -1 a/φa is the conventional MVDR, while w u MVDR,ℓ = b * ℓΦy -1 b/φb is its counterpart related to the interfering source. Equation (87) also relates the CB-MWF-ILD with the parametric unconstrained beamformer (see Section IV in [START_REF] Zhang | A parametric unconstrained beamformer based binaural noise reduction for assistive hearing[END_REF]).

VII. COMPUTER SIMULATIONS

In this section, computer simulations are presented to assess the performance of the CB-MWF-ILD semi-analytical closedform solution provided in TABLE III. Comparisons were performed with four techniques: i) the conventional MWF described in [START_REF] Raspaud | Binaural source localization by joint estimation of ILD and ITD[END_REF]; ii) the conventional MWF-ILD described in [START_REF] Horn | Matrix Analysis[END_REF]; iii) the MWF-ITF (JMWF-ITF = JMWF+J u ITF) whose cost function is given by [START_REF] Cornelis | Theoretical analysis of binaural multimicrophone noise reduction techniques[END_REF] [15]:

H u u1 ITF H u2 () J  w Φw w w Φw , (88) 
in which:

u* u in u u1 u u 2 in u in u ITF ITF ITF () ||       ΦΦ Φ ΦΦ , u2 u M M M M MM       00 Φ 0 Φ , (89) 
ITFin u = (qL T ΦuqL)/(qR T ΦuqR), and () * is the complex conjugate operation; and iv) the MWF-PNE [START_REF] Cornelis | Theoretical analysis of binaural multimicrophone noise reduction techniques[END_REF], whose solution is given by:

MWF-PNE MWF (1 ) 
    w w q , (90) in which κ is the scaling parameter, and q is the selection vector.

A. Acoustic Scenario

The acoustic scenario comprises two pointwise sources (the desired speech and the interfering source) and additive (environmental and electrical) noise. Pointwise sources were simulated by convolving signals with the corresponding acoustic transfer functions (ATFs). The ATFs characterize the acoustic path between the source location and the acquisition microphones in a pair of behind-the-ear HA mounted on an artificial head and torso mannequin. The room reverberation time is T60  300 ms [START_REF] Kayser | Database of multichannel in-ear and behind-theear head related and binaural room impulse responses[END_REF]. Thirty different speech signals were selected from the database presented in [START_REF] Henter | Repeated Harvard sentence prompts corpus version 0.5[END_REF]. Half of them were considered speech of interest, while the other half were interference. Signals are two seconds long on average and uttered by a single speaker.

The total number of microphones is M = 6 (3 on each side). The desired source was emulated at 0° azimuth (in front of the HA), while the azimuth of the interfering source (θu) was varied from -90° (left side) to 90° (right side) in steps of 10°, resulting in 19 different azimuths. Both pointwise sources' elevation angle and radial distance were set at 0° and 3 m, respectively.

The environmental noise was assumed cylindrical and isotropic. It was generated according to the procedure defined in [START_REF] Habets | Generating nonstationary multisensor signals under a spatial coherence constraint[END_REF] and [START_REF] Marquardt | Coherence preservation in multi-channel Wiener filtering based noise reduction for binaural hearing aids[END_REF].

The long-term signal-to-interference ratio (SIR) and signalto-noise ratio (SNR) were both set to 0 dB, resulting in a signalto-interference-plus-noise ratio (SINR) of 3 dB.

For each noise reduction technique, 285 simulations (15 sets of signals and 19 azimuths for the interfering source) were performed.

B. Time-Frequency Representation

The input signals were sampled at 16 kHz and processed in frames of 256 samples with 50% overlap. Frames were weighted by an analysis window and transformed to the frequency domain using the Short-time Fourier transform with K = 512 points, using zero padding. After filtering by the noise reduction method, the processed signals were transformed back to the time domain using the inverse Fourier transform. A synthesis window weighted adjacent frames, and an overlap-andadd algorithm was applied to restore the filtered signal to the time domain. The square root of the Hann window was used for both analysis and synthesis.

For obtaining an upper bound performance, a batch procedure for estimating the required coherence matrices was implemented, resulting in a unique coefficient vector w per bin, which was calculated a priori and then employed for filtering the whole noisy speech [START_REF] Marquardt | Coherence preservation in multi-channel Wiener filtering based noise reduction for binaural hearing aids[END_REF] [33] [START_REF] Zhang | Quantization-aware binaural MWF based noise reduction incorporating external wireless devices[END_REF].

