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Abstract

Transductive Few-Shot learning has gained in-
creased attention nowadays considering the cost
of data annotations along with the increased ac-
curacy provided by unlabelled samples in the do-
main of few shot. Especially in Few-Shot Classi-
fication (FSC), recent works explore the feature
distributions aiming at maximizing likelihoods
or posteriors with respect to the unknown param-
eters. Following this vein, and considering the
parallel between FSC and clustering, we seek for
better taking into account the uncertainty in esti-
mation due to lack of data, as well as better sta-
tistical properties of the clusters associated with
each class. Therefore in this paper we propose
a new clustering method based on Variational
Bayesian inference, further improved by Adaptive
Dimension Reduction based on Probabilistic Lin-
ear Discriminant Analysis. Our proposed method
significantly improves accuracy in the realistic
unbalanced transductive setting on various Few-
Shot benchmarks when applied to features used
in previous studies, with a gain of up to 6% in
accuracy. In addition, when applied to balanced
setting, we obtain very competitive results with-
out making use of the class-balance artefact which
is disputable for practical use cases.

1 INTRODUCTION

Few-shot learning, and in particular Few-Shot Classification,
has become a subject of paramount importance in the last
years with a large number of methodologies and discussions.
Where large datasets continuously benefit from improved
machine learning architectures, the ability to transfer this
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performance to the low-data regime is still a challenge due
to the high uncertainty posed using few labels. In more
details, there are two main types of FSC tasks. In inductive
FSC (Antoniou et al., 2019; Snell et al., 2017; Ye et al., 2020;
Rizve et al., 2021), the situation comes to its extremes with
only a few data samples available for each class, leading
sometimes to completely intractable settings, such as when
facing a black dog on the one hand and a white cat on
the other hand. In transductive FSC, additional unlabelled
samples are available for prediction, leading to improved
reliability and more elaborate solutions (Lee et al., 2021;
Lazarou et al., 2021; Baik et al., 2021).

Inductive FSC is likely to occur when data acquisition is dif-
ficult or expensive, or when categories of interest correspond
to rare events. Transductive FSC is more likely encountered
when data labeling is expensive, for fast prototyping of so-
lutions, or when the categories of interest are rare and hard
to detect. Since the latter correspond to situations where it
is possible to exploit, at least partially, the distribution of
unlabelled samples, the trend evolved to using potentially
varying parts of this additional source of information. With
most standardized benchmarks using very limited scope of
variability in the generated Few-Shot tasks, this even came
to the point the best performing methods are often relying on
questionable information, such as equidistribution between
the various classes among the unlabelled samples, that is
unlikely realistic in applications.

This limitation of benchmarking for transductive FSC has
recently been discussed in (Veilleux et al., 2021). In this
paper, the authors propose a new way of generating trans-
ductive FSC benchmarks where the distribution of samples
among classes can drastically change from a Few-Shot gen-
erated task to the next one. Interestingly, they showed the
impact of generating class imbalance on the performance on
various popular methods, resulting in some cases in drops
in average accuracy of more than 10%.

A simple way to reach state-of-the-art performance in trans-
ductive FSC consists in extracting features from the avail-
able samples using a pretrained backbone deep learning
architecture, and then using semi-supervised clustering rou-
tines to estimate samples distribution among classes. Due to
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(a) Few-Shot Task (b) Initialization (c) PLDA and VB Inference

Figure 1: Summary of the proposed method. Here we illustrate a 3-way classification task in a standard 2-simplex using
soft-classification probabilities. Trajectories show the evolution across iterations. For a given Few-Shot task which nearest-
class-mean probabilities are depicted in (a), a Soft-KMEANS clustering method is performed in (b) to initialize onk (see
Alg. 1). Then in (c) an iteratively refined Variational Bayesian (VB) model with Adaptive Dimension Reduction using
Probabilistic Linear Discriminant Analysis (PLDA) is applied to obtain the final class predictions.

the very limited number of available samples, distribution-
agnostic clustering algorithms are often preferred, such as
K-MEANS or its variants (Moon, 1996; Lichtenstein et al.,
2020; Ren et al., 2018) or mean-shift (Comaniciu and Meer,
2002).

In this paper, we are interested in showing it is possible to
combine data reduction with statistical inference through a
Variational Bayesian (VB) (Corduneanu and Bishop, 2001;
Bishop and Nasrabadi, 2006) approach. Here, data reduction
helps considerably reduce the number of parameters to infer,
while VB inference provides more flexibility than the usual
K-Means methods. Interestingly, the proposed approach can
easily cope with standard equidistributed Few-Shot tasks
or the unbalanced ones proposed in (Veilleux et al., 2021),
defining a new state-of-the-art for five popular transductive
Few-Shot vision classification benchmarks.

Our claims are the following:

• We introduce a novel semi-supervised clustering algo-
rithm based on VB inference and Probabilistic Linear
Discriminant Analysis (PLDA),

• We show the ability of the proposed algorithm to reach
state-of-the-art transductive FSC performance on mul-
tiple vision benchmarks (balanced and unbalanced).

• We show the advantage of our proposed VB model and
PLDA combination to have superior performance than
alternative models and data reduction methods.

2 RELATED WORK

There are two main frameworks in the field of FSC: 1) only
one unlabelled sample is processed at a time for class pre-
dictions, which is called inductive FSC, and 2) the entire
unlabelled samples are available for further estimations,
which is called transductive FSC. Inductive methods focus

on training a feature extractor that generalizes well the em-
bedding in a feature sub-space, they include meta learning
methods such as (Finn et al., 2017; Liu et al., 2020b; Baik
et al., 2021; Vinyals et al., 2016; Oreshkin et al., 2018; Sung
et al., 2018) that train a model in an episodic manner, and
transfer learning methods (Chen et al., 2019; Mangla et al.,
2020; Ziko et al., 2020; Boudiaf et al., 2020; Bendou et al.,
2022; Rizve et al., 2021) that train a model with a set of
mini-batches. Recent state-of-the-art works on inductive
FSC (Ye et al., 2020; Zhang et al., 2020; Wertheimer et al.,
2021; Kang et al., 2021) combine the above two strategies
and propose a transfer based training used as model ini-
tialization, followed by an episodic training that adapts the
model to better fit the Few-Shot tasks.

Transductive methods are becoming more and more popular
thanks to their better performance due to the use of unla-
belled data, as well as their utility in situations where data
annotation is costly. Early literature of this branch operates
on a class-balanced setting where unlabelled instances are
evenly distributed among targeted classes. Graph-based
methods (Gidaris and Komodakis, 2019; Chen et al., 2021;
Yang et al., 2020; Hu et al., 2021a; Kim et al., 2019; Hami-
douche et al., 2021) make use of the affinity among features
and propose to group those that belong to the same class.
More recent works such as (Hu et al., 2021b, 2022) propose
methods based on Optimal Transport that realizes sample-
class allocation with a minimum cost. While effective, these
methods often require class-balanced priors to work well,
which is not realistic due to the arbitrary unknown query set.
In (Veilleux et al., 2021) the authors put forward a novel
unbalanced setting that composes a query set with unla-
belled instances sampled following a Dirichlet distribution,
injecting more imbalance for predictions.