The methodology used to estimate the coherence matrices was the same used in [START_REF] Hadad | The binaural LCMV beamformer and its performance analysis[END_REF], [START_REF] Gößling | Binaural LCMV beamforming with partial noise estimation[END_REF], and [START_REF] Gößling | Optimal binaural LCMV beamforming in complex acoustic scenarios: Theoretical and practical insights[END_REF]. We assume the use of a (own) voice activity detector [START_REF] Pertila | Online own voice detection for a multi-channel multi-sensor in-ear device[END_REF] for segmenting background noise, interference plus noise, and speech plus noise epochs to estimate Φn; Φun = Φu+Φn and Φxn = Φx+Φn using:

d H d 1 d 1 ˆ( ) ( , ) ( , ), P k k k P      Φ d d (91) 
in which d  { n, un, xn }; and Pd is the number of frames used to estimate the coherence matrices. Estimation of Φx and Φu was performed using the covariance whitening method [START_REF] Hadad | The binaural LCMV beamformer and its performance analysis[END_REF] [36] [START_REF] Gößling | Optimal binaural LCMV beamforming in complex acoustic scenarios: Theoretical and practical insights[END_REF] [39] [START_REF] Serizel | Low-rank approximation based multichannel wiener filter algorithms for noise reduction with application in cochlear implants[END_REF]. Firstly, a squaredroot decomposition of Φ̂n is performed, resulting in:

1/ 2 H / 2 n n n ˆˆ( ) ( ) ( ). k k k  Φ Φ Φ (92) 
Then, matrices Φ̂xn and Φ̂un are prewhitened using (92), i.e.,

w 1/ 2 H / 2 xn n xn n ˆˆˆ( ) ( ) ( ) ( ), k k k k   Φ Φ Φ Φ (93) w 1/ 2 H / 2 un n un n ˆˆˆ( ) ( ) ( ). k k k   Φ Φ Φ Φ (94) 
Finally, Φx and Φu were estimated as rank-1 matrices according to:

H x sx ˆˆ( ) ( ) ( ) ( ), k p k k k  Φ a a (95) 
H u su ˆˆ( ) ( ) ( ) ( ), k p k k k  Φ b b (96) 
in which

w sx xn ( ) { } pk   Φ , w su xu ( ) { } pk   Φ , ( 97 
) w n xn ˆ( ) { } k  a Φ f Φ , w n un ˆˆ( ) { }, k  b Φ f Φ ( 98 
)
where ν{} is the largest eigenvalue of the matrix in its argument; and f{} is its associated eigenvector. This method is widely used for speech (Φx) and interference (Φu) coherence matrix estimation in low-SNR complex acoustic scenarios [START_REF] Markovich-Golan | Performance comparison of the covariance-whitening and the covariance-subtraction methods for estimating the relative transfer function[END_REF].

C. Parameters and Optimization Algorithms

The 'fmincon' routine from Matlab was employed to obtain the optimal solution for the conventional MWF-ILD method defined in [START_REF] Horn | Matrix Analysis[END_REF] [START_REF] Mathworks | fmincon -find a minimum of a constrained nonlinear multivariable function[END_REF] and the MWF-ITF with cost function presented in (88) [START_REF] Bogaert | Binaural cue preservation for hearing aids using an interaural transfer function multichannel Wiener filter[END_REF]. Both gradient and Hessian (see Appendix B) for equations ( 21) and (88) were provided to the solver. Parameters α(,k) and (,k) were defined through the iterative algorithm presented in Appendix C and kept fixed for all .

Vector α ∈ ℝ G ++ was defined by G = 500 elements linearly distributed in the logarithm scale between 10 -10 and 1. This iterative algorithm is similar to the algorithm presented in [START_REF] Marquardt | Coherence preservation in multi-channel Wiener filtering based noise reduction for binaural hearing aids[END_REF]. The ILD tolerance δ(,k) was set to 10 -6 .

D. Objective Performance Measures

Seven objective measures were used to assess the noise reduction and binaural cue preservation performances of the investigated methods.

Speech quality for the left and right ears was measured by the wideband perceptual evaluation of the speech quality (PESQ) [START_REF] Rix | Perceptual evaluation of speech quality (PESQ)-a new method for speech quality assessment of telephone networks and codecs[END_REF], and intelligibility was estimated with the short-time objective indelibility (STOI) [START_REF] Taal | A shorttime objective intelligibility measure for time-frequency weighted noisy speech[END_REF].

The signal-to-interfering-plus-noise ratio variation (ΔSINR), the signal-to-interfering ratio variation (ΔSIR), and the signalto-noise ratio variation (ΔSNR) are defined as [START_REF] Hadad | The binaural LCMV beamformer and its performance analysis[END_REF] LR 

VIII. RESULTS AND DISCUSSION

This section presents performance results for the proposed CB-MWF-ILD method and compares it with the conventional MWF, MWF-ILD, MWF-ITF, and MWF-PNE.

The dissimilarity between the employed objective criteria for the left and right sides results from the input/output ILD definitions presented in [START_REF] Beck | Strong duality in nonconvex quadratic optimization with two quadratic constraints[END_REF] and [START_REF] Lin | Robust downlink transmit optimization under quantized channel feedback via the strong duality for QCQP[END_REF], as described in [START_REF] Costa | ILD preservation in the multichannel Wiener filter for binaural hearing aid applications[END_REF]. Fig. 4 and Fig. 5 show ∆IPDu and ∆IPDx. The speech ∆IPD of the proposed method is very small and is in the same range as the MWF, MWF-ILD, and MWF-ITF. The interference ∆IPD is not negligible but in the same range as the MWF and the MWF-ILD techniques. This side effect may influence the localization of low-frequency interfering acoustic sources by the HA user due to incoherent ILD and IPD binaural cues. However, this situation was not observed in the processed signals 2 . The MWF-ITF presents lower interference ∆IPD values than the MWF and MWF-ILD techniques at the cost of a higher speech ∆IPD for azimuths near 0. This behavior is expected since the ITF cost function accounts for interference IPD and ILD preservation. TABLE IV also indicates that despite some variations, ∆IPDu and ∆IPDx for all interference azimuths and methods are in the same range. Fig. 6 to Fig. 8 show ∆SINR, ∆SIR, and ∆SNR for distinct θu ≠ θx = 0, respectively. The proposed method presents a ∆SINR reduction performance equivalent to the conventional MWF and MWF-ILD for all interference azimuths (TABLE V). Considering the ∆SIR, the MWF-ITF presents a performance of 2 dB higher than the MWF and MWF-ILD techniques. On the other hand, considering the ∆SNR, the MWF-ITF presents a reduction of 0.5 dB compared to the other techniques.

Fig. 9 to Fig. 12 show ΔPESQL, ΔPESQR, ΔSTOIL, and ΔSTOIR, respectively. Differences between PESQ median values are lower than 0.2 units indicating no relevant perceptual variation in speech quality [START_REF] Servetti | 802.11 MAC protocol with selective error detection for speech transmission[END_REF]. Similar results are observed for intelligibility, since STOI differences, for both left and right sides, are lower than 0.1 [START_REF] Loizou | Speech Enhancement: Theory and Practice[END_REF]. Massive simulations performed on a desktop personal computer with an Intel  Core i7-3770 processor, running at 3.40 GHz, and Matlab  indicated that the numerical process required for obtaining the optimal filters (wL and wR) for the CB-MWF-ILD is 13,000 and 16,000 times faster than for the conventional (unconstrained) MWF-ILD and the MWF-ITF methods, respectively; but only 0.35 times slower than the conventional MWF, on average (see The CB-MWF-ILD was designed for acoustic scenarios with a single interference source. In the case of multiple sources, the rank-1 assumption is violated, and the performance of the semianalytical closed-form solution is not guaranteed to be the same as the conventional MWF-ILD. However, note that the conventional forms of the MWF-ILD and MWF-ITF, presented in ( 21) and (88), are inappropriate for multiple interferences. In this case, other procedures are required to estimate the coherence matrices, and additional cost functions must be included. Methods such as the parametric unconstrained beamforming [START_REF] Zhang | A parametric unconstrained beamformer based binaural noise reduction for assistive hearing[END_REF] or the relaxed binaural LCMV [START_REF] Koutrouvelis | Relaxed binaural LCMV beamforming[END_REF] can be alternatively used. It is also expected that an increase in the reverberation time would lead to a performance decrease, but keeping the correspondence with the conventional MWF-ILD. In such case, spatial preservation of the late reverberation would require control over the interaural coherence, and the ILD, ITD, and ITF cost functions are no longer adequate [START_REF] Werner | Improved spatialization performance for joint speech dereverberation and noise reduction in binaural hearing aids[END_REF].