In this paper we propose a clustering method to solve trans-
ductive FSC, where the aim is to estimate cluster parame-
ters giving high predictions for unlabelled samples. Under
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Gaussian assumptions, previous works (Lichtenstein et al.,
2020; Ren et al., 2018) have utilised algorithms such as
Expectation Maximization (Dempster et al., 1977) (EM),
with the goal of maximizing likelihoods or posteriors with
respect to the parameters for a cluster, with the hidden vari-
ables marginalized. However, this may not be the most
suitable way due to the scarcity of available data in a given
Few-Shot task, which increases the level of uncertainty for
cluster estimations. Therefore, in this paper we propose
a Variational Bayesian (VB) approach (Fox and Roberts,
2012; Rusu et al., 2019; Winn et al., 2005; Corduneanu and
Bishop, 2001; Bishop and Nasrabadi, 2006), in which we re-
gard some unknown parameters as hidden variables to inject
more flexibility into the model, and we try to approximate
the posterior of these by a variational distribution.

As models with too few labelled samples often give too
much randomness for a cluster to be stably reckoned, they
often require the use of feature dimension reduction tech-
niques to stabilize cluster estimations. Previous literature
such as (Lichtenstein et al., 2020) applies a PCA method that
reduces dimension in a non-supervised manner, and (Cao
et al., 2020) proposes a modified LDA during backbone
training that maximizes the ratio of inter/intra-class distance.
In this paper we propose to use Probabilistic Linear Discrim-
inant Analysis (Ioffe, 2006) (PLDA) that 1) is applied on
extracted features, 2) fits data more desirably into distribu-
tion assumptions, and 3) is semi-supervised in combination
with a VB model. We integrate PLDA into the VB model in
order to refine the reduced space through iterations.

3 METHODOLOGY

In this section, we firstly present the standard setting in
transductive FSC, including the latest unbalanced setting
proposed by (Veilleux et al., 2021) where unlabelled sam-
ples are non-uniformly distributed among classes. Then
we present our proposed method combining PLDA and VB
inference.

3.1 Problem Formulation

Following other works in the domain, our proposed method
is operated on a feature space obtained from a pre-trained
backbone. Namely, we are given the extracted features of 1)
a generic base class dataset Dbase = {xbase

i }Nbase
i=1 ∈ Cbase

that contains Nbase labelled samples where each sample
xbase
i is a column vector of length D, and Cbase is the set

of base classes to which these samples belong. These base
classes have been used to train the backbone. And similarly,
2) a novel class dataset Dnovel = {xnovel

n }Nn=1 containing
N samples belonging to a set of K novel classes Cnovel
(Cbase ∩ Cnovel = ∅). On this novel dataset, only a few
elements are labelled, and the aim is to predict the miss-
ing labels. Denote X the matrix obtained by aggregating
elements in Dnovel row-wise.

When benchmarking transductive FSC methods, it is com-
mon to randomly generate Few-Shot tasks by sampling
Dnovel from a larger dataset. These tasks are generated by
sampling K distinct classes, L distinct labelled elements
for each class (called support set) and Q total unlabelled
elements without repetition and distinct from the labelled
ones (called query set). All these unlabelled elements be-
long to one of the selected classes. We obtain a total of
N = KL + Q elements in the task, and compute the
accuracy on the Q unlabelled ones. Depending on how
unlabelled instances are distributed among selected classes
within a task, we further distinguish a balanced setting where
the query set is evenly distributed among theK classes, from
an unbalanced setting where it can vary from class to class.
An automatic way to generate such unbalanced Few-Shot
tasks has been proposed in (Veilleux et al., 2021) where the
number of elements to draw from each class is determined
using a Dirichlet distribution parameterized by α∗

o1, where
1 is the all-one vector. To solve a transductive FSC task, our
method is composed of PLDA and VB inference, that we
introduce in the next paragraphs.

3.2 Probabilistic Linear Discriminant Analysis

In our work, PLDA (Ioffe, 2006) is mainly used to reduce
feature dimensions. For a Few-Shot task X, let Φw be a
positive definite matrix representing the estimated shared
within-class covariance of a given class, and Φb be a positive
semi-definite matrix representing the estimated between-
class covariance that generates class variables. The goal of
PLDA is to project data onto a subspace while maximizing
the signal-to-noise ratio for class labelling. In details, we
obtain a projection matrix W that diagonalizes both Φw

and Φb and yield the following equations:

WTΦwW = I, WTΦbW = Ψ (1)

where I is an identity matrix and Ψ is a diagonal matrix. In
this paper, we assume a similar distribution between the pre-
trained base classes and the transferred novel classes (Yang
et al., 2021). Therefore we propose to estimate Φw to be
the within-class scatter matrix of Dbase, denoted as Sbass

w .
In practice we implement PLDA by firstly transforming
X using a rotation matrix R ∈ RD×D and a set of scal-
ing values s ∈ RD obtained from Sbase

w . Note that we
clamp the scaling values to be no larger than an upper-
bound smax in order to prevent too large values, smax is
a hyper-parameter. Then we project the transformed data
onto their estimated class centroids space, in accordance
with the d largest eigenvalues of Ψ, and obtain dimension-
reduced data U = [u1, ...,un, ...,uN ]T ∈ RN×d where
un = WTxn and d = K − 1. A more thorough descrip-
tion of the implementation can be found in Appendix.
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3.3 Variational Bayesian Inference

During VB inference, we operate on a reduced d-
dimensional space obtained after applying PLDA. Consider-
ing a Gaussian mixture model for a given task U ∈ RN×d in
reduced space, let θ be the unknown variables of the model.
In VB we attempt to find a probability distribution q(θ) that
approximates the true posterior p(θ|U), i.e. maximizes the
ELBO (see Appendix for more details). In our case, we
define θ = {Z,π,µ} where Z = {zn}Nn=1 is a set of la-
tent variables used as class indicators, each latent variable
zn has an one-of-K representation, π is a K-dimensional
vector representing mixing ratios between the classes, and
µ = {µk}Kk=1 where µk is the centroid for class k. Note
that 1) contrary to EM where π,µ are seen as parameters
that can be estimated directly, in VB they are deemed as
hidden variables following certain distribution laws. 2) This
is not a full VB model due to the lack of precision ma-
trix (i.e. the inverse of covariance matrix) as a variable
in θ. Although a VB model frees up more parameters for
the unknown variables, it also increases the instability in
estimations so that the model becomes too sensible. There-
fore, in this paper we impose an assumption that all classes
in U share the same precision matrix and it is fixed dur-
ing VB iterations. Namely we define Λk = Λ = TvbI
for k = 1, ...,K, where Tvb is a hyper-parameter aiming
at compensating the variation between base and estimated
novel class distributions.

In order for a model to be in a variational bayesian setting,
we define priors and likelihoods on the unknown variables,
with several initialization parameters attached:

priors : p(π) = Dir(π|αo),

p(µ) =

K∏
k=1

N (µk|mo, (βoΛ)−1),

likelihoods : p(Z|π) =
N∏

n=1

Categorical(zn|π),

p(U |Z,µ) =
N∏

n=1

K∏
k=1

N (un|µk,Λ
−1)znk

(2)

where π follows a K-dimensional symmetric Dirichlet dis-
tribution, with αo being the prior of component weight for
each class, which we set to 2.0 in accordance with (Veilleux
et al., 2021), i.e. the same value as the Dirichlet distribution
parameter α∗

o that is used to generate Few-Shot tasks. The
vector mo is the prior about the class centroid variables,
we let it to be 0. And βo stands for the prior about the
moving range of class centroid variables: the larger it is, the
closer the centroids are to mo. We empirically found that
βo = 10.0 gives consistent good results across datasets and
FSC problems.

As previously stated, we approximate a variable distribu-
tion to the true posterior. To further simplify, we follow

the Mean-Field assumption (Prezhdo, 1999; Jaakkola and
Jordan, 1998) and assume that the unknown variables are
independent from one another. Therefore we let q(θ) =
q(Z,π,µ) = q(Z)q(π)q(µ) ≈ p(Z,π,µ|U) and solve
for each term. The explicit formulation for these marginals
is provided in Eq. 3, 4 (see Appendix for more details). The
estimation of the various parameters is then classically per-
formed through an iterative EM framework as presented
further.

Denote on = [on1, ..., onk, ..., onK ] as the soft class assign-
ment for un (onk ≥ 0,

∑K
k=1 onk = 1), and onk represents

the portion of nth sample allocated to kth class.

M Step In this step we estimate q(π) and q(µ) in use of
the class assignments onk:

q∗(π) = Dir(π|α),

q∗(µ) =

K∏
k=1

N (µk|mk, (βkΛ)−1)
(3)

where α = [α1, ..., αk, ..., αK ] are the estimated compo-
nent weights for classes, αk = αo + Nk, and Nk =∑N

n=1 onk is the sum of the soft assignments for all sam-
ples in class k. We also estimate the moving range param-
eter βk = βo + Nk and the centroid mk = 1

βk
(βomo +∑N

n=1 onkun) for each class centroid variable. We observe
that the posteriors take the same forms as the priors. Demon-
stration of these results is presented in Appendix.

E Step In this step we estimate q(Z) by updating onk,
using the current values of all other parameters computed in
the M-step, i.e. αk, βk and mk.

q∗(Z) =

N∏
n=1

Categorical(zn|on) (4)

where each element onk can be computed as onk =
ρnk∑K
j=1 ρnj

in which:

log ρnk = ψ(αk)− ψ(

K∑
j=1

αj) +
1

2
log |Λ|−

d

2
log 2π − 1

2
[dβ−1

k + (un −mk)
TΛ(un −mk)],

(5)

with ψ(·) being the logarithmic derivative of the gamma
function (also known as the digamma function). We observe
that q∗(Z) follows the same categorical distribution as the
likelihood, and it is parameterized by onk. More details can
be found in Appendix.

Proposed Algorithm The proposed method combines
PLDA and VB inference which leads to an Efficiency
Guided Adaptive Dimension Reduction for VAriational
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Algorithm 1 BAVARDAGE

Inputs: X ∈ RN×D, Sbase
w ∈ RD×D

Hyper-parameters: Tkm, Tvb, smax

Priors for VB: αo = 2.0, βo = 10.0, mo = 0, Λ =
Tvb · I
Initializations: onk = EM (X, Tkm)
for i = 1 to nstep do
U = PLDA (X, Sbase

w , smax, onk) # See more
details in Appendix.
VB (M step):
αk = αo +

∑N
n=1 onk,

βk = βo +
∑N

n=1 onk,
mk = 1

βk
(βomo +

∑N
n=1 onkun)

VB (E step):
log ρnk = ψ(αk) − ψ(

∑K
j=1 αj) + 1

2 log |Λ| −
d
2 log 2π − 1

2 [dβ
−1
k + (un −mk)

TΛ(un −mk)],
onk = ρnk∑K

j=1 ρnj

end for
return ℓ̂(xn) = argmaxk(onk)

BAyesian inference. We thus name our proposed method
“BAVARDAGE”, and the detailed description is presented in
Algorithm 1. Given a Few-Shot task X and a within-class
scatter matrix Sbase

w , we initialize onk using EM algorithm
with an assumed covariance matrix, adjusted by a tempera-
ture hyper-parameter Tkm, for all classes. Note that this is
equivalent to Soft-KMEANS (Kearns et al., 1998; Lichten-
stein et al., 2020; Ren et al., 2018) algorithm. And for each
iteration we update parameters: in M step we update αk, βk
and centroids mk, in E step we only update onk, and we
apply PLDA with the updated onk to reduce feature dimen-
sions. Finally, predicted labels are obtained by selecting the
class that corresponds to the largest value in onk.

The illustration of our proposed method is presented in Fig-
ure 1. For a Few-Shot task that has three classes (red, blue
and green) with unlabelled samples depicted on the proba-
bility simplex, we firstly initialize onk with Soft-KMEANS
which directs some data points to their belonging classes
while further distancing some points from their targeted
classes. Then we apply the proposed VB inference inte-
grated with PLDA, resulting in additional points moving
towards their corresponding classes.

4 EXPERIMENTS

In this section we provide details on the standard transduc-
tive Few-Shot classification settings, and we evaluate the
performance of our proposed method.

Benchmarks We test our method on standard Few-Shot
benchmarks: mini-Imagenet (Russakovsky et al., 2015),
tiered-Imagenet Ren et al. (2018) and caltech-ucsd birds-

200-2011 (CUB) (Wah et al., 2011). mini-Imagenet is a
subset of ILSVRC-12 (Russakovsky et al., 2015) dataset, it
contains a total of 60, 000 images of size 84× 84 belonging
to 100 classes (600 images per class) and follows a 64-16-20
split for base, validation and novel classes. tiered-Imagenet
is a larger subset of ILSVRC-12 containing 608 classes
with 779, 165 images of size 84 × 84 in total, and we use
the standard 351-97-160 split, and CUB is composed of 200
classes following a 100-50-50 split (Image size: 84× 84).
In Appendix we also show the performance of our proposed
method on other benchmarks such as FC100 (Oreshkin et al.,
2018) and CIFAR-FS (Bertinetto et al., 2019).

Settings Following previous works (Lichtenstein et al.,
2020; Rodrı́guez et al., 2020; Veilleux et al., 2021), our
proposed method is evaluated on 1-shot 5-way (K = 5,
L = 1), and 5-shot 5-way (K = 5, L = 5) scenarios. As for
the query set, we set a total number of Q = 75 unlabelled
samples, from which we further define two settings: 1)
a balanced setting where unlabelled instances are evenly
distributed among K classes, and 2) an unbalanced setting
where the query set is randomly distributed, following a
Dirichlet distribution parameterized by α∗

o. In our paper
we follow the same setting as (Veilleux et al., 2021) and
set α∗

o = 2.0, further experiments with different values are
conducted next. The performance of our proposed method is
evaluated by the averaged accuracy over 10, 000 Few-Shot
tasks with a 95% confidence interval.

Implementation Details In this paper we firstly com-
pare our proposed algorithm with the other state-of-the-art
methods using the same pretrained backbones and bench-
marks provided in (Veilleux et al., 2021). Namely we ex-
tract the features using the same ResNet-18 (RN18) and
WideResNet28 10 (WRN) neural models, and present the
performance on mini-Imagenet, tiered-Imagenet and CUB
datasets. In our proposed method, the raw features are
preprocessed following (Wang et al., 2019). As for the
hyper-parameters, we set Tkm = 10, Tvb = 50, smax = 2
for the balanced setting; Tkm = 50, Tvb = 50, smax = 1
for the unbalanced setting, and we use the same VB priors
for all settings. To further show the functionality of our
proposed method on different backbones and other bench-
marks, we tested BAVARDAGE on a recent high perform-
ing feature extractor trained on a ResNet-12 (RN12) neural
model (Mangla et al., 2020; Bendou et al., 2022), and we
report the accuracy in Table 1 and in Appendix with various
settings.

4.1 Main Results

The main results on the relevant settings are presented in
Table 1. Note that we report the accuracy of other methods
following (Veilleux et al., 2021), and add the performance
of our proposed method in comparison, using the same pre-
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trained RN18 and WRN feature extractors, and we also
report the result of a RN12 backbone pretrained follow-
ing (Bendou et al., 2022). We observe that our proposed
algorithm reaches state-of-the-art performance for nearly
all referenced datasets in the unbalanced setting, surpass-
ing previous methods by a noticeable margin especially on
1-shot. In the balanced setting we also reach competitive
accuracy compared with (Hu et al., 2021b) along with other
works that make use of a perfectly balanced prior on un-
labelled samples, while our proposed method suggests no
such prior. In addition, we provide results on the other Few-
Shot benchmarks with different settings in Appendix. As
for the time complexity of BAVARDAGE, we set nstep to
be 5 for all experiments in the paper. The average execution
time per few-shot task is around 1.7e− 4 seconds.