IX. CONCLUSION

This paper presented a new multichannel Wiener filter (MWF) based noise reduction method with interaural level difference (ILD) preservation. It minimizes the MWF cost function subject to two constraints (with physical meaning) for ILD preservation. Theoretical analysis shows that the resulting convex optimization problem leads to the same optimal solution as the conventional nonconvex MWF-ILD. However, differently from it, the proposed technique has a semi-analytical closedform solution, which is a very interesting and desired characteristic for real-time applications. Simulation results indicate that the proposed method results in approximately the same signalto-interference-plus-noise ratio performance presented by the conventional MWF and ILD preservation comparable to the conventional MWF-ILD. The proposed semi-analytical closed form leads to a considerable decrease (up to 13,000 times less) in the optimization time compared to the conventional MWF- 

) 120 
The gradient of J u ILD in [START_REF] Boyd | Convex optimization[END_REF] can also be defined as a function of w ̆: The gradient of (127) is given by: 

Fig. 1 .

 1 Fig. 1. Binaural hearing aid system. III. SIGNAL AND SYSTEMS Fig. 1 depicts the investigated acoustic scenario constituted by a HA user, a desired pointwise source (speaker), an interfering pointwise source (loudspeaker), and background noise. The binaural system comprises two HA: one on the left (L) side with ML microphones and another on the right (R) side with MR microphones. The total number of microphones is M = ML+MR. The time-frequency representation of the noisy input signal, at the frequency bin index k, time frame index λ, microphone m  { 1, 2, …, Mℓ }, and side ℓ ∈ { L, R } is , , ,

  ) in which sx(λ,k) and su(λ,k) are the clean speech and interfering signals; and vectors a(λ,k)= [ aL,1(λ,k) aL,2(λ,k) … aL,M L (λ,k) aR,1(λ,k) … aR,M R (λ,k) ] T and b(λ,k) = [ bL,1(λ,k) bL,2(λ,k) … bL,M L (λ,k) bR,1(λ,k) … bR,M R (λ,k) ]T are the complex M-dimensional acoustic transfer function (ATF) vectors related to the speech and interfering sources, which carry information about the environment and the head and torso of the HA user.

  , i.e., MWF QC-MWF-ILD 0 ( ) max. min. ( , ) JJ   τw ww τ .

  for j  {1, 2}. The identity in (56) implies that (55) is true. This occurs in the following situations: i) j opt = 0; ii) wQC-MWF-ILD-H Φcc(δj)wQC-MWF-ILD = 0; or iii) j opt = 0 and wQC-MWF-ILD-H Φcc(δj)wQC-MWF-ILD = 0, for j  {1, 2}.

  which c1 = pxR|ηab| 2 ; c2 = (ILDin x +1)pxR|ηa| 2 ; ηa = psxa H Φy † a = trace(Φy † Φx); ηb = psub H Φy † b = trace(Φy † Φu); |ηab| 2 = psx psu |a H Φy † b| 2 = trace(Φy † ΦxΦy † Φu); psx = 𝔼{|sx| 2 }; psu = 𝔼{|su| 2 }; pxR = qR T xqR; and ILDx in = qL T xqL(qR T x qR)1 . Therefore, the dual problem in (75) can be represented as

  Input: Φy, Φu, Φx, δ Output: wCB-MWF-ILD If ILD u in ≠ 1 Compute δ1 and δ2 using (32) and δ Compute ILDin x using Φx in (23) Compute ψ1 and ψ2 using (80) and ILDin x Initialize τ1 opt = 0 and τ2 opt = 0 If t = 1 and ψ1 ≥ 1 then Compute τ1 opt = τ1,1 ifr using (83), for t = 1 and j = 1 end If If t = 1 and ψ2 ≤ 1 then Compute τ2 opt = τ2,1 ifr using (83), for t = 1 and j = 2 end If If t = 2 and ψ1 ≤ 1 then Compute τ1 opt = τ1,2 ifr using (83), for t = 2 and j = 1 end If If t = 2 and ψ2 ≥ 1 then Compute τ2 opt = τ2,2 opt using (83), for t = 2 and j = 2 end If If J𝓛(τ1 opt ) ≥ J𝓛(τ2 opt ) then τ opt = [ τ1 opt 0 ] T else τ opt = [ 0 τ2 opt ] T end If wCB-MWF-ILD = Φ † yc(τ opt )pxx else wMWF-ILD = Φ † yypxx end If