4.2 Ablation Studies

Analysis on the Elements of BAVARDAGE In this ex-
periment we dive into our proposed method and conduct an
ablation study on the impact of VB and PLDA. Namely, we
report the performance in the following 3 scenarios: 1) only
run Soft-KMEANS on the extracted features to obtain a
baseline accuracy; 2) run the VB model with onk initialized
by Soft-KMEANS, without reducing the feature space; and
3) integrate PLDA into VB iterations. From Table 2 we
observe only a slight increase of accuracy compared with
baseline when no dimensionality reduction is applied. This
is due to the fact that high feature dimensions increase un-
certainty in the estimations, making the model sensitive to
parameters. With our implementation of PLDA iteratively
applied in the VB model, we can see from the table that the
performance increases by a relatively large margin, suggest-
ing the effectiveness of our proposed adaptive dimension
reduction method combining both VB and PLDA.

Visualization of Features for Different Projections To
further showcase the effect of proposed PLDA, in Fig. 2
we visualize the extracted features of a 3-way Few-Shot
task in the following 3 scenarios: (a) features in the original
space, using T-SNE (Van der Maaten and Hinton, 2008)
for visualization purpose; (b) features that are projected
directly onto their centroids space, and finally (c) features
projected using PLDA. The ellipses drawn in (b) and (c)
are the cluster estimations computed using the real labels of
data samples, and we can thus observe a larger separation
of different clusters with PLDA projection for the task in
which the original features overlap heavily between clusters
in blue and green.

Comparison with other Dimension Reduction Tech-
niques In BAVARDAGE, we apply a PLDA to reduce
feature dimension. Given the fact that PLDA projects data
while reshaping them to have identity matrix as the covari-
ance matrix, this corresponds to our assumption of a shared

isotropic covariance matrix for the test data, and gives the
best results. In comparison with other feature dimension
techniques, here we provide the performance using 1) Princi-
ple Component Analysis (PCA) and 2) Linear Discriminant
Analysis (LDA), with the same VB model as in the paper.

In detail, applying PCA before the VB inference (since it
is unsupervised), we obtain 67.10%/76.95% accuracy for
1/5 shots in the unbalanced setting (dataset:mini-Imagenet,
backbone: WRN from (Veilleux et al., 2021)). Applying
LDA by computing the projection matrix from Φ−1

w Φb in-
stead of Eq. 1, we obtain 70.87%/83.97% accuracy under the
same setting, both inferior to the performance of reported
BAVARDAGE (74.1%/85.5%), suggesting the effectiveness
of PLDA.

Model Complexity Note that in our proposed method we
do not apply a full VB model where the cluster covariances
are regarded as hidden variables as well, instead we suppose
a shared isotropic covariance matrix for all clusters, adjusted
by a hyperparameter. This is due to the two following
reasons: 1) a shared isotropic covariance corresponds to the
assumption of PLDA that can been viewed as a whitening
process; 2) injecting too many hidden variables may render
the VB model more complex, unstable and sensitive to
hyperparameters, especially in the case of few shot where
there is already a relative high level of uncertainty in cluster
estimations to begin with. Therefore, a trade-off between
expressivity and risk of overfitting should be looked after.

To better illustrate the point, we test the performance us-
ing 1) Kmeans and 2) a full VB model that are applied
on the reduced dimensional data from PLDA (dataset:mini-
Imagenet, backbone: WRN from (Veilleux et al., 2021)),
and we obtain 70.36%/83.68% accuracy for 1/5 shots for 1),
48.56%/66.98% for 2), both inferior to the performance of
BAVARDAGE reported in the paper (74.1%/85.5%). There-
fore from our experiments, a partial VB model with a shared
isotropic covariance matrix is shown to give the best results,
although there is still room for the future work to find a
workable solution for other forms of covariance matrix.

From the above results, we can observe a balance between
model complexity and performance. A less complex model
like Kmeans or a too complex one like full VB inference
both can result in sub-optimal accuracy. Especially in the
case of a full VB model, we see a catastrophic decrease of
accuracy. Therefore, we should be cautious about the model
complexity in order to prevent it from overfitting or falsely
estimating some of its parameters.

In our considered VB model, we always had in mind a com-
promise between the expressivity of the general framework
and the ability to correctly estimate the introduced parame-
ters (typically in our case we could face the issue of estimat-
ing a D×D covariance matrix with D = 512 or 640 on the
basis of only few dozen observations). The obtained trade-
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Table 1: Comparison of the state-of-the-art methods on mini-Imagenet, tiered-Imagenet and CUB datasets using the same
pretrained backbones as (Veilleux et al., 2021), along with the accuracy of our proposed method on a ResNet-12 backbone
pretrained following the methodology described in (Bendou et al., 2022), reported to achieve state-of-the-art performance.
Note that the full results of BAVARDAGE with 95% confidence intervals are provided in Appendix.

mini-Imagenet unbalanced balanced

Method Backbone 1-shot 5-shot 1-shot 5-shot

MAML (Finn et al., 2017)

RN18/WRN (Veilleux et al., 2021)

47.6/− 64.5/− 51.4/− 69.5/−
Versa (Gordon et al., 2019) 47.8/− 61.9/− 50.0/− 65.6/−
Entropy-min (Dhillon et al., 2020) 58.5/60.4 74.8/76.2 63.6/66.1 82.1/84.2
PT-MAP (Hu et al., 2021b) 60.1/60.6 67.1/66.8 76.9/78.9 85.3/86.6
LaplacianShot (Ziko et al., 2020) 65.4/70.0 81.6/83.2 70.1/72.9 82.1/83.8
BD-CSPN (Liu et al., 2020b) 67.0/70.4 80.2/82.3 69.4/72.5 82.0/83.7
TIM (Boudiaf et al., 2020) 67.3/69.8 79.8/81.6 71.8/74.6 83.9/85.9
α-TIM (Veilleux et al., 2021) 67.4/69.8 82.5/84.8 −/− −/−
BAVARDAGE (ours) 71.0/74.1 83.6/85.5 75.1/78.5 84.5/87.4

BAVARDAGE (ours) RN12 (Bendou et al., 2022) 77.8 88.0 82.7 89.5

tiered-Imagenet unbalanced balanced

Method Backbone 1-shot 5-shot 1-shot 5-shot

Entropy-min (Dhillon et al., 2020)

RN18/WRN (Veilleux et al., 2021)

61.2/62.9 75.5/77.3 67.0/68.9 83.1/84.8
PT-MAP (Hu et al., 2021b) 64.1/65.1 70.0/71.0 82.9/84.6 88.8/90.0
LaplacianShot (Ziko et al., 2020) 72.3/73.5 85.7/86.8 77.1/78.8 86.2/87.3
BD-CSPN (Liu et al., 2020b) 74.1/75.4 84.8/85.9 76.3/77.7 86.2/87.4
TIM (Boudiaf et al., 2020) 74.1/75.8 84.1/85.4 78.6/80.3 87.7/88.9
α-TIM (Veilleux et al., 2021) 74.4/76.0 86.6/87.8 −/− −/−
BAVARDAGE (ours) 76.6/77.5 86.5/87.5 80.3/81.5 87.1/88.3

BAVARDAGE (ours) RN12 (Bendou et al., 2022) 79.4 88.0 83.5 89.0

CUB unbalanced balanced

Method Backbone 1-shot 5-shot 1-shot 5-shot

PT-MAP (Hu et al., 2021b)

RN18 (Veilleux et al., 2021)

65.1 71.3 85.5 91.3
Entropy-min (Dhillon et al., 2020) 67.5 82.9 72.8 88.9
LaplacianShot (Ziko et al., 2020) 73.7 87.7 78.9 88.8
BD-CSPN (Liu et al., 2020b) 74.5 87.1 77.9 88.9
TIM (Boudiaf et al., 2020) 74.8 86.9 80.3 90.5
α-TIM (Veilleux et al., 2021) 75.7 89.8 − −
BAVARDAGE (ours) 82.0 90.7 85.6 91.4

BAVARDAGE (ours) RN12 (Bendou et al., 2022) 83.1 90.8 87.4 92.0

Table 2: Ablation study on using VB and PLDA in our
method, with results on mini-Imagenet (backbone: WRN)
and CUB (backbone: RN18) in the unbalanced setting.

mini-Imagenet CUB

Soft-KMEANS VB PLDA 1-shot 5-shot 1-shot 5-shot

✓ 71.4 82.4 77.5 86.7

✓ ✓ 71.8 82.5 77.8 87.2

✓ ✓ ✓ 74.1 85.5 82.0 90.7

off is likely overspecialized to our specific benchmarks, as
is illustrated with the diminished gains in accuracy when
the number of shots increases. Yet in the extreme case of
1-shot, where the uncertainty is maximum, the proposed
combination of VB and PLDA achieves the state-of-the-art

performance, suggesting the balance between complexity of
the model and ability to estimate its parameters is close to
optimal.

Robustness against Imbalance In Table 1 we show the
accuracy of our proposed method using VB priors intro-
duced in Section 3.3, in which αo is set to be equal to the
Dirichlet’s parameter α∗

o for the level of imbalance in the
query set. Therefore, in this experiment we test the robust-
ness of BAVARDAGE, namely in Fig. 3 we alter αo and
report the accuracy on different imbalance levels (varying
α∗
o) in both 1-shot and 5-shot settings. Note that the pro-

posed model becomes slightly more sensitive to αo when
the level of imbalance increases (smaller α∗

o), with an ap-
proximate 1% drop of accuracy when increasing αo in the
case of α∗

o = 1.
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(a) T-SNE (b) Centroids projection (c) PLDA

Figure 2: Visualization of extracted features of a Few-Shot task using different projection methods (dataset: mini-Imagenet,
backbone: WRN), we report a 86.7%, 90.0% and 95.0% prediction accuracy corresponding to each projection.
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Figure 3: 1-shot and 5-shot accuracy on different imbalance
levels (varying α∗

o) as a function of VB priors αo (dataset:
mini-Imagenet, backbone: WRN).

Varying Few-Shot Settings In this experiment we ob-
serve the performance of BAVARDAGE on different Few-
Shot settings, namely we vary the number of labelled sam-
ples per class L as well as the total number of unlabelled
samples Q in a task, for further comparison we also re-
port the accuracy using only Soft-KMEANS algorithm. In
Fig. 4 we can observe constant higher accuracy of our pro-
posed method, and a slightly larger difference gap when Q
increases.

Comparison with Similar Work Aligned with our pro-
posed method, there is another work proposed in (Yang
et al., 2021) that also uses the base dataset to estimate the
distribution of the novel classes. However, the differences
are that 1) (Yang et al., 2021) is an inductive method, while
BAVARDAGE is a transductive method; 2) In (Yang et al.,
2021) the covariance matrix of each novel class is cali-
brated using the closest base classes, while BAVARDAGE
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Figure 4: Accuracy as a funtion of L and Q in comparison
with Soft-KMEANS (dataset: mini-Imagenet, backbone:
WRN).

uses a fixed covariance matrix for all novel classes, and
it is computed using all samples in the base dataset (See
Eq. 6 in Appendix). To compare (Yang et al., 2021) with
BAVARDAGE, here in Table 3 we conduct two experiments:
1) use the inductive method in (Yang et al., 2021) and
report the performance in both balanced and unbalanced
settings; and 2) integrate the calibrated covariance matrix
computed using (Yang et al., 2021) into PLDA to perform
BAVARDAGE.

We can see that in experiment 1), we compare
BAVARDAGE directly with (Yang et al., 2021). Note that
for a fair comparison, here we use the same WRN backbone
pretrained in (Veilleux et al., 2021), while in (Yang et al.,
2021) the authors train a WRN backbone following (Mangla
et al., 2020). Hence the accuracy difference (68.6%/82.9%
reported in (Yang et al., 2021) for 1/5-shot balanced setting).
In experiment 2) we observe that in BAVARDAGE, a fixed
covariance matrix performs better than a covariance matrix
calibrated per task. We think that it is thanks to a better
bias/variance trade-off.
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Table 3: Comparison with (Yang et al., 2021) (dataset: mini-ImageNet, backbone: WRN). Experiment 1) is a direct
comparison between BAVARDAGE and (Yang et al., 2021), while experiment 2) computes Φw using Distribution Calibration
(DC) proposed in (Yang et al., 2021).

mini-Imagenet unbalanced balanced

Experiment Method Backbone 1-shot 5-shot 1-shot 5-shot

1) Logistic Regression with DC (Yang et al., 2021) WRN (Veilleux et al., 2021) 65.6 80.3 65.7 80.4
2) BAVARDAGE (ours) with DC 71.2 82.4 75.6 84.5

BAVARDAGE (ours) WRN (Veilleux et al., 2021) 74.1 85.5 78.5 87.4

Performance on Cross Domain As we can see, the
cluster estimations in our proposed method are dependent
on the base dataset, therefore resulting in different levels
of accuracy increase on different benchmarks. Although
BAVARDAGE has shown promising results on both coarse-
grained (e.g. tiered-Imagenet and FC100) and fine-grained
(e.g. CUB) benchmarks, there remains questions about
the performance on cross domain where the base dataset
has a complete different distribution with respect to the
novel dataset. Therefore in Table 4 we test the perfor-
mance of our proposed method in the mini-to-CUB cross-
domain setting where features of CUB are extracted from
a backbone trained with mini-Imagenet. Here we perform
BAVARDAGE based on Φw being the within-class scatter
matrix of mini-Imagenet as well.

Table 4: Performance of the proposed BAVARDAGE on
cross domain. Here we use the base dataset of mini-
Imagenet to test out the performance on the novel dataset of
CUB, accuracy is obtained with ResNet-18 and WideRes-
Net28 10 backbones from (Veilleux et al., 2021).

mini → CUB unbalanced balanced

Method Backbone 1-shot 5-shot 1-shot 5-shot

NCM RN18 (Veilleux et al., 2021) 46.3 66.2 46.3 66.1
BAVARDAGE (ours) 53.0 70.0 54.6 71.5

NCM WRN (Veilleux et al., 2021) 48.5 66.3 48.5 68.2
BAVARDAGE (ours) 56.6 74.0 58.1 75.4

Table 5: Comparison of our proposed method with state-of-
the-art methods on cross domain, accuracy is obtained with
ResNet-18 backbone pretrained from (Veilleux et al., 2021).

mini → CUB
Method Backbone 5-shot

MAML (Finn et al., 2017)

RN18 (Veilleux et al., 2021)

51.3
MatchNet (Vinyals et al., 2016) 53.1
RelatNet (Sung et al., 2018) 57.7
ProtoNet (Snell et al., 2017) 62.0
SimpleShot (Wang et al., 2019) 64.0
Baseline (Chen et al., 2019) 65.6
LaplacianShot (Ziko et al., 2020) 66.3
Neg-Cosine (Liu et al., 2020a) 67.0
TIM-ADM (Boudiaf et al., 2020) 70.3
TIM-GD (Boudiaf et al., 2020) 71.0
BAVARDAGE (ours) 71.5

We still observe relative large increase of accuracy. In our

opinion, the reason that the proposed method works in cross
domain may be that a well pretrained model, regardless of
the base dataset, could be a decent representative for clusters
consisting of novel scarce data. An interesting subject for
the further research could be to analyse the impact of base
dataset on the performance (Sbai et al., 2020), and how
to choose or design a base set that maximizes the boost
in accuracy when evaluating with test data. For further
comparison, in Table 5 we report our 5-shot performance
under the balanced setting along with other state-of-the-
art methods following (Boudiaf et al., 2020). With the
same pretrained ResNet-18 backbone, our proposed method
obtains the best accuracy.