  which φba = b H Φy -1 a; φb = b H Φy -1 b; w x MWF,ℓ = Φy -1 Φxqℓ is the conventional binaural MWF, while w u MWF,ℓ=Φy -1

  pzd LR = wL H dwR; pd LR = qL T dqR; and d ∈ { n,u,x }. The ILD and IPD variations, which measure the input-output binaural cue preservation, are defined respectively as [17] [32] pzd ℓ = wℓ H dwℓ; pd ℓ = qℓ T dqℓ; and d ∈ { n,u,x }. The global performance for each noise reduction technique was calculated for all signals and interference azimuths (285 values).

Fig. 2 and

 2 Fig. 3 depict input-output ILD variation for the interference and speech signals, respectively. As expected, the conventional MWF severely distorts the interference ILD compared to the MWF-ITF and MWF-ILD techniques. This observation is corroborated by the ∆ILDu (for all θu) presented in TA-BLE IV, in which: ∆ILDu = 8.8 dB, ∆ILDu = 3.2 dB, ∆ILDu = 2.4 dB, and ∆ILDu = 2.4 dB for the MWF, MWF-ITF, MWF-ILD, and CB-MWF-ILD, respectively. The proposed method and the MWF-ILD result in similar ILD preservation for interference. Both MWF-ILD techniques present a difference of 0.8 dB on the median ∆ILDu compared to the MWF-ITF. The CB-MWF-ILD results in the same speech ILD distortion as both the MWF-ILD and the MWF-ITF and approximately the same as the conventional MWF.

Fig. 2 .

 2 Fig. 2. Interference ∆ILD calculated from 15 input signals for each θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD in red (), and MWF-ITF in yellow (○).

Fig. 3 .

 3 Fig. 3. Speech ∆ILD calculated from 15 input signals for each θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD in red (), and MWF-ITF in yellow (○).

Fig. 4 .

 4 Fig. 4. Interference ∆IPD calculated from 15 input signals for each θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD in red (), and MWF-ITF in yellow (○).

Fig. 5 .

 5 Fig. 5. Speech ∆IPD calculated from 15 input signals for each θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD in red (), and MWF-ITF in yellow (○).

Fig. 6 .

 6 Fig. 6. ∆SINR calculated from 15 different input signals for each θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD in red (), and MWF-ITF in yellow (○).

Fig. 7 .

 7 Fig. 7. ∆SIR calculated from 15 different input signals for each θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD in red (), and MWF-ITF in yellow (○).

Fig. 8 .

 8 Fig. 8. ∆SNR calculated from 15 different input signals for each θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD in red (), and MWF-ITF in yellow (○).

Fig. 9 .

 9 Fig. 9. ∆PESQL calculated from 15 different input signals for each θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD in red (), and MWF-ITF in yellow (○).

Fig. 13 and

 13 Fig.6to Fig.8show ∆SINR, ∆SIR, and ∆SNR for distinct θu ≠ θx = 0, respectively. The proposed method presents a ∆SINR reduction performance equivalent to the conventional MWF and MWF-ILD for all interference azimuths (TABLEV). Considering the ∆SIR, the MWF-ITF presents a performance of 2 dB higher than the MWF and MWF-ILD techniques. On the other hand, considering the ∆SNR, the MWF-ITF presents a reduction of 0.5 dB compared to the other techniques.Fig.9to Fig.12show ΔPESQL, ΔPESQR, ΔSTOIL, and ΔSTOIR, respectively. Differences between PESQ median values are lower than 0.2 units indicating no relevant perceptual variation in speech quality[START_REF] Servetti | 802.11 MAC protocol with selective error detection for speech transmission[END_REF]. Similar results are observed for intelligibility, since STOI differences, for both left and right sides, are lower than 0.1[START_REF] Loizou | Speech Enhancement: Theory and Practice[END_REF]. Fig. 13 and Fig. 14 present comparisons of the CB-MWF-ILD performance with the MWF-ITF and MWF-PNE methods for θu = 60. ∆ILDu and ΔSINR criteria were evaluated for the following set of parameters: δ (CB-MWF-ILD),  (MWF-ITF) and, κ (MWF-PNE)  { 10 -6 0.1, 0.2, …, 1 }. The leftmost point in each plot is δ =  =  = 10 -6 . Note that these parameters have different interpretations, despite setting the trade-off between noise reduction and spatial preservation of the interference source. Results presented in both Fig. 13 and Fig. 14 indicate that CB-MWF-ILD and MWF-ITF are barely influenced by changes of δ and  in the range analyzed. On the contrary, the choice of κ strongly impacts the MWF-PNE performance. Furthermore, comparing CB-MWF-ILD and MWF-PNE for the same ∆ILDu setpoint (∆ILDu = 4.85 dB), the CB-MWF-ILD presents 3.3 dB higher ΔSINR than the MWF-PNE. Considering the case where both methods have the same ∆SINR setpoint (∆SINR = 11.75 dB), the CB-MWF-ILD results in 7.7 dB