5 CONCLUSION

In this paper we proposed a clustering method based on
Variational Bayesian Inference and Probabilistic Linear Dis-
criminant Analysis for transductive Few-Shot Classifica-
tion. BAVARDAGE has reached state-of-the-art accuracy
on nearly all Few-Shot benchmarks in the realistic unbal-
anced setting, as well as competitive performance in the
balanced setting. The performance in the balanced setting
looks less appealing because in BAVARDAGE we do not
make use of the class-balanced prior, while current state-of-
the-art methods do or they tend to use additional data. And
we consider it unrealistic to have such a prior in real world
scenarios (Veilleux et al., 2021).

As our proposed method assumes a shared isotropic covari-
ance matrix for all clusters, the estimations in VB models
could be limited. Therefore the future work could study
a better estimation of covariance matrices associated with
each cluster. An interesting asset of the proposed method
is that it performs most of its processing in a reduced
(K − 1)-dimensional space, where K is the number of
classes, suggesting interests for visualization and suitability
for more elaborate statistical machine learning methods. As
in (Veilleux et al., 2021), we encourage the community to
rethink the works in transductive settings such as imbalance
generation to provide fairer grounds of comparison between
the various proposed approaches.
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A IMPLEMENTATION DETAILS

A.1 Implementation Details on the Proposed PLDA

In this section we present more details on our implementation of PLDA proposed in section 3.2 in the paper. Given
X ∈ RN×D, we estimate its within-class covariance matrix to be Sbase

w calculated from Dbase. Denote Ibase
c as the set of

samples belonging to base class c where c ∈ 1, ..., |Cbase|, therefore Φw is approximated as follows:

Φw ≈ Sbase
w =

∑
c

∑
i∈Ibase

c
(xbase

i −mbase
c )(xbase

i −mbase
c )T

Nbase
, (6)

where mbase
c = 1

|Ibase
c |

∑
i∈Ibase

c
xbase
i is the mean of c-th base class. Let λ = [λ1, ..., λi, ..., λD] ∈ RD be the eigenvalues

of Sbase
w in descending order, and we set R = [r1, ..., ri, ..., rD] ∈ RD×D to be the corresponding eigenvectors. In this

paper we define a transformation matrix T = SR where S is a diagonal matrix with diagonal values being the square root
of multiplicative inverse of λ, clamped to an upper bound smax. Namely, s = diag(S) where s = [s1, ...si, ...sD] ∈ RD is
a D-length vector containing the scaling value for each dimension, and we set si to be as follows:

si =

{
λ−0.5
i if λ−0.5

i ≤ smax

smax otherwise
. (7)

We can see from Eq. 7 that T is composed of a rotation matrix and scaling values on feature dimensions that help morph
the within-class distribution into an identity covariance matrix. This corresponds to a data sphering/whitening process in
which we decorrelate samples in each of the dimensions. In our implementation we transform X by multiplying it with T.
Therefore the sphered data samples, denoted as X′ = [x′

1, ...x
′
n, ...x

′
N ]T ∈ RN×D, are obtained from x′

n = Txn.

Next, we project X′ onto a subspace that corresponds to the K − 1 largest eigenvalues of its between-scatter matrix. Denote
m′

k as the estimated centroid for class k, given soft class assignments onk (1 ≤ n ≤ N, 1 ≤ k ≤ K), m′
k is computed as:

m′
k =

∑N
n=1 onkx

′
n

γ +Nk
, Nk =

N∑
n=1

onk , (8)

where γ is used as an offset indicating how close the centroids are to 0, in this paper we set it to 10.0, same as βo in the VB
model in reduced space. Therefore, the between-class scatter matrix Ψ of sphered samples can be calculated as:

Ψ =

K∑
k=1

(m′
k −m′)(m′

k −m′)T , (9)

where m′ = 1
K

∑K
k=1 m

′
k is the mean of estimated class centroids. Then we project X′ onto a d-length subspace, where

d = K − 1. In details, denote V = [v1, ...,vi, ...,vd] ∈ RD×d to be the eigenvectors corresponding to the d largest
eigenvalues of Ψ, the projected data U are obtained as un = VTx′

n for each sample. Note that the formulation of Ψ in
Eq. 9 allows at most K − 1 non-zero eigenvalues, therefore the resulting subspace projection using these eigenvectors is
equivalent to a projection onto the affine subspace containing the centroids m′

k. Furthermore, according to Eq. 1 in the
paper, we can further deduce the projection matrix W to be as follows:

un = WTxn = VTx′
n = VTTxn = VTSRxn,

=⇒ W = (VTSR)T = RTSV.
(10)

The entire process is described in Algorithm 2.
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Algorithm 2 Proposed PLDA

Fonction PLDA (X, Sbase
w , smax, onk)

Sphere X using T (Eq. 7), obtain X′.
Estimate centroids m′

k using onk (Eq. 8).
Compute Ψ using m′

k (Eq. 9).
Project X′ onto the centroids space, obtain U.

Return U

A.2 Implementation Details on the Proposed VB Model

In this section we provide more detailed explanation of our proposed VB model. Given a posterior p(θ|U), we approximate
it with a function variational distribution q(θ) by minimizing the Kullback-Leibler divergence:

q∗(θ) = argmin
q

{DKL(q||p)}

= argmin
q

{log p(U)− L(q)}

= argmax
q

{L(q)}

(11)

where the evidence log p(U) is considered fixed, and L(q) =
∫
q(θ) log p(θ,U)

q(θ) dθ stands for Evidence Lower BOund (ELBO)
providing “evidence” that we have chosen the right model. We can see that minimizing the Kullback-Leibler divergence is
equivalent to maximizing the ELBO. Suppose θ = {θ1, ..., θm, ..., θM}, we firstly factorize q(θ) =

∏M
m=1 q(θm) according

to the Mean-Field assumption, then we solve each term individually:

L(q) =
∫
q(θ) log

p(θ,U)

q(θ)
dθ

=

∫ ( M∏
m=1

q(θm)

)(
log p(θ,U)−

M∑
m=1

log q(θm)

)
dθ1dθ2...dθM

=

M∑
m=1

(∫
q(θm)

(∫
q(θ−m) log p(θ,U)dθ−m

)
dθm −

∫
q(θm) log q(θm)dθm

)
,

(12)

and the ELBO is maximized when:

log q∗(θm) = Eθ−m [log p(θ,U)] + const, (13)

where Eθ−m
[·] stands for the expectation with respect to all variables in θ except θm. In our method we define θ = {Z,π,µ},

the detailed formula of some variables are presented as follows:

zn = [zn1, ..., znk, ..., znK ] ∈ {0, 1}K ,
K∑

k=1

znk = 1,

π = [π1, ..., πk, ..., πK ], πk ≥ 0,

K∑
k=1

πk = 1.

(14)

According to Bayes’ theorem, we rewrite the posterior to be:

p(θ|U) = p(Z,π,µ|U) =
p(Z,π,µ,U)

p(U)

=
p(U|Z,µ)p(Z|π)p(π)p(µ)

p(U)
,

(15)
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in which:

p(U|Z,µ) =
N∏

n=1

K∏
k=1

N (un|µk,Λ
−1)znk ,

p(Z|π) =
N∏

n=1

Categorical(zn|π) =
N∏

n=1

K∏
k=1

πznk

k ,

p(π) = Dir(π|αo) =
Γ(
∑K

k=1Kαo)∏K
k=1 Γ(αo)

K∏
k=1

παo−1
k = C(αo)

K∏
k=1

παo−1
k ,

p(µ) =

K∏
k=1

N (µk|mo, (βoΛ)−1).

(16)

According to Eq. 13, q∗(π) can be computed as follows:

log q∗(π) = EZ,µ[log p(Z,π,µ,U)] + const

= EZ [log p(Z|π)] + log p(π) + const

=

N∑
n=1

K∑
k=1

EZ [znk] log πk +

K∑
k=1

(αo − 1) log πk + const

=

K∑
k=1

N∑
n=1

onk log πk +

K∑
k=1

(αo − 1) log πk + const

=

K∑
k=1

(Nk + αo − 1) log πk + const,

=⇒ q∗(π) =

K∏
k=1

πNk+αo−1
k + const

=

K∏
k=1

παk−1
k + const

= Dir(π|α).

(17)

Similarly for q∗(µ) we can compute it as shown below:

log q∗(µ) = EZ,π[log p(Z,π,µ,U)] + const

= EZ [log p(U|Z,µ)] + log p(µ) + const

=

N∑
n=1

K∑
k=1

EZ [znk] logN (un|µk,Λ
−1) +

K∑
k=1

logN (µk|mo, (βoΛ
−1) + const

=
1

2

N∑
n=1

K∑
k=1

onk log |Λ| − 1

2

N∑
n=1

K∑
k=1

onk(un − µk)
TΛ(un − µk)

+
1

2

K∑
k=1

log |βoΛ| − 1

2

K∑
k=1

(µk −mo)
TβoΛ(µk −mo).

(18)

To compute βk, we gather the quadratic terms that contain µk in Eq. 18:
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(quad) = −1

2

N∑
n=1

K∑
k=1

onkµ
T
kΛµk − 1

2

K∑
k=1

µT
k βoΛµk

= −1

2

K∑
k=1

µT
k (NkΛ+ βoΛ)µk

= −1

2

K∑
k=1

µT
k (βo +Nk)Λkµk,

=⇒ βk = βo +Nk.

(19)

As for mk, we gather the linear terms that contain µk in Eq. 18:

(linear) =
1

2

N∑
n=1

K∑
k=1

onkµ
T
kΛun +

1

2

K∑
k=1

µT
k βoΛmo

=
1

2

K∑
k=1

µT
kΛ(βomo +

N∑
n=1

onkun)

=
1

2

K∑
k=1

µT
k βkΛmk,

=⇒ mk =
1

βk
(βomo +

N∑
n=1

onkun).

(20)

Therefore q∗(µ) can be reformulated as:

q∗(µ) =

K∏
k=1

q∗(µk) =

K∏
k=1

N (µk|mk, (βkΛ)−1). (21)

We also provide a more detailed calculation of q∗(Z):

log q∗(Z) = Eπ,µ[log p(Z,π,µ,U)] + const

= Eπ[log p(Z|π)] + Eµ[log p(U|Z,µ)] + const

=

N∑
n=1

K∑
k=1

znk
(
Eπ[log πk] + Eµ[logN (un|µk,Λ

−1)]
)
+ const

=

N∑
n=1

K∑
k=1

znk log ρnk + const,

(22)

where
log ρnk = Eπ[log πk] + Eµ[logN (un|µk,Λ

−1)]

= Eπ[log πk] +
1

2
log |Λ| − d

2
log 2π − 1

2
Eµ[(un − µk)

TΛ(un − µk)].
(23)

Therefore q∗(Z) can be expressed as:

q∗(Z) =

N∏
n=1

K∏
k=1

oznk

nk =

N∏
n=1

Categorical(zn|on), onk =
ρnk∑K
j=1 ρnj

, (24)

we can see that the variable follows a categorical distribution, parameterized by onk, and onk = EZ [znk]. As for Eq. 23,
more details are shown as follows:
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Eπ[log πk] = ψ(αk)− ψ(

K∑
j=1

αj),

Eµ[(un − µk)
TΛ(un − µk)] =

∫
(un − µk)

TΛ(un − µk)q
∗(µk)dµk

= (un −mk)
TΛk(un −mk) + Tr[Λ · (βkΛ)−1]

= dβ−1
k + (un −mk)

TΛ(un −mk),

(25)

ψ(·) is the logarithmic derivative of the gamma function, and the distribution for πk and µk follows Eq. 17, 21. Therefore:

log ρnk = ψ(αk)− ψ(

K∑
j=1

αj) +
1

2
log |Λ| − d

2
log 2π − 1

2
[dβ−1

k + (un −mk)
TΛ(un −mk)]. (26)

From the above equations we observe a dependency between priors and posteriors, which can be estimated iteratively
depending on the class allocations. Therefore in this paper we propose to solve it under a basic Expectation Maximization
framework where we estimate onk in the E step, while updating αk, βk and mk in the M step.

A.3 Hyperparameter tuning

In this section we detail about how the hyperparameters in our proposed method are obtained. Namely, for a standard
Few-Shot benchmark that has been split into base-validation-novel class set, we firstly tune our model using validation
set and choose the hyperparameters accordingly before applying to the novel set. For example in Figure 5 we tune two
temperature parameters Tkm, Tvb, the scaling up-bound parameter smax and the VB prior βo that are used in our proposed
BAVARDAGE. The blue curves show the performance on validation set while the red curves show the accuracy on the
novel set (benchmark: mini-Imagenet). From the figure we see a similar behavior between two sets in terms of performance,
Tkm has little impact on the accuracy, same for Tvb when it is large. For smax we observe an uptick when it is around 1,
followed by a slowing decrease and finally stabilizing to the same accuracy when it becomes larger. In this paper we tune
hyperparameters for each benchmark in the same way. For tiered-Imagenet we set Tkm, Tvb and smax to be 10, 100, 2 in the
balanced setting, 100, 100, 1 in the unbalanced setting; for CUB we set them to be 10, 5, 5 in both balanced and unbalanced
settings; and for FC100 and CIFAR-FS we set the hyperparameters to be the same as mini-Imagenet. As for βo we set it to
be 10 across datasets since it gives the best performance.

B ADDITIONAL EXPERIMENTS

B.1 Additional Experiments on other Few-Shot Benchmarks

In Section 4 in the paper we tested our proposed method on three standard Few-Shot benchmarks: mini-Imagenet1, tiered-
Imagenet2 and CUB3, following the same setting as presented in https://github.com/oveilleux/Realistic_
Transductive_Few_Shot. In this section we further conduct experiments on two other well-known Few-Shot datasets:
1) FC100 (https://github.com/ElementAI/TADAM) is a recent split dataset based on CIFAR-100 (Krizhevsky
et al., 2009) that contains 60 base classes for training, 20 classes for validation and 20 novel classes for evaluation, each class
is composed of 600 images of size 32x32 pixels; 2) CIFAR-FS (https://github.com/bertinetto/r2d2) is also
sampled from CIFAR-100 and shares the same quantity of classes in the base-validation-novel splits as for mini-Imagenet.
Each class contains 600 images of size 32x32 pixels. In Table 6 below we report the accuracy of our proposed method on all
benchmarks, note that for FC100 and CIFAR-FS we believe to be among the first to conduct experiments in the unbalanced
setting.