Fig. 10 .

 10 Fig. 10. ∆PESQR calculated from 15 different input signals for each θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD in red (), and MWF-ITF in yellow (○).

Fig. 11 .

 11 Fig. 11. ∆STOIL calculated from 15 different input signals for each θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD in red (), and MWF-ITF in yellow (○).

Fig. 12 .

 12 Fig. 12. ∆STOIR calculated from 15 different input signals for each θu ≠ θx = 0. MWF in green (), MWF-ILD in blue (), CB-MWF-ILD in red (), and MWF-ITF in yellow (○).

Fig. 13 .

 13 Fig. 13. Interference ∆ILD for CB-MWF-ILD in red (), MWF-ITF in yellow (○), and MWF-PNE in purple (☆). The abscissa (concomitantly) indicates parameters  and , respectively required by the CB-MWF-ILD and MWF-PNE. θu = 60. The inset shows the CB-MWF-ILD performance for 10 6    610 2 .

Fig. 14 .

 14 Fig. 14. ∆SINR for CB-MWF-ILD in red (), MWF-ITF in yellow (○), and MWF-PNE in purple (☆). The abscissa (concomitantly) indicates parameters  and , respectively required by the CB-MWF-ILD and MWF-PNE. θu = 60. The inset shows the CB-MWF-ILD performance for 10 6    610 2 .

  ηb = psub H Φy † b = trace(Φy † Φu), and Φ † y is the Moore-Penrose inverse of matrix Φy, defined as Φ † y = Qydiag(Σy -1 , 0(M-t)(M-t))Qy H . Considering ηb > 0, equation (113) results in

  cost function in (88) can be written with respect to w ̆ leading to:

  OBTAINING OPTIMUM / AND W FOR THE UNCONSTRAINED MWF-ILD OR MWF-ITF. Algorithm: Iterative search for finding α and w in each discrete frequency k = 1, …, N. Input: δ 2 , ILDin, ITFin, α, Φu, Φy, Φx Output: w Choose J(λ,k)  { JILD(λ,k), JITF(λ,k) } Set G as the length vector α Set e 2 ILD = ∞ Set i = 0 Set w with random initialization While e 2 ILD > δ 2and i < G i = i + 1 Considering αi = α(i), find the binaural filters solving: = J u ILD(w(αi)) using (22) End While Return w = wUNC

TABLE I .

 I CONDITIONS FOR THE STATIONARY POINTS IN (82) TO BE CONTAINED IN THE FEASIBLE REGION OF (77), FOR t  {1,2}, j  {1,2}, and i  {1,2}.

TABLE I .

 I Manipulating the inequalities for each entry of TABLE I leads to the equivalent interval representations shown in TABLE II.

TABLE II .

 II EQUIVALENT REPRESENTATION OF THE FEASIBLE REGIONS IN TABLE

TABLE III PSEUDOCODE

 III FOR THE CB-MWF-ILD PROPOSED METHOD.

TABLE IV GLOBAL

 IV MEDIAN AND STANDARD DEVIATION (M ± Σ) FOR SPEECH (X) AND INTERFERING (U) ∆ILD AND ∆IPD.

		∆ILDu [dB] ∆ILDx [dB] ∆IPDu [rad/π] ∆IPDx [rad/π]
	MWF	8.8 ± 3.3	0.5 ± 0.1	0.5 ± 610 -2	210 -2 ± 510 -3
	MWF-ITF	3.2 ± 1.5	0.6 ± 0.2	0.1 ± 710 -2	210 -2 ± 710 -3
	MWF-ILD	2.4 ± 1.4	0.6 ± 0.2	0.5 ± 610 -2	210 -2 ± 510 -3
	CB-MWF-ILD	2.4 ± 1.4	0.6 ± 0.2	0.5 ± 610 -2	210 -2 ± 510 -3

TABLE V GLOBAL

 V MEDIAN AND STANDARD DEVIATION (M ± Σ) FOR ∆SINR, ∆SIR, AND ∆SNR.