In Table 6 we also show the results using WRN and RN18 pretrained from (Veilleux et al., 2021) and RN12 pretrained
from (Bendou et al., 2022), same as Table 1 in the paper, with a confidence interval of 95% added next to the accuracy.
In addition, given that some works (Luo et al., 2021; Zhang et al., 2020) in the field utilize data augmentation techniques

1https://github.com/yaoyao-liu/mini-imagenet-tools
2https://github.com/yaoyao-liu/tiered-imagenet-tools
3http://www.vision.caltech.edu/datasets/cub_200_2011

https://github.com/oveilleux/Realistic_Transductive_Few_Shot
https://github.com/oveilleux/Realistic_Transductive_Few_Shot
https://github.com/ElementAI/TADAM
https://github.com/bertinetto/r2d2
https://github.com/yaoyao-liu/mini-imagenet-tools
https://github.com/yaoyao-liu/tiered-imagenet-tools
http://www.vision.caltech.edu/datasets/cub_200_2011
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Figure 5: Hyperparameter tuning of our proposed method. Here we tune 4 hyperparameters of BAVARDAGE on mini-
Imagenet (backbone: WRN) in the unbalanced setting.

to extract features based on images in original dimensions instead of reduced ones, here we apply our BAVARDAGE
following the same setting and report the accuracy on a pretrained RN12 feature extractor (Bendou et al., 2022) with data
augmentation (denote RN12*). For comparison purpose we also provide a baseline accuracy on each Few-Shot benchmark
using Soft-KMEANS algorithm.

With BAVARDAGE, we observe a clear increase of accuracy for all datasets compared with Soft-KMEANS in both balanced
and unbalanced settings, suggesting the genericity of the proposed method. As for the computational time, we evaluate an
average of 1.72 seconds per accuracy (on 10,000 Few-Shot tasks) using a GeForce RTX 3090 GPU.



Yuqing Hu, Stéphane Pateux, Vincent Gripon

Table 6: Detailed results of BAVARDAGE with confidence interval of 95% on the Few-Shot benchmarks, along with a
baseline accuracy using Soft-KMEANS. We use RN18 and WRN pretrained from (Veilleux et al., 2021), RN12 and RN12*
pretrained from (Bendou et al., 2022).

mini-Imagenet unbalanced balanced

Method Backbone 1-shot 5-shot 1-shot 5-shot

Soft-KMEANS

RN18 (Veilleux et al., 2021) 68.82± 0.27% 81.27± 0.17% 73.47± 0.26% 83.04± 0.15%
WRN (Veilleux et al., 2021) 71.35± 0.27% 82.41± 0.16% 75.70± 0.25% 84.42± 0.14%
RN12 (Bendou et al., 2022) 75.65± 0.25% 86.35± 0.14% 80.81± 0.24% 87.92± 0.12%

RN12* (Bendou et al., 2022) 77.51± 0.26% 87.78± 0.14% 82.14± 0.24% 89.08± 0.12%

BAVARDAGE

RN18 (Veilleux et al., 2021) 71.01± 0.31% 83.60± 0.17% 75.07± 0.28% 84.49± 0.14%
WRN (Veilleux et al., 2021) 74.10± 0.30% 85.52± 0.16% 78.51± 0.27% 87.41± 0.13%
RN12 (Bendou et al., 2022) 77.85± 0.28% 88.02± 0.14% 82.67± 0.25% 89.50± 0.11%

RN12* (Bendou et al., 2022) 79.76± 0.29% 89.85± 0.13% 84.80± 0.25% 91.65± 0.10%

tiered-Imagenet unbalanced balanced

Method Backbone 1-shot 5-shot 1-shot 5-shot

Soft-KMEANS

WRN (Veilleux et al., 2021) 73.92± 0.28% 85.02± 0.18% 78.59± 0.27% 85.76± 0.16%
RN18 (Veilleux et al., 2021) 73.79± 0.28% 84.65± 0.18% 78.34± 0.27% 85.52± 0.17%
RN12 (Bendou et al., 2022) 78.15± 0.27% 87.65± 0.17% 83.11± 0.25% 88.80± 0.15%

RN12* (Bendou et al., 2022) 79.62± 0.27% 88.61± 0.16% 84.08± 0.24% 89.56± 0.14%

BAVARDAGE

WRN (Veilleux et al., 2021) 77.45± 0.31% 87.48± 0.18% 81.47± 0.28% 88.27± 0.16%
RN18 (Veilleux et al., 2021) 76.55± 0.31% 86.46± 0.19% 80.32± 0.28% 87.14± 0.16%
RN12 (Bendou et al., 2022) 79.38± 0.29% 88.04± 0.18% 83.52± 0.26% 89.03± 0.15%

RN12* (Bendou et al., 2022) 81.17± 0.29% 89.63± 0.17% 85.20± 0.25% 90.41± 0.14%

CUB unbalanced balanced

Method Backbone 1-shot 5-shot 1-shot 5-shot

Soft-KMEANS
RN18 (Veilleux et al., 2021) 77.54± 0.26% 86.70± 0.14% 82.67± 0.24% 89.04± 0.11%
RN12 (Bendou et al., 2022) 81.24± 0.25% 87.27± 0.14% 84.87± 0.22% 89.64± 0.11%

RN12* (Bendou et al., 2022) 82.40± 0.24% 89.40± 0.13% 87.38± 0.20% 91.29± 0.10%

BAVARDAGE
RN18 (Veilleux et al., 2021) 82.00± 0.28% 90.67± 0.12% 85.64± 0.25% 91.42± 0.10%
RN12 (Bendou et al., 2022) 83.12± 0.26% 90.81± 0.12% 87.41± 0.22% 92.03± 0.09%

RN12* (Bendou et al., 2022) 86.96± 0.24% 92.84± 0.10% 90.42± 0.20% 93.50± 0.08%

FC100 unbalanced balanced

Method Backbone 1-shot 5-shot 1-shot 5-shot

Soft-KMEANS RN12 (Bendou et al., 2022) 51.24± 0.27% 64.70± 0.22% 54.59± 0.26% 66.37± 0.20%
RN12* (Bendou et al., 2022) 51.64± 0.27% 65.26± 0.22% 54.87± 0.26% 66.89± 0.20%

BAVARDAGE RN12 (Bendou et al., 2022) 52.60± 0.32% 65.35± 0.25% 56.66± 0.28% 69.69± 0.21%
RN12* (Bendou et al., 2022) 53.78± 0.30% 68.75± 0.24% 57.27± 0.29% 70.60± 0.21%

CIFAR-FS unbalanced balanced

Method Backbone 1-shot 5-shot 1-shot 5-shot

Soft-KMEANS RN12 (Bendou et al., 2022) 80.72± 0.25% 88.31± 0.17% 85.47± 0.22% 89.36± 0.15%
RN12* (Bendou et al., 2022) 81.75± 0.25% 88.92± 0.17% 86.07± 0.22% 89.85± 0.15%

BAVARDAGE RN12 (Bendou et al., 2022) 82.68± 0.27% 88.97± 0.18% 86.20± 0.23% 89.58± 0.15%
RN12* (Bendou et al., 2022) 83.82± 0.27% 89.84± 0.18% 87.35± 0.23% 90.63± 0.16%
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