		∆SINR [dB] ∆SIR [dB] ∆SNR [dB]
	MWF	11.1 ± 1.8	15.1 ± 3.9	9.3 ± 1.3
	MWF-ITF	11.0 ± 1.9	17.3 ± 4.7	8.9 ± 1.3
	MWF-ILD	11.1 ± 1.8	15.3 ± 4.0	9.3 ± 1.3
	CB-MWF-ILD	11.1 ± 1.8	15.3 ± 4.0	9.3 ± 1.3

TABLE VI AVERAGE

 VI TIME FOR CALCULATING THE OPTIMAL FILTERS (WL AND WR) IN THE ASSESSED ACOUSTIC SCENARIOS.

	MWF MWF-ITF	MWF-ILD CB-MWF-ILD
	Time [s] 710 5	3.2	2.6	210 4

TABLE VI )

 VI .

  GRADIENT AND HESSIAN OF JMWF, JILD, AND JITFSince Φyy = Φyy H , the JMWF cost function defined in[START_REF] Blum | Spatial audio to assist speaker identification in telephony[END_REF] can be written as:Calculating the gradient of JMWF with respect to ͝ w leads to:

	1  .   b Replacing (66) in (114) completes the proof. ()   APPENDIX B rj HH MWF yy xx ( ) { } 2 {   ww Φ w w p Defining T T T T [ { } { }] [  }  T T ]     w w w w w and using it in (115), leads to Jp   TT MWF yy xx xx ( ) 2   ww Φ w w p , in which yy yy yy yy yy { } { } { } { }         ΦΦ Φ ΦΦ and xx xx xx {} {}       p p p . Jp  MWF yy xx ( ) 2 2    w w Φ w p , while its Hessian matrix is given by: J 2 MWF yy ( ) 2 J  w w Φ .	xx	(114) . (115) (116) (117) (118) (119) (
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The QC-MWF-ILD is strictly feasible if there exists w that satisfies the constraints c(w), such that c(w) < 0.

Audio files with some examples obtained from the investigated acoustic scenarios can be found in https://github.com/diego-carmo/Closed-MWF-ILD /blob/main/README.md

ILD method, which makes this method very attractive for binaural hearing aid applications. 

in which Λy is the diagonal matrix of eigenvalues ordered from the largest to the smallest; and Qy is an orthonormal matrix with the corresponding eigenvectors. Assuming Φy ⪰ 0 then (104) can be described as:

in which Σy is a diagonal matrix of order T  M, whose diagonal entries are the non-zero eigenvalues of Λy; and matrices Cy (with dimension MT) and Ny (with dimension M(M-T)) are formed by the eigenvectors corresponding to the non-zero eigenvalues and the zero eigenvalues of Λy, respectively. From ( 16), [START_REF] Costa | ILD preservation in the multichannel Wiener filter for binaural hearing aid applications[END_REF], and ( 19) it can be verified that vector b is in the column space of y. Using the eigenvectors of y as a basis, vector b can be written as

in which by is the component of b in the column space of y. Using ( 105) and ( 106), (65) can be defined as: 

Because Qy is invertible, pre-and post-multiplication of (107) by Qy and its conjugate transpose preserves its positive definiteness characteristic [START_REF] Horn | Matrix Analysis[END_REF]. Thus, the block diagonal structure of the inner matrix in (107) implies that Φyu(βr(j)) is positive semidefinite if and only if

which can be expressed as:

Because the columns of Cy in (106) consist of unity norm, orthogonal, and linearly independent vectors, the following relation between by and b can be established:

Pre-multiplying both sides of (110) by Σy -1/2 leads to: 

The matrix inside the parenthesis in (112) is an identity matrix plus a rank-1 matrix. Thus, its eigenvalues are 1 (T-1 times) and 1+βr(τj)psuby H CyΣy -1 Cy H b [START_REF] Ding | Eigenvalues of rank-one updated matrices with some applications[END_REF]. Therefore, since (112) consists in a congruence relation, Φyu(βr(j)) is positive semidefinite if and only if: